longformer-base-4096-pr_tqacd
This model is a fine-tuned version of allenai/longformer-base-4096 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5924
- F1 Macro: 0.5379
- Precision: 0.5432
- Recall: 0.5467
- Accuracy: 0.7335
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 354 | 2.0802 | 0.3645 | 0.4190 | 0.4198 | 0.5250 |
| 2.2985 | 2.0 | 708 | 1.3249 | 0.5000 | 0.5034 | 0.5583 | 0.6751 |
| 1.5208 | 3.0 | 1062 | 1.2741 | 0.5345 | 0.5409 | 0.5783 | 0.7029 |
| 1.5208 | 4.0 | 1416 | 1.3363 | 0.5568 | 0.5523 | 0.5881 | 0.7166 |
| 1.0817 | 5.0 | 1770 | 1.3928 | 0.5506 | 0.5438 | 0.5861 | 0.7227 |
| 0.7062 | 6.0 | 2124 | 1.5924 | 0.5379 | 0.5432 | 0.5467 | 0.7335 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 6
Model tree for rendchevi/longformer-base-4096-pr_tqacd
Base model
allenai/longformer-base-4096