UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation
Paper
•
2110.15114
•
Published
Error code: FeaturesError
Exception: ValueError
Message: Not able to read records in the JSON file at hf://datasets/reczoo/AmazonElectronics_m1@d6951f1a171149ebb7729505984bbed2d4ab653a/train_data.json.
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 240, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2216, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1239, in _head
return _examples_to_batch(list(self.take(n)))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1389, in __iter__
for key, example in ex_iterable:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1044, in __iter__
yield from islice(self.ex_iterable, self.n)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 282, in __iter__
for key, pa_table in self.generate_tables_fn(**self.kwargs):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 165, in _generate_tables
raise ValueError(f"Not able to read records in the JSON file at {file}.") from None
ValueError: Not able to read records in the JSON file at hf://datasets/reczoo/AmazonElectronics_m1@d6951f1a171149ebb7729505984bbed2d4ab653a/train_data.json.Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Data format: Each user corresponds to a list of interacted items: [[item1, item2], [item3, item4, item5], ...]
Download: https://huggingface.co/datasets/reczoo/AmazonElectronics_m1/tree/main
RecZoo Datasets: https://github.com/reczoo/Datasets
Used by papers:
Check the md5sum for data integrity:
$ md5sum *.json
7a0fa5d0da5dc5d5008da02b554ef688 test_data.json
ca71f3f5b9ada393ffd5490eba84c7db train_data.json
7f2db9b5b0de91c7d757ed6ed6095a5a validation_data.json