Dataset Viewer
Auto-converted to Parquet Duplicate
text
stringlengths
47
49
7c9437f98f794d91beb3bc85f23c3e73 PTCGA200.tar.gz
7f4bb0e8e49eaa3845eb2cf35ad88df8 PTCGA200_p_aa
5a8985c00684fcc29d0fc7ee5b23f346 PTCGA200_p_ab
3d18087376a30c36caf7a7797289d081 PTCGA200_p_ac
bd44cac039ecd96507fa67c16082b8eb PTCGA200_p_ad
6a7f545ae1363d121fb155687deea5c0 PTCGA200_p_ae
83f8050b8f6ebddff145a7c4b2ce5b18 PTCGA200_p_af
542a22f37315f809f88a9842ede891d5 PTCGA200_p_ag
3dffa907e38f506e0587c504d10bde2b PTCGA200_p_ah
4aff36c6d69505f9dc48de08e1286efd PTCGA200_p_ai
dbcf3f6d63db2d44e22730fccd23641e PTCGA200_p_aj
8534ce7435b4e3a6984fdaf3ac3f7029 PTCGA200_p_ak
58708f91a6caf3c2f5764f3615785fb3 PTCGA200_p_al
1fdb816ceb29cd3ca4f38da7cbb1a43b PTCGA200_p_am
b98fddbb9d7d3c72723c0b91724b57ea PTCGA200_p_an
02386a2741f8b15785150b30e314cb1c PTCGA200_p_ao
db6eee2b78cef124060c9ac8f1a8155a PTCGA200_p_ap
ddc0cde5df4536de24caace1238fc8eb PTCGA200_p_aq
fc59cbd219121af1df3334976d080cd7 PTCGA200_p_ar
11e1e79a8bd52c169b5fca3a82967489 PTCGA200_p_as
9c53b2f002476a8f315cf83265cb3b34 PTCGA200_p_at
e9ffb89bc35a9a585a6451b11629062e PTCGA200_p_au
9719c4eea2ed9c1a3285a07fec52527d PTCGA200_p_av
617402a426372ecf0719a99f5cde358a PTCGA200_p_aw
f9a2320bd7b09fa2803bd81cc361733f PTCGA200_p_ax
e530b5e0a2a45a39c2a2a912c81fc549 PTCGA200_p_ay
29e9366f8deb84c649f3fa6021301781 PTCGA200_p_az
2cb8895704edd9d841baee947eb82f06 PTCGA200_p_ba
b89c85a596675f0c7135fa02b8ef2ab4 PTCGA200_p_bb
7d9e57ca508506a1be677f5952f2e242 PTCGA200_p_bc
a44500c043fa296ebbed48c8b4832272 PTCGA200_p_bd

Paper: Large-scale pretraining on pathological images for fine-tuning of small pathological benchmarks

Patch TCGA in 200μm (PTCGA200)

A imagenet-1k equivalent (~5M) dataset of pathological hematoxylin and eosin (H&E) images. Patches are cropped in 512x512px (200x200μm), or in 0.39 microns per pixel from the tissue region. Refer the original paper for the details. Use the snippet below to make the original archive file from divided files.Make sure the md5sum is concordant with PTCGA200_md5.txt.

$ cat PTCGA200_p_* > PTCGA200.tar.gz

Please cite below for this dataset. ## Citation If you use this work, datasets, and models, please cite the following paper: bibtex @InProceedings{10.1007/978-3-031-44917-8_25, author = {Kawai, Masakata and Ota, Noriaki and Yamaoka, Shinsuke}, editor = {Xue, Zhiyun and Antani, Sameer and Zamzmi, Ghada and Yang, Feng and Rajaraman, Sivaramakrishnan and Huang, Sharon Xiaolei and Linguraru, Marius George and Liang, Zhaohui}, title = {Large-Scale Pretraining on Pathological Images for Fine-Tuning of Small Pathological Benchmarks}, booktitle = {Medical Image Learning with Limited and Noisy Data}, year = {2023}, publisher = {Springer Nature Switzerland}, address = {Cham}, pages = {257--267}, isbn = {978-3-031-44917-8} }

license: other license_name: nih-gds-policy license_link: https://datasharing.cancer.gov/post/Guidance/genomic-data-sharing/

Downloads last month
21