SentenceTransformer based on FacebookAI/roberta-large
This is a sentence-transformers model finetuned from FacebookAI/roberta-large on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8065, 0.5747],
# [0.8065, 1.0000, 0.6756],
# [0.5747, 0.6756, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.7451 | 0.71 |
| spearman_cosine | 0.7649 | 0.7351 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768 ], "matryoshka_weights": [ 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.Two woman are holding packages.The men are fighting outside a deli.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.Two kids in numbered jerseys wash their hands.Two kids in jackets walk to school.A man selling donuts to a customer during a world exhibition event held in the city of AngelesA man selling donuts to a customer.A woman drinks her coffee in a small cafe. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768 ], "matryoshka_weights": [ 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 15warmup_ratio: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 15max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.5730 | - |
| 0.0287 | 500 | 2.658 | 0.6755 | 0.8371 | - |
| 0.0574 | 1000 | 0.8483 | 0.3792 | 0.8641 | - |
| 0.0860 | 1500 | 0.6459 | 0.3036 | 0.8668 | - |
| 0.1147 | 2000 | 0.57 | 0.2605 | 0.8709 | - |
| 0.1434 | 2500 | 0.5211 | 0.2503 | 0.8685 | - |
| 0.1721 | 3000 | 0.4947 | 0.2367 | 0.8770 | - |
| 0.2008 | 3500 | 0.4651 | 0.2154 | 0.8688 | - |
| 0.2294 | 4000 | 0.4386 | 0.2154 | 0.8716 | - |
| 0.2581 | 4500 | 0.4351 | 0.2128 | 0.8766 | - |
| 0.2868 | 5000 | 0.4189 | 0.2061 | 0.8751 | - |
| 0.3155 | 5500 | 0.3989 | 0.2028 | 0.8744 | - |
| 0.3442 | 6000 | 0.4064 | 0.1998 | 0.8768 | - |
| 0.3729 | 6500 | 0.4056 | 0.2044 | 0.8718 | - |
| 0.4015 | 7000 | 0.3975 | 0.1953 | 0.8644 | - |
| 0.4302 | 7500 | 0.3799 | 0.2079 | 0.8629 | - |
| 0.4589 | 8000 | 0.3562 | 0.2059 | 0.8656 | - |
| 0.4876 | 8500 | 0.3789 | 0.1991 | 0.8637 | - |
| 0.5163 | 9000 | 0.3812 | 0.1941 | 0.8666 | - |
| 0.5449 | 9500 | 0.3697 | 0.2086 | 0.8655 | - |
| 0.5736 | 10000 | 0.3529 | 0.2041 | 0.8649 | - |
| 0.6023 | 10500 | 0.3591 | 0.2099 | 0.8606 | - |
| 0.6310 | 11000 | 0.3479 | 0.2068 | 0.8588 | - |
| 0.6597 | 11500 | 0.3532 | 0.1941 | 0.8615 | - |
| 0.6883 | 12000 | 0.3444 | 0.1949 | 0.8633 | - |
| 0.7170 | 12500 | 0.3574 | 0.2172 | 0.8560 | - |
| 0.7457 | 13000 | 0.3581 | 0.2073 | 0.8460 | - |
| 0.7744 | 13500 | 0.3501 | 0.2108 | 0.8592 | - |
| 0.8031 | 14000 | 0.3397 | 0.2087 | 0.8554 | - |
| 0.8318 | 14500 | 0.3468 | 0.2164 | 0.8655 | - |
| 0.8604 | 15000 | 0.3414 | 0.2055 | 0.8537 | - |
| 0.8891 | 15500 | 0.3441 | 0.2222 | 0.8549 | - |
| 0.9178 | 16000 | 0.3457 | 0.2153 | 0.8561 | - |
| 0.9465 | 16500 | 0.3432 | 0.2215 | 0.8532 | - |
| 0.9752 | 17000 | 0.3315 | 0.2237 | 0.8541 | - |
| 1.0038 | 17500 | 0.3272 | 0.2292 | 0.8451 | - |
| 1.0325 | 18000 | 0.3015 | 0.2257 | 0.8472 | - |
| 1.0612 | 18500 | 0.3041 | 0.2224 | 0.8370 | - |
| 1.0899 | 19000 | 0.3016 | 0.2207 | 0.8411 | - |
| 1.1186 | 19500 | 0.3113 | 0.2331 | 0.8464 | - |
| 1.1472 | 20000 | 0.3274 | 0.2427 | 0.8393 | - |
| 1.1759 | 20500 | 0.3215 | 0.2405 | 0.8395 | - |
| 1.2046 | 21000 | 0.3268 | 0.2332 | 0.8505 | - |
| 1.2333 | 21500 | 0.3324 | 0.2339 | 0.8351 | - |
| 1.2620 | 22000 | 0.3128 | 0.2450 | 0.8423 | - |
| 1.2907 | 22500 | 0.3247 | 0.2546 | 0.8457 | - |
| 1.3193 | 23000 | 0.3432 | 0.2366 | 0.8429 | - |
| 1.3480 | 23500 | 0.3324 | 0.2496 | 0.8414 | - |
| 1.3767 | 24000 | 0.3301 | 0.2424 | 0.8451 | - |
| 1.4054 | 24500 | 0.331 | 0.2472 | 0.8431 | - |
| 1.4341 | 25000 | 0.3273 | 0.2829 | 0.8421 | - |
| 1.4627 | 25500 | 0.3768 | 0.2615 | 0.8395 | - |
| 1.4914 | 26000 | 0.3409 | 0.2745 | 0.8323 | - |
| 1.5201 | 26500 | 0.3249 | 0.2575 | 0.8317 | - |
| 1.5488 | 27000 | 0.339 | 0.2651 | 0.8303 | - |
| 1.5775 | 27500 | 0.3873 | 0.2624 | 0.8406 | - |
| 1.6061 | 28000 | 0.3376 | 0.2623 | 0.8335 | - |
| 1.6348 | 28500 | 0.3497 | 0.2707 | 0.8336 | - |
| 1.6635 | 29000 | 0.3332 | 0.2694 | 0.8421 | - |
| 1.6922 | 29500 | 0.3439 | 0.2632 | 0.8398 | - |
| 1.7209 | 30000 | 0.3469 | 0.2748 | 0.8397 | - |
| 1.7496 | 30500 | 0.3408 | 0.3037 | 0.8194 | - |
| 1.7782 | 31000 | 0.3313 | 0.2587 | 0.8308 | - |
| 1.8069 | 31500 | 0.35 | 0.2783 | 0.8315 | - |
| 1.8356 | 32000 | 0.3273 | 0.2645 | 0.8191 | - |
| 1.8643 | 32500 | 0.3409 | 0.2507 | 0.8396 | - |
| 1.8930 | 33000 | 0.338 | 0.2742 | 0.8338 | - |
| 1.9216 | 33500 | 0.3164 | 0.2675 | 0.8289 | - |
| 1.9503 | 34000 | 0.3334 | 0.2672 | 0.8365 | - |
| 1.9790 | 34500 | 0.3275 | 0.2773 | 0.8411 | - |
| 2.0077 | 35000 | 0.3323 | 0.2758 | 0.8302 | - |
| 2.0364 | 35500 | 0.2837 | 0.2711 | 0.8254 | - |
| 2.0650 | 36000 | 0.341 | 0.2609 | 0.8347 | - |
| 2.0937 | 36500 | 0.2828 | 0.2615 | 0.8298 | - |
| 2.1224 | 37000 | 0.299 | 0.2707 | 0.8228 | - |
| 2.1511 | 37500 | 0.2901 | 0.2846 | 0.8156 | - |
| 2.1798 | 38000 | 0.3316 | 0.2579 | 0.8275 | - |
| 2.2085 | 38500 | 0.2837 | 0.2720 | 0.8220 | - |
| 2.2371 | 39000 | 0.2844 | 0.2937 | 0.8139 | - |
| 2.2658 | 39500 | 0.3028 | 0.2967 | 0.8260 | - |
| 2.2945 | 40000 | 0.2857 | 0.2785 | 0.8235 | - |
| 2.3232 | 40500 | 0.2975 | 0.2648 | 0.8339 | - |
| 2.3519 | 41000 | 0.2881 | 0.2818 | 0.8163 | - |
| 2.3805 | 41500 | 0.3047 | 0.2811 | 0.8219 | - |
| 2.4092 | 42000 | 0.315 | 0.2915 | 0.8067 | - |
| 2.4379 | 42500 | 0.3044 | 0.2871 | 0.8124 | - |
| 2.4666 | 43000 | 0.3454 | 0.4459 | 0.7998 | - |
| 2.4953 | 43500 | 0.3065 | 0.2800 | 0.8248 | - |
| 2.5239 | 44000 | 0.3011 | 0.3524 | 0.7959 | - |
| 2.5526 | 44500 | 0.2923 | 0.2935 | 0.8167 | - |
| 2.5813 | 45000 | 0.3105 | 0.2752 | 0.8165 | - |
| 2.6100 | 45500 | 0.3029 | 0.2990 | 0.8139 | - |
| 2.6387 | 46000 | 0.3102 | 0.3041 | 0.8111 | - |
| 2.6674 | 46500 | 0.2992 | 0.2826 | 0.8169 | - |
| 2.6960 | 47000 | 0.2954 | 0.2656 | 0.8226 | - |
| 2.7247 | 47500 | 0.2939 | 0.2861 | 0.8014 | - |
| 2.7534 | 48000 | 0.2871 | 0.2799 | 0.8076 | - |
| 2.7821 | 48500 | 0.2878 | 0.2694 | 0.8128 | - |
| 2.8108 | 49000 | 0.2879 | 0.2790 | 0.8168 | - |
| 2.8394 | 49500 | 0.2759 | 0.2907 | 0.8162 | - |
| 2.8681 | 50000 | 0.2824 | 0.2829 | 0.8149 | - |
| 2.8968 | 50500 | 0.2835 | 0.2980 | 0.8198 | - |
| 2.9255 | 51000 | 0.2914 | 0.2934 | 0.8030 | - |
| 2.9542 | 51500 | 0.3028 | 0.2898 | 0.8149 | - |
| 2.9828 | 52000 | 0.2744 | 0.2873 | 0.8210 | - |
| 3.0115 | 52500 | 0.2674 | 0.2872 | 0.8225 | - |
| 3.0402 | 53000 | 0.2319 | 0.2849 | 0.8136 | - |
| 3.0689 | 53500 | 0.2411 | 0.3113 | 0.8129 | - |
| 3.0976 | 54000 | 0.2564 | 0.2783 | 0.8207 | - |
| 3.1263 | 54500 | 0.2508 | 0.2751 | 0.8201 | - |
| 3.1549 | 55000 | 0.2318 | 0.2748 | 0.8236 | - |
| 3.1836 | 55500 | 0.2587 | 0.2945 | 0.8007 | - |
| 3.2123 | 56000 | 0.2697 | 0.2882 | 0.8217 | - |
| 3.2410 | 56500 | 0.2535 | 0.2917 | 0.8179 | - |
| 3.2697 | 57000 | 0.25 | 0.2752 | 0.8173 | - |
| 3.2983 | 57500 | 0.2299 | 0.2946 | 0.8070 | - |
| 3.3270 | 58000 | 0.2418 | 0.2832 | 0.8207 | - |
| 3.3557 | 58500 | 0.25 | 0.2761 | 0.8154 | - |
| 3.3844 | 59000 | 0.2422 | 0.2763 | 0.8173 | - |
| 3.4131 | 59500 | 0.2598 | 0.2772 | 0.8183 | - |
| 3.4417 | 60000 | 0.2353 | 0.2828 | 0.8199 | - |
| 3.4704 | 60500 | 0.2362 | 0.2827 | 0.8154 | - |
| 3.4991 | 61000 | 0.231 | 0.2869 | 0.8040 | - |
| 3.5278 | 61500 | 0.2326 | 0.2862 | 0.7984 | - |
| 3.5565 | 62000 | 0.2424 | 0.2769 | 0.8225 | - |
| 3.5852 | 62500 | 0.2492 | 0.2691 | 0.8112 | - |
| 3.6138 | 63000 | 0.2344 | 0.2680 | 0.8070 | - |
| 3.6425 | 63500 | 0.2579 | 0.2736 | 0.8196 | - |
| 3.6712 | 64000 | 0.2294 | 0.2861 | 0.8165 | - |
| 3.6999 | 64500 | 0.2403 | 0.2744 | 0.8140 | - |
| 3.7286 | 65000 | 0.2406 | 0.2680 | 0.8119 | - |
| 3.7572 | 65500 | 0.2529 | 0.2703 | 0.8179 | - |
| 3.7859 | 66000 | 0.2464 | 0.2803 | 0.8157 | - |
| 3.8146 | 66500 | 0.2489 | 0.2709 | 0.8069 | - |
| 3.8433 | 67000 | 0.2492 | 0.2638 | 0.8202 | - |
| 3.8720 | 67500 | 0.2401 | 0.2813 | 0.8123 | - |
| 3.9006 | 68000 | 0.2487 | 0.2720 | 0.8140 | - |
| 3.9293 | 68500 | 0.2289 | 0.2700 | 0.8145 | - |
| 3.9580 | 69000 | 0.2371 | 0.2672 | 0.8266 | - |
| 3.9867 | 69500 | 0.239 | 0.2721 | 0.8218 | - |
| 4.0154 | 70000 | 0.2241 | 0.2669 | 0.8280 | - |
| 4.0441 | 70500 | 0.1993 | 0.2769 | 0.8083 | - |
| 4.0727 | 71000 | 0.2028 | 0.2719 | 0.8072 | - |
| 4.1014 | 71500 | 0.2019 | 0.2827 | 0.8126 | - |
| 4.1301 | 72000 | 0.232 | 0.2704 | 0.8093 | - |
| 4.1588 | 72500 | 0.2145 | 0.2763 | 0.8154 | - |
| 4.1875 | 73000 | 0.2233 | 0.2855 | 0.8125 | - |
| 4.2161 | 73500 | 0.2029 | 0.2732 | 0.8142 | - |
| 4.2448 | 74000 | 0.2114 | 0.2788 | 0.8063 | - |
| 4.2735 | 74500 | 0.1968 | 0.2824 | 0.8078 | - |
| 4.3022 | 75000 | 0.2015 | 0.2691 | 0.8144 | - |
| 4.3309 | 75500 | 0.2052 | 0.2784 | 0.7987 | - |
| 4.3595 | 76000 | 0.2162 | 0.2695 | 0.8106 | - |
| 4.3882 | 76500 | 0.2234 | 0.2618 | 0.8123 | - |
| 4.4169 | 77000 | 0.2074 | 0.2775 | 0.8170 | - |
| 4.4456 | 77500 | 0.2086 | 0.2794 | 0.8073 | - |
| 4.4743 | 78000 | 0.2076 | 0.2836 | 0.8069 | - |
| 4.5030 | 78500 | 0.2186 | 0.2613 | 0.8182 | - |
| 4.5316 | 79000 | 0.1963 | 0.2713 | 0.8128 | - |
| 4.5603 | 79500 | 0.2058 | 0.2828 | 0.8184 | - |
| 4.5890 | 80000 | 0.2103 | 0.2716 | 0.8123 | - |
| 4.6177 | 80500 | 0.2319 | 0.2869 | 0.8031 | - |
| 4.6464 | 81000 | 0.2156 | 0.2841 | 0.7948 | - |
| 4.6750 | 81500 | 0.2017 | 0.2814 | 0.7971 | - |
| 4.7037 | 82000 | 0.2171 | 0.2996 | 0.8040 | - |
| 4.7324 | 82500 | 0.2174 | 0.2771 | 0.8061 | - |
| 4.7611 | 83000 | 0.2061 | 0.2679 | 0.7892 | - |
| 4.7898 | 83500 | 0.2168 | 0.2817 | 0.7896 | - |
| 4.8184 | 84000 | 0.2123 | 0.2868 | 0.7827 | - |
| 4.8471 | 84500 | 0.2125 | 0.2782 | 0.7980 | - |
| 4.8758 | 85000 | 0.2032 | 0.2857 | 0.8017 | - |
| 4.9045 | 85500 | 0.2177 | 0.3339 | 0.7665 | - |
| 4.9332 | 86000 | 0.2049 | 0.2761 | 0.7998 | - |
| 4.9619 | 86500 | 0.1928 | 0.2857 | 0.8029 | - |
| 4.9905 | 87000 | 0.2098 | 0.2788 | 0.7886 | - |
| 5.0192 | 87500 | 0.1869 | 0.2714 | 0.7951 | - |
| 5.0479 | 88000 | 0.1765 | 0.2783 | 0.7931 | - |
| 5.0766 | 88500 | 0.1707 | 0.2867 | 0.8087 | - |
| 5.1053 | 89000 | 0.1732 | 0.2722 | 0.8106 | - |
| 5.1339 | 89500 | 0.1778 | 0.2673 | 0.8034 | - |
| 5.1626 | 90000 | 0.1746 | 0.2945 | 0.8036 | - |
| 5.1913 | 90500 | 0.1809 | 0.2710 | 0.7987 | - |
| 5.2200 | 91000 | 0.219 | 0.2871 | 0.8113 | - |
| 5.2487 | 91500 | 0.177 | 0.2949 | 0.7935 | - |
| 5.2773 | 92000 | 0.1846 | 0.2761 | 0.8098 | - |
| 5.3060 | 92500 | 0.1728 | 0.2838 | 0.7929 | - |
| 5.3347 | 93000 | 0.1786 | 0.2849 | 0.7999 | - |
| 5.3634 | 93500 | 0.1783 | 0.2770 | 0.8003 | - |
| 5.3921 | 94000 | 0.1764 | 0.2868 | 0.8032 | - |
| 5.4208 | 94500 | 0.1741 | 0.2880 | 0.7912 | - |
| 5.4494 | 95000 | 0.1755 | 0.2798 | 0.8094 | - |
| 5.4781 | 95500 | 0.1845 | 0.2822 | 0.7921 | - |
| 5.5068 | 96000 | 0.1761 | 0.2856 | 0.7984 | - |
| 5.5355 | 96500 | 0.1803 | 0.2714 | 0.8006 | - |
| 5.5642 | 97000 | 0.1748 | 0.2938 | 0.7972 | - |
| 5.5928 | 97500 | 0.181 | 0.2818 | 0.7904 | - |
| 5.6215 | 98000 | 0.1723 | 0.2773 | 0.8043 | - |
| 5.6502 | 98500 | 0.176 | 0.2783 | 0.8099 | - |
| 5.6789 | 99000 | 0.1718 | 0.2694 | 0.7979 | - |
| 5.7076 | 99500 | 0.1724 | 0.2738 | 0.8002 | - |
| 5.7362 | 100000 | 0.1823 | 0.2781 | 0.7712 | - |
| 5.7649 | 100500 | 0.1684 | 0.2677 | 0.7971 | - |
| 5.7936 | 101000 | 0.1706 | 0.2727 | 0.7934 | - |
| 5.8223 | 101500 | 0.1742 | 0.2898 | 0.7976 | - |
| 5.8510 | 102000 | 0.1699 | 0.2746 | 0.7794 | - |
| 5.8797 | 102500 | 0.1801 | 0.2697 | 0.7909 | - |
| 5.9083 | 103000 | 0.1792 | 0.2774 | 0.7920 | - |
| 5.9370 | 103500 | 0.1719 | 0.2618 | 0.7981 | - |
| 5.9657 | 104000 | 0.1806 | 0.2657 | 0.7990 | - |
| 5.9944 | 104500 | 0.1767 | 0.2914 | 0.7838 | - |
| 6.0231 | 105000 | 0.1854 | 0.2886 | 0.7900 | - |
| 6.0517 | 105500 | 0.1449 | 0.2889 | 0.7756 | - |
| 6.0804 | 106000 | 0.1433 | 0.2772 | 0.7974 | - |
| 6.1091 | 106500 | 0.1429 | 0.2909 | 0.7976 | - |
| 6.1378 | 107000 | 0.1385 | 0.2763 | 0.7934 | - |
| 6.1665 | 107500 | 0.1452 | 0.2920 | 0.7954 | - |
| 6.1951 | 108000 | 0.1463 | 0.2715 | 0.7904 | - |
| 6.2238 | 108500 | 0.1488 | 0.2839 | 0.7982 | - |
| 6.2525 | 109000 | 0.1506 | 0.2741 | 0.8023 | - |
| 6.2812 | 109500 | 0.1524 | 0.2835 | 0.8007 | - |
| 6.3099 | 110000 | 0.1443 | 0.2720 | 0.7975 | - |
| 6.3386 | 110500 | 0.152 | 0.2882 | 0.7896 | - |
| 6.3672 | 111000 | 0.142 | 0.2759 | 0.8041 | - |
| 6.3959 | 111500 | 0.1431 | 0.2841 | 0.8054 | - |
| 6.4246 | 112000 | 0.1406 | 0.2857 | 0.7917 | - |
| 6.4533 | 112500 | 0.1478 | 0.3215 | 0.7817 | - |
| 6.4820 | 113000 | 0.1523 | 0.2796 | 0.7851 | - |
| 6.5106 | 113500 | 0.148 | 0.2736 | 0.7870 | - |
| 6.5393 | 114000 | 0.1481 | 0.2835 | 0.7993 | - |
| 6.5680 | 114500 | 0.1387 | 0.2844 | 0.7914 | - |
| 6.5967 | 115000 | 0.1475 | 0.2798 | 0.7981 | - |
| 6.6254 | 115500 | 0.1463 | 0.2739 | 0.7940 | - |
| 6.6540 | 116000 | 0.1491 | 0.2739 | 0.7987 | - |
| 6.6827 | 116500 | 0.1537 | 0.2708 | 0.7965 | - |
| 6.7114 | 117000 | 0.143 | 0.2685 | 0.8018 | - |
| 6.7401 | 117500 | 0.1481 | 0.2654 | 0.7902 | - |
| 6.7688 | 118000 | 0.1461 | 0.2741 | 0.7928 | - |
| 6.7975 | 118500 | 0.1489 | 0.2719 | 0.7965 | - |
| 6.8261 | 119000 | 0.1503 | 0.2852 | 0.7849 | - |
| 6.8548 | 119500 | 0.1435 | 0.2729 | 0.7983 | - |
| 6.8835 | 120000 | 0.1432 | 0.2703 | 0.7924 | - |
| 6.9122 | 120500 | 0.1481 | 0.2694 | 0.7889 | - |
| 6.9409 | 121000 | 0.1514 | 0.2735 | 0.7968 | - |
| 6.9695 | 121500 | 0.1424 | 0.2671 | 0.7914 | - |
| 6.9982 | 122000 | 0.143 | 0.2626 | 0.8006 | - |
| 7.0269 | 122500 | 0.1287 | 0.2754 | 0.7856 | - |
| 7.0556 | 123000 | 0.1269 | 0.2748 | 0.7850 | - |
| 7.0843 | 123500 | 0.1225 | 0.2821 | 0.7807 | - |
| 7.1129 | 124000 | 0.1223 | 0.2753 | 0.7781 | - |
| 7.1416 | 124500 | 0.1253 | 0.2688 | 0.7972 | - |
| 7.1703 | 125000 | 0.1214 | 0.2737 | 0.7905 | - |
| 7.1990 | 125500 | 0.1208 | 0.2689 | 0.7926 | - |
| 7.2277 | 126000 | 0.127 | 0.2754 | 0.7923 | - |
| 7.2564 | 126500 | 0.1152 | 0.2715 | 0.7867 | - |
| 7.2850 | 127000 | 0.1183 | 0.2766 | 0.7792 | - |
| 7.3137 | 127500 | 0.1195 | 0.2786 | 0.7850 | - |
| 7.3424 | 128000 | 0.1195 | 0.2885 | 0.7763 | - |
| 7.3711 | 128500 | 0.1332 | 0.2796 | 0.7868 | - |
| 7.3998 | 129000 | 0.1217 | 0.2838 | 0.7840 | - |
| 7.4284 | 129500 | 0.1191 | 0.2711 | 0.7819 | - |
| 7.4571 | 130000 | 0.1234 | 0.2752 | 0.7744 | - |
| 7.4858 | 130500 | 0.1297 | 0.2663 | 0.7802 | - |
| 7.5145 | 131000 | 0.1238 | 0.2643 | 0.7878 | - |
| 7.5432 | 131500 | 0.1196 | 0.2752 | 0.7809 | - |
| 7.5718 | 132000 | 0.1164 | 0.2744 | 0.7780 | - |
| 7.6005 | 132500 | 0.1208 | 0.2682 | 0.7722 | - |
| 7.6292 | 133000 | 0.1319 | 0.2774 | 0.7811 | - |
| 7.6579 | 133500 | 0.1208 | 0.2705 | 0.7921 | - |
| 7.6866 | 134000 | 0.1336 | 0.2681 | 0.7804 | - |
| 7.7153 | 134500 | 0.1226 | 0.3096 | 0.7763 | - |
| 7.7439 | 135000 | 0.1293 | 0.2724 | 0.7763 | - |
| 7.7726 | 135500 | 0.1309 | 0.2707 | 0.7718 | - |
| 7.8013 | 136000 | 0.1218 | 0.2636 | 0.7799 | - |
| 7.8300 | 136500 | 0.1253 | 0.2805 | 0.7719 | - |
| 7.8587 | 137000 | 0.1198 | 0.2619 | 0.7924 | - |
| 7.8873 | 137500 | 0.1195 | 0.2788 | 0.7822 | - |
| 7.9160 | 138000 | 0.1264 | 0.2795 | 0.7794 | - |
| 7.9447 | 138500 | 0.1186 | 0.2687 | 0.7811 | - |
| 7.9734 | 139000 | 0.1173 | 0.2743 | 0.7758 | - |
| 8.0021 | 139500 | 0.1216 | 0.2658 | 0.7735 | - |
| 8.0307 | 140000 | 0.1008 | 0.2725 | 0.7985 | - |
| 8.0594 | 140500 | 0.1026 | 0.2752 | 0.7897 | - |
| 8.0881 | 141000 | 0.1031 | 0.2743 | 0.7885 | - |
| 8.1168 | 141500 | 0.1019 | 0.2623 | 0.7881 | - |
| 8.1455 | 142000 | 0.1034 | 0.2590 | 0.7870 | - |
| 8.1742 | 142500 | 0.0986 | 0.2714 | 0.7872 | - |
| 8.2028 | 143000 | 0.0946 | 0.2729 | 0.7872 | - |
| 8.2315 | 143500 | 0.1018 | 0.2799 | 0.7842 | - |
| 8.2602 | 144000 | 0.1029 | 0.2796 | 0.7837 | - |
| 8.2889 | 144500 | 0.1031 | 0.2760 | 0.7832 | - |
| 8.3176 | 145000 | 0.0979 | 0.2751 | 0.7863 | - |
| 8.3462 | 145500 | 0.0958 | 0.2726 | 0.7899 | - |
| 8.3749 | 146000 | 0.0945 | 0.2709 | 0.7898 | - |
| 8.4036 | 146500 | 0.0982 | 0.2726 | 0.7944 | - |
| 8.4323 | 147000 | 0.1048 | 0.2639 | 0.7820 | - |
| 8.4610 | 147500 | 0.1006 | 0.2630 | 0.7787 | - |
| 8.4896 | 148000 | 0.1092 | 0.2716 | 0.7771 | - |
| 8.5183 | 148500 | 0.1024 | 0.2676 | 0.7903 | - |
| 8.5470 | 149000 | 0.1038 | 0.2619 | 0.7891 | - |
| 8.5757 | 149500 | 0.1032 | 0.2596 | 0.7960 | - |
| 8.6044 | 150000 | 0.1022 | 0.2660 | 0.7862 | - |
| 8.6331 | 150500 | 0.103 | 0.2767 | 0.7863 | - |
| 8.6617 | 151000 | 0.1138 | 0.2657 | 0.7781 | - |
| 8.6904 | 151500 | 0.1071 | 0.2607 | 0.7884 | - |
| 8.7191 | 152000 | 0.098 | 0.2567 | 0.7900 | - |
| 8.7478 | 152500 | 0.1019 | 0.2670 | 0.7854 | - |
| 8.7765 | 153000 | 0.0972 | 0.2647 | 0.7851 | - |
| 8.8051 | 153500 | 0.1089 | 0.2715 | 0.7759 | - |
| 8.8338 | 154000 | 0.102 | 0.2799 | 0.7817 | - |
| 8.8625 | 154500 | 0.102 | 0.2796 | 0.7808 | - |
| 8.8912 | 155000 | 0.1055 | 0.2691 | 0.7860 | - |
| 8.9199 | 155500 | 0.0989 | 0.2636 | 0.7843 | - |
| 8.9485 | 156000 | 0.0978 | 0.2671 | 0.7800 | - |
| 8.9772 | 156500 | 0.1085 | 0.2760 | 0.7889 | - |
| 9.0059 | 157000 | 0.102 | 0.2715 | 0.7824 | - |
| 9.0346 | 157500 | 0.0829 | 0.2759 | 0.7798 | - |
| 9.0633 | 158000 | 0.0811 | 0.2728 | 0.7897 | - |
| 9.0920 | 158500 | 0.0849 | 0.2641 | 0.7757 | - |
| 9.1206 | 159000 | 0.0795 | 0.2570 | 0.7824 | - |
| 9.1493 | 159500 | 0.0914 | 0.2624 | 0.7725 | - |
| 9.1780 | 160000 | 0.089 | 0.2677 | 0.7727 | - |
| 9.2067 | 160500 | 0.0874 | 0.2682 | 0.7760 | - |
| 9.2354 | 161000 | 0.0843 | 0.2690 | 0.7756 | - |
| 9.2640 | 161500 | 0.0805 | 0.2677 | 0.7732 | - |
| 9.2927 | 162000 | 0.09 | 0.2792 | 0.7723 | - |
| 9.3214 | 162500 | 0.0842 | 0.2727 | 0.7731 | - |
| 9.3501 | 163000 | 0.0861 | 0.2647 | 0.7737 | - |
| 9.3788 | 163500 | 0.0881 | 0.2748 | 0.7769 | - |
| 9.4074 | 164000 | 0.0838 | 0.2644 | 0.7864 | - |
| 9.4361 | 164500 | 0.0822 | 0.2609 | 0.7712 | - |
| 9.4648 | 165000 | 0.0826 | 0.2609 | 0.7787 | - |
| 9.4935 | 165500 | 0.0839 | 0.2688 | 0.7743 | - |
| 9.5222 | 166000 | 0.0863 | 0.2600 | 0.7781 | - |
| 9.5509 | 166500 | 0.0865 | 0.2663 | 0.7800 | - |
| 9.5795 | 167000 | 0.0816 | 0.2517 | 0.7738 | - |
| 9.6082 | 167500 | 0.0801 | 0.2597 | 0.7774 | - |
| 9.6369 | 168000 | 0.0849 | 0.2550 | 0.7764 | - |
| 9.6656 | 168500 | 0.0821 | 0.2629 | 0.7727 | - |
| 9.6943 | 169000 | 0.0845 | 0.2696 | 0.7737 | - |
| 9.7229 | 169500 | 0.0846 | 0.2647 | 0.7686 | - |
| 9.7516 | 170000 | 0.0818 | 0.2700 | 0.7729 | - |
| 9.7803 | 170500 | 0.0878 | 0.2620 | 0.7699 | - |
| 9.8090 | 171000 | 0.0808 | 0.2623 | 0.7672 | - |
| 9.8377 | 171500 | 0.0777 | 0.2622 | 0.7704 | - |
| 9.8663 | 172000 | 0.0835 | 0.2606 | 0.7734 | - |
| 9.8950 | 172500 | 0.0791 | 0.2568 | 0.7771 | - |
| 9.9237 | 173000 | 0.0739 | 0.2676 | 0.7747 | - |
| 9.9524 | 173500 | 0.0831 | 0.2566 | 0.7753 | - |
| 9.9811 | 174000 | 0.0857 | 0.2711 | 0.7637 | - |
| 10.0098 | 174500 | 0.0711 | 0.2718 | 0.7784 | - |
| 10.0384 | 175000 | 0.0638 | 0.2612 | 0.7787 | - |
| 10.0671 | 175500 | 0.0655 | 0.2647 | 0.7781 | - |
| 10.0958 | 176000 | 0.0702 | 0.2622 | 0.7713 | - |
| 10.1245 | 176500 | 0.0698 | 0.2672 | 0.7784 | - |
| 10.1532 | 177000 | 0.074 | 0.2678 | 0.7844 | - |
| 10.1818 | 177500 | 0.0672 | 0.2575 | 0.7830 | - |
| 10.2105 | 178000 | 0.0685 | 0.2667 | 0.7746 | - |
| 10.2392 | 178500 | 0.0662 | 0.2650 | 0.7719 | - |
| 10.2679 | 179000 | 0.0685 | 0.2647 | 0.7743 | - |
| 10.2966 | 179500 | 0.0666 | 0.2584 | 0.7787 | - |
| 10.3252 | 180000 | 0.073 | 0.2567 | 0.7730 | - |
| 10.3539 | 180500 | 0.0678 | 0.2665 | 0.7676 | - |
| 10.3826 | 181000 | 0.074 | 0.2621 | 0.7727 | - |
| 10.4113 | 181500 | 0.0698 | 0.2580 | 0.7798 | - |
| 10.4400 | 182000 | 0.0729 | 0.2529 | 0.7729 | - |
| 10.4687 | 182500 | 0.0645 | 0.2548 | 0.7714 | - |
| 10.4973 | 183000 | 0.0644 | 0.2599 | 0.7742 | - |
| 10.5260 | 183500 | 0.0638 | 0.2597 | 0.7754 | - |
| 10.5547 | 184000 | 0.0656 | 0.2606 | 0.7699 | - |
| 10.5834 | 184500 | 0.0645 | 0.2576 | 0.7776 | - |
| 10.6121 | 185000 | 0.0639 | 0.2600 | 0.7730 | - |
| 10.6407 | 185500 | 0.0668 | 0.2580 | 0.7742 | - |
| 10.6694 | 186000 | 0.0641 | 0.2571 | 0.7765 | - |
| 10.6981 | 186500 | 0.0689 | 0.2592 | 0.7708 | - |
| 10.7268 | 187000 | 0.067 | 0.2537 | 0.7672 | - |
| 10.7555 | 187500 | 0.0626 | 0.2549 | 0.7759 | - |
| 10.7841 | 188000 | 0.0704 | 0.2678 | 0.7751 | - |
| 10.8128 | 188500 | 0.0616 | 0.2692 | 0.7718 | - |
| 10.8415 | 189000 | 0.0717 | 0.2583 | 0.7750 | - |
| 10.8702 | 189500 | 0.0679 | 0.2594 | 0.7722 | - |
| 10.8989 | 190000 | 0.064 | 0.2616 | 0.7713 | - |
| 10.9276 | 190500 | 0.0695 | 0.2667 | 0.7829 | - |
| 10.9562 | 191000 | 0.0703 | 0.2619 | 0.7834 | - |
| 10.9849 | 191500 | 0.0715 | 0.2564 | 0.7813 | - |
| 11.0136 | 192000 | 0.0594 | 0.2624 | 0.7820 | - |
| 11.0423 | 192500 | 0.0526 | 0.2616 | 0.7830 | - |
| 11.0710 | 193000 | 0.0595 | 0.2636 | 0.7799 | - |
| 11.0996 | 193500 | 0.0537 | 0.2571 | 0.7875 | - |
| 11.1283 | 194000 | 0.0589 | 0.2617 | 0.7810 | - |
| 11.1570 | 194500 | 0.052 | 0.2632 | 0.7825 | - |
| 11.1857 | 195000 | 0.0607 | 0.2609 | 0.7829 | - |
| 11.2144 | 195500 | 0.057 | 0.2712 | 0.7757 | - |
| 11.2430 | 196000 | 0.0587 | 0.2672 | 0.7790 | - |
| 11.2717 | 196500 | 0.0593 | 0.2585 | 0.7731 | - |
| 11.3004 | 197000 | 0.0589 | 0.2721 | 0.7706 | - |
| 11.3291 | 197500 | 0.0556 | 0.2656 | 0.7706 | - |
| 11.3578 | 198000 | 0.0622 | 0.2584 | 0.7741 | - |
| 11.3865 | 198500 | 0.0572 | 0.2695 | 0.7750 | - |
| 11.4151 | 199000 | 0.0586 | 0.2649 | 0.7755 | - |
| 11.4438 | 199500 | 0.0595 | 0.2671 | 0.7767 | - |
| 11.4725 | 200000 | 0.0563 | 0.2630 | 0.7707 | - |
| 11.5012 | 200500 | 0.0574 | 0.2642 | 0.7674 | - |
| 11.5299 | 201000 | 0.0542 | 0.2644 | 0.7740 | - |
| 11.5585 | 201500 | 0.0613 | 0.2605 | 0.7694 | - |
| 11.5872 | 202000 | 0.0593 | 0.2604 | 0.7712 | - |
| 11.6159 | 202500 | 0.0556 | 0.2628 | 0.7699 | - |
| 11.6446 | 203000 | 0.0524 | 0.2631 | 0.7728 | - |
| 11.6733 | 203500 | 0.0602 | 0.2705 | 0.7622 | - |
| 11.7019 | 204000 | 0.0582 | 0.2631 | 0.7739 | - |
| 11.7306 | 204500 | 0.0579 | 0.2573 | 0.7721 | - |
| 11.7593 | 205000 | 0.057 | 0.2558 | 0.7774 | - |
| 11.7880 | 205500 | 0.051 | 0.2597 | 0.7757 | - |
| 11.8167 | 206000 | 0.0559 | 0.2515 | 0.7711 | - |
| 11.8454 | 206500 | 0.0543 | 0.2566 | 0.7720 | - |
| 11.8740 | 207000 | 0.0517 | 0.2554 | 0.7763 | - |
| 11.9027 | 207500 | 0.0493 | 0.2598 | 0.7722 | - |
| 11.9314 | 208000 | 0.0567 | 0.2592 | 0.7691 | - |
| 11.9601 | 208500 | 0.0559 | 0.2618 | 0.7755 | - |
| 11.9888 | 209000 | 0.0503 | 0.2615 | 0.7804 | - |
| 12.0174 | 209500 | 0.0499 | 0.2648 | 0.7812 | - |
| 12.0461 | 210000 | 0.047 | 0.2614 | 0.7819 | - |
| 12.0748 | 210500 | 0.0511 | 0.2632 | 0.7717 | - |
| 12.1035 | 211000 | 0.0464 | 0.2660 | 0.7693 | - |
| 12.1322 | 211500 | 0.0484 | 0.2658 | 0.7719 | - |
| 12.1608 | 212000 | 0.0465 | 0.2676 | 0.7756 | - |
| 12.1895 | 212500 | 0.0478 | 0.2689 | 0.7696 | - |
| 12.2182 | 213000 | 0.0467 | 0.2564 | 0.7684 | - |
| 12.2469 | 213500 | 0.0435 | 0.2606 | 0.7674 | - |
| 12.2756 | 214000 | 0.048 | 0.2602 | 0.7701 | - |
| 12.3043 | 214500 | 0.0471 | 0.2641 | 0.7687 | - |
| 12.3329 | 215000 | 0.0473 | 0.2557 | 0.7683 | - |
| 12.3616 | 215500 | 0.0503 | 0.2560 | 0.7705 | - |
| 12.3903 | 216000 | 0.044 | 0.2607 | 0.7724 | - |
| 12.4190 | 216500 | 0.045 | 0.2579 | 0.7707 | - |
| 12.4477 | 217000 | 0.0473 | 0.2605 | 0.7679 | - |
| 12.4763 | 217500 | 0.049 | 0.2557 | 0.7693 | - |
| 12.5050 | 218000 | 0.0482 | 0.2604 | 0.7725 | - |
| 12.5337 | 218500 | 0.049 | 0.2553 | 0.7751 | - |
| 12.5624 | 219000 | 0.0448 | 0.2597 | 0.7667 | - |
| 12.5911 | 219500 | 0.0443 | 0.2550 | 0.7685 | - |
| 12.6197 | 220000 | 0.0489 | 0.2561 | 0.7706 | - |
| 12.6484 | 220500 | 0.0448 | 0.2573 | 0.7693 | - |
| 12.6771 | 221000 | 0.0492 | 0.2565 | 0.7645 | - |
| 12.7058 | 221500 | 0.0475 | 0.2638 | 0.7674 | - |
| 12.7345 | 222000 | 0.0467 | 0.2612 | 0.7709 | - |
| 12.7632 | 222500 | 0.0443 | 0.2589 | 0.7702 | - |
| 12.7918 | 223000 | 0.0485 | 0.2605 | 0.7720 | - |
| 12.8205 | 223500 | 0.0437 | 0.2556 | 0.7716 | - |
| 12.8492 | 224000 | 0.0442 | 0.2558 | 0.7703 | - |
| 12.8779 | 224500 | 0.0452 | 0.2589 | 0.7711 | - |
| 12.9066 | 225000 | 0.0472 | 0.2575 | 0.7715 | - |
| 12.9352 | 225500 | 0.0484 | 0.2595 | 0.7697 | - |
| 12.9639 | 226000 | 0.0432 | 0.2578 | 0.7663 | - |
| 12.9926 | 226500 | 0.0479 | 0.2613 | 0.7641 | - |
| 13.0213 | 227000 | 0.04 | 0.2661 | 0.7659 | - |
| 13.0500 | 227500 | 0.0397 | 0.2573 | 0.7703 | - |
| 13.0786 | 228000 | 0.039 | 0.2697 | 0.7699 | - |
| 13.1073 | 228500 | 0.0428 | 0.2649 | 0.7680 | - |
| 13.1360 | 229000 | 0.0376 | 0.2637 | 0.7680 | - |
| 13.1647 | 229500 | 0.0441 | 0.2656 | 0.7646 | - |
| 13.1934 | 230000 | 0.0405 | 0.2600 | 0.7668 | - |
| 13.2221 | 230500 | 0.0438 | 0.2660 | 0.7690 | - |
| 13.2507 | 231000 | 0.0404 | 0.2635 | 0.7677 | - |
| 13.2794 | 231500 | 0.0395 | 0.2594 | 0.7684 | - |
| 13.3081 | 232000 | 0.0404 | 0.2614 | 0.7711 | - |
| 13.3368 | 232500 | 0.0428 | 0.2617 | 0.7660 | - |
| 13.3655 | 233000 | 0.0396 | 0.2602 | 0.7675 | - |
| 13.3941 | 233500 | 0.0433 | 0.2582 | 0.7676 | - |
| 13.4228 | 234000 | 0.0375 | 0.2602 | 0.7648 | - |
| 13.4515 | 234500 | 0.0404 | 0.2616 | 0.7666 | - |
| 13.4802 | 235000 | 0.0395 | 0.2594 | 0.7655 | - |
| 13.5089 | 235500 | 0.0375 | 0.2635 | 0.7618 | - |
| 13.5375 | 236000 | 0.039 | 0.2619 | 0.7650 | - |
| 13.5662 | 236500 | 0.0421 | 0.2606 | 0.7628 | - |
| 13.5949 | 237000 | 0.0416 | 0.2642 | 0.7627 | - |
| 13.6236 | 237500 | 0.0391 | 0.2636 | 0.7636 | - |
| 13.6523 | 238000 | 0.04 | 0.2632 | 0.7638 | - |
| 13.6809 | 238500 | 0.0409 | 0.2587 | 0.7632 | - |
| 13.7096 | 239000 | 0.0386 | 0.2643 | 0.7600 | - |
| 13.7383 | 239500 | 0.0396 | 0.2616 | 0.7605 | - |
| 13.7670 | 240000 | 0.0415 | 0.2600 | 0.7652 | - |
| 13.7957 | 240500 | 0.0403 | 0.2599 | 0.7662 | - |
| 13.8244 | 241000 | 0.0377 | 0.2621 | 0.7646 | - |
| 13.8530 | 241500 | 0.0384 | 0.2600 | 0.7623 | - |
| 13.8817 | 242000 | 0.0392 | 0.2590 | 0.7617 | - |
| 13.9104 | 242500 | 0.0386 | 0.2588 | 0.7621 | - |
| 13.9391 | 243000 | 0.0405 | 0.2628 | 0.7616 | - |
| 13.9678 | 243500 | 0.0379 | 0.2562 | 0.7627 | - |
| 13.9964 | 244000 | 0.0384 | 0.2611 | 0.7616 | - |
| 14.0251 | 244500 | 0.0331 | 0.2611 | 0.7596 | - |
| 14.0538 | 245000 | 0.0372 | 0.2619 | 0.7609 | - |
| 14.0825 | 245500 | 0.0348 | 0.2646 | 0.7599 | - |
| 14.1112 | 246000 | 0.0369 | 0.2618 | 0.7610 | - |
| 14.1398 | 246500 | 0.0351 | 0.2630 | 0.7588 | - |
| 14.1685 | 247000 | 0.0314 | 0.2639 | 0.7608 | - |
| 14.1972 | 247500 | 0.0389 | 0.2599 | 0.7606 | - |
| 14.2259 | 248000 | 0.0397 | 0.2630 | 0.7617 | - |
| 14.2546 | 248500 | 0.0352 | 0.2613 | 0.7642 | - |
| 14.2833 | 249000 | 0.0375 | 0.2621 | 0.7654 | - |
| 14.3119 | 249500 | 0.0408 | 0.2630 | 0.7622 | - |
| 14.3406 | 250000 | 0.0313 | 0.2633 | 0.7640 | - |
| 14.3693 | 250500 | 0.0362 | 0.2635 | 0.7629 | - |
| 14.3980 | 251000 | 0.0368 | 0.2624 | 0.7640 | - |
| 14.4267 | 251500 | 0.0367 | 0.2647 | 0.7630 | - |
| 14.4553 | 252000 | 0.0352 | 0.2620 | 0.7646 | - |
| 14.4840 | 252500 | 0.0312 | 0.2640 | 0.7646 | - |
| 14.5127 | 253000 | 0.0316 | 0.2636 | 0.7643 | - |
| 14.5414 | 253500 | 0.0343 | 0.2619 | 0.7638 | - |
| 14.5701 | 254000 | 0.0363 | 0.2629 | 0.7635 | - |
| 14.5987 | 254500 | 0.0327 | 0.2619 | 0.7654 | - |
| 14.6274 | 255000 | 0.0364 | 0.2635 | 0.7659 | - |
| 14.6561 | 255500 | 0.035 | 0.2651 | 0.7640 | - |
| 14.6848 | 256000 | 0.0369 | 0.2652 | 0.7635 | - |
| 14.7135 | 256500 | 0.037 | 0.2651 | 0.7645 | - |
| 14.7422 | 257000 | 0.0341 | 0.2643 | 0.7644 | - |
| 14.7708 | 257500 | 0.0379 | 0.2639 | 0.7648 | - |
| 14.7995 | 258000 | 0.0331 | 0.2629 | 0.7645 | - |
| 14.8282 | 258500 | 0.0309 | 0.2628 | 0.7650 | - |
| 14.8569 | 259000 | 0.0319 | 0.2632 | 0.7651 | - |
| 14.8856 | 259500 | 0.0342 | 0.2640 | 0.7646 | - |
| 14.9142 | 260000 | 0.0344 | 0.2637 | 0.7648 | - |
| 14.9429 | 260500 | 0.0371 | 0.2637 | 0.7648 | - |
| 14.9716 | 261000 | 0.0364 | 0.2637 | 0.7649 | - |
| -1 | -1 | - | - | - | 0.7351 |
Framework Versions
- Python: 3.13.0
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.9.1+cu128
- Accelerate: 1.11.0
- Datasets: 4.4.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 32
Model tree for sobamchan/roberta-large-no-mrl
Base model
FacebookAI/roberta-largeDataset used to train sobamchan/roberta-large-no-mrl
Evaluation results
- Pearson Cosine on sts devself-reported0.745
- Spearman Cosine on sts devself-reported0.765
- Pearson Cosine on sts testself-reported0.710
- Spearman Cosine on sts testself-reported0.735