new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

Steer2Edit: From Activation Steering to Component-Level Editing

Steering methods influence Large Language Model behavior by identifying semantic directions in hidden representations, but are typically realized through inference-time activation interventions that apply a fixed, global modification to the model's internal states. While effective, such interventions often induce unfavorable attribute-utility trade-offs under strong control, as they ignore the fact that many behaviors are governed by a small and heterogeneous subset of model components. We propose Steer2Edit, a theoretically grounded, training-free framework that transforms steering vectors from inference-time control signals into diagnostic signals for component-level rank-1 weight editing. Instead of uniformly injecting a steering direction during generation, Steer2Edit selectively redistributes behavioral influence across individual attention heads and MLP neurons, yielding interpretable edits that preserve the standard forward pass and remain compatible with optimized parallel inference. Across safety alignment, hallucination mitigation, and reasoning efficiency, Steer2Edit consistently achieves more favorable attribute-utility trade-offs: at matched downstream performance, it improves safety by up to 17.2%, increases truthfulness by 9.8%, and reduces reasoning length by 12.2% on average. Overall, Steer2Edit provides a principled bridge between representation steering and weight editing by translating steering signals into interpretable, training-free parameter updates.

Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment

Multimodal LLMs have reached remarkable levels of proficiency in understanding multimodal inputs, driving extensive research to develop increasingly powerful models. However, much less attention has been paid to understanding and explaining the underlying mechanisms of these models. Most existing explainability research examines these models only in their final states, overlooking the dynamic representational shifts that occur during training. In this work, we systematically analyze the evolution of hidden state representations to reveal how fine-tuning alters the internal structure of a model to specialize in new multimodal tasks. Using a concept-based approach, we map hidden states to interpretable visual and textual concepts, enabling us to trace changes in encoded concepts across modalities as training progresses. We also demonstrate the use of shift vectors to capture these concepts changes. These shift vectors allow us to recover fine-tuned concepts by shifting those in the original model. Finally, we explore the practical impact of our findings on model steering, showing that we can adjust multimodal LLMs behaviors without any training, such as modifying answer types, captions style, or biasing the model toward specific responses. Our work sheds light on how multimodal representations evolve through fine-tuning and offers a new perspective for interpreting model adaptation in multimodal tasks. The code for this project is publicly available at https://github.com/mshukor/xl-vlms.

  • 4 authors
·
Jan 6, 2025

Rep-MTL: Unleashing the Power of Representation-level Task Saliency for Multi-Task Learning

Despite the promise of Multi-Task Learning in leveraging complementary knowledge across tasks, existing multi-task optimization (MTO) techniques remain fixated on resolving conflicts via optimizer-centric loss scaling and gradient manipulation strategies, yet fail to deliver consistent gains. In this paper, we argue that the shared representation space, where task interactions naturally occur, offers rich information and potential for operations complementary to existing optimizers, especially for facilitating the inter-task complementarity, which is rarely explored in MTO. This intuition leads to Rep-MTL, which exploits the representation-level task saliency to quantify interactions between task-specific optimization and shared representation learning. By steering these saliencies through entropy-based penalization and sample-wise cross-task alignment, Rep-MTL aims to mitigate negative transfer by maintaining the effective training of individual tasks instead pure conflict-solving, while explicitly promoting complementary information sharing. Experiments are conducted on four challenging MTL benchmarks covering both task-shift and domain-shift scenarios. The results show that Rep-MTL, even paired with the basic equal weighting policy, achieves competitive performance gains with favorable efficiency. Beyond standard performance metrics, Power Law exponent analysis demonstrates Rep-MTL's efficacy in balancing task-specific learning and cross-task sharing. The project page is available at HERE.

  • 3 authors
·
Jul 28, 2025 4

Randomness, Not Representation: The Unreliability of Evaluating Cultural Alignment in LLMs

Research on the 'cultural alignment' of Large Language Models (LLMs) has emerged in response to growing interest in understanding representation across diverse stakeholders. Current approaches to evaluating cultural alignment borrow social science methodologies but often overlook systematic robustness checks. Here, we identify and test three assumptions behind current evaluation methods: (1) Stability: that cultural alignment is a property of LLMs rather than an artifact of evaluation design, (2) Extrapolability: that alignment with one culture on a narrow set of issues predicts alignment with that culture on others, and (3) Steerability: that LLMs can be reliably prompted to represent specific cultural perspectives. Through experiments examining both explicit and implicit preferences of leading LLMs, we find a high level of instability across presentation formats, incoherence between evaluated versus held-out cultural dimensions, and erratic behavior under prompt steering. We show that these inconsistencies can cause the results of an evaluation to be very sensitive to minor variations in methodology. Finally, we demonstrate in a case study on evaluation design that narrow experiments and a selective assessment of evidence can be used to paint an incomplete picture of LLMs' cultural alignment properties. Overall, these results highlight significant limitations of current approaches for evaluating the cultural alignment of LLMs.

  • 3 authors
·
Mar 11, 2025

Selective Steering: Norm-Preserving Control Through Discriminative Layer Selection

Despite significant progress in alignment, large language models (LLMs) remain vulnerable to adversarial attacks that elicit harmful behaviors. Activation steering techniques offer a promising inference-time intervention approach, but existing methods suffer from critical limitations: activation addition requires careful coefficient tuning and is sensitive to layer-specific norm variations, while directional ablation provides only binary control. Recent work on Angular Steering introduces continuous control via rotation in a 2D subspace, but its practical implementation violates norm preservation, causing distribution shift and generation collapse, particularly in models below 7B parameters. We propose Selective Steering, which addresses these limitations through two key innovations: (1) a mathematically rigorous norm-preserving rotation formulation that maintains activation distribution integrity, and (2) discriminative layer selection that applies steering only where feature representations exhibit opposite-signed class alignment. Experiments across nine models demonstrate that Selective Steering achieves 5.5x higher attack success rates than prior methods while maintaining zero perplexity violations and approximately 100\% capability retention on standard benchmarks. Our approach provides a principled, efficient framework for controllable and stable LLM behavior modification. Code: https://github.com/knoveleng/steering

CLaS-Bench: A Cross-Lingual Alignment and Steering Benchmark

Understanding and controlling the behavior of large language models (LLMs) is an increasingly important topic in multilingual NLP. Beyond prompting or fine-tuning, , i.e.,~manipulating internal representations during inference, has emerged as a more efficient and interpretable technique for adapting models to a target language. Yet, no dedicated benchmarks or evaluation protocols exist to quantify the effectiveness of steering techniques. We introduce CLaS-Bench, a lightweight parallel-question benchmark for evaluating language-forcing behavior in LLMs across 32 languages, enabling systematic evaluation of multilingual steering methods. We evaluate a broad array of steering techniques, including residual-stream DiffMean interventions, probe-derived directions, language-specific neurons, PCA/LDA vectors, Sparse Autoencoders, and prompting baselines. Steering performance is measured along two axes: language control and semantic relevance, combined into a single harmonic-mean steering score. We find that across languages simple residual-based DiffMean method consistently outperforms all other methods. Moreover, a layer-wise analysis reveals that language-specific structure emerges predominantly in later layers and steering directions cluster based on language family. CLaS-Bench is the first standardized benchmark for multilingual steering, enabling both rigorous scientific analysis of language representations and practical evaluation of steering as a low-cost adaptation alternative.

  • 8 authors
·
Jan 13

SEAL: Steerable Reasoning Calibration of Large Language Models for Free

Large Language Models (LLMs), such as OpenAI's o1-series have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism. However, recent studies reveal substantial redundancy in the CoT reasoning traces, which not only increases inference latency but also negatively impacts model performance by diverting attention to unnecessary reasoning paths. To address this issue, we investigate the internal reasoning structures of LLMs and categorize them into three primary thought types: execution, reflection, and transition thoughts. Moreover, our analysis reveals that excessive reflection and transition thoughts are strongly correlated with failure cases and these thought categories exhibit clear separation in the latent space. Based on these, we introduce SEAL (Steerable reasoning calibration), a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains. SEAL consists of an offline stage for extracting the reasoning steering vector in the latent space, followed by an on-the-fly calibration of the reasoning trace through representation intervention using the steering vector. Notably, the steering vector exhibits strong transferability across various tasks. Extensive experiments across multiple models (DeepSeek-R1-Distill and QwQ-32B-Preview) and benchmarks (Math500, GSM8K, LiveCodeBench) validate the effectiveness of SEAL, up to a 11% improvement in accuracy while reducing reasoning tokens by 11.8% to 50.4%. Our code is publicly available at https://github.com/VITA-Group/SEAL.

  • 5 authors
·
Apr 6, 2025

Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement

Recent advancements in large reasoning models (LRMs) have significantly enhanced language models' capabilities in complex problem-solving by emulating human-like deliberative thinking. However, these models often exhibit overthinking (i.e., the generation of unnecessarily verbose and redundant content), which hinders efficiency and inflates inference cost. In this work, we explore the representational and behavioral origins of this inefficiency, revealing that LRMs inherently possess the capacity for more concise reasoning. Empirical analyses show that correct reasoning paths vary significantly in length, and the shortest correct responses often suffice, indicating untapped efficiency potential. Exploiting these findings, we propose two lightweight methods to enhance LRM efficiency. First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction in the model's representation space. Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity by rewarding concise correct solutions. Extensive experiments on seven LRM backbones across multiple mathematical reasoning benchmarks demonstrate that our methods significantly reduce reasoning length while preserving or improving task performance. Our results highlight that reasoning efficiency can be improved by leveraging and guiding the intrinsic capabilities of existing models in a self-guided manner.

  • 10 authors
·
Jun 18, 2025

ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models

Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit

  • 3 authors
·
Mar 27, 2025

Personality as a Probe for LLM Evaluation: Method Trade-offs and Downstream Effects

Personality manipulation in large language models (LLMs) is increasingly applied in customer service and agentic scenarios, yet its mechanisms and trade-offs remain unclear. We present a systematic study of personality control using the Big Five traits, comparing in-context learning (ICL), parameter-efficient fine-tuning (PEFT), and mechanistic steering (MS). Our contributions are fourfold. First, we construct a contrastive dataset with balanced high/low trait responses, enabling effective steering vector computation and fair cross-method evaluation. Second, we introduce a unified evaluation framework based on within-run Delta analysis that disentangles, reasoning capability, agent performance, and demographic bias across MMLU, GAIA, and BBQ benchmarks. Third, we develop trait purification techniques to separate openness from conscientiousness, addressing representational overlap in trait encoding. Fourth, we propose a three-level stability framework that quantifies method-, trait-, and combination-level robustness, offering practical guidance under deployment constraints. Experiments on Gemma-2-2B-IT and LLaMA-3-8B-Instruct reveal clear trade-offs: ICL achieves strong alignment with minimal capability loss, PEFT delivers the highest alignment at the cost of degraded task performance, and MS provides lightweight runtime control with competitive effectiveness. Trait-level analysis shows openness as uniquely challenging, agreeableness as most resistant to ICL, and personality encoding consolidating around intermediate layers. Taken together, these results establish personality manipulation as a multi-level probe into behavioral representation, linking surface conditioning, parameter encoding, and activation-level steering, and positioning mechanistic steering as a lightweight alternative to fine-tuning for both deployment and interpretability.

  • 4 authors
·
Sep 5, 2025

RAPTOR: Ridge-Adaptive Logistic Probes

Probing studies what information is encoded in a frozen LLM's layer representations by training a lightweight predictor on top of them. Beyond analysis, probes are often used operationally in probe-then-steer pipelines: a learned concept vector is extracted from a probe and injected via additive activation steering by adding it to a layer representation during the forward pass. The effectiveness of this pipeline hinges on estimating concept vectors that are accurate, directionally stable under ablation, and inexpensive to obtain. Motivated by these desiderata, we propose RAPTOR (Ridge-Adaptive Logistic Probe), a simple L2-regularized logistic probe whose validation-tuned ridge strength yields concept vectors from normalized weights. Across extensive experiments on instruction-tuned LLMs and human-written concept datasets, RAPTOR matches or exceeds strong baselines in accuracy while achieving competitive directional stability and substantially lower training cost; these quantitative results are supported by qualitative downstream steering demonstrations. Finally, using the Convex Gaussian Min-max Theorem (CGMT), we provide a mechanistic characterization of ridge logistic regression in an idealized Gaussian teacher-student model in the high-dimensional few-shot regime, explaining how penalty strength mediates probe accuracy and concept-vector stability and yielding structural predictions that qualitatively align with trends observed on real LLM embeddings.

Learning Goal-Conditioned Representations for Language Reward Models

Techniques that learn improved representations via offline data or self-supervised objectives have shown impressive results in traditional reinforcement learning (RL). Nevertheless, it is unclear how improved representation learning can benefit reinforcement learning from human feedback (RLHF) on language models (LMs). In this work, we propose training reward models (RMs) in a contrastive, goal-conditioned fashion by increasing the representation similarity of future states along sampled preferred trajectories and decreasing the similarity along randomly sampled dispreferred trajectories. This objective significantly improves RM performance by up to 0.09 AUROC across challenging benchmarks, such as MATH and GSM8k. These findings extend to general alignment as well -- on the Helpful-Harmless dataset, we observe 2.3% increase in accuracy. Beyond improving reward model performance, we show this way of training RM representations enables improved steerability because it allows us to evaluate the likelihood of an action achieving a particular goal-state (e.g., whether a solution is correct or helpful). Leveraging this insight, we find that we can filter up to 55% of generated tokens during majority voting by discarding trajectories likely to end up in an "incorrect" state, which leads to significant cost savings. We additionally find that these representations can perform fine-grained control by conditioning on desired future goal-states. For example, we show that steering a Llama 3 model towards helpful generations with our approach improves helpfulness by 9.6% over a supervised-fine-tuning trained baseline. Similarly, steering the model towards complex generations improves complexity by 21.6% over the baseline. Overall, we find that training RMs in this contrastive, goal-conditioned fashion significantly improves performance and enables model steerability.

  • 7 authors
·
Jul 18, 2024

GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs

Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.

  • 4 authors
·
Jul 23, 2025

Faithful Bi-Directional Model Steering via Distribution Matching and Distributed Interchange Interventions

Intervention-based model steering offers a lightweight and interpretable alternative to prompting and fine-tuning. However, by adapting strong optimization objectives from fine-tuning, current methods are susceptible to overfitting and often underperform, sometimes generating unnatural outputs. We hypothesize that this is because effective steering requires the faithful identification of internal model mechanisms, not the enforcement of external preferences. To this end, we build on the principles of distributed alignment search (DAS), the standard for causal variable localization, to propose a new steering method: Concept DAS (CDAS). While we adopt the core mechanism of DAS, distributed interchange intervention (DII), we introduce a novel distribution matching objective tailored for the steering task by aligning intervened output distributions with counterfactual distributions. CDAS differs from prior work in two main ways: first, it learns interventions via weak-supervised distribution matching rather than probability maximization; second, it uses DIIs that naturally enable bi-directional steering and allow steering factors to be derived from data, reducing the effort required for hyperparameter tuning and resulting in more faithful and stable control. On AxBench, a large-scale model steering benchmark, we show that CDAS does not always outperform preference-optimization methods but may benefit more from increased model scale. In two safety-related case studies, overriding refusal behaviors of safety-aligned models and neutralizing a chain-of-thought backdoor, CDAS achieves systematic steering while maintaining general model utility. These results indicate that CDAS is complementary to preference-optimization approaches and conditionally constitutes a robust approach to intervention-based model steering. Our code is available at https://github.com/colored-dye/concept_das.

  • 10 authors
·
Feb 4

VLS: Steering Pretrained Robot Policies via Vision-Language Models

Why do pretrained diffusion or flow-matching policies fail when the same task is performed near an obstacle, on a shifted support surface, or amid mild clutter? Such failures rarely reflect missing motor skills; instead, they expose a limitation of imitation learning under train-test shifts, where action generation is tightly coupled to training-specific spatial configurations and task specifications. Retraining or fine-tuning to address these failures is costly and conceptually misaligned, as the required behaviors already exist but cannot be selectively adapted at test time. We propose Vision-Language Steering (VLS), a training-free framework for inference-time adaptation of frozen generative robot policies. VLS treats adaptation as an inference-time control problem, steering the sampling process of a pretrained diffusion or flow-matching policy in response to out-of-distribution observation-language inputs without modifying policy parameters. By leveraging vision-language models to synthesize trajectory-differentiable reward functions, VLS guides denoising toward action trajectories that satisfy test-time spatial and task requirements. Across simulation and real-world evaluations, VLS consistently outperforms prior steering methods, achieving a 31% improvement on CALVIN and a 13% gain on LIBERO-PRO. Real-world deployment on a Franka robot further demonstrates robust inference-time adaptation under test-time spatial and semantic shifts. Project page: https://vision-language-steering.github.io/webpage/

allenai Ai2
·
Feb 3 3

LinEAS: End-to-end Learning of Activation Steering with a Distributional Loss

The growing use of generative models in daily life calls for efficient mechanisms to control their generation, to e.g., produce safe content or provide users with tools to explore style changes. Ideally, such mechanisms should require low volume of unpaired data (i.e., without explicit preference), and should be cheap, both at train and inference time, while preserving output quality. Recent research has shown that such mechanisms can be obtained by intervening exclusively on model activations, with the goal of correcting distributional differences between activations seen when using prompts from a source vs. a target set (e.g., toxic and non-toxic sentences). While cheap, these fast methods are inherently crude: their maps are tuned locally, not accounting for their impact on downstream layers, resulting in interventions that cause unintended shifts when used out-of-sample. We propose in this work linear end-to-end activation steering (LinEAS), an approach trained with a global loss that accounts simultaneously for all layer-wise distributional shifts. In addition to being more robust, the loss used to train LinEAS can be regularized with sparsifying norms, which can automatically carry out neuron selection. LinEAS only requires a handful of unpaired samples to be effective, and beats similar baselines on toxicity mitigation in language models, becoming competitive with oracle-dependent methods that have access to strong supervision. LinEAS is modality-agnostic and we empirically find that it outperforms existing activation steering methods at mitigating and including new concepts at the output of single-step text-to-image generation models.

apple Apple
·
Mar 11, 2025 1

Compass Control: Multi Object Orientation Control for Text-to-Image Generation

Existing approaches for controlling text-to-image diffusion models, while powerful, do not allow for explicit 3D object-centric control, such as precise control of object orientation. In this work, we address the problem of multi-object orientation control in text-to-image diffusion models. This enables the generation of diverse multi-object scenes with precise orientation control for each object. The key idea is to condition the diffusion model with a set of orientation-aware compass tokens, one for each object, along with text tokens. A light-weight encoder network predicts these compass tokens taking object orientation as the input. The model is trained on a synthetic dataset of procedurally generated scenes, each containing one or two 3D assets on a plain background. However, direct training this framework results in poor orientation control as well as leads to entanglement among objects. To mitigate this, we intervene in the generation process and constrain the cross-attention maps of each compass token to its corresponding object regions. The trained model is able to achieve precise orientation control for a) complex objects not seen during training and b) multi-object scenes with more than two objects, indicating strong generalization capabilities. Further, when combined with personalization methods, our method precisely controls the orientation of the new object in diverse contexts. Our method achieves state-of-the-art orientation control and text alignment, quantified with extensive evaluations and a user study.

  • 4 authors
·
Apr 9, 2025 5

A Course Correction in Steerability Evaluation: Revealing Miscalibration and Side Effects in LLMs

Despite advances in large language models (LLMs) on reasoning and instruction-following benchmarks, it remains unclear whether they can reliably produce outputs aligned with a broad variety of user goals, a concept we refer to as steerability. The abundance of methods proposed to modify LLM behavior makes it unclear whether current LLMs are already steerable, or require further intervention. In particular, LLMs may exhibit (i) poor coverage, where rare user goals are underrepresented; (ii) miscalibration, where models overshoot requests; and (iii) side effects, where changes to one dimension of text inadvertently affect others. To systematically evaluate these failures, we introduce a framework based on a multi-dimensional goal space that models user goals and LLM outputs as vectors with dimensions corresponding to text attributes (e.g., reading difficulty). Applied to a text-rewriting task, we find that current LLMs struggle with steerability, as side effects are persistent. Interventions to improve steerability, such as prompt engineering, best-of-N sampling, and reinforcement learning fine-tuning, have varying effectiveness, yet side effects remain problematic. Our findings suggest that even strong LLMs struggle with steerability, and existing alignment strategies may be insufficient. We open-source our steerability evaluation framework at https://github.com/MLD3/steerability.

  • 4 authors
·
May 27, 2025

Mechanistic interpretability for steering vision-language-action models

Vision-Language-Action (VLA) models are a promising path to realizing generalist embodied agents that can quickly adapt to new tasks, modalities, and environments. However, methods for interpreting and steering VLAs fall far short of classical robotics pipelines, which are grounded in explicit models of kinematics, dynamics, and control. This lack of mechanistic insight is a central challenge for deploying learned policies in real-world robotics, where robustness and explainability are critical. Motivated by advances in mechanistic interpretability for large language models, we introduce the first framework for interpreting and steering VLAs via their internal representations, enabling direct intervention in model behavior at inference time. We project feedforward activations within transformer layers onto the token embedding basis, identifying sparse semantic directions - such as speed and direction - that are causally linked to action selection. Leveraging these findings, we introduce a general-purpose activation steering method that modulates behavior in real time, without fine-tuning, reward signals, or environment interaction. We evaluate this method on two recent open-source VLAs, Pi0 and OpenVLA, and demonstrate zero-shot behavioral control in simulation (LIBERO) and on a physical robot (UR5). This work demonstrates that interpretable components of embodied VLAs can be systematically harnessed for control - establishing a new paradigm for transparent and steerable foundation models in robotics.

  • 4 authors
·
Aug 29, 2025 2

Guiding Giants: Lightweight Controllers for Weighted Activation Steering in LLMs

Controlling undesirable Large Language Model (LLM) behaviors, such as the generation of unsafe content or failing to adhere to safety guidelines, often relies on costly fine-tuning. Activation steering provides an alternative for inference-time control, but existing methods typically lack fine-grained, adaptive mechanisms. We introduce a novel approach using a lightweight, trainable controller network integrated during inference. This controller network observes specific intermediate LLM activations and predicts both a global scaling factor and layer-specific weights. The predicted global scaling factor and layer-specific weights then dynamically modulate the intensity of a steering patch, derived from a pre-computed "refusal direction" vector, applied across the LLM's layers during generation. Trained on activations from both harmful and benign prompts, our controller learns to discriminatively apply nuanced, layer-aware interventions, activating steering primarily for harmful inputs. Experiments using safety benchmarks like ToxicChat & In-The-Wild Jailbreak Prompts demonstrate that our weighted steering controller significantly increases refusal rates compared to the base LLM, achieving targeted behavioral modification without altering the original model parameters. Our experiments with Llama-3.1-8B, Llama-3.2-1B & Mistral-7B show our approach outperforms existing methods, presenting an efficient and adaptive method for fine-grained control over LLM behavior at inference time.

  • 3 authors
·
May 21, 2025

A General Framework for Inference-time Scaling and Steering of Diffusion Models

Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .

  • 7 authors
·
Jan 12, 2025

FlexAC: Towards Flexible Control of Associative Reasoning in Multimodal Large Language Models

Multimodal large language models (MLLMs) face an inherent trade-off between faithfulness and creativity, as different tasks require varying degrees of associative reasoning. However, existing methods lack the flexibility to modulate this reasoning strength, limiting MLLMs' adaptability across factual and creative scenarios. To bridge this gap, we propose equipping MLLMs with mechanisms that enable flexible control over associative reasoning. We begin by investigating the internal mechanisms underlying associative behavior in MLLMs and find that: (1) middle layers play a pivotal role in shaping model's associative tendencies, (2) modifying representations in these layers effectively regulates associative reasoning strength, and (3) hallucinations can be exploited to derive steering vectors that guide this modulation. Building on these findings, we introduce Flexible Association Control (FlexAC), a lightweight and training-free framework for modulating associative behavior in MLLMs. FlexAC first induces hallucination-guided intermediate representations to encode associative directions. Then, it selects high-association instances to construct effective associative steering vectors, whose strengths are adaptively calibrated to balance creative guidance with output stability. Finally, recognizing the multi-dimensional nature of associative reasoning, FlexAC incorporates task-specific associative vectors derived from a forward pass on a few target-domain samples, enabling models to follow diverse associative directions and better adapt to creative tasks. Notably, our method achieves up to a 5.8x improvement in creativity on Creation-MMBench and a 29% reduction in hallucination rate on CHAIR, surpassing existing baselines and demonstrating its effectiveness in enabling flexible control over associative reasoning in MLLMs. Our code is available at https://github.com/ylhz/FlexAC.

  • 6 authors
·
Oct 13, 2025

YaPO: Learnable Sparse Activation Steering Vectors for Domain Adaptation

Steering Large Language Models (LLMs) through activation interventions has emerged as a lightweight alternative to fine-tuning for alignment and personalization. Recent work on Bi-directional Preference Optimization (BiPO) shows that dense steering vectors can be learned directly from preference data in a Direct Preference Optimization (DPO) fashion, enabling control over truthfulness, hallucinations, and safety behaviors. However, dense steering vectors often entangle multiple latent factors due to neuron multi-semanticity, limiting their effectiveness and stability in fine-grained settings such as cultural alignment, where closely related values and behaviors (e.g., among Middle Eastern cultures) must be distinguished. In this paper, we propose Yet another Policy Optimization (YaPO), a reference-free method that learns sparse steering vectors in the latent space of a Sparse Autoencoder (SAE). By optimizing sparse codes, YaPO produces disentangled, interpretable, and efficient steering directions. Empirically, we show that YaPO converges faster, achieves stronger performance, and exhibits improved training stability compared to dense steering baselines. Beyond cultural alignment, YaPO generalizes to a range of alignment-related behaviors, including hallucination, wealth-seeking, jailbreak, and power-seeking. Importantly, YaPO preserves general knowledge, with no measurable degradation on MMLU. Overall, our results show that YaPO provides a general recipe for efficient, stable, and fine-grained alignment of LLMs, with broad applications to controllability and domain adaptation. The associated code and data are publicly availablehttps://github.com/MBZUAI-Paris/YaPO.

Linear representations in language models can change dramatically over a conversation

Language model representations often contain linear directions that correspond to high-level concepts. Here, we study the dynamics of these representations: how representations evolve along these dimensions within the context of (simulated) conversations. We find that linear representations can change dramatically over a conversation; for example, information that is represented as factual at the beginning of a conversation can be represented as non-factual at the end and vice versa. These changes are content-dependent; while representations of conversation-relevant information may change, generic information is generally preserved. These changes are robust even for dimensions that disentangle factuality from more superficial response patterns, and occur across different model families and layers of the model. These representation changes do not require on-policy conversations; even replaying a conversation script written by an entirely different model can produce similar changes. However, adaptation is much weaker from simply having a sci-fi story in context that is framed more explicitly as such. We also show that steering along a representational direction can have dramatically different effects at different points in a conversation. These results are consistent with the idea that representations may evolve in response to the model playing a particular role that is cued by a conversation. Our findings may pose challenges for interpretability and steering -- in particular, they imply that it may be misleading to use static interpretations of features or directions, or probes that assume a particular range of features consistently corresponds to a particular ground-truth value. However, these types of representational dynamics also point to exciting new research directions for understanding how models adapt to context.

google Google
·
Jan 28 2

STEER: Unified Style Transfer with Expert Reinforcement

While text style transfer has many applications across natural language processing, the core premise of transferring from a single source style is unrealistic in a real-world setting. In this work, we focus on arbitrary style transfer: rewriting a text from an arbitrary, unknown style to a target style. We propose STEER: Unified Style Transfer with Expert Reinforcement, a unified frame-work developed to overcome the challenge of limited parallel data for style transfer. STEER involves automatically generating a corpus of style-transfer pairs using a product of experts during decoding. The generated offline data is then used to pre-train an initial policy before switching to online, off-policy reinforcement learning for further improvements via fine-grained reward signals. STEER is unified and can transfer to multiple target styles from an arbitrary, unknown source style, making it particularly flexible and efficient. Experimental results on a challenging dataset with text from a diverse set of styles demonstrate state-of-the-art results compared to competitive baselines. Remarkably, STEER outperforms the 175B parameter instruction-tuned GPT-3 on overall style transfer quality, despite being 226 times smaller in size. We also show STEER is robust, maintaining its style transfer capabilities on out-of-domain data, and surpassing nearly all baselines across various styles. The success of our method highlights the potential of RL algorithms when augmented with controllable decoding to overcome the challenge of limited data supervision.

  • 6 authors
·
Nov 13, 2023

Steering Conceptual Bias via Transformer Latent-Subspace Activation

This work examines whether activating latent subspaces in language models (LLMs) can steer scientific code generation toward a specific programming language. Five causal LLMs were first evaluated on scientific coding prompts to quantify their baseline bias among four programming languages. A static neuron-attribution method, perturbing the highest activated MLP weight for a C++ or CPP token, proved brittle and exhibited limited generalization across prompt styles and model scales. To address these limitations, a gradient-refined adaptive activation steering framework (G-ACT) was developed: per-prompt activation differences are clustered into a small set of steering directions, and lightweight per-layer probes are trained and refined online to select the appropriate steering vector. In LLaMA-3.2 3B, this approach reliably biases generation towards the CPP language by increasing the average probe classification accuracy by 15% and the early layers (0-6) improving the probe classification accuracy by 61.5% compared to the standard ACT framework. For LLaMA-3.3 70B, where attention-head signals become more diffuse, targeted injections at key layers still improve language selection. Although per-layer probing introduces a modest inference overhead, it remains practical by steering only a subset of layers and enables reproducible model behavior. These results demonstrate a scalable, interpretable and efficient mechanism for concept-level control for practical agentic systems.

  • 2 authors
·
Jun 23, 2025 1

Diffusion Tree Sampling: Scalable inference-time alignment of diffusion models

Adapting a pretrained diffusion model to new objectives at inference time remains an open problem in generative modeling. Existing steering methods suffer from inaccurate value estimation, especially at high noise levels, which biases guidance. Moreover, information from past runs is not reused to improve sample quality, resulting in inefficient use of compute. Inspired by the success of Monte Carlo Tree Search, we address these limitations by casting inference-time alignment as a search problem that reuses past computations. We introduce a tree-based approach that samples from the reward-aligned target density by propagating terminal rewards back through the diffusion chain and iteratively refining value estimates with each additional generation. Our proposed method, Diffusion Tree Sampling (DTS), produces asymptotically exact samples from the target distribution in the limit of infinite rollouts, and its greedy variant, Diffusion Tree Search (DTS^star), performs a global search for high reward samples. On MNIST and CIFAR-10 class-conditional generation, DTS matches the FID of the best-performing baseline with up to 10times less compute. In text-to-image generation and language completion tasks, DTS^star effectively searches for high reward samples that match best-of-N with up to 5times less compute. By reusing information from previous generations, we get an anytime algorithm that turns additional compute into steadily better samples, providing a scalable approach for inference-time alignment of diffusion models.

  • 4 authors
·
Jun 25, 2025

Distribution-Aligned Decoding for Efficient LLM Task Adaptation

Adapting billion-parameter language models to a downstream task is still costly, even with parameter-efficient fine-tuning (PEFT). We re-cast task adaptation as output-distribution alignment: the objective is to steer the output distribution toward the task distribution directly during decoding rather than indirectly through weight updates. Building on this view, we introduce Steering Vector Decoding (SVDecode), a lightweight, PEFT-compatible, and theoretically grounded method. We start with a short warm-start fine-tune and extract a task-aware steering vector from the Kullback-Leibler (KL) divergence gradient between the output distribution of the warm-started and pre-trained models. This steering vector is then used to guide the decoding process to steer the model's output distribution towards the task distribution. We theoretically prove that SVDecode is first-order equivalent to the gradient step of full fine-tuning and derive a globally optimal solution for the strength of the steering vector. Across three tasks and nine benchmarks, SVDecode paired with four standard PEFT methods improves multiple-choice accuracy by up to 5 percentage points and open-ended truthfulness by 2 percentage points, with similar gains (1-2 percentage points) on commonsense datasets without adding trainable parameters beyond the PEFT adapter. SVDecode thus offers a lightweight, theoretically grounded path to stronger task adaptation for large language models.

  • 8 authors
·
Sep 19, 2025

When the Coffee Feature Activates on Coffins: An Analysis of Feature Extraction and Steering for Mechanistic Interpretability

Recent work by Anthropic on Mechanistic interpretability claims to understand and control Large Language Models by extracting human-interpretable features from their neural activation patterns using sparse autoencoders (SAEs). If successful, this approach offers one of the most promising routes for human oversight in AI safety. We conduct an initial stress-test of these claims by replicating their main results with open-source SAEs for Llama 3.1. While we successfully reproduce basic feature extraction and steering capabilities, our investigation suggests that major caution is warranted regarding the generalizability of these claims. We find that feature steering exhibits substantial fragility, with sensitivity to layer selection, steering magnitude, and context. We observe non-standard activation behavior and demonstrate the difficulty to distinguish thematically similar features from one another. While SAE-based interpretability produces compelling demonstrations in selected cases, current methods often fall short of the systematic reliability required for safety-critical applications. This suggests a necessary shift in focus from prioritizing interpretability of internal representations toward reliable prediction and control of model output. Our work contributes to a more nuanced understanding of what mechanistic interpretability has achieved and highlights fundamental challenges for AI safety that remain unresolved.

  • 3 authors
·
Jan 6

Beyond the Surface: Probing the Ideological Depth of Large Language Models

Large Language Models (LLMs) have demonstrated pronounced ideological leanings, yet the stability and depth of these positions remain poorly understood. Surface-level responses can often be manipulated through simple prompt engineering, calling into question whether they reflect a coherent underlying ideology. This paper investigates the concept of "ideological depth" in LLMs, defined as the robustness and complexity of their internal political representations. We employ a dual approach: first, we measure the "steerability" of two well-known open-source LLMs using instruction prompting and activation steering. We find that while some models can easily switch between liberal and conservative viewpoints, others exhibit resistance or an increased rate of refusal, suggesting a more entrenched ideological structure. Second, we probe the internal mechanisms of these models using Sparse Autoencoders (SAEs). Preliminary analysis reveals that models with lower steerability possess more distinct and abstract ideological features. Our evaluations reveal that one model can contain 7.3x more political features than another model of similar size. This allows targeted ablation of a core political feature in an ideologically "deep" model, leading to consistent, logical shifts in its reasoning across related topics, whereas the same intervention in a "shallow" model results in an increase in refusal outputs. Our findings suggest that ideological depth is a quantifiable property of LLMs and that steerability serves as a valuable window into their latent political architecture.

  • 3 authors
·
Aug 29, 2025

Neural FOXP2 -- Language Specific Neuron Steering for Targeted Language Improvement in LLMs

LLMs are multilingual by training, yet their lingua franca is often English, reflecting English language dominance in pretraining. Other languages remain in parametric memory but are systematically suppressed. We argue that language defaultness is governed by a sparse, low-rank control circuit, language neurons, that can be mechanistically isolated and safely steered. We introduce Neural FOXP2, that makes a chosen language (Hindi or Spanish) primary in a model by steering language-specific neurons. Neural FOXP2 proceeds in three stages: (i) Localize: We train per-layer SAEs so each activation decomposes into a small set of active feature components. For every feature, we quantify English vs. Hindi/Spanish selectivity overall logit-mass lift toward the target-language token set. Tracing the top-ranked features back to their strongest contributing units yields a compact language-neuron set. (ii) Steering directions: We localize controllable language-shift geometry via a spectral low-rank analysis. For each layer, we build English to target activation-difference matrices and perform layerwise SVD to extract the dominant singular directions governing language change. The eigengap and effective-rank spectra identify a compact steering subspace and an empirically chosen intervention window (where these directions are strongest and most stable). (iii) Steer: We apply a signed, sparse activation shift targeted to the language neurons. Concretely, within low to mid layers we add a positive steering along the target-language dominant directions and a compensating negative shift toward the null space for the English neurons, yielding controllable target-language defaultness.

  • 5 authors
·
Jan 31

The Geometry of Persona: Disentangling Personality from Reasoning in Large Language Models

Background: The deployment of personalized Large Language Models (LLMs) is currently constrained by the stability-plasticity dilemma. Prevailing alignment methods, such as Supervised Fine-Tuning (SFT), rely on stochastic weight updates that often incur an "alignment tax" -- degrading general reasoning capabilities. Methods: We propose the Soul Engine, a framework based on the Linear Representation Hypothesis, which posits that personality traits exist as orthogonal linear subspaces. We introduce SoulBench, a dataset constructed via dynamic contextual sampling. Using a dual-head architecture on a frozen Qwen-2.5 base, we extract disentangled personality vectors without modifying the backbone weights. Results: Our experiments demonstrate three breakthroughs. First, High-Precision Profiling: The model achieves a Mean Squared Error (MSE) of 0.011 against psychological ground truth. Second, Geometric Orthogonality: T-SNE visualization confirms that personality manifolds are distinct and continuous, allowing for "Zero-Shot Personality Injection" that maintains original model intelligence. Third, Deterministic Steering: We achieve robust control over behavior via vector arithmetic, validated through extensive ablation studies. Conclusion: This work challenges the necessity of fine-tuning for personalization. By transitioning from probabilistic prompting to deterministic latent intervention, we provide a mathematically rigorous foundation for safe, controllable AI personalization.

  • 1 authors
·
Dec 7, 2025

Controlling Large Language Model Agents with Entropic Activation Steering

The generality of pretrained large language models (LLMs) has prompted increasing interest in their use as in-context learning agents. To be successful, such agents must form beliefs about how to achieve their goals based on limited interaction with their environment, resulting in uncertainty about the best action to take at each step. In this paper, we study how LLM agents form and act on these beliefs by conducting experiments in controlled sequential decision-making tasks. To begin, we find that LLM agents are overconfident: They draw strong conclusions about what to do based on insufficient evidence, resulting in inadequately explorative behavior. We dig deeper into this phenomenon and show how it emerges from a collapse in the entropy of the action distribution implied by sampling from the LLM. We then demonstrate that existing token-level sampling techniques are by themselves insufficient to make the agent explore more. Motivated by this fact, we introduce Entropic Activation Steering (EAST), an activation steering method for in-context LLM agents. EAST computes a steering vector as an entropy-weighted combination of representations, and uses it to manipulate an LLM agent's uncertainty over actions by intervening on its activations during the forward pass. We show that EAST can reliably increase the entropy in an LLM agent's actions, causing more explorative behavior to emerge. Finally, EAST modifies the subjective uncertainty an LLM agent expresses, paving the way to interpreting and controlling how LLM agents represent uncertainty about their decisions.

  • 3 authors
·
May 31, 2024

Tradeoffs Between Alignment and Helpfulness in Language Models with Representation Engineering

Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. First, we find that under the conditions of our framework, alignment can be guaranteed with representation engineering, and at the same time that helpfulness is harmed in the process. Second, we show that helpfulness is harmed quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.

  • 6 authors
·
Jan 29, 2024

The Assistant Axis: Situating and Stabilizing the Default Persona of Language Models

Large language models can represent a variety of personas but typically default to a helpful Assistant identity cultivated during post-training. We investigate the structure of the space of model personas by extracting activation directions corresponding to diverse character archetypes. Across several different models, we find that the leading component of this persona space is an "Assistant Axis," which captures the extent to which a model is operating in its default Assistant mode. Steering towards the Assistant direction reinforces helpful and harmless behavior; steering away increases the model's tendency to identify as other entities. Moreover, steering away with more extreme values often induces a mystical, theatrical speaking style. We find this axis is also present in pre-trained models, where it primarily promotes helpful human archetypes like consultants and coaches and inhibits spiritual ones. Measuring deviations along the Assistant Axis predicts "persona drift," a phenomenon where models slip into exhibiting harmful or bizarre behaviors that are uncharacteristic of their typical persona. We find that persona drift is often driven by conversations demanding meta-reflection on the model's processes or featuring emotionally vulnerable users. We show that restricting activations to a fixed region along the Assistant Axis can stabilize model behavior in these scenarios -- and also in the face of adversarial persona-based jailbreaks. Our results suggest that post-training steers models toward a particular region of persona space but only loosely tethers them to it, motivating work on training and steering strategies that more deeply anchor models to a coherent persona.

  • 5 authors
·
Jan 15 2

CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models

Text-to-image diffusion models excel at generating photorealistic images, but commonly struggle to render accurate spatial relationships described in text prompts. We identify two core issues underlying this common failure: 1) the ambiguous nature of spatial-related data in existing datasets, and 2) the inability of current text encoders to accurately interpret the spatial semantics of input descriptions. We address these issues with CoMPaSS, a versatile training framework that enhances spatial understanding of any T2I diffusion model. CoMPaSS solves the ambiguity of spatial-related data with the Spatial Constraints-Oriented Pairing (SCOP) data engine, which curates spatially-accurate training data through a set of principled spatial constraints. To better exploit the curated high-quality spatial priors, CoMPaSS further introduces a Token ENcoding ORdering (TENOR) module to allow better exploitation of high-quality spatial priors, effectively compensating for the shortcoming of text encoders. Extensive experiments on four popular open-weight T2I diffusion models covering both UNet- and MMDiT-based architectures demonstrate the effectiveness of CoMPaSS by setting new state-of-the-arts with substantial relative gains across well-known benchmarks on spatial relationships generation, including VISOR (+98%), T2I-CompBench Spatial (+67%), and GenEval Position (+131%). Code will be available at https://github.com/blurgyy/CoMPaSS.

  • 8 authors
·
Dec 17, 2024

SoFar: Language-Grounded Orientation Bridges Spatial Reasoning and Object Manipulation

Spatial intelligence is a critical component of embodied AI, promoting robots to understand and interact with their environments. While recent advances have enhanced the ability of VLMs to perceive object locations and positional relationships, they still lack the capability to precisely understand object orientations-a key requirement for tasks involving fine-grained manipulations. Addressing this limitation not only requires geometric reasoning but also an expressive and intuitive way to represent orientation. In this context, we propose that natural language offers a more flexible representation space than canonical frames, making it particularly suitable for instruction-following robotic systems. In this paper, we introduce the concept of semantic orientation, which defines object orientations using natural language in a reference-frame-free manner (e.g., the ''plug-in'' direction of a USB or the ''handle'' direction of a knife). To support this, we construct OrienText300K, a large-scale dataset of 3D models annotated with semantic orientations that link geometric understanding to functional semantics. By integrating semantic orientation into a VLM system, we enable robots to generate manipulation actions with both positional and orientational constraints. Extensive experiments in simulation and real world demonstrate that our approach significantly enhances robotic manipulation capabilities, e.g., 48.7% accuracy on Open6DOR and 74.9% accuracy on SIMPLER.

  • 18 authors
·
Feb 18, 2025 2

Context Engineering for Trustworthiness: Rescorla Wagner Steering Under Mixed and Inappropriate Contexts

Incorporating external context can significantly enhance the response quality of Large Language Models (LLMs). However, real-world contexts often mix relevant information with disproportionate inappropriate content, posing reliability risks. How do LLMs process and prioritize mixed context? To study this, we introduce the Poisoned Context Testbed, pairing queries with real-world contexts containing relevant and inappropriate content. Inspired by associative learning in animals, we adapt the Rescorla-Wagner (RW) model from neuroscience to quantify how competing contextual signals influence LLM outputs. Our adapted model reveals a consistent behavioral pattern: LLMs exhibit a strong tendency to incorporate information that is less prevalent in the context. This susceptibility is harmful in real-world settings, where small amounts of inappropriate content can substantially degrade response quality. Empirical evaluations on our testbed further confirm this vulnerability. To tackle this, we introduce RW-Steering, a two-stage finetuning-based approach that enables the model to internally identify and ignore inappropriate signals. Unlike prior methods that rely on extensive supervision across diverse context mixtures, RW-Steering generalizes robustly across varying proportions of inappropriate content. Experiments show that our best fine-tuned model improves response quality by 39.8% and reverses the undesirable behavior curve, establishing RW-Steering as a robust, generalizable context engineering solution for improving LLM safety in real-world use.

  • 9 authors
·
Sep 1, 2025 3

Steering Language Generation: Harnessing Contrastive Expert Guidance and Negative Prompting for Coherent and Diverse Synthetic Data Generation

Large Language Models (LLMs) hold immense potential to generate synthetic data of high quality and utility, which has numerous applications from downstream model training to practical data utilisation. However, contemporary models, despite their impressive capacities, consistently struggle to produce both coherent and diverse data. To address the coherency issue, we introduce contrastive expert guidance, where the difference between the logit distributions of fine-tuned and base language models is emphasised to ensure domain adherence. In order to ensure diversity, we utilise existing real and synthetic examples as negative prompts to the model. We deem this dual-pronged approach to logit reshaping as STEER: Semantic Text Enhancement via Embedding Repositioning. STEER operates at inference-time and systematically guides the LLMs to strike a balance between adherence to the data distribution (ensuring semantic fidelity) and deviation from prior synthetic examples or existing real datasets (ensuring diversity and authenticity). This delicate balancing act is achieved by dynamically moving towards or away from chosen representations in the latent space. STEER demonstrates improved performance over previous synthetic data generation techniques, exhibiting better balance between data diversity and coherency across three distinct tasks: hypothesis generation, toxic and non-toxic comment generation, and commonsense reasoning task generation. We demonstrate how STEER allows for fine-tuned control over the diversity-coherency trade-off via its hyperparameters, highlighting its versatility.

  • 5 authors
·
Aug 15, 2023

Endogenous Resistance to Activation Steering in Language Models

Large language models can resist task-misaligned activation steering during inference, sometimes recovering mid-generation to produce improved responses even when steering remains active. We term this Endogenous Steering Resistance (ESR). Using sparse autoencoder (SAE) latents to steer model activations, we find that Llama-3.3-70B shows substantial ESR, while smaller models from the Llama-3 and Gemma-2 families exhibit the phenomenon less frequently. We identify 26 SAE latents that activate differentially during off-topic content and are causally linked to ESR in Llama-3.3-70B. Zero-ablating these latents reduces the multi-attempt rate by 25%, providing causal evidence for dedicated internal consistency-checking circuits. We demonstrate that ESR can be deliberately enhanced through both prompting and training: meta-prompts instructing the model to self-monitor increase the multi-attempt rate by 4x for Llama-3.3-70B, and fine-tuning on self-correction examples successfully induces ESR-like behavior in smaller models. These findings have dual implications: ESR could protect against adversarial manipulation but might also interfere with beneficial safety interventions that rely on activation steering. Understanding and controlling these resistance mechanisms is important for developing transparent and controllable AI systems. Code is available at github.com/agencyenterprise/endogenous-steering-resistance.

  • 9 authors
·
Feb 6