Masked Autoencoders that Listen
Paper
•
2207.06405
•
Published
A Vision Transformer (ViT) for audio. Pretrained on AudioSet-2M with Self-Supervised Masked Autoencoder (MAE) method.
timm. The naming convention is adopted from other timm's ViT models.NOTE: this model does not have a classification head.
import timm
import torch
import torch.nn.functional as F
from torchaudio.compliance import kaldi
# for fine-tuning, you can pass `num_classes={your number of classes}`
model = timm.create_model("hf_hub:gaunernst/vit_base_patch16_1024_128.audiomae_as2m", pretrained=True)
model = model.eval()
MEAN = -4.2677393
STD = 4.5689974
audio = torch.randn(1, 10 * 16_000) # make sure input is 16kHz
melspec = kaldi.fbank(audio, htk_compat=True, window_type="hanning", num_mel_bins=128) # shape (n_frames, 128)
# AudioMAE only accepts 1024-frame input
if melspec.shape[0] < 1024:
melspec = F.pad(melspec, (0, 0, 0, 1024 - melspec.shape[0]))
else:
melspec = melspec[:1024]
melspec = (melspec - MEAN) / (STD * 2)
melspec = melspec.view(1, 1, 1024, 128) # add batch dim and channel dim
output = model(melspec) # embeddings with shape (1, 768)
# to get frame level embeddings
output = model.forward_features(melspec) # shape (1, 513, 768)
output = output[:, 1:] # remove [CLS] token
output = output.unflatten(1, (1024 // 16, 128 // 16)) # (1, 64, 8, 768) -> 2D patches
output = output.mean(2) # (1, 64, 768) -> mean pooling across mel dimension
@inproceedings{huang2022amae,
title = {Masked Autoencoders that Listen},
author = {Huang, Po-Yao and Xu, Hu and Li, Juncheng and Baevski, Alexei and Auli, Michael and Galuba, Wojciech and Metze, Florian and Feichtenhofer, Christoph}
booktitle = {NeurIPS},
year = {2022}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}