- DLO: Dynamic Layer Operation for Efficient Vertical Scaling of LLMs In this paper, we introduce Dynamic Layer Operations (DLO), a novel approach for vertically scaling transformer-based Large Language Models (LLMs) by dynamically expanding, activating, or skipping layers using a sophisticated routing policy based on layerwise feature similarity. Unlike traditional Mixture-of-Experts (MoE) methods that focus on extending the model width, our approach targets model depth, addressing the redundancy observed across layer representations for various input samples. Our framework is integrated with the Supervised Fine-Tuning (SFT) stage, eliminating the need for resource-intensive Continual Pre-Training (CPT). Experimental results demonstrate that DLO not only outperforms the original unscaled models but also achieves comparable results to densely expanded models with significantly improved efficiency. Our work offers a promising direction for building efficient yet powerful LLMs. We will release our implementation and model weights upon acceptance. 6 authors · Jul 3, 2024
1 ElasticMoE: An Efficient Auto Scaling Method for Mixture-of-Experts Models Mixture-of-Experts (MoE) models promise efficient scaling of large language models (LLMs) by activating only a small subset of experts per token, but their parallelized inference pipelines make elastic serving challenging. Existing strategies fall short: horizontal scaling provisions entire replicas of the current configuration, often tens to hundreds of accelerators, leading to coarse granularity, long provisioning delays, and costly overprovisioning. Vertical scaling offers finer adjustments but typically requires instance restarts, incurring downtime. These limitations make current approaches ill-suited for the bursty, short-lived traffic patterns common in cloud deployments. We present ElasticMoE, an elastic scaling framework for MoE LLMs that achieves fine-grained, low-latency, and zero-downtime scaling. ElasticMoE decouples inference execution from memory operations, enabling scaling steps to proceed concurrently with serving. An HBM Management Module (HMM) reuses weights and KV caches via zero-copy remapping, while high-bandwidth peer-to-peer transfers bring newly added accelerators online without interrupting service. A virtual memory based expert redistribution mechanism migrates MoE experts without costly buffer reallocations, reducing peak memory usage during expert parallelism reconfiguration. Our evaluation on Ascend NPUs with three popular MoE LLMs shows that ElasticMoE achieves up to 9x lower scale-up latency, up to 2x better throughput during scaling, and significantly improves SLO attainment compared to baselines. By enabling fine-grained, concurrent scaling with minimal disruption, ElasticMoE advances the practicality of deploying massive MoE LLMs in dynamic cloud environments. 10 authors · Oct 2, 2025
- SLA Management in Reconfigurable Multi-Agent RAG: A Systems Approach to Question Answering Retrieval Augmented Generation (RAG) enables Large Language Models (LLMs) to generalize to new information by decoupling reasoning capabilities from static knowledge bases. Traditional RAG enhancements have explored vertical scaling -- assigning subtasks to specialized modules -- and horizontal scaling -- replicating tasks across multiple agents -- to improve performance. However, real-world applications impose diverse Service Level Agreements (SLAs) and Quality of Service (QoS) requirements, involving trade-offs among objectives such as reducing cost, ensuring answer quality, and adhering to specific operational constraints. In this work, we present a systems-oriented approach to multi-agent RAG tailored for real-world Question Answering (QA) applications. By integrating task-specific non-functional requirements -- such as answer quality, cost, and latency -- into the system, we enable dynamic reconfiguration to meet diverse SLAs. Our method maps these Service Level Objectives (SLOs) to system-level parameters, allowing the generation of optimal results within specified resource constraints. We conduct a case study in the QA domain, demonstrating how dynamic re-orchestration of a multi-agent RAG system can effectively manage the trade-off between answer quality and cost. By adjusting the system based on query intent and operational conditions, we systematically balance performance and resource utilization. This approach allows the system to meet SLOs for various query types, showcasing its practicality for real-world applications. 3 authors · Dec 6, 2024