SentenceTransformer based on google/embeddinggemma-300m
This is a sentence-transformers model finetuned from google/embeddinggemma-300m on the sebenx_triplets dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("s7d11/SEmbedv1-0.3b")
# Run inference
queries = [
"Lon b\u025b\u025b, a b\u025b feere damina kabini s\u0254g\u0254ma f\u0254 su f\u025b.",
]
documents = [
'best tak dia?',
'Sankasojanw camaw lajɛliw cɛkaɲi ani lajɛli kabɔ sankasojanw dɔ sanfɛlala walima kabɔ finɛtiri dɔla min pozisiyɔn kaɲi be seka kɛ fɛn cɛɲuman ye ka lajɛ.',
'Pua ka wiliwili nanahu ka mano …',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.6840, 0.3838, 0.8201]])
Training Details
Training Dataset
sebenx_triplets
- Dataset: sebenx_triplets at a152d73
- Size: 2,703,977 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 40.61 tokens
- max: 212 tokens
- min: 4 tokens
- mean: 40.27 tokens
- max: 153 tokens
- min: 3 tokens
- mean: 39.66 tokens
- max: 155 tokens
- Samples:
anchor positive negative kalata fan wɛrɛw fɛ, kɛmɛ sarada jabi 29 hakilina ye Australie ka kɛ bɛjɛnjamana ye teliyara, waati minna kɛmɛ sarada 31 hakilina ye Australie man kan abada ka kɛ bɛjɛnjamana ye.Tile minna ko nunuw kɛra be wele forobala ko Sanfɛ Cɛmancɛ Waati, Erɔpu tariku waati sankɛmɛsigi 11na, 12na ni 13na (san 1000-1300 Yesu bangeli kɔfɛ).Nɛnɛ damatɛmɛlen be seka kɛ nisongoyala: goniyajakɛ be jigin cogogɛlɛ jali duguma, nka fiyɛn ani sumaya be faara ɲɔgɔnkan ka nɛnɛ tɔ juguya ka tɛmɛ goniyahakɛ sumana be min fɔ kan.a mɛn ka kɛ tile kelen ye, walima fila,.A tigi dalen ka kan ka to tile caman.Nin ye mun ɲεnajε ye ?Dja ko foyi tèkai ni sababou tala.interj NZ a Māori greeting to two.galoda Sinamuso jugu Nis kasara Gawo taama bɛnkan Ngɔnikɔrɔ bama bamukan Dinbal Fakɔkuru Lolɛ Ncininna Erɔp ntonlan. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 0.3, 0.1 ], "n_dims_per_step": -1 }
Evaluation Dataset
sebenx_triplets
- Dataset: sebenx_triplets at a152d73
- Size: 271 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 271 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 41.12 tokens
- max: 141 tokens
- min: 4 tokens
- mean: 41.09 tokens
- max: 131 tokens
- min: 4 tokens
- mean: 41.08 tokens
- max: 149 tokens
- Samples:
anchor positive negative Kaladen kɔrɔ dɔ ko 'a tun be kumakan langolo fɔ kalanso kɔnɔ, ka jalali dɔnniw kalankɛ nɔbilaw la an'a tun be inafɔ kalandenw teri .'.Kabini o tuma na Sini jamana sɔrɔ yiriwara siyɛn 90.Nɔremu 802.11n be barakƐ fiɲƐsira 2,4 Ghz ni 5 Ghz kan.maure.»banxanxalle Noun. sore; dartre. Category: 2.5. Healthy. sim: fanqalelle.Bambara, dioula, malinkéBarabara cia bũrũri itirĩ umithio mũnene angĩkoro irateithia mĩtoka mĩnini, kwa ũguo no nginya mĩtaratara ya gũthondeka na kũnyihia thogora ya cio ĩthondeko.Sɔrɔboso yɛlɛmabolo fɔlɔ in kɛra Deng Xiaoping ka fanga kɔnɔ.jàmanakuntigi ka Irisilataga Krowasiya Shipuru 2025-05 Mùneyisa 2025-04 Bilgariya Bɔsni 2025-03 2025 Selincinin Ne bɛ n. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 0.3, 0.1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 1gradient_accumulation_steps: 8learning_rate: 5e-06weight_decay: 0.01max_steps: 5000lr_scheduler_type: cosinewarmup_ratio: 0.1fp16: Trueprompts: task: sentence similarity | query:
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 1per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 8eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-06weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: 5000lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: task: sentence similarity | query:batch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0000 | 10 | 1.3857 | - |
| 0.0001 | 20 | 1.3352 | - |
| 0.0001 | 30 | 1.1998 | - |
| 0.0001 | 40 | 1.1487 | - |
| 0.0001 | 50 | 1.0881 | - |
| 0.0002 | 60 | 1.0239 | - |
| 0.0002 | 70 | 1.0615 | - |
| 0.0002 | 80 | 0.9406 | - |
| 0.0003 | 90 | 1.0496 | - |
| 0.0003 | 100 | 0.9214 | - |
| 0.0003 | 110 | 0.953 | - |
| 0.0004 | 120 | 0.8999 | - |
| 0.0004 | 130 | 1.0409 | - |
| 0.0004 | 140 | 0.9998 | - |
| 0.0004 | 150 | 0.883 | - |
| 0.0005 | 160 | 0.9923 | - |
| 0.0005 | 170 | 0.8498 | - |
| 0.0005 | 180 | 0.7824 | - |
| 0.0006 | 190 | 0.8451 | - |
| 0.0006 | 200 | 0.846 | - |
| 0.0006 | 210 | 0.8094 | - |
| 0.0007 | 220 | 0.9448 | - |
| 0.0007 | 230 | 0.9072 | - |
| 0.0007 | 240 | 0.7502 | - |
| 0.0007 | 250 | 0.7043 | - |
| 0.0008 | 260 | 0.777 | - |
| 0.0008 | 270 | 0.9626 | - |
| 0.0008 | 280 | 1.0501 | - |
| 0.0009 | 290 | 0.7489 | - |
| 0.0009 | 300 | 0.8305 | - |
| 0.0009 | 310 | 0.6411 | - |
| 0.0009 | 320 | 0.8251 | - |
| 0.0010 | 330 | 0.6632 | - |
| 0.0010 | 340 | 0.8039 | - |
| 0.0010 | 350 | 0.6465 | - |
| 0.0011 | 360 | 0.9541 | - |
| 0.0011 | 370 | 0.8584 | - |
| 0.0011 | 380 | 0.8907 | - |
| 0.0012 | 390 | 0.7243 | - |
| 0.0012 | 400 | 0.7592 | - |
| 0.0012 | 410 | 0.8199 | - |
| 0.0012 | 420 | 0.7394 | - |
| 0.0013 | 430 | 0.7053 | - |
| 0.0013 | 440 | 0.7955 | - |
| 0.0013 | 450 | 0.8382 | - |
| 0.0014 | 460 | 0.7608 | - |
| 0.0014 | 470 | 0.7308 | - |
| 0.0014 | 480 | 0.718 | - |
| 0.0014 | 490 | 0.6998 | - |
| 0.0015 | 500 | 0.8602 | - |
| 0.0015 | 510 | 0.9128 | - |
| 0.0015 | 520 | 0.6842 | - |
| 0.0016 | 530 | 0.8519 | - |
| 0.0016 | 540 | 0.9339 | - |
| 0.0016 | 550 | 0.8003 | - |
| 0.0017 | 560 | 0.7795 | - |
| 0.0017 | 570 | 0.8377 | - |
| 0.0017 | 580 | 0.5871 | - |
| 0.0017 | 590 | 0.7091 | - |
| 0.0018 | 600 | 0.79 | - |
| 0.0018 | 610 | 0.9473 | - |
| 0.0018 | 620 | 0.8671 | - |
| 0.0019 | 630 | 0.7165 | - |
| 0.0019 | 640 | 0.8825 | - |
| 0.0019 | 650 | 0.8347 | - |
| 0.0020 | 660 | 0.6016 | - |
| 0.0020 | 670 | 0.8572 | - |
| 0.0020 | 680 | 0.772 | - |
| 0.0020 | 690 | 0.7865 | - |
| 0.0021 | 700 | 0.9205 | - |
| 0.0021 | 710 | 0.8145 | - |
| 0.0021 | 720 | 0.783 | - |
| 0.0022 | 730 | 0.7304 | - |
| 0.0022 | 740 | 0.7809 | - |
| 0.0022 | 750 | 0.8504 | - |
| 0.0022 | 760 | 0.6971 | - |
| 0.0023 | 770 | 0.8535 | - |
| 0.0023 | 780 | 0.7312 | - |
| 0.0023 | 790 | 0.6701 | - |
| 0.0024 | 800 | 0.7899 | - |
| 0.0024 | 810 | 0.7688 | - |
| 0.0024 | 820 | 0.7493 | - |
| 0.0025 | 830 | 0.6789 | - |
| 0.0025 | 840 | 0.8506 | - |
| 0.0025 | 850 | 0.7875 | - |
| 0.0025 | 860 | 0.653 | - |
| 0.0026 | 870 | 0.7847 | - |
| 0.0026 | 880 | 0.7561 | - |
| 0.0026 | 890 | 0.6186 | - |
| 0.0027 | 900 | 0.6631 | - |
| 0.0027 | 910 | 0.7191 | - |
| 0.0027 | 920 | 0.666 | - |
| 0.0028 | 930 | 0.7304 | - |
| 0.0028 | 940 | 0.9292 | - |
| 0.0028 | 950 | 0.5899 | - |
| 0.0028 | 960 | 0.8594 | - |
| 0.0029 | 970 | 0.6226 | - |
| 0.0029 | 980 | 0.6514 | - |
| 0.0029 | 990 | 0.5353 | - |
| 0.0030 | 1000 | 0.5977 | - |
| 0.0030 | 1010 | 0.7201 | - |
| 0.0030 | 1020 | 0.8047 | - |
| 0.0030 | 1030 | 0.5933 | - |
| 0.0031 | 1040 | 0.7361 | - |
| 0.0031 | 1050 | 0.6687 | - |
| 0.0031 | 1060 | 0.8877 | - |
| 0.0032 | 1070 | 0.722 | - |
| 0.0032 | 1080 | 0.6555 | - |
| 0.0032 | 1090 | 0.7812 | - |
| 0.0033 | 1100 | 0.6015 | - |
| 0.0033 | 1110 | 0.7915 | - |
| 0.0033 | 1120 | 0.6999 | - |
| 0.0033 | 1130 | 0.6956 | - |
| 0.0034 | 1140 | 0.5105 | - |
| 0.0034 | 1150 | 0.7155 | - |
| 0.0034 | 1160 | 0.6233 | - |
| 0.0035 | 1170 | 0.9316 | - |
| 0.0035 | 1180 | 0.6544 | - |
| 0.0035 | 1190 | 0.6487 | - |
| 0.0036 | 1200 | 0.6459 | - |
| 0.0036 | 1210 | 0.8283 | - |
| 0.0036 | 1220 | 0.7653 | - |
| 0.0036 | 1230 | 0.7429 | - |
| 0.0037 | 1240 | 0.6253 | - |
| 0.0037 | 1250 | 0.7739 | 3.2216 |
| 0.0037 | 1260 | 0.5848 | - |
| 0.0038 | 1270 | 0.6655 | - |
| 0.0038 | 1280 | 0.6969 | - |
| 0.0038 | 1290 | 0.8055 | - |
| 0.0038 | 1300 | 0.5927 | - |
| 0.0039 | 1310 | 0.6252 | - |
| 0.0039 | 1320 | 0.7125 | - |
| 0.0039 | 1330 | 0.547 | - |
| 0.0040 | 1340 | 0.7427 | - |
| 0.0040 | 1350 | 0.8153 | - |
| 0.0040 | 1360 | 0.6979 | - |
| 0.0041 | 1370 | 0.6194 | - |
| 0.0041 | 1380 | 0.6441 | - |
| 0.0041 | 1390 | 0.5782 | - |
| 0.0041 | 1400 | 0.6529 | - |
| 0.0042 | 1410 | 0.8555 | - |
| 0.0042 | 1420 | 0.7904 | - |
| 0.0042 | 1430 | 0.5629 | - |
| 0.0043 | 1440 | 0.6203 | - |
| 0.0043 | 1450 | 0.6226 | - |
| 0.0043 | 1460 | 0.7346 | - |
| 0.0043 | 1470 | 0.8153 | - |
| 0.0044 | 1480 | 0.7878 | - |
| 0.0044 | 1490 | 0.769 | - |
| 0.0044 | 1500 | 0.6265 | - |
| 0.0045 | 1510 | 0.5634 | - |
| 0.0045 | 1520 | 0.5782 | - |
| 0.0045 | 1530 | 0.6093 | - |
| 0.0046 | 1540 | 0.6989 | - |
| 0.0046 | 1550 | 0.7951 | - |
| 0.0046 | 1560 | 0.6215 | - |
| 0.0046 | 1570 | 0.7065 | - |
| 0.0047 | 1580 | 0.6772 | - |
| 0.0047 | 1590 | 0.5745 | - |
| 0.0047 | 1600 | 0.6832 | - |
| 0.0048 | 1610 | 0.6318 | - |
| 0.0048 | 1620 | 0.7641 | - |
| 0.0048 | 1630 | 0.8019 | - |
| 0.0049 | 1640 | 0.7143 | - |
| 0.0049 | 1650 | 0.6369 | - |
| 0.0049 | 1660 | 0.6575 | - |
| 0.0049 | 1670 | 0.6055 | - |
| 0.0050 | 1680 | 0.675 | - |
| 0.0050 | 1690 | 0.5365 | - |
| 0.0050 | 1700 | 0.5092 | - |
| 0.0051 | 1710 | 0.7284 | - |
| 0.0051 | 1720 | 0.7647 | - |
| 0.0051 | 1730 | 0.5493 | - |
| 0.0051 | 1740 | 0.5061 | - |
| 0.0052 | 1750 | 0.5138 | - |
| 0.0052 | 1760 | 0.7677 | - |
| 0.0052 | 1770 | 0.5683 | - |
| 0.0053 | 1780 | 0.6337 | - |
| 0.0053 | 1790 | 0.5645 | - |
| 0.0053 | 1800 | 0.4971 | - |
| 0.0054 | 1810 | 0.7195 | - |
| 0.0054 | 1820 | 0.4615 | - |
| 0.0054 | 1830 | 0.7374 | - |
| 0.0054 | 1840 | 0.5524 | - |
| 0.0055 | 1850 | 0.7127 | - |
| 0.0055 | 1860 | 0.6545 | - |
| 0.0055 | 1870 | 0.6168 | - |
| 0.0056 | 1880 | 0.6194 | - |
| 0.0056 | 1890 | 0.4979 | - |
| 0.0056 | 1900 | 0.7268 | - |
| 0.0057 | 1910 | 0.4508 | - |
| 0.0057 | 1920 | 0.7093 | - |
| 0.0057 | 1930 | 0.6059 | - |
| 0.0057 | 1940 | 0.5363 | - |
| 0.0058 | 1950 | 0.659 | - |
| 0.0058 | 1960 | 0.5137 | - |
| 0.0058 | 1970 | 0.6528 | - |
| 0.0059 | 1980 | 0.6183 | - |
| 0.0059 | 1990 | 0.8905 | - |
| 0.0059 | 2000 | 0.6576 | - |
| 0.0059 | 2010 | 0.6094 | - |
| 0.0060 | 2020 | 0.5005 | - |
| 0.0060 | 2030 | 0.5099 | - |
| 0.0060 | 2040 | 0.631 | - |
| 0.0061 | 2050 | 0.4429 | - |
| 0.0061 | 2060 | 0.5831 | - |
| 0.0061 | 2070 | 0.6217 | - |
| 0.0062 | 2080 | 0.5121 | - |
| 0.0062 | 2090 | 0.5428 | - |
| 0.0062 | 2100 | 0.62 | - |
| 0.0062 | 2110 | 0.5721 | - |
| 0.0063 | 2120 | 0.5665 | - |
| 0.0063 | 2130 | 0.4057 | - |
| 0.0063 | 2140 | 0.7022 | - |
| 0.0064 | 2150 | 0.7608 | - |
| 0.0064 | 2160 | 0.6097 | - |
| 0.0064 | 2170 | 0.5711 | - |
| 0.0064 | 2180 | 0.4813 | - |
| 0.0065 | 2190 | 0.6525 | - |
| 0.0065 | 2200 | 0.6782 | - |
| 0.0065 | 2210 | 0.5661 | - |
| 0.0066 | 2220 | 0.754 | - |
| 0.0066 | 2230 | 0.6587 | - |
| 0.0066 | 2240 | 0.5377 | - |
| 0.0067 | 2250 | 0.8553 | - |
| 0.0067 | 2260 | 0.4283 | - |
| 0.0067 | 2270 | 0.6733 | - |
| 0.0067 | 2280 | 0.6693 | - |
| 0.0068 | 2290 | 0.5919 | - |
| 0.0068 | 2300 | 0.5743 | - |
| 0.0068 | 2310 | 0.7105 | - |
| 0.0069 | 2320 | 0.4436 | - |
| 0.0069 | 2330 | 0.6323 | - |
| 0.0069 | 2340 | 0.5959 | - |
| 0.0070 | 2350 | 0.6491 | - |
| 0.0070 | 2360 | 0.7986 | - |
| 0.0070 | 2370 | 0.5997 | - |
| 0.0070 | 2380 | 0.4897 | - |
| 0.0071 | 2390 | 0.5401 | - |
| 0.0071 | 2400 | 0.7304 | - |
| 0.0071 | 2410 | 0.5874 | - |
| 0.0072 | 2420 | 0.5637 | - |
| 0.0072 | 2430 | 0.5432 | - |
| 0.0072 | 2440 | 0.5799 | - |
| 0.0072 | 2450 | 0.5674 | - |
| 0.0073 | 2460 | 0.846 | - |
| 0.0073 | 2470 | 0.6006 | - |
| 0.0073 | 2480 | 0.5279 | - |
| 0.0074 | 2490 | 0.706 | - |
| 0.0074 | 2500 | 0.5741 | 3.0077 |
| 0.0074 | 2510 | 0.5416 | - |
| 0.0075 | 2520 | 0.448 | - |
| 0.0075 | 2530 | 0.5437 | - |
| 0.0075 | 2540 | 0.662 | - |
| 0.0075 | 2550 | 0.6424 | - |
| 0.0076 | 2560 | 0.682 | - |
| 0.0076 | 2570 | 0.6211 | - |
| 0.0076 | 2580 | 0.5738 | - |
| 0.0077 | 2590 | 0.5747 | - |
| 0.0077 | 2600 | 0.959 | - |
| 0.0077 | 2610 | 0.56 | - |
| 0.0078 | 2620 | 0.6612 | - |
| 0.0078 | 2630 | 0.5008 | - |
| 0.0078 | 2640 | 0.4839 | - |
| 0.0078 | 2650 | 0.6241 | - |
| 0.0079 | 2660 | 0.6323 | - |
| 0.0079 | 2670 | 0.6601 | - |
| 0.0079 | 2680 | 0.517 | - |
| 0.0080 | 2690 | 0.6023 | - |
| 0.0080 | 2700 | 0.5601 | - |
| 0.0080 | 2710 | 0.611 | - |
| 0.0080 | 2720 | 0.7261 | - |
| 0.0081 | 2730 | 0.515 | - |
| 0.0081 | 2740 | 0.5517 | - |
| 0.0081 | 2750 | 0.5843 | - |
| 0.0082 | 2760 | 0.4607 | - |
| 0.0082 | 2770 | 0.5416 | - |
| 0.0082 | 2780 | 0.6806 | - |
| 0.0083 | 2790 | 0.6127 | - |
| 0.0083 | 2800 | 0.6366 | - |
| 0.0083 | 2810 | 0.6962 | - |
| 0.0083 | 2820 | 0.4876 | - |
| 0.0084 | 2830 | 0.7263 | - |
| 0.0084 | 2840 | 0.5974 | - |
| 0.0084 | 2850 | 0.4835 | - |
| 0.0085 | 2860 | 0.4579 | - |
| 0.0085 | 2870 | 0.429 | - |
| 0.0085 | 2880 | 0.4439 | - |
| 0.0086 | 2890 | 0.5631 | - |
| 0.0086 | 2900 | 0.6307 | - |
| 0.0086 | 2910 | 0.5138 | - |
| 0.0086 | 2920 | 0.617 | - |
| 0.0087 | 2930 | 0.5033 | - |
| 0.0087 | 2940 | 0.6152 | - |
| 0.0087 | 2950 | 0.5089 | - |
| 0.0088 | 2960 | 0.4937 | - |
| 0.0088 | 2970 | 0.5528 | - |
| 0.0088 | 2980 | 0.5194 | - |
| 0.0088 | 2990 | 0.772 | - |
| 0.0089 | 3000 | 0.5303 | - |
| 0.0089 | 3010 | 0.565 | - |
| 0.0089 | 3020 | 0.5464 | - |
| 0.0090 | 3030 | 0.6153 | - |
| 0.0090 | 3040 | 0.5965 | - |
| 0.0090 | 3050 | 0.712 | - |
| 0.0091 | 3060 | 0.4347 | - |
| 0.0091 | 3070 | 0.4398 | - |
| 0.0091 | 3080 | 0.6925 | - |
| 0.0091 | 3090 | 0.8619 | - |
| 0.0092 | 3100 | 0.7581 | - |
| 0.0092 | 3110 | 0.8109 | - |
| 0.0092 | 3120 | 0.4329 | - |
| 0.0093 | 3130 | 0.4853 | - |
| 0.0093 | 3140 | 0.5674 | - |
| 0.0093 | 3150 | 0.6655 | - |
| 0.0093 | 3160 | 0.48 | - |
| 0.0094 | 3170 | 0.3521 | - |
| 0.0094 | 3180 | 0.5814 | - |
| 0.0094 | 3190 | 0.4354 | - |
| 0.0095 | 3200 | 0.6543 | - |
| 0.0095 | 3210 | 0.5167 | - |
| 0.0095 | 3220 | 0.8639 | - |
| 0.0096 | 3230 | 0.48 | - |
| 0.0096 | 3240 | 0.6677 | - |
| 0.0096 | 3250 | 0.6518 | - |
| 0.0096 | 3260 | 0.5602 | - |
| 0.0097 | 3270 | 0.589 | - |
| 0.0097 | 3280 | 0.6361 | - |
| 0.0097 | 3290 | 0.6589 | - |
| 0.0098 | 3300 | 0.5138 | - |
| 0.0098 | 3310 | 0.5356 | - |
| 0.0098 | 3320 | 0.533 | - |
| 0.0099 | 3330 | 0.6241 | - |
| 0.0099 | 3340 | 0.6112 | - |
| 0.0099 | 3350 | 0.5351 | - |
| 0.0099 | 3360 | 0.4903 | - |
| 0.0100 | 3370 | 0.4544 | - |
| 0.0100 | 3380 | 0.4495 | - |
| 0.0100 | 3390 | 0.4382 | - |
| 0.0101 | 3400 | 0.5671 | - |
| 0.0101 | 3410 | 0.4735 | - |
| 0.0101 | 3420 | 0.638 | - |
| 0.0101 | 3430 | 0.5626 | - |
| 0.0102 | 3440 | 0.4754 | - |
| 0.0102 | 3450 | 0.4749 | - |
| 0.0102 | 3460 | 0.4778 | - |
| 0.0103 | 3470 | 0.3425 | - |
| 0.0103 | 3480 | 0.5415 | - |
| 0.0103 | 3490 | 0.5165 | - |
| 0.0104 | 3500 | 0.6016 | - |
| 0.0104 | 3510 | 0.5639 | - |
| 0.0104 | 3520 | 0.8738 | - |
| 0.0104 | 3530 | 0.5062 | - |
| 0.0105 | 3540 | 0.4332 | - |
| 0.0105 | 3550 | 0.8084 | - |
| 0.0105 | 3560 | 0.7191 | - |
| 0.0106 | 3570 | 0.5944 | - |
| 0.0106 | 3580 | 0.6997 | - |
| 0.0106 | 3590 | 0.63 | - |
| 0.0107 | 3600 | 0.4186 | - |
| 0.0107 | 3610 | 0.5776 | - |
| 0.0107 | 3620 | 0.4875 | - |
| 0.0107 | 3630 | 0.5769 | - |
| 0.0108 | 3640 | 0.509 | - |
| 0.0108 | 3650 | 0.5627 | - |
| 0.0108 | 3660 | 0.5159 | - |
| 0.0109 | 3670 | 0.6378 | - |
| 0.0109 | 3680 | 0.4965 | - |
| 0.0109 | 3690 | 0.5775 | - |
| 0.0109 | 3700 | 0.657 | - |
| 0.0110 | 3710 | 0.7192 | - |
| 0.0110 | 3720 | 0.3836 | - |
| 0.0110 | 3730 | 0.6142 | - |
| 0.0111 | 3740 | 0.4774 | - |
| 0.0111 | 3750 | 0.5099 | 2.9023 |
| 0.0111 | 3760 | 0.6325 | - |
| 0.0112 | 3770 | 0.6974 | - |
| 0.0112 | 3780 | 0.5958 | - |
| 0.0112 | 3790 | 0.5643 | - |
| 0.0112 | 3800 | 0.5476 | - |
| 0.0113 | 3810 | 0.3828 | - |
| 0.0113 | 3820 | 0.7134 | - |
| 0.0113 | 3830 | 0.5593 | - |
| 0.0114 | 3840 | 0.4622 | - |
| 0.0114 | 3850 | 0.4911 | - |
| 0.0114 | 3860 | 0.7652 | - |
| 0.0114 | 3870 | 0.4124 | - |
| 0.0115 | 3880 | 0.7257 | - |
| 0.0115 | 3890 | 0.459 | - |
| 0.0115 | 3900 | 0.4988 | - |
| 0.0116 | 3910 | 0.5146 | - |
| 0.0116 | 3920 | 0.5613 | - |
| 0.0116 | 3930 | 0.6893 | - |
| 0.0117 | 3940 | 0.4245 | - |
| 0.0117 | 3950 | 0.4426 | - |
| 0.0117 | 3960 | 0.8301 | - |
| 0.0117 | 3970 | 0.3732 | - |
| 0.0118 | 3980 | 0.516 | - |
| 0.0118 | 3990 | 0.445 | - |
| 0.0118 | 4000 | 0.838 | - |
| 0.0119 | 4010 | 0.6627 | - |
| 0.0119 | 4020 | 0.3563 | - |
| 0.0119 | 4030 | 0.532 | - |
| 0.0120 | 4040 | 0.7707 | - |
| 0.0120 | 4050 | 0.5832 | - |
| 0.0120 | 4060 | 0.5266 | - |
| 0.0120 | 4070 | 0.5309 | - |
| 0.0121 | 4080 | 0.6722 | - |
| 0.0121 | 4090 | 0.5141 | - |
| 0.0121 | 4100 | 0.4724 | - |
| 0.0122 | 4110 | 0.7266 | - |
| 0.0122 | 4120 | 0.4685 | - |
| 0.0122 | 4130 | 0.4988 | - |
| 0.0122 | 4140 | 0.4194 | - |
| 0.0123 | 4150 | 0.4976 | - |
| 0.0123 | 4160 | 0.5164 | - |
| 0.0123 | 4170 | 0.6077 | - |
| 0.0124 | 4180 | 0.6547 | - |
| 0.0124 | 4190 | 0.6342 | - |
| 0.0124 | 4200 | 0.5514 | - |
| 0.0125 | 4210 | 0.4814 | - |
| 0.0125 | 4220 | 0.4895 | - |
| 0.0125 | 4230 | 0.7219 | - |
| 0.0125 | 4240 | 0.5481 | - |
| 0.0126 | 4250 | 0.4702 | - |
| 0.0126 | 4260 | 0.7058 | - |
| 0.0126 | 4270 | 0.3936 | - |
| 0.0127 | 4280 | 0.6489 | - |
| 0.0127 | 4290 | 0.5032 | - |
| 0.0127 | 4300 | 0.5088 | - |
| 0.0128 | 4310 | 0.523 | - |
| 0.0128 | 4320 | 0.4418 | - |
| 0.0128 | 4330 | 0.583 | - |
| 0.0128 | 4340 | 0.564 | - |
| 0.0129 | 4350 | 0.6308 | - |
| 0.0129 | 4360 | 0.5444 | - |
| 0.0129 | 4370 | 0.5474 | - |
| 0.0130 | 4380 | 0.4261 | - |
| 0.0130 | 4390 | 0.5347 | - |
| 0.0130 | 4400 | 0.6137 | - |
| 0.0130 | 4410 | 0.4739 | - |
| 0.0131 | 4420 | 0.5185 | - |
| 0.0131 | 4430 | 0.4315 | - |
| 0.0131 | 4440 | 0.5913 | - |
| 0.0132 | 4450 | 0.5222 | - |
| 0.0132 | 4460 | 0.4818 | - |
| 0.0132 | 4470 | 0.5603 | - |
| 0.0133 | 4480 | 0.6157 | - |
| 0.0133 | 4490 | 0.6436 | - |
| 0.0133 | 4500 | 0.6227 | - |
| 0.0133 | 4510 | 0.4639 | - |
| 0.0134 | 4520 | 0.6379 | - |
| 0.0134 | 4530 | 0.5369 | - |
| 0.0134 | 4540 | 0.4951 | - |
| 0.0135 | 4550 | 0.5235 | - |
| 0.0135 | 4560 | 0.5048 | - |
| 0.0135 | 4570 | 0.4953 | - |
| 0.0136 | 4580 | 0.6981 | - |
| 0.0136 | 4590 | 0.5543 | - |
| 0.0136 | 4600 | 0.5432 | - |
| 0.0136 | 4610 | 0.4719 | - |
| 0.0137 | 4620 | 0.5418 | - |
| 0.0137 | 4630 | 0.7021 | - |
| 0.0137 | 4640 | 0.5176 | - |
| 0.0138 | 4650 | 0.459 | - |
| 0.0138 | 4660 | 0.6334 | - |
| 0.0138 | 4670 | 0.4691 | - |
| 0.0138 | 4680 | 0.4473 | - |
| 0.0139 | 4690 | 0.474 | - |
| 0.0139 | 4700 | 0.5297 | - |
| 0.0139 | 4710 | 0.6543 | - |
| 0.0140 | 4720 | 0.5651 | - |
| 0.0140 | 4730 | 0.5072 | - |
| 0.0140 | 4740 | 0.5961 | - |
| 0.0141 | 4750 | 0.5262 | - |
| 0.0141 | 4760 | 0.6235 | - |
| 0.0141 | 4770 | 0.4718 | - |
| 0.0141 | 4780 | 0.497 | - |
| 0.0142 | 4790 | 0.5046 | - |
| 0.0142 | 4800 | 0.5694 | - |
| 0.0142 | 4810 | 0.4202 | - |
| 0.0143 | 4820 | 0.6833 | - |
| 0.0143 | 4830 | 0.6341 | - |
| 0.0143 | 4840 | 0.5327 | - |
| 0.0143 | 4850 | 0.4914 | - |
| 0.0144 | 4860 | 0.6098 | - |
| 0.0144 | 4870 | 0.4093 | - |
| 0.0144 | 4880 | 0.5317 | - |
| 0.0145 | 4890 | 0.5809 | - |
| 0.0145 | 4900 | 0.3474 | - |
| 0.0145 | 4910 | 0.4408 | - |
| 0.0146 | 4920 | 0.4957 | - |
| 0.0146 | 4930 | 0.5085 | - |
| 0.0146 | 4940 | 0.5089 | - |
| 0.0146 | 4950 | 0.6008 | - |
| 0.0147 | 4960 | 0.3984 | - |
| 0.0147 | 4970 | 0.489 | - |
| 0.0147 | 4980 | 0.3918 | - |
| 0.0148 | 4990 | 0.6235 | - |
| 0.0148 | 5000 | 0.5644 | 2.8565 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.1+cu128
- Accelerate: 1.12.0
- Datasets: 4.4.2
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 32
Model tree for s7d11/SEmbedv1-0.3b
Base model
google/embeddinggemma-300m