new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 19

Feedback Friction: LLMs Struggle to Fully Incorporate External Feedback

Recent studies have shown LLMs possess some ability to improve their responses when given external feedback. However, it remains unclear how effectively and thoroughly these models can incorporate extrinsic feedback. In an ideal scenario, if LLMs receive near-perfect and complete feedback, we would expect them to fully integrate the feedback and change their incorrect answers to correct ones. In this paper, we systematically investigate LLMs' ability to incorporate feedback by designing a controlled experimental environment. For each problem, a solver model attempts a solution, then a feedback generator with access to near-complete ground-truth answers produces targeted feedback, after which the solver tries again. We evaluate this pipeline across a diverse range of tasks, including math reasoning, knowledge reasoning, scientific reasoning, and general multi-domain evaluations with state-of-the-art language models including Claude 3.7 (with and without extended thinking). Surprisingly, even under these near-ideal conditions, solver models consistently show resistance to feedback, a limitation that we term FEEDBACK FRICTION. To mitigate this limitation, we experiment with sampling-based strategies like progressive temperature increases and explicit rejection of previously attempted incorrect answers, which yield improvements but still fail to help models achieve target performance. We also perform a rigorous exploration of potential causes of FEEDBACK FRICTION, ruling out factors such as model overconfidence and data familiarity. We hope that highlighting this issue in LLMs and ruling out several apparent causes will help future research in self-improvement.

  • 5 authors
·
Jun 13, 2025 3

Anyprefer: An Agentic Framework for Preference Data Synthesis

High-quality preference data is essential for aligning foundation models with human values through preference learning. However, manual annotation of such data is often time-consuming and costly. Recent methods often adopt a self-rewarding approach, where the target model generates and annotates its own preference data, but this can lead to inaccuracies since the reward model shares weights with the target model, thereby amplifying inherent biases. To address these issues, we propose Anyprefer, a framework designed to synthesize high-quality preference data for aligning the target model. Anyprefer frames the data synthesis process as a cooperative two-player Markov Game, where the target model and the judge model collaborate together. Here, a series of external tools are introduced to assist the judge model in accurately rewarding the target model's responses, mitigating biases in the rewarding process. In addition, a feedback mechanism is introduced to optimize prompts for both models, enhancing collaboration and improving data quality. The synthesized data is compiled into a new preference dataset, Anyprefer-V1, consisting of 58K high-quality preference pairs. Extensive experiments show that Anyprefer significantly improves model alignment performance across four main applications, covering 21 datasets, achieving average improvements of 18.55% in five natural language generation datasets, 3.66% in nine vision-language understanding datasets, 30.05% in three medical image analysis datasets, and 16.00% in four visuo-motor control tasks.

  • 16 authors
·
Apr 27, 2025

Improving Long-Range Interactions in Graph Neural Simulators via Hamiltonian Dynamics

Learning to simulate complex physical systems from data has emerged as a promising way to overcome the limitations of traditional numerical solvers, which often require prohibitive computational costs for high-fidelity solutions. Recent Graph Neural Simulators (GNSs) accelerate simulations by learning dynamics on graph-structured data, yet often struggle to capture long-range interactions and suffer from error accumulation under autoregressive rollouts. To address these challenges, we propose Information-preserving Graph Neural Simulators (IGNS), a graph-based neural simulator built on the principles of Hamiltonian dynamics. This structure guarantees preservation of information across the graph, while extending to port-Hamiltonian systems allows the model to capture a broader class of dynamics, including non-conservative effects. IGNS further incorporates a warmup phase to initialize global context, geometric encoding to handle irregular meshes, and a multi-step training objective that facilitates PDE matching, where the trajectory produced by integrating the port-Hamiltonian core aligns with the ground-truth trajectory, thereby reducing rollout error. To evaluate these properties systematically, we introduce new benchmarks that target long-range dependencies and challenging external forcing scenarios. Across all tasks, IGNS consistently outperforms state-of-the-art GNSs, achieving higher accuracy and stability under challenging and complex dynamical systems. Our project page: https://thobotics.github.io/neural_pde_matching.

  • 7 authors
·
Nov 11, 2025

LaCon: Late-Constraint Diffusion for Steerable Guided Image Synthesis

Diffusion models have demonstrated impressive abilities in generating photo-realistic and creative images. To offer more controllability for the generation process, existing studies, termed as early-constraint methods in this paper, leverage extra conditions and incorporate them into pre-trained diffusion models. Particularly, some of them adopt condition-specific modules to handle conditions separately, where they struggle to generalize across other conditions. Although follow-up studies present unified solutions to solve the generalization problem, they also require extra resources to implement, e.g., additional inputs or parameter optimization, where more flexible and efficient solutions are expected to perform steerable guided image synthesis. In this paper, we present an alternative paradigm, namely Late-Constraint Diffusion (LaCon), to simultaneously integrate various conditions into pre-trained diffusion models. Specifically, LaCon establishes an alignment between the external condition and the internal features of diffusion models, and utilizes the alignment to incorporate the target condition, guiding the sampling process to produce tailored results. Experimental results on COCO dataset illustrate the effectiveness and superior generalization capability of LaCon under various conditions and settings. Ablation studies investigate the functionalities of different components in LaCon, and illustrate its great potential to serve as an efficient solution to offer flexible controllability for diffusion models.

  • 5 authors
·
May 19, 2023

VLA^2: Empowering Vision-Language-Action Models with an Agentic Framework for Unseen Concept Manipulation

Current vision-language-action (VLA) models, pre-trained on large-scale robotic data, exhibit strong multi-task capabilities and generalize well to variations in visual and language instructions for manipulation. However, their success rate drops significantly when faced with object concepts outside the training data, such as unseen object descriptions and textures in the dataset. To address this, we propose a novel agentic framework, VLA^2, which leverages OpenVLA as the execution backbone and effectively leverages external modules such as web retrieval and object detection to provide visual and textual knowledge about target objects to the VLA. This approach mitigates generalization failure when handling out-of-distribution objects. Based on the LIBERO simulation environment, we introduced novel objects and object descriptions to construct a new evaluation benchmark with three difficulty levels to test the effectiveness of our method. Our framework successfully outperformed the current state-of-the-art models on our designed hard-level generalization benchmark. Compared to the standalone OpenVLA baseline, VLA^2 achieves a 44.2% improvement in the success rate in the hard-level benchmark and an average improvement of 20.2% in all customized environments without any performance degradation on in-domain tasks. Project website: https://vla-2.github.io.

Westlake-University Westlake University
·
Oct 16, 2025 2

Vocabulary Expansion for Low-resource Cross-lingual Transfer

Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers, vocabulary, and pre-training data, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, the majority of previous work has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion for LLMs in low-resource settings (i.e. languages and compute) has yet to be explored. In this paper, we investigate sample-efficient adaptation strategies from different angles, including target vocabulary size and initialization methods, and the amount of target data available for adaptation. Extensive experiments across typologically diverse languages, tasks and models show that simpler heuristic-based embedding initialization is more efficient and robust to changes in target vocabulary size and adaptation data in low-resource settings, outperforming a popular random initialization and a more sophisticated state-of-the-art approach that relies on external data and model.

  • 3 authors
·
Jun 17, 2024 2

TemporalBench: A Benchmark for Evaluating LLM-Based Agents on Contextual and Event-Informed Time Series Tasks

It is unclear whether strong forecasting performance reflects genuine temporal understanding or the ability to reason under contextual and event-driven conditions. We introduce TemporalBench, a multi-domain benchmark designed to evaluate temporal reasoning behavior under progressively richer informational settings. TemporalBench adopts a four-tier task taxonomy that examines historical structure interpretation, context-free forecasting, contextual temporal reasoning, and event-conditioned prediction across four real-world domains: retail, healthcare, energy, and physical systems. By controlling access to future targets and contextual information, the benchmark enables a diagnostic analysis of whether models can correctly interpret temporal patterns, align them with external context, and adapt predictions when conditions change. Extensive baseline experiments show that strong numerical forecasting accuracy does not reliably translate into robust contextual or event-aware temporal reasoning; instead, existing agent frameworks exhibit fragmented strengths and systematic failure modes that remain largely hidden under forecasting-only benchmarks. The TemporalBench dataset is publicly available at https://huggingface.co/datasets/Melady/TemporalBench, and we additionally provide a public leaderboard at https://huggingface.co/spaces/Melady/TemporalBench_Leaderboard.

  • 5 authors
·
Feb 4

Reasoning While Asking: Transforming Reasoning Large Language Models from Passive Solvers to Proactive Inquirers

Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a blind self-thinking paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: https://github.com/SUAT-AIRI/Proactive-Interactive-R1

  • 8 authors
·
Jan 29

MOSEv2: A More Challenging Dataset for Video Object Segmentation in Complex Scenes

Video object segmentation (VOS) aims to segment specified target objects throughout a video. Although state-of-the-art methods have achieved impressive performance (e.g., 90+% J&F) on existing benchmarks such as DAVIS and YouTube-VOS, these datasets primarily contain salient, dominant, and isolated objects, limiting their generalization to real-world scenarios. To advance VOS toward more realistic environments, coMplex video Object SEgmentation (MOSEv1) was introduced to facilitate VOS research in complex scenes. Building on the strengths and limitations of MOSEv1, we present MOSEv2, a significantly more challenging dataset designed to further advance VOS methods under real-world conditions. MOSEv2 consists of 5,024 videos and over 701,976 high-quality masks for 10,074 objects across 200 categories. Compared to its predecessor, MOSEv2 introduces significantly greater scene complexity, including more frequent object disappearance and reappearance, severe occlusions and crowding, smaller objects, as well as a range of new challenges such as adverse weather (e.g., rain, snow, fog), low-light scenes (e.g., nighttime, underwater), multi-shot sequences, camouflaged objects, non-physical targets (e.g., shadows, reflections), scenarios requiring external knowledge, etc. We benchmark 20 representative VOS methods under 5 different settings and observe consistent performance drops. For example, SAM2 drops from 76.4% on MOSEv1 to only 50.9% on MOSEv2. We further evaluate 9 video object tracking methods and find similar declines, demonstrating that MOSEv2 presents challenges across tasks. These results highlight that despite high accuracy on existing datasets, current VOS methods still struggle under real-world complexities. MOSEv2 is publicly available at https://MOSE.video.

  • 8 authors
·
Aug 7, 2025 2