new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

WorldForge: Unlocking Emergent 3D/4D Generation in Video Diffusion Model via Training-Free Guidance

Recent video diffusion models demonstrate strong potential in spatial intelligence tasks due to their rich latent world priors. However, this potential is hindered by their limited controllability and geometric inconsistency, creating a gap between their strong priors and their practical use in 3D/4D tasks. As a result, current approaches often rely on retraining or fine-tuning, which risks degrading pretrained knowledge and incurs high computational costs. To address this, we propose WorldForge, a training-free, inference-time framework composed of three tightly coupled modules. Intra-Step Recursive Refinement introduces a recursive refinement mechanism during inference, which repeatedly optimizes network predictions within each denoising step to enable precise trajectory injection. Flow-Gated Latent Fusion leverages optical flow similarity to decouple motion from appearance in the latent space and selectively inject trajectory guidance into motion-related channels. Dual-Path Self-Corrective Guidance compares guided and unguided denoising paths to adaptively correct trajectory drift caused by noisy or misaligned structural signals. Together, these components inject fine-grained, trajectory-aligned guidance without training, achieving both accurate motion control and photorealistic content generation. Extensive experiments across diverse benchmarks validate our method's superiority in realism, trajectory consistency, and visual fidelity. This work introduces a novel plug-and-play paradigm for controllable video synthesis, offering a new perspective on leveraging generative priors for spatial intelligence.

  • 5 authors
·
Sep 18, 2025 3

4D-Bench: Benchmarking Multi-modal Large Language Models for 4D Object Understanding

Multimodal Large Language Models (MLLMs) have demonstrated impressive 2D image/video understanding capabilities. However, there are no publicly standardized benchmarks to assess the abilities of MLLMs in understanding the 4D objects (3D objects with temporal evolution over time). In this paper, we introduce 4D-Bench, the first benchmark to evaluate the capabilities of MLLMs in 4D object understanding, featuring tasks in 4D object Question Answering (4D object QA) and 4D object captioning. 4D-Bench provides 4D objects with diverse categories, high-quality annotations, and tasks necessitating multi-view spatial-temporal understanding, different from existing 2D image/video-based benchmarks. With 4D-Bench, we evaluate a wide range of open-source and closed-source MLLMs. The results from the 4D object captioning experiment indicate that MLLMs generally exhibit weaker temporal understanding compared to their appearance understanding, notably, while open-source models approach closed-source performance in appearance understanding, they show larger performance gaps in temporal understanding. 4D object QA yields surprising findings: even with simple single-object videos, MLLMs perform poorly, with state-of-the-art GPT-4o achieving only 63\% accuracy compared to the human baseline of 91\%. These findings highlight a substantial gap in 4D object understanding and the need for further advancements in MLLMs.

  • 11 authors
·
Mar 22, 2025 3

WideRange4D: Enabling High-Quality 4D Reconstruction with Wide-Range Movements and Scenes

With the rapid development of 3D reconstruction technology, research in 4D reconstruction is also advancing, existing 4D reconstruction methods can generate high-quality 4D scenes. However, due to the challenges in acquiring multi-view video data, the current 4D reconstruction benchmarks mainly display actions performed in place, such as dancing, within limited scenarios. In practical scenarios, many scenes involve wide-range spatial movements, highlighting the limitations of existing 4D reconstruction datasets. Additionally, existing 4D reconstruction methods rely on deformation fields to estimate the dynamics of 3D objects, but deformation fields struggle with wide-range spatial movements, which limits the ability to achieve high-quality 4D scene reconstruction with wide-range spatial movements. In this paper, we focus on 4D scene reconstruction with significant object spatial movements and propose a novel 4D reconstruction benchmark, WideRange4D. This benchmark includes rich 4D scene data with large spatial variations, allowing for a more comprehensive evaluation of the generation capabilities of 4D generation methods. Furthermore, we introduce a new 4D reconstruction method, Progress4D, which generates stable and high-quality 4D results across various complex 4D scene reconstruction tasks. We conduct both quantitative and qualitative comparison experiments on WideRange4D, showing that our Progress4D outperforms existing state-of-the-art 4D reconstruction methods. Project: https://github.com/Gen-Verse/WideRange4D

  • 8 authors
·
Mar 17, 2025 2

HoloTime: Taming Video Diffusion Models for Panoramic 4D Scene Generation

The rapid advancement of diffusion models holds the promise of revolutionizing the application of VR and AR technologies, which typically require scene-level 4D assets for user experience. Nonetheless, existing diffusion models predominantly concentrate on modeling static 3D scenes or object-level dynamics, constraining their capacity to provide truly immersive experiences. To address this issue, we propose HoloTime, a framework that integrates video diffusion models to generate panoramic videos from a single prompt or reference image, along with a 360-degree 4D scene reconstruction method that seamlessly transforms the generated panoramic video into 4D assets, enabling a fully immersive 4D experience for users. Specifically, to tame video diffusion models for generating high-fidelity panoramic videos, we introduce the 360World dataset, the first comprehensive collection of panoramic videos suitable for downstream 4D scene reconstruction tasks. With this curated dataset, we propose Panoramic Animator, a two-stage image-to-video diffusion model that can convert panoramic images into high-quality panoramic videos. Following this, we present Panoramic Space-Time Reconstruction, which leverages a space-time depth estimation method to transform the generated panoramic videos into 4D point clouds, enabling the optimization of a holistic 4D Gaussian Splatting representation to reconstruct spatially and temporally consistent 4D scenes. To validate the efficacy of our method, we conducted a comparative analysis with existing approaches, revealing its superiority in both panoramic video generation and 4D scene reconstruction. This demonstrates our method's capability to create more engaging and realistic immersive environments, thereby enhancing user experiences in VR and AR applications.

  • 6 authors
·
Apr 30, 2025 1

DynamicVerse: A Physically-Aware Multimodal Framework for 4D World Modeling

Understanding the dynamic physical world, characterized by its evolving 3D structure, real-world motion, and semantic content with textual descriptions, is crucial for human-agent interaction and enables embodied agents to perceive and act within real environments with human-like capabilities. However, existing datasets are often derived from limited simulators or utilize traditional Structurefrom-Motion for up-to-scale annotation and offer limited descriptive captioning, which restricts the capacity of foundation models to accurately interpret real-world dynamics from monocular videos, commonly sourced from the internet. To bridge these gaps, we introduce DynamicVerse, a physical-scale, multimodal 4D world modeling framework for dynamic real-world video. We employ large vision, geometric, and multimodal models to interpret metric-scale static geometry, real-world dynamic motion, instance-level masks, and holistic descriptive captions. By integrating window-based Bundle Adjustment with global optimization, our method converts long real-world video sequences into a comprehensive 4D multimodal format. DynamicVerse delivers a large-scale dataset consisting of 100K+ videos with 800K+ annotated masks and 10M+ frames from internet videos. Experimental evaluations on three benchmark tasks, namely video depth estimation, camera pose estimation, and camera intrinsics estimation, demonstrate that our 4D modeling achieves superior performance in capturing physical-scale measurements with greater global accuracy than existing methods.

Dynamics-X Dynamics-X
·
Dec 2, 2025 3

STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence

Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.

internlm Intern Large Models
·
Oct 28, 2025 1

VLA-4D: Embedding 4D Awareness into Vision-Language-Action Models for SpatioTemporally Coherent Robotic Manipulation

Vision-language-action (VLA) models show potential for general robotic tasks, but remain challenging in spatiotemporally coherent manipulation, which requires fine-grained representations. Typically, existing methods embed 3D positions into visual representations to enhance the spatial precision of actions. However, these methods struggle to achieve temporally coherent control over action execution. In this work, we propose VLA-4D, a general VLA model with 4D awareness for spatiotemporally coherent robotic manipulation. Our model is guided by two key designs: 1) 4D-aware visual representation. We extract visual features, embed 1D time into 3D positions for 4D embeddings, and fuse them into a unified visual representation via a cross-attention mechanism. 2) Spatiotemporal action representation. We extend conventional spatial action representations with temporal information to enable the spatiotemporal planning, and align the multimodal representations into the LLM for spatiotemporal action prediction. Within this unified framework, the designed visual and action representations jointly make robotic manipulation spatially-smooth and temporally-coherent. In addition, we extend the VLA dataset with temporal action annotations for fine-tuning our model. Extensive experiments have been conducted to verify the superiority of our method across different tasks of robotic manipulation.

  • 3 authors
·
Nov 21, 2025 2

SegNet4D: Efficient Instance-Aware 4D Semantic Segmentation for LiDAR Point Cloud

4D LiDAR semantic segmentation, also referred to as multi-scan semantic segmentation, plays a crucial role in enhancing the environmental understanding capabilities of autonomous vehicles or robots. It classifies the semantic category of each LiDAR measurement point and detects whether it is dynamic, a critical ability for tasks like obstacle avoidance and autonomous navigation. Existing approaches often rely on computationally heavy 4D convolutions or recursive networks, which result in poor real-time performance, making them unsuitable for online robotics and autonomous driving applications. In this paper, we introduce SegNet4D, a novel real-time 4D semantic segmentation network offering both efficiency and strong semantic understanding. SegNet4D addresses 4D segmentation as two tasks: single-scan semantic segmentation and moving object segmentation, each tackled by a separate network head. Both results are combined in a motion-semantic fusion module to achieve comprehensive 4D segmentation. Additionally, instance information is extracted from the current scan and exploited for instance-wise segmentation consistency. Our approach surpasses state-of-the-art in both multi-scan semantic segmentation and moving object segmentation while offering greater efficiency, enabling real-time operation. Besides, its effectiveness and efficiency have also been validated on a real-world unmanned ground platform. Our code will be released at https://github.com/nubot-nudt/SegNet4D.

  • 8 authors
·
Jun 23, 2024

L2RDaS: Synthesizing 4D Radar Tensors for Model Generalization via Dataset Expansion

4-dimensional (4D) radar is increasingly adopted in autonomous driving for perception tasks, owing to its robustness under adverse weather conditions. To better utilize the spatial information inherent in 4D radar data, recent deep learning methods have transitioned from using sparse point cloud to 4D radar tensors. However, the scarcity of publicly available 4D radar tensor datasets limits model generalization across diverse driving scenarios. Previous methods addressed this by synthesizing radar data, but the outputs did not fully exploit the spatial information characteristic of 4D radar. To overcome these limitations, we propose LiDAR-to-4D radar data synthesis (L2RDaS), a framework that synthesizes spatially informative 4D radar tensors from LiDAR data available in existing autonomous driving datasets. L2RDaS integrates a modified U-Net architecture to effectively capture spatial information and an object information supplement (OBIS) module to enhance reflection fidelity. This framework enables the synthesis of radar tensors across diverse driving scenarios without additional sensor deployment or data collection. L2RDaS improves model generalization by expanding real datasets with synthetic radar tensors, achieving an average increase of 4.25\% in {{AP}_{BEV}} and 2.87\% in {{AP}_{3D}} across three detection models. Additionally, L2RDaS supports ground-truth augmentation (GT-Aug) by embedding annotated objects into LiDAR data and synthesizing them into radar tensors, resulting in further average increases of 3.75\% in {{AP}_{BEV}} and 4.03\% in {{AP}_{3D}}. The implementation will be available at https://github.com/kaist-avelab/K-Radar.

  • 3 authors
·
Mar 5, 2025

4D LangSplat: 4D Language Gaussian Splatting via Multimodal Large Language Models

Learning 4D language fields to enable time-sensitive, open-ended language queries in dynamic scenes is essential for many real-world applications. While LangSplat successfully grounds CLIP features into 3D Gaussian representations, achieving precision and efficiency in 3D static scenes, it lacks the ability to handle dynamic 4D fields as CLIP, designed for static image-text tasks, cannot capture temporal dynamics in videos. Real-world environments are inherently dynamic, with object semantics evolving over time. Building a precise 4D language field necessitates obtaining pixel-aligned, object-wise video features, which current vision models struggle to achieve. To address these challenges, we propose 4D LangSplat, which learns 4D language fields to handle time-agnostic or time-sensitive open-vocabulary queries in dynamic scenes efficiently. 4D LangSplat bypasses learning the language field from vision features and instead learns directly from text generated from object-wise video captions via Multimodal Large Language Models (MLLMs). Specifically, we propose a multimodal object-wise video prompting method, consisting of visual and text prompts that guide MLLMs to generate detailed, temporally consistent, high-quality captions for objects throughout a video. These captions are encoded using a Large Language Model into high-quality sentence embeddings, which then serve as pixel-aligned, object-specific feature supervision, facilitating open-vocabulary text queries through shared embedding spaces. Recognizing that objects in 4D scenes exhibit smooth transitions across states, we further propose a status deformable network to model these continuous changes over time effectively. Our results across multiple benchmarks demonstrate that 4D LangSplat attains precise and efficient results for both time-sensitive and time-agnostic open-vocabulary queries.

  • 8 authors
·
Mar 13, 2025 2

C4D: 4D Made from 3D through Dual Correspondences

Recovering 4D from monocular video, which jointly estimates dynamic geometry and camera poses, is an inevitably challenging problem. While recent pointmap-based 3D reconstruction methods (e.g., DUSt3R) have made great progress in reconstructing static scenes, directly applying them to dynamic scenes leads to inaccurate results. This discrepancy arises because moving objects violate multi-view geometric constraints, disrupting the reconstruction. To address this, we introduce C4D, a framework that leverages temporal Correspondences to extend existing 3D reconstruction formulation to 4D. Specifically, apart from predicting pointmaps, C4D captures two types of correspondences: short-term optical flow and long-term point tracking. We train a dynamic-aware point tracker that provides additional mobility information, facilitating the estimation of motion masks to separate moving elements from the static background, thus offering more reliable guidance for dynamic scenes. Furthermore, we introduce a set of dynamic scene optimization objectives to recover per-frame 3D geometry and camera parameters. Simultaneously, the correspondences lift 2D trajectories into smooth 3D trajectories, enabling fully integrated 4D reconstruction. Experiments show that our framework achieves complete 4D recovery and demonstrates strong performance across multiple downstream tasks, including depth estimation, camera pose estimation, and point tracking. Project Page: https://littlepure2333.github.io/C4D

  • 4 authors
·
Oct 16, 2025

Doracamom: Joint 3D Detection and Occupancy Prediction with Multi-view 4D Radars and Cameras for Omnidirectional Perception

3D object detection and occupancy prediction are critical tasks in autonomous driving, attracting significant attention. Despite the potential of recent vision-based methods, they encounter challenges under adverse conditions. Thus, integrating cameras with next-generation 4D imaging radar to achieve unified multi-task perception is highly significant, though research in this domain remains limited. In this paper, we propose Doracamom, the first framework that fuses multi-view cameras and 4D radar for joint 3D object detection and semantic occupancy prediction, enabling comprehensive environmental perception. Specifically, we introduce a novel Coarse Voxel Queries Generator that integrates geometric priors from 4D radar with semantic features from images to initialize voxel queries, establishing a robust foundation for subsequent Transformer-based refinement. To leverage temporal information, we design a Dual-Branch Temporal Encoder that processes multi-modal temporal features in parallel across BEV and voxel spaces, enabling comprehensive spatio-temporal representation learning. Furthermore, we propose a Cross-Modal BEV-Voxel Fusion module that adaptively fuses complementary features through attention mechanisms while employing auxiliary tasks to enhance feature quality. Extensive experiments on the OmniHD-Scenes, View-of-Delft (VoD), and TJ4DRadSet datasets demonstrate that Doracamom achieves state-of-the-art performance in both tasks, establishing new benchmarks for multi-modal 3D perception. Code and models will be publicly available.

  • 11 authors
·
Jan 25, 2025

Cam4DOcc: Benchmark for Camera-Only 4D Occupancy Forecasting in Autonomous Driving Applications

Understanding how the surrounding environment changes is crucial for performing downstream tasks safely and reliably in autonomous driving applications. Recent occupancy estimation techniques using only camera images as input can provide dense occupancy representations of large-scale scenes based on the current observation. However, they are mostly limited to representing the current 3D space and do not consider the future state of surrounding objects along the time axis. To extend camera-only occupancy estimation into spatiotemporal prediction, we propose Cam4DOcc, a new benchmark for camera-only 4D occupancy forecasting, evaluating the surrounding scene changes in a near future. We build our benchmark based on multiple publicly available datasets, including nuScenes, nuScenes-Occupancy, and Lyft-Level5, which provides sequential occupancy states of general movable and static objects, as well as their 3D backward centripetal flow. To establish this benchmark for future research with comprehensive comparisons, we introduce four baseline types from diverse camera-based perception and prediction implementations, including a static-world occupancy model, voxelization of point cloud prediction, 2D-3D instance-based prediction, and our proposed novel end-to-end 4D occupancy forecasting network. Furthermore, the standardized evaluation protocol for preset multiple tasks is also provided to compare the performance of all the proposed baselines on present and future occupancy estimation with respect to objects of interest in autonomous driving scenarios. The dataset and our implementation of all four baselines in the proposed Cam4DOcc benchmark will be released here: https://github.com/haomo-ai/Cam4DOcc.

  • 9 authors
·
Nov 29, 2023

Uni4D-LLM: A Unified SpatioTemporal-Aware VLM for 4D Understanding and Generation

Vision-language models (VLMs) have demonstrated strong performance in 2D scene understanding and generation, but extending this unification to the physical world remains an open challenge. Existing 3D and 4D approaches typically embed scene geometry into autoregressive model for semantic understanding and diffusion model for content generation. This paradigm gap prevents a single model from jointly handling both tasks, especially in dynamic 4D settings where spatiotemporal modeling is critical. We propose Uni4D-LLM, the first unified VLM framework with spatiotemporal awareness for 4D scene understanding and generation. Our design is guided by two key insights: 1) Unification requires a shared representation. We extract semantic features for understanding and noisy-injected appearance features for generation, incorporate 4D geometric cues, and fuse them into a spatiotemporal-aware visual representation through adaptive cross-attention. 2) Unification requires a shared architecture. Both autoregression and diffusion are built on Transformer backbones, and this enables integration into a single LLM with task-specific heads. By aligning visual and linguistic representations, our Uni4D-LLM produces predictions for both understanding and generation within one Transformer-based framework. We further apply instruction fine-tuning on diverse 4D vision-language datasets to improve generalization across tasks. Extensive experiments on multiple benchmarks demonstrate that Uni4D-LLM achieves competitive or superior results compared to state-of-the-art models and offers the first true unification of 4D scene understanding and generation.

  • 2 authors
·
Sep 28, 2025

Feature4X: Bridging Any Monocular Video to 4D Agentic AI with Versatile Gaussian Feature Fields

Recent advancements in 2D and multimodal models have achieved remarkable success by leveraging large-scale training on extensive datasets. However, extending these achievements to enable free-form interactions and high-level semantic operations with complex 3D/4D scenes remains challenging. This difficulty stems from the limited availability of large-scale, annotated 3D/4D or multi-view datasets, which are crucial for generalizable vision and language tasks such as open-vocabulary and prompt-based segmentation, language-guided editing, and visual question answering (VQA). In this paper, we introduce Feature4X, a universal framework designed to extend any functionality from 2D vision foundation model into the 4D realm, using only monocular video input, which is widely available from user-generated content. The "X" in Feature4X represents its versatility, enabling any task through adaptable, model-conditioned 4D feature field distillation. At the core of our framework is a dynamic optimization strategy that unifies multiple model capabilities into a single representation. Additionally, to the best of our knowledge, Feature4X is the first method to distill and lift the features of video foundation models (e.g. SAM2, InternVideo2) into an explicit 4D feature field using Gaussian Splatting. Our experiments showcase novel view segment anything, geometric and appearance scene editing, and free-form VQA across all time steps, empowered by LLMs in feedback loops. These advancements broaden the scope of agentic AI applications by providing a foundation for scalable, contextually and spatiotemporally aware systems capable of immersive dynamic 4D scene interaction.

  • 11 authors
·
Mar 26, 2025 2

One4D: Unified 4D Generation and Reconstruction via Decoupled LoRA Control

We present One4D, a unified framework for 4D generation and reconstruction that produces dynamic 4D content as synchronized RGB frames and pointmaps. By consistently handling varying sparsities of conditioning frames through a Unified Masked Conditioning (UMC) mechanism, One4D can seamlessly transition between 4D generation from a single image, 4D reconstruction from a full video, and mixed generation and reconstruction from sparse frames. Our framework adapts a powerful video generation model for joint RGB and pointmap generation, with carefully designed network architectures. The commonly used diffusion finetuning strategies for depthmap or pointmap reconstruction often fail on joint RGB and pointmap generation, quickly degrading the base video model. To address this challenge, we introduce Decoupled LoRA Control (DLC), which employs two modality-specific LoRA adapters to form decoupled computation branches for RGB frames and pointmaps, connected by lightweight, zero-initialized control links that gradually learn mutual pixel-level consistency. Trained on a mixture of synthetic and real 4D datasets under modest computational budgets, One4D produces high-quality RGB frames and accurate pointmaps across both generation and reconstruction tasks. This work represents a step toward general, high-quality geometry-based 4D world modeling using video diffusion models. Project page: https://mizhenxing.github.io/One4D

  • 3 authors
·
Nov 24, 2025 2

Stable Part Diffusion 4D: Multi-View RGB and Kinematic Parts Video Generation

We present Stable Part Diffusion 4D (SP4D), a framework for generating paired RGB and kinematic part videos from monocular inputs. Unlike conventional part segmentation methods that rely on appearance-based semantic cues, SP4D learns to produce kinematic parts - structural components aligned with object articulation and consistent across views and time. SP4D adopts a dual-branch diffusion model that jointly synthesizes RGB frames and corresponding part segmentation maps. To simplify the architecture and flexibly enable different part counts, we introduce a spatial color encoding scheme that maps part masks to continuous RGB-like images. This encoding allows the segmentation branch to share the latent VAE from the RGB branch, while enabling part segmentation to be recovered via straightforward post-processing. A Bidirectional Diffusion Fusion (BiDiFuse) module enhances cross-branch consistency, supported by a contrastive part consistency loss to promote spatial and temporal alignment of part predictions. We demonstrate that the generated 2D part maps can be lifted to 3D to derive skeletal structures and harmonic skinning weights with few manual adjustments. To train and evaluate SP4D, we construct KinematicParts20K, a curated dataset of over 20K rigged objects selected and processed from Objaverse XL (Deitke et al., 2023), each paired with multi-view RGB and part video sequences. Experiments show that SP4D generalizes strongly to diverse scenarios, including real-world videos, novel generated objects, and rare articulated poses, producing kinematic-aware outputs suitable for downstream animation and motion-related tasks.

  • 5 authors
·
Sep 12, 2025 2

OmniScene: Attention-Augmented Multimodal 4D Scene Understanding for Autonomous Driving

Human vision is capable of transforming two-dimensional observations into an egocentric three-dimensional scene understanding, which underpins the ability to translate complex scenes and exhibit adaptive behaviors. This capability, however, remains lacking in current autonomous driving systems, where mainstream approaches primarily rely on depth-based 3D reconstruction rather than true scene understanding. To address this limitation, we propose a novel human-like framework called OmniScene. First, we introduce the OmniScene Vision-Language Model (OmniVLM), a vision-language framework that integrates multi-view and temporal perception for holistic 4D scene understanding. Then, harnessing a teacher-student OmniVLM architecture and knowledge distillation, we embed textual representations into 3D instance features for semantic supervision, enriching feature learning, and explicitly capturing human-like attentional semantics. These feature representations are further aligned with human driving behaviors, forming a more human-like perception-understanding-action architecture. In addition, we propose a Hierarchical Fusion Strategy (HFS) to address imbalances in modality contributions during multimodal integration. Our approach adaptively calibrates the relative significance of geometric and semantic features at multiple abstraction levels, enabling the synergistic use of complementary cues from visual and textual modalities. This learnable dynamic fusion enables a more nuanced and effective exploitation of heterogeneous information. We evaluate OmniScene comprehensively on the nuScenes dataset, benchmarking it against over ten state-of-the-art models across various tasks. Our approach consistently achieves superior results, establishing new benchmarks in perception, prediction, planning, and visual question answering.

  • 8 authors
·
Sep 24, 2025

OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling

The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.

  • 19 authors
·
Sep 15, 2025 4

InsMOS: Instance-Aware Moving Object Segmentation in LiDAR Data

Identifying moving objects is a crucial capability for autonomous navigation, consistent map generation, and future trajectory prediction of objects. In this paper, we propose a novel network that addresses the challenge of segmenting moving objects in 3D LiDAR scans. Our approach not only predicts point-wise moving labels but also detects instance information of main traffic participants. Such a design helps determine which instances are actually moving and which ones are temporarily static in the current scene. Our method exploits a sequence of point clouds as input and quantifies them into 4D voxels. We use 4D sparse convolutions to extract motion features from the 4D voxels and inject them into the current scan. Then, we extract spatio-temporal features from the current scan for instance detection and feature fusion. Finally, we design an upsample fusion module to output point-wise labels by fusing the spatio-temporal features and predicted instance information. We evaluated our approach on the LiDAR-MOS benchmark based on SemanticKITTI and achieved better moving object segmentation performance compared to state-of-the-art methods, demonstrating the effectiveness of our approach in integrating instance information for moving object segmentation. Furthermore, our method shows superior performance on the Apollo dataset with a pre-trained model on SemanticKITTI, indicating that our method generalizes well in different scenes.The code and pre-trained models of our method will be released at https://github.com/nubot-nudt/InsMOS.

  • 6 authors
·
Mar 7, 2023

REVE: A Foundation Model for EEG -- Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects

Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has lagged due to the heterogeneity of public datasets, which are collected under varying protocols, devices, and electrode configurations. Existing EEG foundation models struggle to generalize across these variations, often restricting pretraining to a single setup, resulting in suboptimal performance, in particular under linear probing. We present REVE (Representation for EEG with Versatile Embeddings), a pretrained model explicitly designed to generalize across diverse EEG signals. REVE introduces a novel 4D positional encoding scheme that enables it to process signals of arbitrary length and electrode arrangement. Using a masked autoencoding objective, we pretrain REVE on over 60,000 hours of EEG data from 92 datasets spanning 25,000 subjects, representing the largest EEG pretraining effort to date. REVE achieves state-of-the-art results on 10 downstream EEG tasks, including motor imagery classification, seizure detection, sleep staging, cognitive load estimation, and emotion recognition. With little to no fine-tuning, it demonstrates strong generalization, and nuanced spatio-temporal modeling. We release code, pretrained weights, and tutorials to support standardized EEG research and accelerate progress in clinical neuroscience.

  • 8 authors
·
Oct 24, 2025

ORacle: Large Vision-Language Models for Knowledge-Guided Holistic OR Domain Modeling

Every day, countless surgeries are performed worldwide, each within the distinct settings of operating rooms (ORs) that vary not only in their setups but also in the personnel, tools, and equipment used. This inherent diversity poses a substantial challenge for achieving a holistic understanding of the OR, as it requires models to generalize beyond their initial training datasets. To reduce this gap, we introduce ORacle, an advanced vision-language model designed for holistic OR domain modeling, which incorporates multi-view and temporal capabilities and can leverage external knowledge during inference, enabling it to adapt to previously unseen surgical scenarios. This capability is further enhanced by our novel data augmentation framework, which significantly diversifies the training dataset, ensuring ORacle's proficiency in applying the provided knowledge effectively. In rigorous testing, in scene graph generation, and downstream tasks on the 4D-OR dataset, ORacle not only demonstrates state-of-the-art performance but does so requiring less data than existing models. Furthermore, its adaptability is displayed through its ability to interpret unseen views, actions, and appearances of tools and equipment. This demonstrates ORacle's potential to significantly enhance the scalability and affordability of OR domain modeling and opens a pathway for future advancements in surgical data science. We will release our code and data upon acceptance.

  • 4 authors
·
Apr 10, 2024

AToken: A Unified Tokenizer for Vision

We present AToken, the first unified visual tokenizer that achieves both high-fidelity reconstruction and semantic understanding across images, videos, and 3D assets. Unlike existing tokenizers that specialize in either reconstruction or understanding for single modalities, AToken encodes these diverse visual inputs into a shared 4D latent space, unifying both tasks and modalities in a single framework. Specifically, we introduce a pure transformer architecture with 4D rotary position embeddings to process visual inputs of arbitrary resolutions and temporal durations. To ensure stable training, we introduce an adversarial-free training objective that combines perceptual and Gram matrix losses, achieving state-of-the-art reconstruction quality. By employing a progressive training curriculum, AToken gradually expands from single images, videos, and 3D, and supports both continuous and discrete latent tokens. AToken achieves 0.21 rFID with 82.2% ImageNet accuracy for images, 3.01 rFVD with 32.6% MSRVTT retrieval for videos, and 28.19 PSNR with 90.9% classification accuracy for 3D. In downstream applications, AToken enables both visual generation tasks (e.g., image generation with continuous and discrete tokens, text-to-video generation, image-to-3D synthesis) and understanding tasks (e.g., multimodal LLMs), achieving competitive performance across all benchmarks. These results shed light on the next-generation multimodal AI systems built upon unified visual tokenization.

  • 8 authors
·
Sep 17, 2025 10

OmniFD: A Unified Model for Versatile Face Forgery Detection

Face forgery detection encompasses multiple critical tasks, including identifying forged images and videos and localizing manipulated regions and temporal segments. Current approaches typically employ task-specific models with independent architectures, leading to computational redundancy and ignoring potential correlations across related tasks. We introduce OmniFD, a unified framework that jointly addresses four core face forgery detection tasks within a single model, i.e., image and video classification, spatial localization, and temporal localization. Our architecture consists of three principal components: (1) a shared Swin Transformer encoder that extracts unified 4D spatiotemporal representations from both images and video inputs, (2) a cross-task interaction module with learnable queries that dynamically captures inter-task dependencies through attention-based reasoning, and (3) lightweight decoding heads that transform refined representations into corresponding predictions for all FFD tasks. Extensive experiments demonstrate OmniFD's advantage over task-specific models. Its unified design leverages multi-task learning to capture generalized representations across tasks, especially enabling fine-grained knowledge transfer that facilitates other tasks. For example, video classification accuracy improves by 4.63% when image data are incorporated. Furthermore, by unifying images, videos and the four tasks within one framework, OmniFD achieves superior performance across diverse benchmarks with high efficiency and scalability, e.g., reducing 63% model parameters and 50% training time. It establishes a practical and generalizable solution for comprehensive face forgery detection in real-world applications. The source code is made available at https://github.com/haotianll/OmniFD.

  • 6 authors
·
Nov 30, 2025