repo
stringclasses 10
values | instance_id
stringlengths 18
32
| html_url
stringlengths 41
55
| feature_patch
stringlengths 805
8.42M
| test_patch
stringlengths 548
207k
| doc_changes
listlengths 0
92
| version
stringclasses 57
values | base_commit
stringlengths 40
40
| PASS2PASS
listlengths 0
3.51k
| FAIL2PASS
listlengths 0
5.17k
| augmentations
dict | mask_doc_diff
listlengths 0
92
| problem_statement
stringlengths 0
54.8k
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22255
|
https://github.com/scikit-learn/scikit-learn/pull/22255
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 61e074e56a657..ef2308997f898 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -95,6 +95,10 @@ Changelog
See :func:`cluster.spectral_clustering` for more details.
:pr:`21148` by :user:`Andrew Knyazev <lobpcg>`
+- |Enhancement| Adds :term:`get_feature_names_out` to :class:`cluster.Birch`,
+ :class:`cluster.FeatureAgglomeration`, :class:`cluster.KMeans`,
+ :class:`cluster.MiniBatchKMeans`. :pr:`22255` by `Thomas Fan`_.
+
- |Efficiency| In :class:`cluster.KMeans`, the default ``algorithm`` is now
``"lloyd"`` which is the full classical EM-style algorithm. Both ``"auto"``
and ``"full"`` are deprecated and will be removed in version 1.3. They are
diff --git a/sklearn/cluster/_agglomerative.py b/sklearn/cluster/_agglomerative.py
index 4bc49ea2301e6..68ab834202753 100644
--- a/sklearn/cluster/_agglomerative.py
+++ b/sklearn/cluster/_agglomerative.py
@@ -14,7 +14,7 @@
from scipy import sparse
from scipy.sparse.csgraph import connected_components
-from ..base import BaseEstimator, ClusterMixin
+from ..base import BaseEstimator, ClusterMixin, _ClassNamePrefixFeaturesOutMixin
from ..metrics.pairwise import paired_distances
from ..metrics import DistanceMetric
from ..metrics._dist_metrics import METRIC_MAPPING
@@ -1054,7 +1054,9 @@ def fit_predict(self, X, y=None):
return super().fit_predict(X, y)
-class FeatureAgglomeration(AgglomerativeClustering, AgglomerationTransform):
+class FeatureAgglomeration(
+ _ClassNamePrefixFeaturesOutMixin, AgglomerativeClustering, AgglomerationTransform
+):
"""Agglomerate features.
Recursively merges pair of clusters of features.
@@ -1236,6 +1238,7 @@ def fit(self, X, y=None):
"""
X = self._validate_data(X, ensure_min_features=2)
super()._fit(X.T)
+ self._n_features_out = self.n_clusters_
return self
@property
diff --git a/sklearn/cluster/_birch.py b/sklearn/cluster/_birch.py
index 8e86d8dd6ba08..3e47cc7b74492 100644
--- a/sklearn/cluster/_birch.py
+++ b/sklearn/cluster/_birch.py
@@ -11,7 +11,12 @@
from ..metrics import pairwise_distances_argmin
from ..metrics.pairwise import euclidean_distances
-from ..base import TransformerMixin, ClusterMixin, BaseEstimator
+from ..base import (
+ TransformerMixin,
+ ClusterMixin,
+ BaseEstimator,
+ _ClassNamePrefixFeaturesOutMixin,
+)
from ..utils.extmath import row_norms
from ..utils import check_scalar, deprecated
from ..utils.validation import check_is_fitted
@@ -342,7 +347,9 @@ def radius(self):
return sqrt(max(0, sq_radius))
-class Birch(ClusterMixin, TransformerMixin, BaseEstimator):
+class Birch(
+ _ClassNamePrefixFeaturesOutMixin, ClusterMixin, TransformerMixin, BaseEstimator
+):
"""Implements the BIRCH clustering algorithm.
It is a memory-efficient, online-learning algorithm provided as an
@@ -599,6 +606,7 @@ def _fit(self, X, partial):
centroids = np.concatenate([leaf.centroids_ for leaf in self._get_leaves()])
self.subcluster_centers_ = centroids
+ self._n_features_out = self.subcluster_centers_.shape[0]
self._global_clustering(X)
return self
diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py
index b631b1f77b26a..51d87044f5496 100644
--- a/sklearn/cluster/_kmeans.py
+++ b/sklearn/cluster/_kmeans.py
@@ -16,7 +16,12 @@
import numpy as np
import scipy.sparse as sp
-from ..base import BaseEstimator, ClusterMixin, TransformerMixin
+from ..base import (
+ BaseEstimator,
+ ClusterMixin,
+ TransformerMixin,
+ _ClassNamePrefixFeaturesOutMixin,
+)
from ..metrics.pairwise import euclidean_distances
from ..metrics.pairwise import _euclidean_distances
from ..utils.extmath import row_norms, stable_cumsum
@@ -767,7 +772,9 @@ def _labels_inertia_threadpool_limit(
return labels, inertia
-class KMeans(TransformerMixin, ClusterMixin, BaseEstimator):
+class KMeans(
+ _ClassNamePrefixFeaturesOutMixin, TransformerMixin, ClusterMixin, BaseEstimator
+):
"""K-Means clustering.
Read more in the :ref:`User Guide <k_means>`.
@@ -1240,6 +1247,7 @@ def fit(self, X, y=None, sample_weight=None):
)
self.cluster_centers_ = best_centers
+ self._n_features_out = self.cluster_centers_.shape[0]
self.labels_ = best_labels
self.inertia_ = best_inertia
self.n_iter_ = best_n_iter
@@ -2020,6 +2028,7 @@ def fit(self, X, y=None, sample_weight=None):
break
self.cluster_centers_ = centers
+ self._n_features_out = self.cluster_centers_.shape[0]
self.n_steps_ = i + 1
self.n_iter_ = int(np.ceil(((i + 1) * self._batch_size) / n_samples))
@@ -2134,6 +2143,7 @@ def partial_fit(self, X, y=None, sample_weight=None):
)
self.n_steps_ += 1
+ self._n_features_out = self.cluster_centers_.shape[0]
return self
|
diff --git a/sklearn/cluster/tests/test_birch.py b/sklearn/cluster/tests/test_birch.py
index 5d8a3222ef156..4e64524e2cb11 100644
--- a/sklearn/cluster/tests/test_birch.py
+++ b/sklearn/cluster/tests/test_birch.py
@@ -219,3 +219,14 @@ def test_birch_params_validation(params, err_type, err_msg):
X, _ = make_blobs(n_samples=80, centers=4)
with pytest.raises(err_type, match=err_msg):
Birch(**params).fit(X)
+
+
+def test_feature_names_out():
+ """Check `get_feature_names_out` for `Birch`."""
+ X, _ = make_blobs(n_samples=80, n_features=4, random_state=0)
+ brc = Birch(n_clusters=4)
+ brc.fit(X)
+ n_clusters = brc.subcluster_centers_.shape[0]
+
+ names_out = brc.get_feature_names_out()
+ assert_array_equal([f"birch{i}" for i in range(n_clusters)], names_out)
diff --git a/sklearn/cluster/tests/test_feature_agglomeration.py b/sklearn/cluster/tests/test_feature_agglomeration.py
index 6d9a942e3dcfe..1f61093a9568d 100644
--- a/sklearn/cluster/tests/test_feature_agglomeration.py
+++ b/sklearn/cluster/tests/test_feature_agglomeration.py
@@ -4,8 +4,11 @@
# Authors: Sergul Aydore 2017
import numpy as np
import pytest
+
+from numpy.testing import assert_array_equal
from sklearn.cluster import FeatureAgglomeration
from sklearn.utils._testing import assert_array_almost_equal
+from sklearn.datasets import make_blobs
def test_feature_agglomeration():
@@ -41,3 +44,16 @@ def test_feature_agglomeration():
assert_array_almost_equal(agglo_mean.transform(X_full_mean), Xt_mean)
assert_array_almost_equal(agglo_median.transform(X_full_median), Xt_median)
+
+
+def test_feature_agglomeration_feature_names_out():
+ """Check `get_feature_names_out` for `FeatureAgglomeration`."""
+ X, _ = make_blobs(n_features=6, random_state=0)
+ agglo = FeatureAgglomeration(n_clusters=3)
+ agglo.fit(X)
+ n_clusters = agglo.n_clusters_
+
+ names_out = agglo.get_feature_names_out()
+ assert_array_equal(
+ [f"featureagglomeration{i}" for i in range(n_clusters)], names_out
+ )
diff --git a/sklearn/cluster/tests/test_k_means.py b/sklearn/cluster/tests/test_k_means.py
index 6e395778418c8..2d62aaaba96e9 100644
--- a/sklearn/cluster/tests/test_k_means.py
+++ b/sklearn/cluster/tests/test_k_means.py
@@ -1205,3 +1205,18 @@ def test_is_same_clustering():
# mapped to a same value
labels3 = np.array([1, 0, 0, 2, 2, 0, 2, 1], dtype=np.int32)
assert not _is_same_clustering(labels1, labels3, 3)
+
+
[email protected](
+ "Klass, method",
+ [(KMeans, "fit"), (MiniBatchKMeans, "fit"), (MiniBatchKMeans, "partial_fit")],
+)
+def test_feature_names_out(Klass, method):
+ """Check `feature_names_out` for `KMeans` and `MiniBatchKMeans`."""
+ class_name = Klass.__name__.lower()
+ kmeans = Klass()
+ getattr(kmeans, method)(X)
+ n_clusters = kmeans.cluster_centers_.shape[0]
+
+ names_out = kmeans.get_feature_names_out()
+ assert_array_equal([f"{class_name}{i}" for i in range(n_clusters)], names_out)
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index a8178a4219485..7f6f99dcc8b67 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -380,7 +380,6 @@ def test_pandas_column_name_consistency(estimator):
# TODO: As more modules support get_feature_names_out they should be removed
# from this list to be tested
GET_FEATURES_OUT_MODULES_TO_IGNORE = [
- "cluster",
"ensemble",
"isotonic",
"kernel_approximation",
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 61e074e56a657..ef2308997f898 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -95,6 +95,10 @@ Changelog\n See :func:`cluster.spectral_clustering` for more details.\n :pr:`21148` by :user:`Andrew Knyazev <lobpcg>`\n \n+- |Enhancement| Adds :term:`get_feature_names_out` to :class:`cluster.Birch`,\n+ :class:`cluster.FeatureAgglomeration`, :class:`cluster.KMeans`,\n+ :class:`cluster.MiniBatchKMeans`. :pr:`22255` by `Thomas Fan`_.\n+\n - |Efficiency| In :class:`cluster.KMeans`, the default ``algorithm`` is now\n ``\"lloyd\"`` which is the full classical EM-style algorithm. Both ``\"auto\"``\n and ``\"full\"`` are deprecated and will be removed in version 1.3. They are\n"
}
] |
1.01
|
49043fc769d0affc92e3641d2d5f8f8de2421611
|
[
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params0-ValueError-threshold == -1.0, must be > 0.0.]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params6-ValueError-n_clusters == 0, must be >= 1.]",
"sklearn/cluster/tests/test_birch.py::test_birch_fit_attributes_deprecated[fit_]",
"sklearn/cluster/tests/test_birch.py::test_birch_n_clusters_long_int",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params7-TypeError-n_clusters must be an instance of <class 'numbers.Integral'>, not <class 'float'>.]",
"sklearn/cluster/tests/test_birch.py::test_n_samples_leaves_roots",
"sklearn/cluster/tests/test_birch.py::test_sparse_X",
"sklearn/cluster/tests/test_birch.py::test_branching_factor",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params5-ValueError-branching_factor == -2, must be > 1.]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params3-ValueError-branching_factor == 1, must be > 1.]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params1-ValueError-threshold == 0.0, must be > 0.0.]",
"sklearn/cluster/tests/test_birch.py::test_partial_fit",
"sklearn/cluster/tests/test_birch.py::test_threshold",
"sklearn/cluster/tests/test_birch.py::test_partial_fit_second_call_error_checks",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params8-TypeError-n_clusters should be an instance of ClusterMixin or an int]",
"sklearn/cluster/tests/test_birch.py::test_birch_predict",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params2-ValueError-branching_factor == 0, must be > 1.]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params9-ValueError-n_clusters == -3, must be >= 1.]",
"sklearn/cluster/tests/test_birch.py::test_n_clusters",
"sklearn/cluster/tests/test_birch.py::test_birch_fit_attributes_deprecated[partial_fit_]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params4-TypeError-branching_factor must be an instance of <class 'numbers.Integral'>, not <class 'float'>.]"
] |
[
"sklearn/cluster/tests/test_feature_agglomeration.py::test_feature_agglomeration_feature_names_out",
"sklearn/cluster/tests/test_birch.py::test_feature_names_out"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 61e074e56a657..ef2308997f898 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -95,6 +95,10 @@ Changelog\n See :func:`cluster.spectral_clustering` for more details.\n :pr:`<PRID>` by :user:`<NAME>`\n \n+- |Enhancement| Adds :term:`get_feature_names_out` to :class:`cluster.Birch`,\n+ :class:`cluster.FeatureAgglomeration`, :class:`cluster.KMeans`,\n+ :class:`cluster.MiniBatchKMeans`. :pr:`<PRID>` by `<NAME>`_.\n+\n - |Efficiency| In :class:`cluster.KMeans`, the default ``algorithm`` is now\n ``\"lloyd\"`` which is the full classical EM-style algorithm. Both ``\"auto\"``\n and ``\"full\"`` are deprecated and will be removed in version 1.3. They are\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 61e074e56a657..ef2308997f898 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -95,6 +95,10 @@ Changelog
See :func:`cluster.spectral_clustering` for more details.
:pr:`<PRID>` by :user:`<NAME>`
+- |Enhancement| Adds :term:`get_feature_names_out` to :class:`cluster.Birch`,
+ :class:`cluster.FeatureAgglomeration`, :class:`cluster.KMeans`,
+ :class:`cluster.MiniBatchKMeans`. :pr:`<PRID>` by `<NAME>`_.
+
- |Efficiency| In :class:`cluster.KMeans`, the default ``algorithm`` is now
``"lloyd"`` which is the full classical EM-style algorithm. Both ``"auto"``
and ``"full"`` are deprecated and will be removed in version 1.3. They are
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20811
|
https://github.com/scikit-learn/scikit-learn/pull/20811
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 61d5c64255f71..eb7133b510c81 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -210,6 +210,12 @@ Changelog
:mod:`sklearn.ensemble`
.......................
+- |Enhancement| :class:`ensemble.HistGradientBoostingClassifier` is faster,
+ for binary and in particular for multiclass problems thanks to the new private loss
+ function module.
+ :pr:`20811`, :pr:`20567` and :pr:`21814` by
+ :user:`Christian Lorentzen <lorentzenchr>`.
+
- |API| Changed the default of :func:`max_features` to 1.0 for
:class:`ensemble.RandomForestRegressor` and to `"sqrt"` for
:class:`ensemble.RandomForestClassifier`. Note that these give the same fit
diff --git a/sklearn/_loss/loss.py b/sklearn/_loss/loss.py
index d883c0e1bd190..1a2353d18df3b 100644
--- a/sklearn/_loss/loss.py
+++ b/sklearn/_loss/loss.py
@@ -427,7 +427,7 @@ def fit_intercept_only(self, y_true, sample_weight=None):
Returns
-------
- raw_prediction : float or (n_classes,)
+ raw_prediction : numpy scalar or array of shape (n_classes,)
Raw predictions of an intercept-only model.
"""
# As default, take weighted average of the target over the samples
@@ -461,6 +461,57 @@ def constant_to_optimal_zero(self, y_true, sample_weight=None):
"""
return np.zeros_like(y_true)
+ def init_gradient_and_hessian(self, n_samples, dtype=np.float64, order="F"):
+ """Initialize arrays for gradients and hessians.
+
+ Unless hessians are constant, arrays are initialized with undefined values.
+
+ Parameters
+ ----------
+ n_samples : int
+ The number of samples, usually passed to `fit()`.
+ dtype : {np.float64, np.float32}, default=np.float64
+ The dtype of the arrays gradient and hessian.
+ order : {'C', 'F'}, default='F'
+ Order of the arrays gradient and hessian. The default 'F' makes the arrays
+ contiguous along samples.
+
+ Returns
+ -------
+ gradient : C-contiguous array of shape (n_samples,) or array of shape \
+ (n_samples, n_classes)
+ Empty array (allocated but not initialized) to be used as argument
+ gradient_out.
+ hessian : C-contiguous array of shape (n_samples,), array of shape
+ (n_samples, n_classes) or shape (1,)
+ Empty (allocated but not initialized) array to be used as argument
+ hessian_out.
+ If constant_hessian is True (e.g. `HalfSquaredError`), the array is
+ initialized to ``1``.
+ """
+ if dtype not in (np.float32, np.float64):
+ raise ValueError(
+ "Valid options for 'dtype' are np.float32 and np.float64. "
+ f"Got dtype={dtype} instead."
+ )
+
+ if self.is_multiclass:
+ shape = (n_samples, self.n_classes)
+ else:
+ shape = (n_samples,)
+ gradient = np.empty(shape=shape, dtype=dtype, order=order)
+
+ if self.constant_hessian:
+ # If the hessians are constant, we consider them equal to 1.
+ # - This is correct for HalfSquaredError
+ # - For AbsoluteError, hessians are actually 0, but they are
+ # always ignored anyway.
+ hessian = np.ones(shape=(1,), dtype=dtype)
+ else:
+ hessian = np.empty(shape=shape, dtype=dtype, order=order)
+
+ return gradient, hessian
+
# Note: Naturally, we would inherit in the following order
# class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
diff --git a/sklearn/ensemble/_hist_gradient_boosting/_loss.pyx b/sklearn/ensemble/_hist_gradient_boosting/_loss.pyx
deleted file mode 100644
index 23e7d2841443b..0000000000000
--- a/sklearn/ensemble/_hist_gradient_boosting/_loss.pyx
+++ /dev/null
@@ -1,219 +0,0 @@
-# Author: Nicolas Hug
-
-cimport cython
-from cython.parallel import prange
-import numpy as np
-cimport numpy as np
-
-from libc.math cimport exp, log
-
-from .common cimport Y_DTYPE_C
-from .common cimport G_H_DTYPE_C
-
-np.import_array()
-
-
-def _update_gradients_least_squares(
- G_H_DTYPE_C [::1] gradients, # OUT
- const Y_DTYPE_C [::1] y_true, # IN
- const Y_DTYPE_C [::1] raw_predictions, # IN
- int n_threads, # IN
-):
-
- cdef:
- int n_samples
- int i
-
- n_samples = raw_predictions.shape[0]
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- # Note: a more correct expression is 2 * (raw_predictions - y_true)
- # but since we use 1 for the constant hessian value (and not 2) this
- # is strictly equivalent for the leaves values.
- gradients[i] = raw_predictions[i] - y_true[i]
-
-
-def _update_gradients_hessians_least_squares(
- G_H_DTYPE_C [::1] gradients, # OUT
- G_H_DTYPE_C [::1] hessians, # OUT
- const Y_DTYPE_C [::1] y_true, # IN
- const Y_DTYPE_C [::1] raw_predictions, # IN
- const Y_DTYPE_C [::1] sample_weight, # IN
- int n_threads, # IN
-):
-
- cdef:
- int n_samples
- int i
-
- n_samples = raw_predictions.shape[0]
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- # Note: a more correct exp is 2 * (raw_predictions - y_true) * sample_weight
- # but since we use 1 for the constant hessian value (and not 2) this
- # is strictly equivalent for the leaves values.
- gradients[i] = (raw_predictions[i] - y_true[i]) * sample_weight[i]
- hessians[i] = sample_weight[i]
-
-
-def _update_gradients_hessians_least_absolute_deviation(
- G_H_DTYPE_C [::1] gradients, # OUT
- G_H_DTYPE_C [::1] hessians, # OUT
- const Y_DTYPE_C [::1] y_true, # IN
- const Y_DTYPE_C [::1] raw_predictions, # IN
- const Y_DTYPE_C [::1] sample_weight, # IN
- int n_threads, # IN
-):
- cdef:
- int n_samples
- int i
-
- n_samples = raw_predictions.shape[0]
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- # gradient = sign(raw_predicition - y_pred) * sample_weight
- gradients[i] = sample_weight[i] * (2 *
- (y_true[i] - raw_predictions[i] < 0) - 1)
- hessians[i] = sample_weight[i]
-
-
-def _update_gradients_least_absolute_deviation(
- G_H_DTYPE_C [::1] gradients, # OUT
- const Y_DTYPE_C [::1] y_true, # IN
- const Y_DTYPE_C [::1] raw_predictions, # IN
- int n_threads, # IN
-):
- cdef:
- int n_samples
- int i
-
- n_samples = raw_predictions.shape[0]
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- # gradient = sign(raw_predicition - y_pred)
- gradients[i] = 2 * (y_true[i] - raw_predictions[i] < 0) - 1
-
-
-def _update_gradients_hessians_poisson(
- G_H_DTYPE_C [::1] gradients, # OUT
- G_H_DTYPE_C [::1] hessians, # OUT
- const Y_DTYPE_C [::1] y_true, # IN
- const Y_DTYPE_C [::1] raw_predictions, # IN
- const Y_DTYPE_C [::1] sample_weight, # IN
- int n_threads, # IN
-):
- cdef:
- int n_samples
- int i
- Y_DTYPE_C y_pred
-
- n_samples = raw_predictions.shape[0]
- if sample_weight is None:
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- # Note: We use only half of the deviance loss. Therefore, there is
- # no factor of 2.
- y_pred = exp(raw_predictions[i])
- gradients[i] = (y_pred - y_true[i])
- hessians[i] = y_pred
- else:
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- # Note: We use only half of the deviance loss. Therefore, there is
- # no factor of 2.
- y_pred = exp(raw_predictions[i])
- gradients[i] = (y_pred - y_true[i]) * sample_weight[i]
- hessians[i] = y_pred * sample_weight[i]
-
-
-def _update_gradients_hessians_binary_crossentropy(
- G_H_DTYPE_C [::1] gradients, # OUT
- G_H_DTYPE_C [::1] hessians, # OUT
- const Y_DTYPE_C [::1] y_true, # IN
- const Y_DTYPE_C [::1] raw_predictions, # IN
- const Y_DTYPE_C [::1] sample_weight, # IN
- int n_threads, # IN
-):
- cdef:
- int n_samples
- Y_DTYPE_C p_i # proba that ith sample belongs to positive class
- int i
-
- n_samples = raw_predictions.shape[0]
- if sample_weight is None:
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- p_i = _cexpit(raw_predictions[i])
- gradients[i] = p_i - y_true[i]
- hessians[i] = p_i * (1. - p_i)
- else:
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- p_i = _cexpit(raw_predictions[i])
- gradients[i] = (p_i - y_true[i]) * sample_weight[i]
- hessians[i] = p_i * (1. - p_i) * sample_weight[i]
-
-
-def _update_gradients_hessians_categorical_crossentropy(
- G_H_DTYPE_C [:, ::1] gradients, # OUT
- G_H_DTYPE_C [:, ::1] hessians, # OUT
- const Y_DTYPE_C [::1] y_true, # IN
- const Y_DTYPE_C [:, ::1] raw_predictions, # IN
- const Y_DTYPE_C [::1] sample_weight, # IN
- int n_threads, # IN
-):
- cdef:
- int prediction_dim = raw_predictions.shape[0]
- int n_samples = raw_predictions.shape[1]
- int k # class index
- int i # sample index
- Y_DTYPE_C sw
- # p[i, k] is the probability that class(ith sample) == k.
- # It's the softmax of the raw predictions
- Y_DTYPE_C [:, ::1] p = np.empty(shape=(n_samples, prediction_dim))
- Y_DTYPE_C p_i_k
-
- if sample_weight is None:
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- # first compute softmaxes of sample i for each class
- for k in range(prediction_dim):
- p[i, k] = raw_predictions[k, i] # prepare softmax
- _compute_softmax(p, i)
- # then update gradients and hessians
- for k in range(prediction_dim):
- p_i_k = p[i, k]
- gradients[k, i] = p_i_k - (y_true[i] == k)
- hessians[k, i] = p_i_k * (1. - p_i_k)
- else:
- for i in prange(n_samples, schedule='static', nogil=True, num_threads=n_threads):
- # first compute softmaxes of sample i for each class
- for k in range(prediction_dim):
- p[i, k] = raw_predictions[k, i] # prepare softmax
- _compute_softmax(p, i)
- # then update gradients and hessians
- sw = sample_weight[i]
- for k in range(prediction_dim):
- p_i_k = p[i, k]
- gradients[k, i] = (p_i_k - (y_true[i] == k)) * sw
- hessians[k, i] = (p_i_k * (1. - p_i_k)) * sw
-
-
-cdef inline void _compute_softmax(Y_DTYPE_C [:, ::1] p, const int i) nogil:
- """Compute softmaxes of values in p[i, :]."""
- # i needs to be passed (and stays constant) because otherwise Cython does
- # not generate optimal code
-
- cdef:
- Y_DTYPE_C max_value = p[i, 0]
- Y_DTYPE_C sum_exps = 0.
- unsigned int k
- unsigned prediction_dim = p.shape[1]
-
- # Compute max value of array for numerical stability
- for k in range(1, prediction_dim):
- if max_value < p[i, k]:
- max_value = p[i, k]
-
- for k in range(prediction_dim):
- p[i, k] = exp(p[i, k] - max_value)
- sum_exps += p[i, k]
-
- for k in range(prediction_dim):
- p[i, k] /= sum_exps
-
-
-cdef inline Y_DTYPE_C _cexpit(const Y_DTYPE_C x) nogil:
- """Custom expit (logistic sigmoid function)"""
- return 1. / (1. + exp(-x))
diff --git a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
index 097ceeeadc588..e7388f62568c8 100644
--- a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
+++ b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
@@ -7,6 +7,15 @@
import numpy as np
from timeit import default_timer as time
+from ..._loss.loss import (
+ _LOSSES,
+ BaseLoss,
+ AbsoluteError,
+ HalfBinomialLoss,
+ HalfMultinomialLoss,
+ HalfPoissonLoss,
+ HalfSquaredError,
+)
from ...base import BaseEstimator, RegressorMixin, ClassifierMixin, is_classifier
from ...utils import check_random_state, resample
from ...utils.validation import (
@@ -20,12 +29,54 @@
from ...model_selection import train_test_split
from ...preprocessing import LabelEncoder
from ._gradient_boosting import _update_raw_predictions
-from .common import Y_DTYPE, X_DTYPE, X_BINNED_DTYPE
+from .common import Y_DTYPE, X_DTYPE, X_BINNED_DTYPE, G_H_DTYPE
from .binning import _BinMapper
from .grower import TreeGrower
-from .loss import _LOSSES
-from .loss import BaseLoss
+
+
+_LOSSES = _LOSSES.copy()
+# TODO: Remove least_squares and least_absolute_deviation in v1.2
+_LOSSES.update(
+ {
+ "least_squares": HalfSquaredError,
+ "least_absolute_deviation": AbsoluteError,
+ "poisson": HalfPoissonLoss,
+ "binary_crossentropy": HalfBinomialLoss,
+ "categorical_crossentropy": HalfMultinomialLoss,
+ }
+)
+
+
+def _update_leaves_values(loss, grower, y_true, raw_prediction, sample_weight):
+ """Update the leaf values to be predicted by the tree.
+
+ Update equals:
+ loss.fit_intercept_only(y_true - raw_prediction)
+
+ This is only applied if loss.need_update_leaves_values is True.
+ Note: It only works, if the loss is a function of the residual, as is the
+ case for AbsoluteError and PinballLoss. Otherwise, one would need to get
+ the minimum of loss(y_true, raw_prediction + x) in x. A few examples:
+ - AbsoluteError: median(y_true - raw_prediction).
+ - PinballLoss: quantile(y_true - raw_prediction).
+ See also notes about need_update_leaves_values in BaseLoss.
+ """
+ # TODO: Ideally this should be computed in parallel over the leaves using something
+ # similar to _update_raw_predictions(), but this requires a cython version of
+ # median().
+ for leaf in grower.finalized_leaves:
+ indices = leaf.sample_indices
+ if sample_weight is None:
+ sw = None
+ else:
+ sw = sample_weight[indices]
+ update = loss.fit_intercept_only(
+ y_true=y_true[indices] - raw_prediction[indices],
+ sample_weight=sw,
+ )
+ leaf.value = grower.shrinkage * update
+ # Note that the regularization is ignored here
class BaseHistGradientBoosting(BaseEstimator, ABC):
@@ -270,9 +321,7 @@ def fit(self, X, y, sample_weight=None):
n_threads = _openmp_effective_n_threads()
if isinstance(self.loss, str):
- self._loss = self._get_loss(
- sample_weight=sample_weight, n_threads=n_threads
- )
+ self._loss = self._get_loss(sample_weight=sample_weight)
elif isinstance(self.loss, BaseLoss):
self._loss = self.loss
@@ -285,6 +334,7 @@ def fit(self, X, y, sample_weight=None):
self._use_validation_data = self.validation_fraction is not None
if self.do_early_stopping_ and self._use_validation_data:
# stratify for classification
+ # instead of checking predict_proba, loss.n_classes >= 2 would also work
stratify = y if hasattr(self._loss, "predict_proba") else None
# Save the state of the RNG for the training and validation split.
@@ -363,15 +413,17 @@ def fit(self, X, y, sample_weight=None):
# initialize raw_predictions: those are the accumulated values
# predicted by the trees for the training data. raw_predictions has
- # shape (n_trees_per_iteration, n_samples) where
+ # shape (n_samples, n_trees_per_iteration) where
# n_trees_per_iterations is n_classes in multiclass classification,
# else 1.
- self._baseline_prediction = self._loss.get_baseline_prediction(
- y_train, sample_weight_train, self.n_trees_per_iteration_
- )
+ # self._baseline_prediction has shape (1, n_trees_per_iteration)
+ self._baseline_prediction = self._loss.fit_intercept_only(
+ y_true=y_train, sample_weight=sample_weight_train
+ ).reshape((1, -1))
raw_predictions = np.zeros(
- shape=(self.n_trees_per_iteration_, n_samples),
+ shape=(n_samples, self.n_trees_per_iteration_),
dtype=self._baseline_prediction.dtype,
+ order="F",
)
raw_predictions += self._baseline_prediction
@@ -401,19 +453,21 @@ def fit(self, X, y, sample_weight=None):
if self._use_validation_data:
raw_predictions_val = np.zeros(
- shape=(self.n_trees_per_iteration_, X_binned_val.shape[0]),
+ shape=(X_binned_val.shape[0], self.n_trees_per_iteration_),
dtype=self._baseline_prediction.dtype,
+ order="F",
)
raw_predictions_val += self._baseline_prediction
self._check_early_stopping_loss(
- raw_predictions,
- y_train,
- sample_weight_train,
- raw_predictions_val,
- y_val,
- sample_weight_val,
+ raw_predictions=raw_predictions,
+ y_train=y_train,
+ sample_weight_train=sample_weight_train,
+ raw_predictions_val=raw_predictions_val,
+ y_val=y_val,
+ sample_weight_val=sample_weight_val,
+ n_threads=n_threads,
)
else:
self._scorer = check_scoring(self, self.scoring)
@@ -482,11 +536,9 @@ def fit(self, X, y, sample_weight=None):
begin_at_stage = self.n_iter_
# initialize gradients and hessians (empty arrays).
- # shape = (n_trees_per_iteration, n_samples).
- gradients, hessians = self._loss.init_gradients_and_hessians(
- n_samples=n_samples,
- prediction_dim=self.n_trees_per_iteration_,
- sample_weight=sample_weight_train,
+ # shape = (n_samples, n_trees_per_iteration).
+ gradient, hessian = self._loss.init_gradient_and_hessian(
+ n_samples=n_samples, dtype=G_H_DTYPE, order="F"
)
for iteration in range(begin_at_stage, self.max_iter):
@@ -498,19 +550,44 @@ def fit(self, X, y, sample_weight=None):
)
# Update gradients and hessians, inplace
- self._loss.update_gradients_and_hessians(
- gradients, hessians, y_train, raw_predictions, sample_weight_train
- )
+ # Note that self._loss expects shape (n_samples,) for
+ # n_trees_per_iteration = 1 else shape (n_samples, n_trees_per_iteration).
+ if self._loss.constant_hessian:
+ self._loss.gradient(
+ y_true=y_train,
+ raw_prediction=raw_predictions,
+ sample_weight=sample_weight_train,
+ gradient_out=gradient,
+ n_threads=n_threads,
+ )
+ else:
+ self._loss.gradient_hessian(
+ y_true=y_train,
+ raw_prediction=raw_predictions,
+ sample_weight=sample_weight_train,
+ gradient_out=gradient,
+ hessian_out=hessian,
+ n_threads=n_threads,
+ )
# Append a list since there may be more than 1 predictor per iter
predictors.append([])
+ # 2-d views of shape (n_samples, n_trees_per_iteration_) or (n_samples, 1)
+ # on gradient and hessian to simplify the loop over n_trees_per_iteration_.
+ if gradient.ndim == 1:
+ g_view = gradient.reshape((-1, 1))
+ h_view = hessian.reshape((-1, 1))
+ else:
+ g_view = gradient
+ h_view = hessian
+
# Build `n_trees_per_iteration` trees.
for k in range(self.n_trees_per_iteration_):
grower = TreeGrower(
- X_binned_train,
- gradients[k, :],
- hessians[k, :],
+ X_binned=X_binned_train,
+ gradients=g_view[:, k],
+ hessians=h_view[:, k],
n_bins=n_bins,
n_bins_non_missing=self._bin_mapper.n_bins_non_missing_,
has_missing_values=has_missing_values,
@@ -530,8 +607,12 @@ def fit(self, X, y, sample_weight=None):
acc_compute_hist_time += grower.total_compute_hist_time
if self._loss.need_update_leaves_values:
- self._loss.update_leaves_values(
- grower, y_train, raw_predictions[k, :], sample_weight_train
+ _update_leaves_values(
+ loss=self._loss,
+ grower=grower,
+ y_true=y_train,
+ raw_prediction=raw_predictions[:, k],
+ sample_weight=sample_weight_train,
)
predictor = grower.make_predictor(
@@ -542,7 +623,7 @@ def fit(self, X, y, sample_weight=None):
# Update raw_predictions with the predictions of the newly
# created tree.
tic_pred = time()
- _update_raw_predictions(raw_predictions[k, :], grower, n_threads)
+ _update_raw_predictions(raw_predictions[:, k], grower, n_threads)
toc_pred = time()
acc_prediction_time += toc_pred - tic_pred
@@ -552,19 +633,20 @@ def fit(self, X, y, sample_weight=None):
# Update raw_predictions_val with the newest tree(s)
if self._use_validation_data:
for k, pred in enumerate(self._predictors[-1]):
- raw_predictions_val[k, :] += pred.predict_binned(
+ raw_predictions_val[:, k] += pred.predict_binned(
X_binned_val,
self._bin_mapper.missing_values_bin_idx_,
n_threads,
)
should_early_stop = self._check_early_stopping_loss(
- raw_predictions,
- y_train,
- sample_weight_train,
- raw_predictions_val,
- y_val,
- sample_weight_val,
+ raw_predictions=raw_predictions,
+ y_train=y_train,
+ sample_weight_train=sample_weight_train,
+ raw_predictions_val=raw_predictions_val,
+ y_val=y_val,
+ sample_weight_val=sample_weight_val,
+ n_threads=n_threads,
)
else:
@@ -715,19 +797,29 @@ def _check_early_stopping_loss(
raw_predictions_val,
y_val,
sample_weight_val,
+ n_threads=1,
):
"""Check if fitting should be early-stopped based on loss.
Scores are computed on validation data or on training data.
"""
-
self.train_score_.append(
- -self._loss(y_train, raw_predictions, sample_weight_train)
+ -self._loss(
+ y_true=y_train,
+ raw_prediction=raw_predictions,
+ sample_weight=sample_weight_train,
+ n_threads=n_threads,
+ )
)
if self._use_validation_data:
self.validation_score_.append(
- -self._loss(y_val, raw_predictions_val, sample_weight_val)
+ -self._loss(
+ y_true=y_val,
+ raw_prediction=raw_predictions_val,
+ sample_weight=sample_weight_val,
+ n_threads=n_threads,
+ )
)
return self._should_stop(self.validation_score_)
else:
@@ -838,7 +930,7 @@ def _raw_predict(self, X, n_threads=None):
Returns
-------
- raw_predictions : array, shape (n_trees_per_iteration, n_samples)
+ raw_predictions : array, shape (n_samples, n_trees_per_iteration)
The raw predicted values.
"""
is_binned = getattr(self, "_in_fit", False)
@@ -852,8 +944,9 @@ def _raw_predict(self, X, n_threads=None):
)
n_samples = X.shape[0]
raw_predictions = np.zeros(
- shape=(self.n_trees_per_iteration_, n_samples),
+ shape=(n_samples, self.n_trees_per_iteration_),
dtype=self._baseline_prediction.dtype,
+ order="F",
)
raw_predictions += self._baseline_prediction
@@ -889,7 +982,7 @@ def _predict_iterations(self, X, predictors, raw_predictions, is_binned, n_threa
f_idx_map=f_idx_map,
n_threads=n_threads,
)
- raw_predictions[k, :] += predict(X)
+ raw_predictions[:, k] += predict(X)
def _staged_raw_predict(self, X):
"""Compute raw predictions of ``X`` for each iteration.
@@ -905,7 +998,7 @@ def _staged_raw_predict(self, X):
Yields
-------
raw_predictions : generator of ndarray of shape \
- (n_trees_per_iteration, n_samples)
+ (n_samples, n_trees_per_iteration)
The raw predictions of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
@@ -918,8 +1011,9 @@ def _staged_raw_predict(self, X):
)
n_samples = X.shape[0]
raw_predictions = np.zeros(
- shape=(self.n_trees_per_iteration_, n_samples),
+ shape=(n_samples, self.n_trees_per_iteration_),
dtype=self._baseline_prediction.dtype,
+ order="F",
)
raw_predictions += self._baseline_prediction
@@ -983,7 +1077,7 @@ def _more_tags(self):
return {"allow_nan": True}
@abstractmethod
- def _get_loss(self, sample_weight, n_threads):
+ def _get_loss(self, sample_weight):
pass
@abstractmethod
@@ -1261,7 +1355,7 @@ def predict(self, X):
check_is_fitted(self)
# Return inverse link of raw predictions after converting
# shape (n_samples, 1) to (n_samples,)
- return self._loss.inverse_link_function(self._raw_predict(X).ravel())
+ return self._loss.link.inverse(self._raw_predict(X).ravel())
def staged_predict(self, X):
"""Predict regression target for each iteration.
@@ -1282,7 +1376,7 @@ def staged_predict(self, X):
The predicted values of the input samples, for each iteration.
"""
for raw_predictions in self._staged_raw_predict(X):
- yield self._loss.inverse_link_function(raw_predictions.ravel())
+ yield self._loss.link.inverse(raw_predictions.ravel())
def _encode_y(self, y):
# Just convert y to the expected dtype
@@ -1296,7 +1390,7 @@ def _encode_y(self, y):
)
return y
- def _get_loss(self, sample_weight, n_threads):
+ def _get_loss(self, sample_weight):
# TODO: Remove in v1.2
if self.loss == "least_squares":
warnings.warn(
@@ -1305,9 +1399,7 @@ def _get_loss(self, sample_weight, n_threads):
"equivalent.",
FutureWarning,
)
- return _LOSSES["squared_error"](
- sample_weight=sample_weight, n_threads=n_threads
- )
+ return _LOSSES["squared_error"](sample_weight=sample_weight)
elif self.loss == "least_absolute_deviation":
warnings.warn(
"The loss 'least_absolute_deviation' was deprecated in v1.0 "
@@ -1315,11 +1407,9 @@ def _get_loss(self, sample_weight, n_threads):
"which is equivalent.",
FutureWarning,
)
- return _LOSSES["absolute_error"](
- sample_weight=sample_weight, n_threads=n_threads
- )
+ return _LOSSES["absolute_error"](sample_weight=sample_weight)
- return _LOSSES[self.loss](sample_weight=sample_weight, n_threads=n_threads)
+ return _LOSSES[self.loss](sample_weight=sample_weight)
class HistGradientBoostingClassifier(ClassifierMixin, BaseHistGradientBoosting):
@@ -1645,9 +1735,9 @@ def decision_function(self, X):
classes in multiclass classification.
"""
decision = self._raw_predict(X)
- if decision.shape[0] == 1:
+ if decision.shape[1] == 1:
decision = decision.ravel()
- return decision.T
+ return decision
def staged_decision_function(self, X):
"""Compute decision function of ``X`` for each iteration.
@@ -1669,9 +1759,9 @@ def staged_decision_function(self, X):
classes corresponds to that in the attribute :term:`classes_`.
"""
for staged_decision in self._staged_raw_predict(X):
- if staged_decision.shape[0] == 1:
+ if staged_decision.shape[1] == 1:
staged_decision = staged_decision.ravel()
- yield staged_decision.T
+ yield staged_decision
def _encode_y(self, y):
# encode classes into 0 ... n_classes - 1 and sets attributes classes_
@@ -1688,22 +1778,34 @@ def _encode_y(self, y):
encoded_y = encoded_y.astype(Y_DTYPE, copy=False)
return encoded_y
- def _get_loss(self, sample_weight, n_threads):
- if self.loss == "categorical_crossentropy" and self.n_trees_per_iteration_ == 1:
- raise ValueError(
- "'categorical_crossentropy' is not suitable for "
- "a binary classification problem. Please use "
- "'auto' or 'binary_crossentropy' instead."
- )
-
+ def _get_loss(self, sample_weight):
if self.loss == "auto":
if self.n_trees_per_iteration_ == 1:
- return _LOSSES["binary_crossentropy"](
- sample_weight=sample_weight, n_threads=n_threads
- )
+ return _LOSSES["binary_crossentropy"](sample_weight=sample_weight)
else:
return _LOSSES["categorical_crossentropy"](
- sample_weight=sample_weight, n_threads=n_threads
+ sample_weight=sample_weight,
+ n_classes=self.n_trees_per_iteration_,
)
- return _LOSSES[self.loss](sample_weight=sample_weight, n_threads=n_threads)
+ if self.loss == "categorical_crossentropy":
+ if self.n_trees_per_iteration_ == 1:
+ raise ValueError(
+ "loss='categorical_crossentropy' is not suitable for "
+ "a binary classification problem. Please use "
+ "loss='auto' or loss='binary_crossentropy' instead."
+ )
+ else:
+ return _LOSSES[self.loss](
+ sample_weight=sample_weight, n_classes=self.n_trees_per_iteration_
+ )
+ else:
+ if self.n_trees_per_iteration_ > 1:
+ raise ValueError(
+ "loss='binary_crossentropy' is not defined for multiclass"
+ " classification with n_classes="
+ f"{self.n_trees_per_iteration_}, use loss="
+ "'categorical_crossentropy' instead."
+ )
+ else:
+ return _LOSSES[self.loss](sample_weight=sample_weight)
diff --git a/sklearn/ensemble/_hist_gradient_boosting/loss.py b/sklearn/ensemble/_hist_gradient_boosting/loss.py
deleted file mode 100644
index c5870f97f900e..0000000000000
--- a/sklearn/ensemble/_hist_gradient_boosting/loss.py
+++ /dev/null
@@ -1,466 +0,0 @@
-"""
-This module contains the loss classes.
-
-Specific losses are used for regression, binary classification or multiclass
-classification.
-"""
-# Author: Nicolas Hug
-
-from abc import ABC, abstractmethod
-
-import numpy as np
-from scipy.special import expit, logsumexp, xlogy
-
-from .common import Y_DTYPE
-from .common import G_H_DTYPE
-from ._loss import _update_gradients_least_squares
-from ._loss import _update_gradients_hessians_least_squares
-from ._loss import _update_gradients_least_absolute_deviation
-from ._loss import _update_gradients_hessians_least_absolute_deviation
-from ._loss import _update_gradients_hessians_binary_crossentropy
-from ._loss import _update_gradients_hessians_categorical_crossentropy
-from ._loss import _update_gradients_hessians_poisson
-from ...utils._openmp_helpers import _openmp_effective_n_threads
-from ...utils.stats import _weighted_percentile
-
-
-class BaseLoss(ABC):
- """Base class for a loss."""
-
- def __init__(self, hessians_are_constant, n_threads=None):
- self.hessians_are_constant = hessians_are_constant
- self.n_threads = _openmp_effective_n_threads(n_threads)
-
- def __call__(self, y_true, raw_predictions, sample_weight):
- """Return the weighted average loss"""
- return np.average(
- self.pointwise_loss(y_true, raw_predictions), weights=sample_weight
- )
-
- @abstractmethod
- def pointwise_loss(self, y_true, raw_predictions):
- """Return loss value for each input"""
-
- # This variable indicates whether the loss requires the leaves values to
- # be updated once the tree has been trained. The trees are trained to
- # predict a Newton-Raphson step (see grower._finalize_leaf()). But for
- # some losses (e.g. least absolute deviation) we need to adjust the tree
- # values to account for the "line search" of the gradient descent
- # procedure. See the original paper Greedy Function Approximation: A
- # Gradient Boosting Machine by Friedman
- # (https://statweb.stanford.edu/~jhf/ftp/trebst.pdf) for the theory.
- need_update_leaves_values = False
-
- def init_gradients_and_hessians(self, n_samples, prediction_dim, sample_weight):
- """Return initial gradients and hessians.
-
- Unless hessians are constant, arrays are initialized with undefined
- values.
-
- Parameters
- ----------
- n_samples : int
- The number of samples passed to `fit()`.
-
- prediction_dim : int
- The dimension of a raw prediction, i.e. the number of trees
- built at each iteration. Equals 1 for regression and binary
- classification, or K where K is the number of classes for
- multiclass classification.
-
- sample_weight : array-like of shape(n_samples,) default=None
- Weights of training data.
-
- Returns
- -------
- gradients : ndarray, shape (prediction_dim, n_samples)
- The initial gradients. The array is not initialized.
- hessians : ndarray, shape (prediction_dim, n_samples)
- If hessians are constant (e.g. for `LeastSquares` loss, the
- array is initialized to ``1``. Otherwise, the array is allocated
- without being initialized.
- """
- shape = (prediction_dim, n_samples)
- gradients = np.empty(shape=shape, dtype=G_H_DTYPE)
-
- if self.hessians_are_constant:
- # If the hessians are constant, we consider they are equal to 1.
- # - This is correct for the half LS loss
- # - For LAD loss, hessians are actually 0, but they are always
- # ignored anyway.
- hessians = np.ones(shape=(1, 1), dtype=G_H_DTYPE)
- else:
- hessians = np.empty(shape=shape, dtype=G_H_DTYPE)
-
- return gradients, hessians
-
- @abstractmethod
- def get_baseline_prediction(self, y_train, sample_weight, prediction_dim):
- """Return initial predictions (before the first iteration).
-
- Parameters
- ----------
- y_train : ndarray, shape (n_samples,)
- The target training values.
-
- sample_weight : array-like of shape(n_samples,) default=None
- Weights of training data.
-
- prediction_dim : int
- The dimension of one prediction: 1 for binary classification and
- regression, n_classes for multiclass classification.
-
- Returns
- -------
- baseline_prediction : float or ndarray, shape (1, prediction_dim)
- The baseline prediction.
- """
-
- @abstractmethod
- def update_gradients_and_hessians(
- self, gradients, hessians, y_true, raw_predictions, sample_weight
- ):
- """Update gradients and hessians arrays, inplace.
-
- The gradients (resp. hessians) are the first (resp. second) order
- derivatives of the loss for each sample with respect to the
- predictions of model, evaluated at iteration ``i - 1``.
-
- Parameters
- ----------
- gradients : ndarray, shape (prediction_dim, n_samples)
- The gradients (treated as OUT array).
-
- hessians : ndarray, shape (prediction_dim, n_samples) or \
- (1,)
- The hessians (treated as OUT array).
-
- y_true : ndarray, shape (n_samples,)
- The true target values or each training sample.
-
- raw_predictions : ndarray, shape (prediction_dim, n_samples)
- The raw_predictions (i.e. values from the trees) of the tree
- ensemble at iteration ``i - 1``.
-
- sample_weight : array-like of shape(n_samples,) default=None
- Weights of training data.
- """
-
-
-class LeastSquares(BaseLoss):
- """Least squares loss, for regression.
-
- For a given sample x_i, least squares loss is defined as::
-
- loss(x_i) = 0.5 * (y_true_i - raw_pred_i)**2
-
- This actually computes the half least squares loss to simplify
- the computation of the gradients and get a unit hessian (and be consistent
- with what is done in LightGBM).
- """
-
- def __init__(self, sample_weight, n_threads=None):
- # If sample weights are provided, the hessians and gradients
- # are multiplied by sample_weight, which means the hessians are
- # equal to sample weights.
- super().__init__(
- hessians_are_constant=sample_weight is None, n_threads=n_threads
- )
-
- def pointwise_loss(self, y_true, raw_predictions):
- # shape (1, n_samples) --> (n_samples,). reshape(-1) is more likely to
- # return a view.
- raw_predictions = raw_predictions.reshape(-1)
- loss = 0.5 * np.power(y_true - raw_predictions, 2)
- return loss
-
- def get_baseline_prediction(self, y_train, sample_weight, prediction_dim):
- return np.average(y_train, weights=sample_weight)
-
- @staticmethod
- def inverse_link_function(raw_predictions):
- return raw_predictions
-
- def update_gradients_and_hessians(
- self, gradients, hessians, y_true, raw_predictions, sample_weight
- ):
- # shape (1, n_samples) --> (n_samples,). reshape(-1) is more likely to
- # return a view.
- raw_predictions = raw_predictions.reshape(-1)
- gradients = gradients.reshape(-1)
- if sample_weight is None:
- _update_gradients_least_squares(
- gradients, y_true, raw_predictions, self.n_threads
- )
- else:
- hessians = hessians.reshape(-1)
- _update_gradients_hessians_least_squares(
- gradients,
- hessians,
- y_true,
- raw_predictions,
- sample_weight,
- self.n_threads,
- )
-
-
-class LeastAbsoluteDeviation(BaseLoss):
- """Least absolute deviation, for regression.
-
- For a given sample x_i, the loss is defined as::
-
- loss(x_i) = |y_true_i - raw_pred_i|
- """
-
- def __init__(self, sample_weight, n_threads=None):
- # If sample weights are provided, the hessians and gradients
- # are multiplied by sample_weight, which means the hessians are
- # equal to sample weights.
- super().__init__(
- hessians_are_constant=sample_weight is None, n_threads=n_threads
- )
-
- # This variable indicates whether the loss requires the leaves values to
- # be updated once the tree has been trained. The trees are trained to
- # predict a Newton-Raphson step (see grower._finalize_leaf()). But for
- # some losses (e.g. least absolute deviation) we need to adjust the tree
- # values to account for the "line search" of the gradient descent
- # procedure. See the original paper Greedy Function Approximation: A
- # Gradient Boosting Machine by Friedman
- # (https://statweb.stanford.edu/~jhf/ftp/trebst.pdf) for the theory.
- need_update_leaves_values = True
-
- def pointwise_loss(self, y_true, raw_predictions):
- # shape (1, n_samples) --> (n_samples,). reshape(-1) is more likely to
- # return a view.
- raw_predictions = raw_predictions.reshape(-1)
- loss = np.abs(y_true - raw_predictions)
- return loss
-
- def get_baseline_prediction(self, y_train, sample_weight, prediction_dim):
- if sample_weight is None:
- return np.median(y_train)
- else:
- return _weighted_percentile(y_train, sample_weight, 50)
-
- @staticmethod
- def inverse_link_function(raw_predictions):
- return raw_predictions
-
- def update_gradients_and_hessians(
- self, gradients, hessians, y_true, raw_predictions, sample_weight
- ):
- # shape (1, n_samples) --> (n_samples,). reshape(-1) is more likely to
- # return a view.
- raw_predictions = raw_predictions.reshape(-1)
- gradients = gradients.reshape(-1)
- if sample_weight is None:
- _update_gradients_least_absolute_deviation(
- gradients,
- y_true,
- raw_predictions,
- self.n_threads,
- )
- else:
- hessians = hessians.reshape(-1)
- _update_gradients_hessians_least_absolute_deviation(
- gradients,
- hessians,
- y_true,
- raw_predictions,
- sample_weight,
- self.n_threads,
- )
-
- def update_leaves_values(self, grower, y_true, raw_predictions, sample_weight):
- # Update the values predicted by the tree with
- # median(y_true - raw_predictions).
- # See note about need_update_leaves_values in BaseLoss.
-
- # TODO: ideally this should be computed in parallel over the leaves
- # using something similar to _update_raw_predictions(), but this
- # requires a cython version of median()
- for leaf in grower.finalized_leaves:
- indices = leaf.sample_indices
- if sample_weight is None:
- median_res = np.median(y_true[indices] - raw_predictions[indices])
- else:
- median_res = _weighted_percentile(
- y_true[indices] - raw_predictions[indices],
- sample_weight=sample_weight[indices],
- percentile=50,
- )
- leaf.value = grower.shrinkage * median_res
- # Note that the regularization is ignored here
-
-
-class Poisson(BaseLoss):
- """Poisson deviance loss with log-link, for regression.
-
- For a given sample x_i, Poisson deviance loss is defined as::
-
- loss(x_i) = y_true_i * log(y_true_i/exp(raw_pred_i))
- - y_true_i + exp(raw_pred_i))
-
- This actually computes half the Poisson deviance to simplify
- the computation of the gradients.
- """
-
- def __init__(self, sample_weight, n_threads=None):
- super().__init__(hessians_are_constant=False, n_threads=n_threads)
-
- inverse_link_function = staticmethod(np.exp)
-
- def pointwise_loss(self, y_true, raw_predictions):
- # shape (1, n_samples) --> (n_samples,). reshape(-1) is more likely to
- # return a view.
- raw_predictions = raw_predictions.reshape(-1)
- # TODO: For speed, we could remove the constant xlogy(y_true, y_true)
- # Advantage of this form: minimum of zero at raw_predictions = y_true.
- loss = (
- xlogy(y_true, y_true)
- - y_true * (raw_predictions + 1)
- + np.exp(raw_predictions)
- )
- return loss
-
- def get_baseline_prediction(self, y_train, sample_weight, prediction_dim):
- y_pred = np.average(y_train, weights=sample_weight)
- eps = np.finfo(y_train.dtype).eps
- y_pred = np.clip(y_pred, eps, None)
- return np.log(y_pred)
-
- def update_gradients_and_hessians(
- self, gradients, hessians, y_true, raw_predictions, sample_weight
- ):
- # shape (1, n_samples) --> (n_samples,). reshape(-1) is more likely to
- # return a view.
- raw_predictions = raw_predictions.reshape(-1)
- gradients = gradients.reshape(-1)
- hessians = hessians.reshape(-1)
- _update_gradients_hessians_poisson(
- gradients,
- hessians,
- y_true,
- raw_predictions,
- sample_weight,
- self.n_threads,
- )
-
-
-class BinaryCrossEntropy(BaseLoss):
- """Binary cross-entropy loss, for binary classification.
-
- For a given sample x_i, the binary cross-entropy loss is defined as the
- negative log-likelihood of the model which can be expressed as::
-
- loss(x_i) = log(1 + exp(raw_pred_i)) - y_true_i * raw_pred_i
-
- See The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman,
- section 4.4.1 (about logistic regression).
- """
-
- def __init__(self, sample_weight, n_threads=None):
- super().__init__(hessians_are_constant=False, n_threads=n_threads)
-
- inverse_link_function = staticmethod(expit)
-
- def pointwise_loss(self, y_true, raw_predictions):
- # shape (1, n_samples) --> (n_samples,). reshape(-1) is more likely to
- # return a view.
- raw_predictions = raw_predictions.reshape(-1)
- # logaddexp(0, x) = log(1 + exp(x))
- loss = np.logaddexp(0, raw_predictions) - y_true * raw_predictions
- return loss
-
- def get_baseline_prediction(self, y_train, sample_weight, prediction_dim):
- if prediction_dim > 2:
- raise ValueError(
- "loss='binary_crossentropy' is not defined for multiclass"
- " classification with n_classes=%d, use"
- " loss='categorical_crossentropy' instead" % prediction_dim
- )
- proba_positive_class = np.average(y_train, weights=sample_weight)
- eps = np.finfo(y_train.dtype).eps
- proba_positive_class = np.clip(proba_positive_class, eps, 1 - eps)
- # log(x / 1 - x) is the anti function of sigmoid, or the link function
- # of the Binomial model.
- return np.log(proba_positive_class / (1 - proba_positive_class))
-
- def update_gradients_and_hessians(
- self, gradients, hessians, y_true, raw_predictions, sample_weight
- ):
- # shape (1, n_samples) --> (n_samples,). reshape(-1) is more likely to
- # return a view.
- raw_predictions = raw_predictions.reshape(-1)
- gradients = gradients.reshape(-1)
- hessians = hessians.reshape(-1)
- _update_gradients_hessians_binary_crossentropy(
- gradients, hessians, y_true, raw_predictions, sample_weight, self.n_threads
- )
-
- def predict_proba(self, raw_predictions):
- # shape (1, n_samples) --> (n_samples,). reshape(-1) is more likely to
- # return a view.
- raw_predictions = raw_predictions.reshape(-1)
- proba = np.empty((raw_predictions.shape[0], 2), dtype=Y_DTYPE)
- proba[:, 1] = expit(raw_predictions)
- proba[:, 0] = 1 - proba[:, 1]
- return proba
-
-
-class CategoricalCrossEntropy(BaseLoss):
- """Categorical cross-entropy loss, for multiclass classification.
-
- For a given sample x_i, the categorical cross-entropy loss is defined as
- the negative log-likelihood of the model and generalizes the binary
- cross-entropy to more than 2 classes.
- """
-
- def __init__(self, sample_weight, n_threads=None):
- super().__init__(hessians_are_constant=False, n_threads=n_threads)
-
- def pointwise_loss(self, y_true, raw_predictions):
- one_hot_true = np.zeros_like(raw_predictions)
- prediction_dim = raw_predictions.shape[0]
- for k in range(prediction_dim):
- one_hot_true[k, :] = y_true == k
-
- loss = logsumexp(raw_predictions, axis=0) - (
- one_hot_true * raw_predictions
- ).sum(axis=0)
- return loss
-
- def get_baseline_prediction(self, y_train, sample_weight, prediction_dim):
- init_value = np.zeros(shape=(prediction_dim, 1), dtype=Y_DTYPE)
- eps = np.finfo(y_train.dtype).eps
- for k in range(prediction_dim):
- proba_kth_class = np.average(y_train == k, weights=sample_weight)
- proba_kth_class = np.clip(proba_kth_class, eps, 1 - eps)
- init_value[k, :] += np.log(proba_kth_class)
-
- return init_value
-
- def update_gradients_and_hessians(
- self, gradients, hessians, y_true, raw_predictions, sample_weight
- ):
- _update_gradients_hessians_categorical_crossentropy(
- gradients, hessians, y_true, raw_predictions, sample_weight, self.n_threads
- )
-
- def predict_proba(self, raw_predictions):
- # TODO: This could be done in parallel
- # compute softmax (using exp(log(softmax)))
- proba = np.exp(
- raw_predictions - logsumexp(raw_predictions, axis=0)[np.newaxis, :]
- )
- return proba.T
-
-
-_LOSSES = {
- "squared_error": LeastSquares,
- "absolute_error": LeastAbsoluteDeviation,
- "binary_crossentropy": BinaryCrossEntropy,
- "categorical_crossentropy": CategoricalCrossEntropy,
- "poisson": Poisson,
-}
diff --git a/sklearn/ensemble/setup.py b/sklearn/ensemble/setup.py
index 9f46a7e3cd303..a9594757dbeb2 100644
--- a/sklearn/ensemble/setup.py
+++ b/sklearn/ensemble/setup.py
@@ -44,12 +44,6 @@ def configuration(parent_package="", top_path=None):
include_dirs=[numpy.get_include()],
)
- config.add_extension(
- "_hist_gradient_boosting._loss",
- sources=["_hist_gradient_boosting/_loss.pyx"],
- include_dirs=[numpy.get_include()],
- )
-
config.add_extension(
"_hist_gradient_boosting._bitset",
sources=["_hist_gradient_boosting/_bitset.pyx"],
|
diff --git a/sklearn/_loss/tests/test_loss.py b/sklearn/_loss/tests/test_loss.py
index 2ad5633037c4a..5426ed296f01a 100644
--- a/sklearn/_loss/tests/test_loss.py
+++ b/sklearn/_loss/tests/test_loss.py
@@ -991,6 +991,63 @@ def test_predict_proba(loss):
)
[email protected]("loss", ALL_LOSSES)
[email protected]("sample_weight", [None, "range"])
[email protected]("dtype", (np.float32, np.float64))
[email protected]("order", ("C", "F"))
+def test_init_gradient_and_hessians(loss, sample_weight, dtype, order):
+ """Test that init_gradient_and_hessian works as expected.
+
+ passing sample_weight to a loss correctly influences the constant_hessian
+ attribute, and consequently the shape of the hessian array.
+ """
+ n_samples = 5
+ if sample_weight == "range":
+ sample_weight = np.ones(n_samples)
+ loss = loss(sample_weight=sample_weight)
+ gradient, hessian = loss.init_gradient_and_hessian(
+ n_samples=n_samples,
+ dtype=dtype,
+ order=order,
+ )
+ if loss.constant_hessian:
+ assert gradient.shape == (n_samples,)
+ assert hessian.shape == (1,)
+ elif loss.is_multiclass:
+ assert gradient.shape == (n_samples, loss.n_classes)
+ assert hessian.shape == (n_samples, loss.n_classes)
+ else:
+ assert hessian.shape == (n_samples,)
+ assert hessian.shape == (n_samples,)
+
+ assert gradient.dtype == dtype
+ assert hessian.dtype == dtype
+
+ if order == "C":
+ assert gradient.flags.c_contiguous
+ assert hessian.flags.c_contiguous
+ else:
+ assert gradient.flags.f_contiguous
+ assert hessian.flags.f_contiguous
+
+
[email protected]("loss", ALL_LOSSES)
[email protected](
+ "params, err_msg",
+ [
+ (
+ {"dtype": np.int64},
+ f"Valid options for 'dtype' are .* Got dtype={np.int64} instead.",
+ ),
+ ],
+)
+def test_init_gradient_and_hessian_raises(loss, params, err_msg):
+ """Test that init_gradient_and_hessian raises errors for invalid input."""
+ loss = loss()
+ with pytest.raises((ValueError, TypeError), match=err_msg):
+ gradient, hessian = loss.init_gradient_and_hessian(n_samples=5, **params)
+
+
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
def test_loss_pickle(loss):
"""Test that losses can be pickled."""
diff --git a/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py b/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py
index 79581525b50bb..c3c4816044d3f 100644
--- a/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py
+++ b/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py
@@ -1,6 +1,13 @@
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
+from sklearn._loss.loss import (
+ AbsoluteError,
+ HalfBinomialLoss,
+ HalfMultinomialLoss,
+ HalfPoissonLoss,
+ HalfSquaredError,
+)
from sklearn.datasets import make_classification, make_regression
from sklearn.datasets import make_low_rank_matrix
from sklearn.preprocessing import KBinsDiscretizer, MinMaxScaler, OneHotEncoder
@@ -15,16 +22,23 @@
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.ensemble import HistGradientBoostingClassifier
-from sklearn.ensemble._hist_gradient_boosting.loss import _LOSSES
-from sklearn.ensemble._hist_gradient_boosting.loss import LeastSquares
-from sklearn.ensemble._hist_gradient_boosting.loss import BinaryCrossEntropy
from sklearn.ensemble._hist_gradient_boosting.grower import TreeGrower
from sklearn.ensemble._hist_gradient_boosting.binning import _BinMapper
+from sklearn.ensemble._hist_gradient_boosting.common import G_H_DTYPE
from sklearn.utils import shuffle
from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
+
n_threads = _openmp_effective_n_threads()
+_LOSSES = {
+ "squared_error": HalfSquaredError,
+ "absolute_error": AbsoluteError,
+ "poisson": HalfPoissonLoss,
+ "binary_crossentropy": HalfBinomialLoss,
+ "categorical_crossentropy": HalfMultinomialLoss,
+}
+
X_classification, y_classification = make_classification(random_state=0)
X_regression, y_regression = make_regression(random_state=0)
@@ -572,7 +586,7 @@ def test_crossentropy_binary_problem():
y = [0, 1]
gbrt = HistGradientBoostingClassifier(loss="categorical_crossentropy")
with pytest.raises(
- ValueError, match="'categorical_crossentropy' is not suitable for"
+ ValueError, match="loss='categorical_crossentropy' is not suitable for"
):
gbrt.fit(X, y)
@@ -694,15 +708,22 @@ def test_sum_hessians_are_sample_weight(loss_name):
bin_mapper = _BinMapper()
X_binned = bin_mapper.fit_transform(X)
+ # While sample weights are supposed to be positive, this still works.
sample_weight = rng.normal(size=n_samples)
- loss = _LOSSES[loss_name](sample_weight=sample_weight, n_threads=n_threads)
- gradients, hessians = loss.init_gradients_and_hessians(
- n_samples=n_samples, prediction_dim=1, sample_weight=sample_weight
+ loss = _LOSSES[loss_name](sample_weight=sample_weight)
+ gradients, hessians = loss.init_gradient_and_hessian(
+ n_samples=n_samples, dtype=G_H_DTYPE
)
- raw_predictions = rng.normal(size=(1, n_samples))
- loss.update_gradients_and_hessians(
- gradients, hessians, y, raw_predictions, sample_weight
+ gradients, hessians = gradients.reshape((-1, 1)), hessians.reshape((-1, 1))
+ raw_predictions = rng.normal(size=(n_samples, 1))
+ loss.gradient_hessian(
+ y_true=y,
+ raw_prediction=raw_predictions,
+ sample_weight=sample_weight,
+ gradient_out=gradients,
+ hessian_out=hessians,
+ n_threads=n_threads,
)
# build sum_sample_weight which contains the sum of the sample weights at
@@ -716,7 +737,9 @@ def test_sum_hessians_are_sample_weight(loss_name):
]
# Build histogram
- grower = TreeGrower(X_binned, gradients[0], hessians[0], n_bins=bin_mapper.n_bins)
+ grower = TreeGrower(
+ X_binned, gradients[:, 0], hessians[:, 0], n_bins=bin_mapper.n_bins
+ )
histograms = grower.histogram_builder.compute_histograms_brute(
grower.root.sample_indices
)
@@ -789,13 +812,13 @@ def test_single_node_trees(Est):
[
(
HistGradientBoostingClassifier,
- BinaryCrossEntropy(sample_weight=None),
+ HalfBinomialLoss(sample_weight=None),
X_classification,
y_classification,
),
(
HistGradientBoostingRegressor,
- LeastSquares(sample_weight=None),
+ HalfSquaredError(sample_weight=None),
X_regression,
y_regression,
),
diff --git a/sklearn/ensemble/_hist_gradient_boosting/tests/test_loss.py b/sklearn/ensemble/_hist_gradient_boosting/tests/test_loss.py
deleted file mode 100644
index 813163802f956..0000000000000
--- a/sklearn/ensemble/_hist_gradient_boosting/tests/test_loss.py
+++ /dev/null
@@ -1,348 +0,0 @@
-import numpy as np
-from numpy.testing import assert_almost_equal
-from numpy.testing import assert_allclose
-from scipy.optimize import newton
-from scipy.special import logit
-from sklearn.utils import assert_all_finite
-from sklearn.utils.fixes import sp_version, parse_version
-import pytest
-
-from sklearn.ensemble._hist_gradient_boosting.loss import _LOSSES
-from sklearn.ensemble._hist_gradient_boosting.common import Y_DTYPE
-from sklearn.ensemble._hist_gradient_boosting.common import G_H_DTYPE
-from sklearn.utils._testing import skip_if_32bit
-from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
-
-n_threads = _openmp_effective_n_threads()
-
-
-def get_derivatives_helper(loss):
- """Return get_gradients() and get_hessians() functions for a given loss."""
-
- def get_gradients(y_true, raw_predictions):
- # create gradients and hessians array, update inplace, and return
- gradients = np.empty_like(raw_predictions, dtype=G_H_DTYPE)
- hessians = np.empty_like(raw_predictions, dtype=G_H_DTYPE)
- loss.update_gradients_and_hessians(
- gradients, hessians, y_true, raw_predictions, None
- )
- return gradients
-
- def get_hessians(y_true, raw_predictions):
- # create gradients and hessians array, update inplace, and return
- gradients = np.empty_like(raw_predictions, dtype=G_H_DTYPE)
- hessians = np.empty_like(raw_predictions, dtype=G_H_DTYPE)
- loss.update_gradients_and_hessians(
- gradients, hessians, y_true, raw_predictions, None
- )
-
- if loss.__class__.__name__ == "LeastSquares":
- # hessians aren't updated because they're constant:
- # the value is 1 (and not 2) because the loss is actually an half
- # least squares loss.
- hessians = np.full_like(raw_predictions, fill_value=1)
- elif loss.__class__.__name__ == "LeastAbsoluteDeviation":
- # hessians aren't updated because they're constant
- hessians = np.full_like(raw_predictions, fill_value=0)
-
- return hessians
-
- return get_gradients, get_hessians
-
-
[email protected](
- "loss, x0, y_true",
- [
- ("squared_error", -2.0, 42),
- ("squared_error", 117.0, 1.05),
- ("squared_error", 0.0, 0.0),
- # The argmin of binary_crossentropy for y_true=0 and y_true=1 is resp. -inf
- # and +inf due to logit, cf. "complete separation". Therefore, we use
- # 0 < y_true < 1.
- ("binary_crossentropy", 0.3, 0.1),
- ("binary_crossentropy", -12, 0.2),
- ("binary_crossentropy", 30, 0.9),
- ("poisson", 12.0, 1.0),
- ("poisson", 0.0, 2.0),
- ("poisson", -22.0, 10.0),
- ],
-)
[email protected](
- sp_version == parse_version("1.2.0"),
- reason="bug in scipy 1.2.0, see scipy issue #9608",
-)
-@skip_if_32bit
-def test_derivatives(loss, x0, y_true):
- # Check that gradients are zero when the loss is minimized on a single
- # value/sample using Halley's method with the first and second order
- # derivatives computed by the Loss instance.
- # Note that methods of Loss instances operate on arrays while the newton
- # root finder expects a scalar or a one-element array for this purpose.
-
- loss = _LOSSES[loss](sample_weight=None)
- y_true = np.array([y_true], dtype=Y_DTYPE)
- x0 = np.array([x0], dtype=Y_DTYPE).reshape(1, 1)
- get_gradients, get_hessians = get_derivatives_helper(loss)
-
- def func(x: np.ndarray) -> np.ndarray:
- if isinstance(loss, _LOSSES["binary_crossentropy"]):
- # Subtract a constant term such that the binary cross entropy
- # has its minimum at zero, which is needed for the newton method.
- actual_min = loss.pointwise_loss(y_true, logit(y_true))
- return loss.pointwise_loss(y_true, x) - actual_min
- else:
- return loss.pointwise_loss(y_true, x)
-
- def fprime(x: np.ndarray) -> np.ndarray:
- return get_gradients(y_true, x)
-
- def fprime2(x: np.ndarray) -> np.ndarray:
- return get_hessians(y_true, x)
-
- optimum = newton(func, x0=x0, fprime=fprime, fprime2=fprime2, maxiter=70, tol=2e-8)
-
- # Need to ravel arrays because assert_allclose requires matching dimensions
- y_true = y_true.ravel()
- optimum = optimum.ravel()
- assert_allclose(loss.inverse_link_function(optimum), y_true)
- assert_allclose(func(optimum), 0, atol=1e-14)
- assert_allclose(get_gradients(y_true, optimum), 0, atol=1e-6)
-
-
[email protected](
- "loss, n_classes, prediction_dim",
- [
- ("squared_error", 0, 1),
- ("absolute_error", 0, 1),
- ("binary_crossentropy", 2, 1),
- ("categorical_crossentropy", 3, 3),
- ("poisson", 0, 1),
- ],
-)
[email protected](
- Y_DTYPE != np.float64, reason="Need 64 bits float precision for numerical checks"
-)
-def test_numerical_gradients(loss, n_classes, prediction_dim, seed=0):
- # Make sure gradients and hessians computed in the loss are correct, by
- # comparing with their approximations computed with finite central
- # differences.
- # See https://en.wikipedia.org/wiki/Finite_difference.
-
- rng = np.random.RandomState(seed)
- n_samples = 100
- if loss in ("squared_error", "absolute_error"):
- y_true = rng.normal(size=n_samples).astype(Y_DTYPE)
- elif loss in ("poisson"):
- y_true = rng.poisson(size=n_samples).astype(Y_DTYPE)
- else:
- y_true = rng.randint(0, n_classes, size=n_samples).astype(Y_DTYPE)
- raw_predictions = rng.normal(size=(prediction_dim, n_samples)).astype(Y_DTYPE)
- loss = _LOSSES[loss](sample_weight=None, n_threads=n_threads)
- get_gradients, get_hessians = get_derivatives_helper(loss)
-
- # only take gradients and hessians of first tree / class.
- gradients = get_gradients(y_true, raw_predictions)[0, :].ravel()
- hessians = get_hessians(y_true, raw_predictions)[0, :].ravel()
-
- # Approximate gradients
- # For multiclass loss, we should only change the predictions of one tree
- # (here the first), hence the use of offset[0, :] += eps
- # As a softmax is computed, offsetting the whole array by a constant would
- # have no effect on the probabilities, and thus on the loss
- eps = 1e-9
- offset = np.zeros_like(raw_predictions)
- offset[0, :] = eps
- f_plus_eps = loss.pointwise_loss(y_true, raw_predictions + offset / 2)
- f_minus_eps = loss.pointwise_loss(y_true, raw_predictions - offset / 2)
- numerical_gradients = (f_plus_eps - f_minus_eps) / eps
-
- # Approximate hessians
- eps = 1e-4 # need big enough eps as we divide by its square
- offset[0, :] = eps
- f_plus_eps = loss.pointwise_loss(y_true, raw_predictions + offset)
- f_minus_eps = loss.pointwise_loss(y_true, raw_predictions - offset)
- f = loss.pointwise_loss(y_true, raw_predictions)
- numerical_hessians = (f_plus_eps + f_minus_eps - 2 * f) / eps ** 2
-
- assert_allclose(numerical_gradients, gradients, rtol=1e-4, atol=1e-7)
- assert_allclose(numerical_hessians, hessians, rtol=1e-4, atol=1e-7)
-
-
-def test_baseline_least_squares():
- rng = np.random.RandomState(0)
-
- loss = _LOSSES["squared_error"](sample_weight=None)
- y_train = rng.normal(size=100)
- baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
- assert baseline_prediction.shape == tuple() # scalar
- assert baseline_prediction.dtype == y_train.dtype
- # Make sure baseline prediction is the mean of all targets
- assert_almost_equal(baseline_prediction, y_train.mean())
- assert np.allclose(
- loss.inverse_link_function(baseline_prediction), baseline_prediction
- )
-
-
-def test_baseline_absolute_error():
- rng = np.random.RandomState(0)
-
- loss = _LOSSES["absolute_error"](sample_weight=None)
- y_train = rng.normal(size=100)
- baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
- assert baseline_prediction.shape == tuple() # scalar
- assert baseline_prediction.dtype == y_train.dtype
- # Make sure baseline prediction is the median of all targets
- assert np.allclose(
- loss.inverse_link_function(baseline_prediction), baseline_prediction
- )
- assert baseline_prediction == pytest.approx(np.median(y_train))
-
-
-def test_baseline_poisson():
- rng = np.random.RandomState(0)
-
- loss = _LOSSES["poisson"](sample_weight=None)
- y_train = rng.poisson(size=100).astype(np.float64)
- # Sanity check, make sure at least one sample is non-zero so we don't take
- # log(0)
- assert y_train.sum() > 0
- baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
- assert np.isscalar(baseline_prediction)
- assert baseline_prediction.dtype == y_train.dtype
- assert_all_finite(baseline_prediction)
- # Make sure baseline prediction produces the log of the mean of all targets
- assert_almost_equal(np.log(y_train.mean()), baseline_prediction)
-
- # Test baseline for y_true = 0
- y_train.fill(0.0)
- baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
- assert_all_finite(baseline_prediction)
-
-
-def test_baseline_binary_crossentropy():
- rng = np.random.RandomState(0)
-
- loss = _LOSSES["binary_crossentropy"](sample_weight=None)
- for y_train in (np.zeros(shape=100), np.ones(shape=100)):
- y_train = y_train.astype(np.float64)
- baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
- assert_all_finite(baseline_prediction)
- assert np.allclose(loss.inverse_link_function(baseline_prediction), y_train[0])
-
- # Make sure baseline prediction is equal to link_function(p), where p
- # is the proba of the positive class. We want predict_proba() to return p,
- # and by definition
- # p = inverse_link_function(raw_prediction) = sigmoid(raw_prediction)
- # So we want raw_prediction = link_function(p) = log(p / (1 - p))
- y_train = rng.randint(0, 2, size=100).astype(np.float64)
- baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
- assert baseline_prediction.shape == tuple() # scalar
- assert baseline_prediction.dtype == y_train.dtype
- p = y_train.mean()
- assert np.allclose(baseline_prediction, np.log(p / (1 - p)))
-
-
-def test_baseline_categorical_crossentropy():
- rng = np.random.RandomState(0)
-
- prediction_dim = 4
- loss = _LOSSES["categorical_crossentropy"](sample_weight=None)
- for y_train in (np.zeros(shape=100), np.ones(shape=100)):
- y_train = y_train.astype(np.float64)
- baseline_prediction = loss.get_baseline_prediction(
- y_train, None, prediction_dim
- )
- assert baseline_prediction.dtype == y_train.dtype
- assert_all_finite(baseline_prediction)
-
- # Same logic as for above test. Here inverse_link_function = softmax and
- # link_function = log
- y_train = rng.randint(0, prediction_dim + 1, size=100).astype(np.float32)
- baseline_prediction = loss.get_baseline_prediction(y_train, None, prediction_dim)
- assert baseline_prediction.shape == (prediction_dim, 1)
- for k in range(prediction_dim):
- p = (y_train == k).mean()
- assert np.allclose(baseline_prediction[k, :], np.log(p))
-
-
[email protected](
- "loss, problem",
- [
- ("squared_error", "regression"),
- ("absolute_error", "regression"),
- ("binary_crossentropy", "classification"),
- ("categorical_crossentropy", "classification"),
- ("poisson", "poisson_regression"),
- ],
-)
[email protected]("sample_weight", ["ones", "random"])
-def test_sample_weight_multiplies_gradients(loss, problem, sample_weight):
- # Make sure that passing sample weights to the gradient and hessians
- # computation methods is equivalent to multiplying by the weights.
-
- rng = np.random.RandomState(42)
- n_samples = 1000
-
- if loss == "categorical_crossentropy":
- n_classes = prediction_dim = 3
- else:
- n_classes = prediction_dim = 1
-
- if problem == "regression":
- y_true = rng.normal(size=n_samples).astype(Y_DTYPE)
- elif problem == "poisson_regression":
- y_true = rng.poisson(size=n_samples).astype(Y_DTYPE)
- else:
- y_true = rng.randint(0, n_classes, size=n_samples).astype(Y_DTYPE)
-
- if sample_weight == "ones":
- sample_weight = np.ones(shape=n_samples, dtype=Y_DTYPE)
- else:
- sample_weight = rng.normal(size=n_samples).astype(Y_DTYPE)
-
- loss_ = _LOSSES[loss](sample_weight=sample_weight, n_threads=n_threads)
-
- baseline_prediction = loss_.get_baseline_prediction(y_true, None, prediction_dim)
- raw_predictions = np.zeros(
- shape=(prediction_dim, n_samples), dtype=baseline_prediction.dtype
- )
- raw_predictions += baseline_prediction
-
- gradients = np.empty(shape=(prediction_dim, n_samples), dtype=G_H_DTYPE)
- hessians = np.ones(shape=(prediction_dim, n_samples), dtype=G_H_DTYPE)
- loss_.update_gradients_and_hessians(
- gradients, hessians, y_true, raw_predictions, None
- )
-
- gradients_sw = np.empty(shape=(prediction_dim, n_samples), dtype=G_H_DTYPE)
- hessians_sw = np.ones(shape=(prediction_dim, n_samples), dtype=G_H_DTYPE)
- loss_.update_gradients_and_hessians(
- gradients_sw, hessians_sw, y_true, raw_predictions, sample_weight
- )
-
- assert np.allclose(gradients * sample_weight, gradients_sw)
- assert np.allclose(hessians * sample_weight, hessians_sw)
-
-
-def test_init_gradient_and_hessians_sample_weight():
- # Make sure that passing sample_weight to a loss correctly influences the
- # hessians_are_constant attribute, and consequently the shape of the
- # hessians array.
-
- prediction_dim = 2
- n_samples = 5
- sample_weight = None
- loss = _LOSSES["squared_error"](sample_weight=sample_weight)
- _, hessians = loss.init_gradients_and_hessians(
- n_samples=n_samples, prediction_dim=prediction_dim, sample_weight=None
- )
- assert loss.hessians_are_constant
- assert hessians.shape == (1, 1)
-
- sample_weight = np.ones(n_samples)
- loss = _LOSSES["squared_error"](sample_weight=sample_weight)
- _, hessians = loss.init_gradients_and_hessians(
- n_samples=n_samples, prediction_dim=prediction_dim, sample_weight=sample_weight
- )
- assert not loss.hessians_are_constant
- assert hessians.shape == (prediction_dim, n_samples)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 61d5c64255f71..eb7133b510c81 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -210,6 +210,12 @@ Changelog\n :mod:`sklearn.ensemble`\n .......................\n \n+- |Enhancement| :class:`ensemble.HistGradientBoostingClassifier` is faster,\n+ for binary and in particular for multiclass problems thanks to the new private loss\n+ function module.\n+ :pr:`20811`, :pr:`20567` and :pr:`21814` by\n+ :user:`Christian Lorentzen <lorentzenchr>`.\n+\n - |API| Changed the default of :func:`max_features` to 1.0 for\n :class:`ensemble.RandomForestRegressor` and to `\"sqrt\"` for\n :class:`ensemble.RandomForestClassifier`. Note that these give the same fit\n"
}
] |
1.01
|
5d7dc4ba327c138cf63be5cd9238200037c1eb13
|
[
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfMultinomialLoss-1.0-[0.2, 0.5, 0.3]-0.93983106084446]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[squared_error-117.0-1.05]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss1-y_pred_success1-y_pred_fail1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss0-y_pred_success0-y_pred_fail0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfBinomialLoss-0.25-1.3862943611198906-1.2628643221541276]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfMultinomialLoss-0.0-[0.2, 0.5, 0.3]-1.23983106084446]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_binomial_and_multinomial_loss",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_multinomial_loss_fit_intercept_only",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss17-y_pred_success17-y_pred_fail17]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss4-y_true_success4-y_true_fail4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss6-y_true_success6-y_true_fail6]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss14-y_pred_success14-y_pred_fail14]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[squared_error--2.0-42]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss13-y_pred_success13-y_pred_fail13]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss3-y_pred_success3-y_pred_fail3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[loss4-mean-exponential]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfGammaLoss-2.0-1.3862943611198906-1.8862943611198906]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss14-y_true_success14-y_true_fail14]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss15-y_pred_success15-y_pred_fail15]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[loss1-median-normal]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[loss0-mean-normal]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss9-y_true_success9-y_true_fail9]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[binomial_loss--12-0.2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfSquaredError-1.0-5.0-8]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss7-y_pred_success7-y_pred_fail7]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss2-y_true_success2-y_true_fail2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss2-y_pred_success2-y_pred_fail2]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[poisson_loss--22.0-10.0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss16-y_true_success16-y_true_fail16]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss16-y_pred_success16-y_pred_fail16]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss5-y_true_success5-y_true_fail5]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[binomial_loss-30-0.9]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss10-y_pred_success10-y_pred_fail10]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[binomial_loss-0.3-0.1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss4-y_pred_success4-y_pred_fail4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss17-y_true_success17-y_true_fail17]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[loss2-<lambda>-normal]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss15-y_true_success15-y_true_fail15]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[loss3-mean-poisson]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfTweedieLoss-2.0-1.3862943611198906--0.1875]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss10-y_true_success10-y_true_fail10]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[loss6-mean-binomial]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss13-y_true_success13-y_true_fail13]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfMultinomialLoss-2.0-[0.2, 0.5, 0.3]-1.13983106084446]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[squared_error-0.0-0.0]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss5-y_pred_success5-y_pred_fail5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss7-y_true_success7-y_true_fail7]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss11-y_true_success11-y_true_fail11]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[poisson_loss-12.0-1.0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss1-y_true_success1-y_true_fail1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss9-y_pred_success9-y_pred_fail9]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[PinballLoss-1.0-5.0-2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[random-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss8-y_true_success8-y_true_fail8]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss6-y_pred_success6-y_pred_fail6]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss8-y_pred_success8-y_pred_fail8]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfPoissonLoss-2.0-1.3862943611198906-1.2274112777602189]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[PinballLoss-1.0-5.0-3.0]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[AbsoluteError-1.0-5.0-4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[loss5-mean-exponential]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[PinballLoss-5.0-1.0-1.0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss12-y_pred_success12-y_pred_fail12]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss12-y_true_success12-y_true_fail12]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss0-y_true_success0-y_true_fail0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss11-y_pred_success11-y_pred_fail11]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss3-y_true_success3-y_true_fail3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[poisson_loss-0.0-2.0]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[ones-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfPoissonLoss]"
] |
[
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfTweedieLoss]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 61d5c64255f71..eb7133b510c81 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -210,6 +210,12 @@ Changelog\n :mod:`sklearn.ensemble`\n .......................\n \n+- |Enhancement| :class:`ensemble.HistGradientBoostingClassifier` is faster,\n+ for binary and in particular for multiclass problems thanks to the new private loss\n+ function module.\n+ :pr:`<PRID>`, :pr:`<PRID>` and :pr:`<PRID>` by\n+ :user:`<NAME>`.\n+\n - |API| Changed the default of :func:`max_features` to 1.0 for\n :class:`ensemble.RandomForestRegressor` and to `\"sqrt\"` for\n :class:`ensemble.RandomForestClassifier`. Note that these give the same fit\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 61d5c64255f71..eb7133b510c81 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -210,6 +210,12 @@ Changelog
:mod:`sklearn.ensemble`
.......................
+- |Enhancement| :class:`ensemble.HistGradientBoostingClassifier` is faster,
+ for binary and in particular for multiclass problems thanks to the new private loss
+ function module.
+ :pr:`<PRID>`, :pr:`<PRID>` and :pr:`<PRID>` by
+ :user:`<NAME>`.
+
- |API| Changed the default of :func:`max_features` to 1.0 for
:class:`ensemble.RandomForestRegressor` and to `"sqrt"` for
:class:`ensemble.RandomForestClassifier`. Note that these give the same fit
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22137
|
https://github.com/scikit-learn/scikit-learn/pull/22137
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index f0ccdc999c175..4be3104771cba 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -493,6 +493,11 @@ Changelog
:class:`kernel_approximation.RBFSampler`, and
:class:`kernel_approximation.SkewedChi2Sampler`. :pr:`22694` by `Thomas Fan`_.
+- |API| Adds :term:`get_feature_names_out` to the following transformers
+ of the :mod:`~sklearn.kernel_approximation` module:
+ :class:`~sklearn.kernel_approximation.AdditiveChi2Sampler`.
+ :pr:`22137` by `Thomas Fan`_.
+
:mod:`sklearn.linear_model`
...........................
diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py
index 8418e99d1667e..1e4f4c6aa1301 100644
--- a/sklearn/kernel_approximation.py
+++ b/sklearn/kernel_approximation.py
@@ -25,6 +25,7 @@
from .utils import check_random_state
from .utils.extmath import safe_sparse_dot
from .utils.validation import check_is_fitted
+from .utils.validation import _check_feature_names_in
from .metrics.pairwise import pairwise_kernels, KERNEL_PARAMS
from .utils.validation import check_non_negative
@@ -664,6 +665,33 @@ def transform(self, X):
transf = self._transform_sparse if sparse else self._transform_dense
return transf(X)
+ def get_feature_names_out(self, input_features=None):
+ """Get output feature names for transformation.
+
+ Parameters
+ ----------
+ input_features : array-like of str or None, default=None
+ Only used to validate feature names with the names seen in :meth:`fit`.
+
+ Returns
+ -------
+ feature_names_out : ndarray of str objects
+ Transformed feature names.
+ """
+ input_features = _check_feature_names_in(
+ self, input_features, generate_names=True
+ )
+ est_name = self.__class__.__name__.lower()
+
+ names_list = [f"{est_name}_{name}_sqrt" for name in input_features]
+
+ for j in range(1, self.sample_steps):
+ cos_names = [f"{est_name}_{name}_cos{j}" for name in input_features]
+ sin_names = [f"{est_name}_{name}_sin{j}" for name in input_features]
+ names_list.extend(cos_names + sin_names)
+
+ return np.asarray(names_list, dtype=object)
+
def _transform_dense(self, X):
non_zero = X != 0.0
X_nz = X[non_zero]
|
diff --git a/sklearn/tests/test_kernel_approximation.py b/sklearn/tests/test_kernel_approximation.py
index 75b64d4087587..456a7f49ce6ff 100644
--- a/sklearn/tests/test_kernel_approximation.py
+++ b/sklearn/tests/test_kernel_approximation.py
@@ -360,3 +360,33 @@ def test_get_feature_names_out(Estimator):
class_name = Estimator.__name__.lower()
expected_names = [f"{class_name}{i}" for i in range(X_trans.shape[1])]
assert_array_equal(names_out, expected_names)
+
+
+def test_additivechi2sampler_get_feature_names_out():
+ """Check get_feature_names_out for for AdditiveChi2Sampler."""
+ rng = np.random.RandomState(0)
+ X = rng.random_sample(size=(300, 3))
+
+ chi2_sampler = AdditiveChi2Sampler(sample_steps=3).fit(X)
+ input_names = ["f0", "f1", "f2"]
+ suffixes = [
+ "f0_sqrt",
+ "f1_sqrt",
+ "f2_sqrt",
+ "f0_cos1",
+ "f1_cos1",
+ "f2_cos1",
+ "f0_sin1",
+ "f1_sin1",
+ "f2_sin1",
+ "f0_cos2",
+ "f1_cos2",
+ "f2_cos2",
+ "f0_sin2",
+ "f1_sin2",
+ "f2_sin2",
+ ]
+
+ names_out = chi2_sampler.get_feature_names_out(input_features=input_names)
+ expected_names = [f"additivechi2sampler_{suffix}" for suffix in suffixes]
+ assert_array_equal(names_out, expected_names)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex f0ccdc999c175..4be3104771cba 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -493,6 +493,11 @@ Changelog\n :class:`kernel_approximation.RBFSampler`, and\n :class:`kernel_approximation.SkewedChi2Sampler`. :pr:`22694` by `Thomas Fan`_.\n \n+- |API| Adds :term:`get_feature_names_out` to the following transformers \n+ of the :mod:`~sklearn.kernel_approximation` module:\n+ :class:`~sklearn.kernel_approximation.AdditiveChi2Sampler`.\n+ :pr:`22137` by `Thomas Fan`_.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
1.01
|
d616e43947340e152e4a901931e954d699368fa9
|
[
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_poly_kernel_params",
"sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[RBFSampler]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_skewed_chi2_sampler",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_singular_kernel",
"sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[SkewedChi2Sampler]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_precomputed_kernel",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_raises_if_degree_lower_than_one[0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_rbf_sampler",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_callable",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_exceptions",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_component_indices",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_default_parameters",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[Nystroem]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_get_feature_names_out[PolynomialCountSketch]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_input_validation",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_approximation",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_raises_if_degree_lower_than_one[-1]"
] |
[
"sklearn/tests/test_kernel_approximation.py::test_additivechi2sampler_get_feature_names_out"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex f0ccdc999c175..4be3104771cba 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -493,6 +493,11 @@ Changelog\n :class:`kernel_approximation.RBFSampler`, and\n :class:`kernel_approximation.SkewedChi2Sampler`. :pr:`<PRID>` by `<NAME>`_.\n \n+- |API| Adds :term:`get_feature_names_out` to the following transformers \n+ of the :mod:`~sklearn.kernel_approximation` module:\n+ :class:`~sklearn.kernel_approximation.AdditiveChi2Sampler`.\n+ :pr:`<PRID>` by `<NAME>`_.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index f0ccdc999c175..4be3104771cba 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -493,6 +493,11 @@ Changelog
:class:`kernel_approximation.RBFSampler`, and
:class:`kernel_approximation.SkewedChi2Sampler`. :pr:`<PRID>` by `<NAME>`_.
+- |API| Adds :term:`get_feature_names_out` to the following transformers
+ of the :mod:`~sklearn.kernel_approximation` module:
+ :class:`~sklearn.kernel_approximation.AdditiveChi2Sampler`.
+ :pr:`<PRID>` by `<NAME>`_.
+
:mod:`sklearn.linear_model`
...........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22808
|
https://github.com/scikit-learn/scikit-learn/pull/22808
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 10baed44932ab..fdc04fdff88fe 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -618,6 +618,10 @@ Changelog
:class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`9087` by
:user:`Arthur Imbert <Henley13>` and :pr:`22525` by :user:`Meekail Zain <micky774>`.
+- |Feature| :class:`ElasticNet`, :class:`ElasticNetCV`, :class:`Lasso` and
+ :class:`LassoCV` support `sample_weight` for sparse input `X`.
+ :pr:`22808` by :user:`Christian Lorentzen <lorentzenchr>`.
+
- |Fix| The `coef_` and `intercept_` attributes of :class:`LinearRegression` are now
correctly computed in the presence of sample weights when the input is sparse.
:pr:`22891` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
@@ -625,7 +629,7 @@ Changelog
- |Fix| The `coef_` and `intercept_` attributes of :class:`Ridge` with
`solver="sparse_cg"` and `solver="lbfgs"` are now correctly computed in the presence
of sample weights when the input is sparse.
- :pr:`22899` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
+ :pr:`22899` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
:mod:`sklearn.manifold`
.......................
diff --git a/sklearn/linear_model/_base.py b/sklearn/linear_model/_base.py
index 3a48908fde620..a7dbb00a5f4ce 100644
--- a/sklearn/linear_model/_base.py
+++ b/sklearn/linear_model/_base.py
@@ -217,7 +217,6 @@ def _preprocess_data(
normalize=False,
copy=True,
sample_weight=None,
- return_mean=False,
check_input=True,
):
"""Center and scale data.
@@ -231,7 +230,7 @@ def _preprocess_data(
X_scale is the L2 norm of X - X_offset. If sample_weight is not None,
then the weighted mean of X and y is zero, and not the mean itself. If
- return_mean=True, the mean, eventually weighted, is returned, independently
+ fit_intercept=True, the mean, eventually weighted, is returned, independently
of whether X was centered (option used for optimization with sparse data in
coordinate_descend).
@@ -271,8 +270,6 @@ def _preprocess_data(
if fit_intercept:
if sp.issparse(X):
X_offset, X_var = mean_variance_axis(X, axis=0, weights=sample_weight)
- if not return_mean:
- X_offset[:] = X.dtype.type(0)
else:
if normalize:
X_offset, X_var, _ = _incremental_mean_and_var(
@@ -328,7 +325,18 @@ def _preprocess_data(
def _rescale_data(X, y, sample_weight):
"""Rescale data sample-wise by square root of sample_weight.
- For many linear models, this enables easy support for sample_weight.
+ For many linear models, this enables easy support for sample_weight because
+
+ (y - X w)' S (y - X w)
+
+ with S = diag(sample_weight) becomes
+
+ ||y_rescaled - X_rescaled w||_2^2
+
+ when setting
+
+ y_rescaled = sqrt(S) y
+ X_rescaled = sqrt(S) X
Returns
-------
@@ -687,7 +695,6 @@ def fit(self, X, y, sample_weight=None):
normalize=_normalize,
copy=self.copy_X,
sample_weight=sample_weight,
- return_mean=True,
)
# Sample weight can be implemented via a simple rescaling.
@@ -824,8 +831,8 @@ def _pre_fit(
fit_intercept=fit_intercept,
normalize=normalize,
copy=False,
- return_mean=True,
check_input=check_input,
+ sample_weight=sample_weight,
)
else:
# copy was done in fit if necessary
@@ -838,8 +845,11 @@ def _pre_fit(
check_input=check_input,
sample_weight=sample_weight,
)
- if sample_weight is not None:
- X, y, _ = _rescale_data(X, y, sample_weight=sample_weight)
+ # Rescale only in dense case. Sparse cd solver directly deals with
+ # sample_weight.
+ if sample_weight is not None:
+ # This triggers copies anyway.
+ X, y, _ = _rescale_data(X, y, sample_weight=sample_weight)
# FIXME: 'normalize' to be removed in 1.2
if hasattr(precompute, "__array__"):
diff --git a/sklearn/linear_model/_cd_fast.pyx b/sklearn/linear_model/_cd_fast.pyx
index 19b4d0a6abd10..c64a464a7da9e 100644
--- a/sklearn/linear_model/_cd_fast.pyx
+++ b/sklearn/linear_model/_cd_fast.pyx
@@ -260,22 +260,45 @@ def enet_coordinate_descent(floating[::1] w,
return w, gap, tol, n_iter + 1
-def sparse_enet_coordinate_descent(floating [::1] w,
- floating alpha, floating beta,
- np.ndarray[floating, ndim=1, mode='c'] X_data,
- np.ndarray[int, ndim=1, mode='c'] X_indices,
- np.ndarray[int, ndim=1, mode='c'] X_indptr,
- np.ndarray[floating, ndim=1] y,
- floating[:] X_mean, int max_iter,
- floating tol, object rng, bint random=0,
- bint positive=0):
+def sparse_enet_coordinate_descent(
+ floating [::1] w,
+ floating alpha,
+ floating beta,
+ np.ndarray[floating, ndim=1, mode='c'] X_data,
+ np.ndarray[int, ndim=1, mode='c'] X_indices,
+ np.ndarray[int, ndim=1, mode='c'] X_indptr,
+ floating[::1] y,
+ floating[::1] sample_weight,
+ floating[::1] X_mean,
+ int max_iter,
+ floating tol,
+ object rng,
+ bint random=0,
+ bint positive=0,
+):
"""Cython version of the coordinate descent algorithm for Elastic-Net
We minimize:
- (1/2) * norm(y - X w, 2)^2 + alpha norm(w, 1) + (beta/2) * norm(w, 2)^2
+ 1/2 * norm(y - Z w, 2)^2 + alpha * norm(w, 1) + (beta/2) * norm(w, 2)^2
+
+ where Z = X - X_mean.
+ With sample weights sw, this becomes
+ 1/2 * sum(sw * (y - Z w)^2, axis=0) + alpha * norm(w, 1)
+ + (beta/2) * norm(w, 2)^2
+
+ and X_mean is the weighted average of X (per column).
"""
+ # Notes for sample_weight:
+ # For dense X, one centers X and y and then rescales them by sqrt(sample_weight).
+ # Here, for sparse X, we get the sample_weight averaged center X_mean. We take care
+ # that every calculation results as if we had rescaled y and X (and therefore also
+ # X_mean) by sqrt(sample_weight) without actually calculating the square root.
+ # We work with:
+ # yw = sample_weight
+ # R = sample_weight * residual
+ # norm_cols_X = np.sum(sample_weight * (X - X_mean)**2, axis=0)
# get the data information into easy vars
cdef unsigned int n_samples = y.shape[0]
@@ -289,10 +312,10 @@ def sparse_enet_coordinate_descent(floating [::1] w,
cdef unsigned int endptr
# initial value of the residuals
- cdef floating[:] R = y.copy()
-
- cdef floating[:] X_T_R
- cdef floating[:] XtA
+ # R = y - Zw, weighted version R = sample_weight * (y - Zw)
+ cdef floating[::1] R
+ cdef floating[::1] XtA
+ cdef floating[::1] yw
if floating is float:
dtype = np.float32
@@ -300,7 +323,6 @@ def sparse_enet_coordinate_descent(floating [::1] w,
dtype = np.float64
norm_cols_X = np.zeros(n_features, dtype=dtype)
- X_T_R = np.zeros(n_features, dtype=dtype)
XtA = np.zeros(n_features, dtype=dtype)
cdef floating tmp
@@ -324,6 +346,14 @@ def sparse_enet_coordinate_descent(floating [::1] w,
cdef UINT32_t rand_r_state_seed = rng.randint(0, RAND_R_MAX)
cdef UINT32_t* rand_r_state = &rand_r_state_seed
cdef bint center = False
+ cdef bint no_sample_weights = sample_weight is None
+
+ if no_sample_weights:
+ yw = y
+ R = y.copy()
+ else:
+ yw = np.multiply(sample_weight, y)
+ R = yw.copy()
with nogil:
# center = (X_mean != 0).any()
@@ -338,19 +368,32 @@ def sparse_enet_coordinate_descent(floating [::1] w,
normalize_sum = 0.0
w_ii = w[ii]
- for jj in range(startptr, endptr):
- normalize_sum += (X_data[jj] - X_mean_ii) ** 2
- R[X_indices[jj]] -= X_data[jj] * w_ii
- norm_cols_X[ii] = normalize_sum + \
- (n_samples - endptr + startptr) * X_mean_ii ** 2
-
- if center:
- for jj in range(n_samples):
- R[jj] += X_mean_ii * w_ii
+ if no_sample_weights:
+ for jj in range(startptr, endptr):
+ normalize_sum += (X_data[jj] - X_mean_ii) ** 2
+ R[X_indices[jj]] -= X_data[jj] * w_ii
+ norm_cols_X[ii] = normalize_sum + \
+ (n_samples - endptr + startptr) * X_mean_ii ** 2
+ if center:
+ for jj in range(n_samples):
+ R[jj] += X_mean_ii * w_ii
+ else:
+ for jj in range(startptr, endptr):
+ tmp = sample_weight[X_indices[jj]]
+ # second term will be subtracted by loop over range(n_samples)
+ normalize_sum += (tmp * (X_data[jj] - X_mean_ii) ** 2
+ - tmp * X_mean_ii ** 2)
+ R[X_indices[jj]] -= tmp * X_data[jj] * w_ii
+ if center:
+ for jj in range(n_samples):
+ normalize_sum += sample_weight[jj] * X_mean_ii ** 2
+ R[jj] += sample_weight[jj] * X_mean_ii * w_ii
+ norm_cols_X[ii] = normalize_sum
startptr = endptr
# tol *= np.dot(y, y)
- tol *= _dot(n_samples, &y[0], 1, &y[0], 1)
+ # with sample weights: tol *= y @ (sw * y)
+ tol *= _dot(n_samples, &y[0], 1, &yw[0], 1)
for n_iter in range(max_iter):
@@ -373,11 +416,19 @@ def sparse_enet_coordinate_descent(floating [::1] w,
if w_ii != 0.0:
# R += w_ii * X[:,ii]
- for jj in range(startptr, endptr):
- R[X_indices[jj]] += X_data[jj] * w_ii
- if center:
- for jj in range(n_samples):
- R[jj] -= X_mean_ii * w_ii
+ if no_sample_weights:
+ for jj in range(startptr, endptr):
+ R[X_indices[jj]] += X_data[jj] * w_ii
+ if center:
+ for jj in range(n_samples):
+ R[jj] -= X_mean_ii * w_ii
+ else:
+ for jj in range(startptr, endptr):
+ tmp = sample_weight[X_indices[jj]]
+ R[X_indices[jj]] += tmp * X_data[jj] * w_ii
+ if center:
+ for jj in range(n_samples):
+ R[jj] -= sample_weight[jj] * X_mean_ii * w_ii
# tmp = (X[:,ii] * R).sum()
tmp = 0.0
@@ -398,20 +449,25 @@ def sparse_enet_coordinate_descent(floating [::1] w,
if w[ii] != 0.0:
# R -= w[ii] * X[:,ii] # Update residual
- for jj in range(startptr, endptr):
- R[X_indices[jj]] -= X_data[jj] * w[ii]
-
- if center:
- for jj in range(n_samples):
- R[jj] += X_mean_ii * w[ii]
+ if no_sample_weights:
+ for jj in range(startptr, endptr):
+ R[X_indices[jj]] -= X_data[jj] * w[ii]
+ if center:
+ for jj in range(n_samples):
+ R[jj] += X_mean_ii * w[ii]
+ else:
+ for jj in range(startptr, endptr):
+ tmp = sample_weight[X_indices[jj]]
+ R[X_indices[jj]] -= tmp * X_data[jj] * w[ii]
+ if center:
+ for jj in range(n_samples):
+ R[jj] += sample_weight[jj] * X_mean_ii * w[ii]
# update the maximum absolute coefficient update
d_w_ii = fabs(w[ii] - w_ii)
- if d_w_ii > d_w_max:
- d_w_max = d_w_ii
+ d_w_max = fmax(d_w_max, d_w_ii)
- if fabs(w[ii]) > w_max:
- w_max = fabs(w[ii])
+ w_max = fmax(w_max, fabs(w[ii]))
if w_max == 0.0 or d_w_max / w_max < d_w_tol or n_iter == max_iter - 1:
# the biggest coordinate update of this iteration was smaller than
@@ -424,14 +480,15 @@ def sparse_enet_coordinate_descent(floating [::1] w,
for jj in range(n_samples):
R_sum += R[jj]
+ # XtA = X.T @ R - beta * w
for ii in range(n_features):
- X_T_R[ii] = 0.0
+ XtA[ii] = 0.0
for jj in range(X_indptr[ii], X_indptr[ii + 1]):
- X_T_R[ii] += X_data[jj] * R[X_indices[jj]]
+ XtA[ii] += X_data[jj] * R[X_indices[jj]]
if center:
- X_T_R[ii] -= X_mean[ii] * R_sum
- XtA[ii] = X_T_R[ii] - beta * w[ii]
+ XtA[ii] -= X_mean[ii] * R_sum
+ XtA[ii] -= beta * w[ii]
if positive:
dual_norm_XtA = max(n_features, &XtA[0])
@@ -439,7 +496,14 @@ def sparse_enet_coordinate_descent(floating [::1] w,
dual_norm_XtA = abs_max(n_features, &XtA[0])
# R_norm2 = np.dot(R, R)
- R_norm2 = _dot(n_samples, &R[0], 1, &R[0], 1)
+ if no_sample_weights:
+ R_norm2 = _dot(n_samples, &R[0], 1, &R[0], 1)
+ else:
+ R_norm2 = 0.0
+ for jj in range(n_samples):
+ # R is already multiplied by sample_weight
+ if sample_weight[jj] != 0:
+ R_norm2 += (R[jj] ** 2) / sample_weight[jj]
# w_norm2 = np.dot(w, w)
w_norm2 = _dot(n_features, &w[0], 1, &w[0], 1)
diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py
index 1345ccda58a1d..997d7db41e4ad 100644
--- a/sklearn/linear_model/_coordinate_descent.py
+++ b/sklearn/linear_model/_coordinate_descent.py
@@ -164,7 +164,7 @@ def _alpha_grid(
# Workaround to find alpha_max for sparse matrices.
# since we should not destroy the sparsity of such matrices.
_, _, X_offset, _, X_scale = _preprocess_data(
- X, y, fit_intercept, normalize, return_mean=True
+ X, y, fit_intercept, normalize
)
mean_dot = X_offset * np.sum(y)
@@ -499,6 +499,7 @@ def enet_path(
"""
X_offset_param = params.pop("X_offset", None)
X_scale_param = params.pop("X_scale", None)
+ sample_weight = params.pop("sample_weight", None)
tol = params.pop("tol", 1e-4)
max_iter = params.pop("max_iter", 1000)
random_state = params.pop("random_state", None)
@@ -544,14 +545,14 @@ def enet_path(
# MultiTaskElasticNet does not support sparse matrices
if not multi_output and sparse.isspmatrix(X):
if X_offset_param is not None:
- # As sparse matrices are not actually centered we need this
- # to be passed to the CD solver.
+ # As sparse matrices are not actually centered we need this to be passed to
+ # the CD solver.
X_sparse_scaling = X_offset_param / X_scale_param
X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype)
else:
X_sparse_scaling = np.zeros(n_features, dtype=X.dtype)
- # X should be normalized and fit already if function is called
+ # X should have been passed through _pre_fit already if function is called
# from ElasticNet.fit
if check_input:
X, y, X_offset, y_offset, X_scale, precompute, Xy = _pre_fit(
@@ -606,19 +607,20 @@ def enet_path(
l2_reg = alpha * (1.0 - l1_ratio) * n_samples
if not multi_output and sparse.isspmatrix(X):
model = cd_fast.sparse_enet_coordinate_descent(
- coef_,
- l1_reg,
- l2_reg,
- X.data,
- X.indices,
- X.indptr,
- y,
- X_sparse_scaling,
- max_iter,
- tol,
- rng,
- random,
- positive,
+ w=coef_,
+ alpha=l1_reg,
+ beta=l2_reg,
+ X_data=X.data,
+ X_indices=X.indices,
+ X_indptr=X.indptr,
+ y=y,
+ sample_weight=sample_weight,
+ X_mean=X_sparse_scaling,
+ max_iter=max_iter,
+ tol=tol,
+ rng=rng,
+ random=random,
+ positive=positive,
)
elif multi_output:
model = cd_fast.enet_coordinate_descent_multi_task(
@@ -965,10 +967,6 @@ def fit(self, X, y, sample_weight=None, check_input=True):
sample_weight = None
if sample_weight is not None:
if check_input:
- if sparse.issparse(X):
- raise ValueError(
- "Sample weights do not (yet) support sparse matrices."
- )
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
# TLDR: Rescale sw to sum up to n_samples.
# Long: The objective function of Enet
@@ -1057,17 +1055,19 @@ def fit(self, X, y, sample_weight=None, check_input=True):
precompute=precompute,
Xy=this_Xy,
copy_X=True,
+ coef_init=coef_[k],
verbose=False,
- tol=self.tol,
+ return_n_iter=True,
positive=self.positive,
+ check_input=False,
+ # from here on **params
+ tol=self.tol,
X_offset=X_offset,
X_scale=X_scale,
- return_n_iter=True,
- coef_init=coef_[k],
max_iter=self.max_iter,
random_state=self.random_state,
selection=self.selection,
- check_input=False,
+ sample_weight=sample_weight,
)
coef_[k] = this_coef[:, 0]
dual_gaps_[k] = this_dual_gap[0]
@@ -1421,6 +1421,8 @@ def _path_residuals(
path_params["precompute"] = precompute
path_params["copy_X"] = False
path_params["alphas"] = alphas
+ # needed for sparse cd solver
+ path_params["sample_weight"] = sw_train
if "l1_ratio" in path_params:
path_params["l1_ratio"] = l1_ratio
@@ -1609,8 +1611,6 @@ def fit(self, X, y, sample_weight=None):
if isinstance(sample_weight, numbers.Number):
sample_weight = None
if sample_weight is not None:
- if sparse.issparse(X):
- raise ValueError("Sample weights do not (yet) support sparse matrices.")
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
model = self._get_estimator()
diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py
index a4fe5aadca0a9..900b5f7c221db 100644
--- a/sklearn/linear_model/_ridge.py
+++ b/sklearn/linear_model/_ridge.py
@@ -805,7 +805,6 @@ def fit(self, X, y, sample_weight=None):
self._normalize,
self.copy_X,
sample_weight=sample_weight,
- return_mean=True,
)
if solver == "sag" and sparse.issparse(X) and self.fit_intercept:
@@ -2011,7 +2010,10 @@ def fit(self, X, y, sample_weight=None):
self.dual_coef_ = best_coef
self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)
- X_offset += X_mean * X_scale
+ if sparse.issparse(X):
+ X_offset = X_mean * X_scale
+ else:
+ X_offset += X_mean * X_scale
self._set_intercept(X_offset, y_offset, X_scale)
if self.store_cv_values:
|
diff --git a/sklearn/linear_model/tests/test_base.py b/sklearn/linear_model/tests/test_base.py
index afe316adb9efb..2f7d30a763159 100644
--- a/sklearn/linear_model/tests/test_base.py
+++ b/sklearn/linear_model/tests/test_base.py
@@ -472,7 +472,6 @@ def test_preprocess_data_weighted(is_sparse):
fit_intercept=True,
normalize=False,
sample_weight=sample_weight,
- return_mean=True,
)
assert_array_almost_equal(X_mean, expected_X_mean)
assert_array_almost_equal(y_mean, expected_y_mean)
@@ -490,7 +489,6 @@ def test_preprocess_data_weighted(is_sparse):
fit_intercept=True,
normalize=True,
sample_weight=sample_weight,
- return_mean=True,
)
assert_array_almost_equal(X_mean, expected_X_mean)
@@ -531,7 +529,7 @@ def test_preprocess_data_weighted(is_sparse):
assert_array_almost_equal(yt, y - expected_y_mean)
-def test_sparse_preprocess_data_with_return_mean():
+def test_sparse_preprocess_data_offsets():
n_samples = 200
n_features = 2
# random_state not supported yet in sparse.rand
@@ -542,7 +540,7 @@ def test_sparse_preprocess_data_with_return_mean():
expected_X_scale = np.std(XA, axis=0) * np.sqrt(X.shape[0])
Xt, yt, X_mean, y_mean, X_scale = _preprocess_data(
- X, y, fit_intercept=False, normalize=False, return_mean=True
+ X, y, fit_intercept=False, normalize=False
)
assert_array_almost_equal(X_mean, np.zeros(n_features))
assert_array_almost_equal(y_mean, 0)
@@ -551,7 +549,7 @@ def test_sparse_preprocess_data_with_return_mean():
assert_array_almost_equal(yt, y)
Xt, yt, X_mean, y_mean, X_scale = _preprocess_data(
- X, y, fit_intercept=True, normalize=False, return_mean=True
+ X, y, fit_intercept=True, normalize=False
)
assert_array_almost_equal(X_mean, np.mean(XA, axis=0))
assert_array_almost_equal(y_mean, np.mean(y, axis=0))
@@ -560,7 +558,7 @@ def test_sparse_preprocess_data_with_return_mean():
assert_array_almost_equal(yt, y - np.mean(y, axis=0))
Xt, yt, X_mean, y_mean, X_scale = _preprocess_data(
- X, y, fit_intercept=True, normalize=True, return_mean=True
+ X, y, fit_intercept=True, normalize=True
)
assert_array_almost_equal(X_mean, np.mean(XA, axis=0))
assert_array_almost_equal(y_mean, np.mean(y, axis=0))
@@ -618,7 +616,6 @@ def test_dtype_preprocess_data():
y_32,
fit_intercept=fit_intercept,
normalize=normalize,
- return_mean=True,
)
Xt_64, yt_64, X_mean_64, y_mean_64, X_scale_64 = _preprocess_data(
@@ -626,7 +623,6 @@ def test_dtype_preprocess_data():
y_64,
fit_intercept=fit_intercept,
normalize=normalize,
- return_mean=True,
)
Xt_3264, yt_3264, X_mean_3264, y_mean_3264, X_scale_3264 = _preprocess_data(
@@ -634,7 +630,6 @@ def test_dtype_preprocess_data():
y_64,
fit_intercept=fit_intercept,
normalize=normalize,
- return_mean=True,
)
Xt_6432, yt_6432, X_mean_6432, y_mean_6432, X_scale_6432 = _preprocess_data(
@@ -642,7 +637,6 @@ def test_dtype_preprocess_data():
y_32,
fit_intercept=fit_intercept,
normalize=normalize,
- return_mean=True,
)
assert Xt_32.dtype == np.float32
diff --git a/sklearn/linear_model/tests/test_coordinate_descent.py b/sklearn/linear_model/tests/test_coordinate_descent.py
index df118be7c0cb5..e5d7ba358c1f5 100644
--- a/sklearn/linear_model/tests/test_coordinate_descent.py
+++ b/sklearn/linear_model/tests/test_coordinate_descent.py
@@ -554,9 +554,6 @@ def test_linear_model_sample_weights_normalize_in_pipeline(
# a StandardScaler and sample_weight.
model_name = estimator.__name__
- if model_name in ["Lasso", "ElasticNet"] and is_sparse:
- pytest.skip(f"{model_name} does not support sample_weight with sparse")
-
rng = np.random.RandomState(0)
X, y = make_regression(n_samples=20, n_features=5, noise=1e-2, random_state=rng)
@@ -1483,15 +1480,17 @@ def test_multi_task_lasso_cv_dtype():
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("alpha", [0.01])
[email protected]("normalize", [False, True])
@pytest.mark.parametrize("precompute", [False, True])
-def test_enet_sample_weight_consistency(fit_intercept, alpha, normalize, precompute):
[email protected]("sparseX", [False, True])
+def test_enet_sample_weight_consistency(fit_intercept, alpha, precompute, sparseX):
"""Test that the impact of sample_weight is consistent."""
rng = np.random.RandomState(0)
n_samples, n_features = 10, 5
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
+ if sparseX:
+ X = sparse.csc_matrix(X)
params = dict(
alpha=alpha,
fit_intercept=fit_intercept,
@@ -1541,7 +1540,10 @@ def test_enet_sample_weight_consistency(fit_intercept, alpha, normalize, precomp
# check that multiplying sample_weight by 2 is equivalent
# to repeating corresponding samples twice
- X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
+ if sparseX:
+ X2 = sparse.vstack([X, X[: n_samples // 2]], format="csc")
+ else:
+ X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
y2 = np.concatenate([y, y[: n_samples // 2]])
sample_weight_1 = np.ones(len(y))
sample_weight_1[: n_samples // 2] = 2
@@ -1549,23 +1551,12 @@ def test_enet_sample_weight_consistency(fit_intercept, alpha, normalize, precomp
reg1 = ElasticNet(**params).fit(X, y, sample_weight=sample_weight_1)
reg2 = ElasticNet(**params).fit(X2, y2, sample_weight=None)
- assert_allclose(reg1.coef_, reg2.coef_)
-
-
[email protected]("estimator", (Lasso, ElasticNet))
-def test_enet_sample_weight_sparse(estimator):
- reg = estimator()
- X = sparse.csc_matrix(np.zeros((3, 2)))
- y = np.array([-1, 0, 1])
- sw = np.array([1, 2, 3])
- with pytest.raises(
- ValueError, match="Sample weights do not.*support sparse matrices"
- ):
- reg.fit(X, y, sample_weight=sw, check_input=True)
+ assert_allclose(reg1.coef_, reg2.coef_, rtol=1e-6)
@pytest.mark.parametrize("fit_intercept", [True, False])
-def test_enet_cv_sample_weight_correctness(fit_intercept):
[email protected]("sparseX", [False, True])
+def test_enet_cv_sample_weight_correctness(fit_intercept, sparseX):
"""Test that ElasticNetCV with sample weights gives correct results."""
rng = np.random.RandomState(42)
n_splits, n_samples, n_features = 3, 10, 5
@@ -1574,6 +1565,9 @@ def test_enet_cv_sample_weight_correctness(fit_intercept):
beta[0:2] = 0
y = X @ beta + rng.rand(n_splits * n_samples)
sw = np.ones_like(y)
+ if sparseX:
+ X = sparse.csc_matrix(X)
+ params = dict(tol=1e-6)
# Set alphas, otherwise the two cv models might use different ones.
if fit_intercept:
@@ -1588,20 +1582,22 @@ def test_enet_cv_sample_weight_correctness(fit_intercept):
]
splits_sw = list(LeaveOneGroupOut().split(X, groups=groups_sw))
reg_sw = ElasticNetCV(
- alphas=alphas,
- cv=splits_sw,
- fit_intercept=fit_intercept,
+ alphas=alphas, cv=splits_sw, fit_intercept=fit_intercept, **params
)
reg_sw.fit(X, y, sample_weight=sw)
# We repeat the first fold 2 times and provide splits ourselves
+ if sparseX:
+ X = X.toarray()
X = np.r_[X[:n_samples], X]
+ if sparseX:
+ X = sparse.csc_matrix(X)
y = np.r_[y[:n_samples], y]
groups = np.r_[
np.full(2 * n_samples, 0), np.full(n_samples, 1), np.full(n_samples, 2)
]
splits = list(LeaveOneGroupOut().split(X, groups=groups))
- reg = ElasticNetCV(alphas=alphas, cv=splits, fit_intercept=fit_intercept)
+ reg = ElasticNetCV(alphas=alphas, cv=splits, fit_intercept=fit_intercept, **params)
reg.fit(X, y)
# ensure that we chose meaningful alphas, i.e. not boundaries
@@ -1649,7 +1645,10 @@ def test_enet_cv_grid_search(sample_weight):
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("l1_ratio", [0, 0.5, 1])
@pytest.mark.parametrize("precompute", [False, True])
-def test_enet_cv_sample_weight_consistency(fit_intercept, l1_ratio, precompute):
[email protected]("sparseX", [False, True])
+def test_enet_cv_sample_weight_consistency(
+ fit_intercept, l1_ratio, precompute, sparseX
+):
"""Test that the impact of sample_weight is consistent."""
rng = np.random.RandomState(0)
n_samples, n_features = 10, 5
@@ -1663,6 +1662,8 @@ def test_enet_cv_sample_weight_consistency(fit_intercept, l1_ratio, precompute):
tol=1e-6,
cv=3,
)
+ if sparseX:
+ X = sparse.csc_matrix(X)
if l1_ratio == 0:
params.pop("l1_ratio", None)
@@ -1695,18 +1696,6 @@ def test_enet_cv_sample_weight_consistency(fit_intercept, l1_ratio, precompute):
assert_allclose(reg.intercept_, intercept)
[email protected]("estimator", (LassoCV, ElasticNetCV))
-def test_enet_cv_sample_weight_sparse(estimator):
- reg = estimator()
- X = sparse.csc_matrix(np.zeros((3, 2)))
- y = np.array([-1, 0, 1])
- sw = np.array([1, 2, 3])
- with pytest.raises(
- ValueError, match="Sample weights do not.*support sparse matrices"
- ):
- reg.fit(X, y, sample_weight=sw)
-
-
@pytest.mark.parametrize("estimator", [ElasticNetCV, LassoCV])
def test_linear_models_cv_fit_with_loky(estimator):
# LinearModelsCV.fit performs inplace operations on fancy-indexed memmapped
diff --git a/sklearn/linear_model/tests/test_sparse_coordinate_descent.py b/sklearn/linear_model/tests/test_sparse_coordinate_descent.py
index c51f05f36b84a..b9d87e5207b7e 100644
--- a/sklearn/linear_model/tests/test_sparse_coordinate_descent.py
+++ b/sklearn/linear_model/tests/test_sparse_coordinate_descent.py
@@ -54,33 +54,38 @@ def test_lasso_zero():
assert_almost_equal(clf.dual_gap_, 0)
-def test_enet_toy_list_input():
[email protected]("with_sample_weight", [True, False])
+def test_enet_toy_list_input(with_sample_weight):
# Test ElasticNet for various values of alpha and l1_ratio with list X
X = np.array([[-1], [0], [1]])
X = sp.csc_matrix(X)
Y = [-1, 0, 1] # just a straight line
T = np.array([[2], [3], [4]]) # test sample
+ if with_sample_weight:
+ sw = np.array([2.0, 2, 2])
+ else:
+ sw = None
# this should be the same as unregularized least squares
clf = ElasticNet(alpha=0, l1_ratio=1.0)
# catch warning about alpha=0.
# this is discouraged but should work.
- ignore_warnings(clf.fit)(X, Y)
+ ignore_warnings(clf.fit)(X, Y, sample_weight=sw)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [1])
assert_array_almost_equal(pred, [2, 3, 4])
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.3)
- clf.fit(X, Y)
+ clf.fit(X, Y, sample_weight=sw)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
- clf.fit(X, Y)
+ clf.fit(X, Y, sample_weight=sw)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.45454], 3)
assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
@@ -276,7 +281,10 @@ def test_path_parameters():
@pytest.mark.parametrize("Model", [Lasso, ElasticNet, LassoCV, ElasticNetCV])
@pytest.mark.parametrize("fit_intercept", [False, True])
@pytest.mark.parametrize("n_samples, n_features", [(24, 6), (6, 24)])
-def test_sparse_dense_equality(Model, fit_intercept, n_samples, n_features):
[email protected]("with_sample_weight", [True, False])
+def test_sparse_dense_equality(
+ Model, fit_intercept, n_samples, n_features, with_sample_weight
+):
X, y = make_regression(
n_samples=n_samples,
n_features=n_features,
@@ -286,13 +294,20 @@ def test_sparse_dense_equality(Model, fit_intercept, n_samples, n_features):
noise=1,
random_state=42,
)
+ if with_sample_weight:
+ sw = np.abs(np.random.RandomState(42).normal(scale=10, size=y.shape))
+ else:
+ sw = None
Xs = sp.csc_matrix(X)
- reg_dense = Model(fit_intercept=fit_intercept).fit(X, y)
- reg_sparse = Model(fit_intercept=fit_intercept).fit(Xs, y)
+ params = {"fit_intercept": fit_intercept}
+ reg_dense = Model(**params).fit(X, y, sample_weight=sw)
+ reg_sparse = Model(**params).fit(Xs, y, sample_weight=sw)
if fit_intercept:
assert reg_sparse.intercept_ == pytest.approx(reg_dense.intercept_)
# balance property
- assert reg_sparse.predict(X).mean() == pytest.approx(y.mean())
+ assert np.average(reg_sparse.predict(X), weights=sw) == pytest.approx(
+ np.average(y, weights=sw)
+ )
assert_allclose(reg_sparse.coef_, reg_dense.coef_)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 10baed44932ab..fdc04fdff88fe 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -618,6 +618,10 @@ Changelog\n :class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`9087` by\n :user:`Arthur Imbert <Henley13>` and :pr:`22525` by :user:`Meekail Zain <micky774>`.\n \n+- |Feature| :class:`ElasticNet`, :class:`ElasticNetCV`, :class:`Lasso` and\n+ :class:`LassoCV` support `sample_weight` for sparse input `X`.\n+ :pr:`22808` by :user:`Christian Lorentzen <lorentzenchr>`.\n+\n - |Fix| The `coef_` and `intercept_` attributes of :class:`LinearRegression` are now\n correctly computed in the presence of sample weights when the input is sparse.\n :pr:`22891` by :user:`Jérémie du Boisberranger <jeremiedbb>`.\n@@ -625,7 +629,7 @@ Changelog\n - |Fix| The `coef_` and `intercept_` attributes of :class:`Ridge` with\n `solver=\"sparse_cg\"` and `solver=\"lbfgs\"` are now correctly computed in the presence\n of sample weights when the input is sparse.\n- :pr:`22899` by :user:`Jérémie du Boisberranger <jeremiedbb>`. \n+ :pr:`22899` by :user:`Jérémie du Boisberranger <jeremiedbb>`.\n \n :mod:`sklearn.manifold`\n .......................\n"
}
] |
1.01
|
e5736afb316038c43301d2c53ce39f9a89b64495
|
[
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassocv_alphas_validation[alphas1-ValueError-alphas\\\\[1\\\\] == -1, must be >= 0.0.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeCV-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_parameters",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-MultiTaskElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[BayesianRidge-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_enet_and_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-MultiTaskElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskLasso-params11]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-LassoCV]",
"sklearn/linear_model/tests/test_base.py::test_dtype_preprocess_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_toy",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-Lasso]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_multitarget",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_False_check_input_False",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_convergence_warnings",
"sklearn/linear_model/tests/test_base.py::test_preprocess_copy_data_no_checks[True-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-Ridge-params4]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-6-24-False-ElasticNet]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-6-24-True-ElasticNetCV]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[True-array]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeCV-params15]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeCV-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[True-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs2]",
"sklearn/linear_model/tests/test_base.py::test_deprecate_normalize[False-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_enet_and_multitask_enet_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params1-ValueError-l1_ratio == -1, must be >= 0.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params6-ValueError-max_iter == 0, must be >= 1.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-1.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[False-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LinearRegression-params13]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[False-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-F]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-6-24-True-LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-0.1]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_list_input[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeClassifier-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-MultiTaskLasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-False-0.5-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence_with_regularizer_decrement",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_path_return_models_vs_new_return_gives_same_coefficients",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[False-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-MultiTaskElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-True-0.5-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_readonly_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LassoCV-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeClassifier-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-ElasticNet-params2]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_copy_data_no_checks[True-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-MultiTaskElasticNetCV]",
"sklearn/linear_model/tests/test_base.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/linear_model/tests/test_base.py::test_error_on_wrong_normalize",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-LinearRegression-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_unknown_parameter[lasso_path]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-ElasticNet]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_positive_vs_nonpositive",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params4-ValueError-tol == -1.0, must be >= 0.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_cv_dtype",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_unknown_parameter[enet_path]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_check_input_false",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_not_as_toy_dataset",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_multitask_lasso",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-24-6-False-Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-1000000.0]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-24-6-True-ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassocv_alphas_validation[alphas3-TypeError-alphas\\\\[2\\\\] must be an instance of float, not str]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[False-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multioutput_enetcv_error",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeClassifier-params1]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_positive_vs_nonpositive_when_positive",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[True-csr_matrix]",
"sklearn/linear_model/tests/test_base.py::test_raises_value_error_if_positive_and_sparse",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params9]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_convergence_warning",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-True]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-24-6-False-LassoCV]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_copy_data_no_checks[False-False]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_data_weighted[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_precompute_invalid_argument",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_coef_shape_not_zero",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_and_enet",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_lasso_and_multitask_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-LassoCV]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-6-24-True-Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-True-0-True]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_same_multiple_output_sparse_dense",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params2-ValueError-l1_ratio == 2, must be <= 1.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-1.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-MultiTaskLasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-MultiTaskLassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params7-TypeError-max_iter must be an instance of int, not str]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_random_descent",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params10]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeCV-params8]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNetCV-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Ridge-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-MultiTaskElasticNetCV]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_positive_multiple_outcome",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-Ridge-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[False]",
"sklearn/linear_model/tests/test_base.py::test_fit_intercept",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_incorrect_gram",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-False-1-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_alpha_warning",
"sklearn/linear_model/tests/test_base.py::test_deprecate_normalize[False-False]",
"sklearn/linear_model/tests/test_base.py::test_rescale_data_dense[2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-0.1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[LassoCV]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_lasso_not_as_toy_dataset",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-False-0.5-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_float_precision",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-24-6-True-Lasso]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_data_multioutput",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_dtype_enet_and_lassocv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-MultiTaskLassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeClassifier-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ARDRegression-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_uniform_targets",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeClassifierCV-params9]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_multitarget",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeClassifierCV-params16]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-6-24-False-ElasticNetCV]",
"sklearn/linear_model/tests/test_base.py::test_deprecate_normalize[True-deprecated]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-LinearRegression-params5]",
"sklearn/linear_model/tests/test_base.py::test_csr_preprocess_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LinearRegression-params7]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[False-csr_matrix]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator1]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_copy_data_no_checks[False-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_gram_weighted_samples",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_normalize_option",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLarsIC-params14]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_positive_constraint",
"sklearn/linear_model/tests/test_base.py::test_linear_regression",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-6-24-True-ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_zero",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[False]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_same_output_sparse_dense_lasso_and_enet_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-MultiTaskLasso]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-24-6-True-LassoCV]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_positive",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_multiple_outcome",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-MultiTaskLassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lars-params12]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-24-6-False-ElasticNet]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-6-24-False-LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-MultiTaskElasticNet]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_coef",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_dense_descent_paths",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Ridge-params6]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_lasso_zero",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-24-6-False-ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLars-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-True-0.5-True]",
"sklearn/linear_model/tests/test_base.py::test_fused_types_make_dataset",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_with_some_model_selection",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-LinearRegression-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_dual_gap",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params3-TypeError-l1_ratio must be an instance of float, not str]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeClassifier-params1]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_pd_sparse_dataframe_warning",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[auto-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-False]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[False-array]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-True-0-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path_positive",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_l1_ratio",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-ElasticNet-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_toy",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassocv_alphas_validation[-2-ValueError-alphas == -2, must be >= 0.0.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params5-TypeError-tol must be an instance of float, not str]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassocv_alphas_validation[alphas2-ValueError-alphas\\\\[0\\\\] == -0.1, must be >= 0.0.]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-6-24-False-Lasso]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_coordinate_descent",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-F]",
"sklearn/linear_model/tests/test_base.py::test_rescale_data_dense[None]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[OrthogonalMatchingPursuit-params8]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-True-1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-False-1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeCV-params6]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[True-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params5]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[True-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-False-0-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_readonly_data",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_path_parameters",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-False]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_explicit_sparse_input",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-1000000.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-True-1-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_overrided_gram_matrix",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params0-ValueError-alpha == -1, must be >= 0.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-Ridge-params4]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_multiple_outcome",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[True]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[False-24-6-True-ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_nonfinite_params",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[False-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-False-0-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-ElasticNet-params3]"
] |
[
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-6-24-True-Lasso]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-6-24-False-ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-ElasticNet-params2]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_data_weighted[True]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-6-24-False-ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[True-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-True-0.5-True]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-24-6-False-LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-False-1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[True-True]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-6-24-False-LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-True-1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-True-0-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-Lasso-params0]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-6-24-True-ElasticNetCV]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-24-6-True-LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-False-0.5-True]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-24-6-False-ElasticNet]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_list_input[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-True-0-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-True-1-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-False-0.5-False]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-6-24-True-ElasticNet]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-24-6-True-Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-False-0-False]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-24-6-True-ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-False-0-True]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-24-6-False-ElasticNetCV]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-24-6-False-Lasso]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-24-6-True-ElasticNet]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-6-24-False-Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-True-0.5-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-False-1-True]",
"sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[True-6-24-True-LassoCV]",
"sklearn/linear_model/tests/test_base.py::test_sparse_preprocess_data_offsets"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 10baed44932ab..fdc04fdff88fe 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -618,6 +618,10 @@ Changelog\n :class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`<PRID>` by\n :user:`<NAME>` and :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Feature| :class:`ElasticNet`, :class:`ElasticNetCV`, :class:`Lasso` and\n+ :class:`LassoCV` support `sample_weight` for sparse input `X`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Fix| The `coef_` and `intercept_` attributes of :class:`LinearRegression` are now\n correctly computed in the presence of sample weights when the input is sparse.\n :pr:`<PRID>` by :user:`<NAME>`.\n@@ -625,7 +629,7 @@ Changelog\n - |Fix| The `coef_` and `intercept_` attributes of :class:`Ridge` with\n `solver=\"sparse_cg\"` and `solver=\"lbfgs\"` are now correctly computed in the presence\n of sample weights when the input is sparse.\n- :pr:`<PRID>` by :user:`<NAME>`. \n+ :pr:`<PRID>` by :user:`<NAME>`.\n \n :mod:`sklearn.manifold`\n .......................\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 10baed44932ab..fdc04fdff88fe 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -618,6 +618,10 @@ Changelog
:class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`<PRID>` by
:user:`<NAME>` and :pr:`<PRID>` by :user:`<NAME>`.
+- |Feature| :class:`ElasticNet`, :class:`ElasticNetCV`, :class:`Lasso` and
+ :class:`LassoCV` support `sample_weight` for sparse input `X`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Fix| The `coef_` and `intercept_` attributes of :class:`LinearRegression` are now
correctly computed in the presence of sample weights when the input is sparse.
:pr:`<PRID>` by :user:`<NAME>`.
@@ -625,7 +629,7 @@ Changelog
- |Fix| The `coef_` and `intercept_` attributes of :class:`Ridge` with
`solver="sparse_cg"` and `solver="lbfgs"` are now correctly computed in the presence
of sample weights when the input is sparse.
- :pr:`<PRID>` by :user:`<NAME>`.
+ :pr:`<PRID>` by :user:`<NAME>`.
:mod:`sklearn.manifold`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21808
|
https://github.com/scikit-learn/scikit-learn/pull/21808
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 39f8e405ebf7c..b88e54b46a4bf 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -393,6 +393,15 @@ Changelog
beginning which speeds up fitting.
:pr:`22206` by :user:`Christian Lorentzen <lorentzenchr>`.
+- |Enhancement| :class:`~linear_model.LogisticRegression` is faster for
+ ``solvers="lbfgs"`` and ``solver="newton-cg"``, for binary and in particular for
+ multiclass problems thanks to the new private loss function module. In the multiclass
+ case, the memory consumption has also been reduced for these solvers as the target is
+ now label encoded (mapped to integers) instead of label binarized (one-hot encoded).
+ The more classes, the larger the benefit.
+ :pr:`21808`, :pr:`20567` and :pr:`21814` by
+ :user:`Christian Lorentzen <lorentzenchr>`.
+
- |Enhancement| Rename parameter `base_estimator` to `estimator` in
:class:`linear_model.RANSACRegressor` to improve readability and consistency.
`base_estimator` is deprecated and will be removed in 1.3.
diff --git a/sklearn/linear_model/_linear_loss.py b/sklearn/linear_model/_linear_loss.py
new file mode 100644
index 0000000000000..93a7684aea5b6
--- /dev/null
+++ b/sklearn/linear_model/_linear_loss.py
@@ -0,0 +1,411 @@
+"""
+Loss functions for linear models with raw_prediction = X @ coef
+"""
+import numpy as np
+from scipy import sparse
+from ..utils.extmath import squared_norm
+
+
+class LinearModelLoss:
+ """General class for loss functions with raw_prediction = X @ coef + intercept.
+
+ The loss is the sum of per sample losses and includes a term for L2
+ regularization::
+
+ loss = sum_i s_i loss(y_i, X_i @ coef + intercept)
+ + 1/2 * l2_reg_strength * ||coef||_2^2
+
+ with sample weights s_i=1 if sample_weight=None.
+
+ Gradient and hessian, for simplicity without intercept, are::
+
+ gradient = X.T @ loss.gradient + l2_reg_strength * coef
+ hessian = X.T @ diag(loss.hessian) @ X + l2_reg_strength * identity
+
+ Conventions:
+ if fit_intercept:
+ n_dof = n_features + 1
+ else:
+ n_dof = n_features
+
+ if base_loss.is_multiclass:
+ coef.shape = (n_classes, n_dof) or ravelled (n_classes * n_dof,)
+ else:
+ coef.shape = (n_dof,)
+
+ The intercept term is at the end of the coef array:
+ if base_loss.is_multiclass:
+ if coef.shape (n_classes, n_dof):
+ intercept = coef[:, -1]
+ if coef.shape (n_classes * n_dof,)
+ intercept = coef[n_features::n_dof] = coef[(n_dof-1)::n_dof]
+ intercept.shape = (n_classes,)
+ else:
+ intercept = coef[-1]
+
+ Note: If coef has shape (n_classes * n_dof,), the 2d-array can be reconstructed as
+
+ coef.reshape((n_classes, -1), order="F")
+
+ The option order="F" makes coef[:, i] contiguous. This, in turn, makes the
+ coefficients without intercept, coef[:, :-1], contiguous and speeds up
+ matrix-vector computations.
+
+ Note: If the average loss per sample is wanted instead of the sum of the loss per
+ sample, one can simply use a rescaled sample_weight such that
+ sum(sample_weight) = 1.
+
+ Parameters
+ ----------
+ base_loss : instance of class BaseLoss from sklearn._loss.
+ fit_intercept : bool
+ """
+
+ def __init__(self, base_loss, fit_intercept):
+ self.base_loss = base_loss
+ self.fit_intercept = fit_intercept
+
+ def _w_intercept_raw(self, coef, X):
+ """Helper function to get coefficients, intercept and raw_prediction.
+
+ Parameters
+ ----------
+ coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
+ Coefficients of a linear model.
+ If shape (n_classes * n_dof,), the classes of one feature are contiguous,
+ i.e. one reconstructs the 2d-array via
+ coef.reshape((n_classes, -1), order="F").
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ Training data.
+
+ Returns
+ -------
+ weights : ndarray of shape (n_features,) or (n_classes, n_features)
+ Coefficients without intercept term.
+ intercept : float or ndarray of shape (n_classes,)
+ Intercept terms.
+ raw_prediction : ndarray of shape (n_samples,) or \
+ (n_samples, n_classes)
+ """
+ if not self.base_loss.is_multiclass:
+ if self.fit_intercept:
+ intercept = coef[-1]
+ weights = coef[:-1]
+ else:
+ intercept = 0.0
+ weights = coef
+ raw_prediction = X @ weights + intercept
+ else:
+ # reshape to (n_classes, n_dof)
+ if coef.ndim == 1:
+ weights = coef.reshape((self.base_loss.n_classes, -1), order="F")
+ else:
+ weights = coef
+ if self.fit_intercept:
+ intercept = weights[:, -1]
+ weights = weights[:, :-1]
+ else:
+ intercept = 0.0
+ raw_prediction = X @ weights.T + intercept # ndarray, likely C-contiguous
+
+ return weights, intercept, raw_prediction
+
+ def loss(self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1):
+ """Compute the loss as sum over point-wise losses.
+
+ Parameters
+ ----------
+ coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
+ Coefficients of a linear model.
+ If shape (n_classes * n_dof,), the classes of one feature are contiguous,
+ i.e. one reconstructs the 2d-array via
+ coef.reshape((n_classes, -1), order="F").
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ Training data.
+ y : contiguous array of shape (n_samples,)
+ Observed, true target values.
+ sample_weight : None or contiguous array of shape (n_samples,), default=None
+ Sample weights.
+ l2_reg_strength : float, default=0.0
+ L2 regularization strength
+ n_threads : int, default=1
+ Number of OpenMP threads to use.
+
+ Returns
+ -------
+ loss : float
+ Sum of losses per sample plus penalty.
+ """
+ weights, intercept, raw_prediction = self._w_intercept_raw(coef, X)
+
+ loss = self.base_loss.loss(
+ y_true=y,
+ raw_prediction=raw_prediction,
+ sample_weight=sample_weight,
+ n_threads=n_threads,
+ )
+ loss = loss.sum()
+
+ norm2_w = weights @ weights if weights.ndim == 1 else squared_norm(weights)
+ return loss + 0.5 * l2_reg_strength * norm2_w
+
+ def loss_gradient(
+ self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1
+ ):
+ """Computes the sum of loss and gradient w.r.t. coef.
+
+ Parameters
+ ----------
+ coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
+ Coefficients of a linear model.
+ If shape (n_classes * n_dof,), the classes of one feature are contiguous,
+ i.e. one reconstructs the 2d-array via
+ coef.reshape((n_classes, -1), order="F").
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ Training data.
+ y : contiguous array of shape (n_samples,)
+ Observed, true target values.
+ sample_weight : None or contiguous array of shape (n_samples,), default=None
+ Sample weights.
+ l2_reg_strength : float, default=0.0
+ L2 regularization strength
+ n_threads : int, default=1
+ Number of OpenMP threads to use.
+
+ Returns
+ -------
+ loss : float
+ Sum of losses per sample plus penalty.
+
+ gradient : ndarray of shape coef.shape
+ The gradient of the loss.
+ """
+ n_features, n_classes = X.shape[1], self.base_loss.n_classes
+ n_dof = n_features + int(self.fit_intercept)
+ weights, intercept, raw_prediction = self._w_intercept_raw(coef, X)
+
+ loss, grad_per_sample = self.base_loss.loss_gradient(
+ y_true=y,
+ raw_prediction=raw_prediction,
+ sample_weight=sample_weight,
+ n_threads=n_threads,
+ )
+ loss = loss.sum()
+
+ if not self.base_loss.is_multiclass:
+ loss += 0.5 * l2_reg_strength * (weights @ weights)
+ grad = np.empty_like(coef, dtype=X.dtype)
+ grad[:n_features] = X.T @ grad_per_sample + l2_reg_strength * weights
+ if self.fit_intercept:
+ grad[-1] = grad_per_sample.sum()
+ else:
+ loss += 0.5 * l2_reg_strength * squared_norm(weights)
+ grad = np.empty((n_classes, n_dof), dtype=X.dtype, order="F")
+ # grad_per_sample.shape = (n_samples, n_classes)
+ grad[:, :n_features] = grad_per_sample.T @ X + l2_reg_strength * weights
+ if self.fit_intercept:
+ grad[:, -1] = grad_per_sample.sum(axis=0)
+ if coef.ndim == 1:
+ grad = grad.ravel(order="F")
+
+ return loss, grad
+
+ def gradient(
+ self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1
+ ):
+ """Computes the gradient w.r.t. coef.
+
+ Parameters
+ ----------
+ coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
+ Coefficients of a linear model.
+ If shape (n_classes * n_dof,), the classes of one feature are contiguous,
+ i.e. one reconstructs the 2d-array via
+ coef.reshape((n_classes, -1), order="F").
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ Training data.
+ y : contiguous array of shape (n_samples,)
+ Observed, true target values.
+ sample_weight : None or contiguous array of shape (n_samples,), default=None
+ Sample weights.
+ l2_reg_strength : float, default=0.0
+ L2 regularization strength
+ n_threads : int, default=1
+ Number of OpenMP threads to use.
+
+ Returns
+ -------
+ gradient : ndarray of shape coef.shape
+ The gradient of the loss.
+ """
+ n_features, n_classes = X.shape[1], self.base_loss.n_classes
+ n_dof = n_features + int(self.fit_intercept)
+ weights, intercept, raw_prediction = self._w_intercept_raw(coef, X)
+
+ grad_per_sample = self.base_loss.gradient(
+ y_true=y,
+ raw_prediction=raw_prediction,
+ sample_weight=sample_weight,
+ n_threads=n_threads,
+ )
+
+ if not self.base_loss.is_multiclass:
+ grad = np.empty_like(coef, dtype=X.dtype)
+ grad[:n_features] = X.T @ grad_per_sample + l2_reg_strength * weights
+ if self.fit_intercept:
+ grad[-1] = grad_per_sample.sum()
+ return grad
+ else:
+ grad = np.empty((n_classes, n_dof), dtype=X.dtype, order="F")
+ # gradient.shape = (n_samples, n_classes)
+ grad[:, :n_features] = grad_per_sample.T @ X + l2_reg_strength * weights
+ if self.fit_intercept:
+ grad[:, -1] = grad_per_sample.sum(axis=0)
+ if coef.ndim == 1:
+ return grad.ravel(order="F")
+ else:
+ return grad
+
+ def gradient_hessian_product(
+ self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1
+ ):
+ """Computes gradient and hessp (hessian product function) w.r.t. coef.
+
+ Parameters
+ ----------
+ coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)
+ Coefficients of a linear model.
+ If shape (n_classes * n_dof,), the classes of one feature are contiguous,
+ i.e. one reconstructs the 2d-array via
+ coef.reshape((n_classes, -1), order="F").
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ Training data.
+ y : contiguous array of shape (n_samples,)
+ Observed, true target values.
+ sample_weight : None or contiguous array of shape (n_samples,), default=None
+ Sample weights.
+ l2_reg_strength : float, default=0.0
+ L2 regularization strength
+ n_threads : int, default=1
+ Number of OpenMP threads to use.
+
+ Returns
+ -------
+ gradient : ndarray of shape coef.shape
+ The gradient of the loss.
+
+ hessp : callable
+ Function that takes in a vector input of shape of gradient and
+ and returns matrix-vector product with hessian.
+ """
+ (n_samples, n_features), n_classes = X.shape, self.base_loss.n_classes
+ n_dof = n_features + int(self.fit_intercept)
+ weights, intercept, raw_prediction = self._w_intercept_raw(coef, X)
+
+ if not self.base_loss.is_multiclass:
+ gradient, hessian = self.base_loss.gradient_hessian(
+ y_true=y,
+ raw_prediction=raw_prediction,
+ sample_weight=sample_weight,
+ n_threads=n_threads,
+ )
+ grad = np.empty_like(coef, dtype=X.dtype)
+ grad[:n_features] = X.T @ gradient + l2_reg_strength * weights
+ if self.fit_intercept:
+ grad[-1] = gradient.sum()
+
+ # Precompute as much as possible: hX, hX_sum and hessian_sum
+ hessian_sum = hessian.sum()
+ if sparse.issparse(X):
+ hX = sparse.dia_matrix((hessian, 0), shape=(n_samples, n_samples)) @ X
+ else:
+ hX = hessian[:, np.newaxis] * X
+
+ if self.fit_intercept:
+ # Calculate the double derivative with respect to intercept.
+ # Note: In case hX is sparse, hX.sum is a matrix object.
+ hX_sum = np.squeeze(np.asarray(hX.sum(axis=0)))
+
+ # With intercept included and l2_reg_strength = 0, hessp returns
+ # res = (X, 1)' @ diag(h) @ (X, 1) @ s
+ # = (X, 1)' @ (hX @ s[:n_features], sum(h) * s[-1])
+ # res[:n_features] = X' @ hX @ s[:n_features] + sum(h) * s[-1]
+ # res[-1] = 1' @ hX @ s[:n_features] + sum(h) * s[-1]
+ def hessp(s):
+ ret = np.empty_like(s)
+ if sparse.issparse(X):
+ ret[:n_features] = X.T @ (hX @ s[:n_features])
+ else:
+ ret[:n_features] = np.linalg.multi_dot([X.T, hX, s[:n_features]])
+ ret[:n_features] += l2_reg_strength * s[:n_features]
+
+ if self.fit_intercept:
+ ret[:n_features] += s[-1] * hX_sum
+ ret[-1] = hX_sum @ s[:n_features] + hessian_sum * s[-1]
+ return ret
+
+ else:
+ # Here we may safely assume HalfMultinomialLoss aka categorical
+ # cross-entropy.
+ # HalfMultinomialLoss computes only the diagonal part of the hessian, i.e.
+ # diagonal in the classes. Here, we want the matrix-vector product of the
+ # full hessian. Therefore, we call gradient_proba.
+ gradient, proba = self.base_loss.gradient_proba(
+ y_true=y,
+ raw_prediction=raw_prediction,
+ sample_weight=sample_weight,
+ n_threads=n_threads,
+ )
+ grad = np.empty((n_classes, n_dof), dtype=X.dtype, order="F")
+ grad[:, :n_features] = gradient.T @ X + l2_reg_strength * weights
+ if self.fit_intercept:
+ grad[:, -1] = gradient.sum(axis=0)
+
+ # Full hessian-vector product, i.e. not only the diagonal part of the
+ # hessian. Derivation with some index battle for input vector s:
+ # - sample index i
+ # - feature indices j, m
+ # - class indices k, l
+ # - 1_{k=l} is one if k=l else 0
+ # - p_i_k is the (predicted) probability that sample i belongs to class k
+ # for all i: sum_k p_i_k = 1
+ # - s_l_m is input vector for class l and feature m
+ # - X' = X transposed
+ #
+ # Note: Hessian with dropping most indices is just:
+ # X' @ p_k (1(k=l) - p_l) @ X
+ #
+ # result_{k j} = sum_{i, l, m} Hessian_{i, k j, m l} * s_l_m
+ # = sum_{i, l, m} (X')_{ji} * p_i_k * (1_{k=l} - p_i_l)
+ # * X_{im} s_l_m
+ # = sum_{i, m} (X')_{ji} * p_i_k
+ # * (X_{im} * s_k_m - sum_l p_i_l * X_{im} * s_l_m)
+ #
+ # See also https://github.com/scikit-learn/scikit-learn/pull/3646#discussion_r17461411 # noqa
+ def hessp(s):
+ s = s.reshape((n_classes, -1), order="F") # shape = (n_classes, n_dof)
+ if self.fit_intercept:
+ s_intercept = s[:, -1]
+ s = s[:, :-1] # shape = (n_classes, n_features)
+ else:
+ s_intercept = 0
+ tmp = X @ s.T + s_intercept # X_{im} * s_k_m
+ tmp += (-proba * tmp).sum(axis=1)[:, np.newaxis] # - sum_l ..
+ tmp *= proba # * p_i_k
+ if sample_weight is not None:
+ tmp *= sample_weight[:, np.newaxis]
+ # hess_prod = empty_like(grad), but we ravel grad below and this
+ # function is run after that.
+ hess_prod = np.empty((n_classes, n_dof), dtype=X.dtype, order="F")
+ hess_prod[:, :n_features] = tmp.T @ X + l2_reg_strength * s
+ if self.fit_intercept:
+ hess_prod[:, -1] = tmp.sum(axis=0)
+ if coef.ndim == 1:
+ return hess_prod.ravel(order="F")
+ else:
+ return hess_prod
+
+ if coef.ndim == 1:
+ return grad.ravel(order="F"), hessp
+
+ return grad, hessp
diff --git a/sklearn/linear_model/_logistic.py b/sklearn/linear_model/_logistic.py
index dd3a1a0c15a11..fed48fb07d924 100644
--- a/sklearn/linear_model/_logistic.py
+++ b/sklearn/linear_model/_logistic.py
@@ -14,17 +14,18 @@
import warnings
import numpy as np
-from scipy import optimize, sparse
-from scipy.special import expit, logsumexp
+from scipy import optimize
from joblib import Parallel, effective_n_jobs
from ._base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator
+from ._linear_loss import LinearModelLoss
from ._sag import sag_solver
+from .._loss.loss import HalfBinomialLoss, HalfMultinomialLoss
from ..preprocessing import LabelEncoder, LabelBinarizer
from ..svm._base import _fit_liblinear
from ..utils import check_array, check_consistent_length, compute_class_weight
from ..utils import check_random_state
-from ..utils.extmath import log_logistic, safe_sparse_dot, softmax, squared_norm
+from ..utils.extmath import softmax
from ..utils.extmath import row_norms
from ..utils.optimize import _newton_cg, _check_optimize_result
from ..utils.validation import check_is_fitted, _check_sample_weight
@@ -41,392 +42,6 @@
)
-# .. some helper functions for logistic_regression_path ..
-def _intercept_dot(w, X, y):
- """Computes y * np.dot(X, w).
-
- It takes into consideration if the intercept should be fit or not.
-
- Parameters
- ----------
- w : ndarray of shape (n_features,) or (n_features + 1,)
- Coefficient vector.
-
- X : {array-like, sparse matrix} of shape (n_samples, n_features)
- Training data.
-
- y : ndarray of shape (n_samples,)
- Array of labels.
-
- Returns
- -------
- w : ndarray of shape (n_features,)
- Coefficient vector without the intercept weight (w[-1]) if the
- intercept should be fit. Unchanged otherwise.
-
- c : float
- The intercept.
-
- yz : float
- y * np.dot(X, w).
- """
- c = 0.0
- if w.size == X.shape[1] + 1:
- c = w[-1]
- w = w[:-1]
-
- z = safe_sparse_dot(X, w) + c
- yz = y * z
- return w, c, yz
-
-
-def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None):
- """Computes the logistic loss and gradient.
-
- Parameters
- ----------
- w : ndarray of shape (n_features,) or (n_features + 1,)
- Coefficient vector.
-
- X : {array-like, sparse matrix} of shape (n_samples, n_features)
- Training data.
-
- y : ndarray of shape (n_samples,)
- Array of labels.
-
- alpha : float
- Regularization parameter. alpha is equal to 1 / C.
-
- sample_weight : array-like of shape (n_samples,), default=None
- Array of weights that are assigned to individual samples.
- If not provided, then each sample is given unit weight.
-
- Returns
- -------
- out : float
- Logistic loss.
-
- grad : ndarray of shape (n_features,) or (n_features + 1,)
- Logistic gradient.
- """
- n_samples, n_features = X.shape
- grad = np.empty_like(w)
-
- w, c, yz = _intercept_dot(w, X, y)
-
- if sample_weight is None:
- sample_weight = np.ones(n_samples)
-
- # Logistic loss is the negative of the log of the logistic function.
- out = -np.sum(sample_weight * log_logistic(yz)) + 0.5 * alpha * np.dot(w, w)
-
- z = expit(yz)
- z0 = sample_weight * (z - 1) * y
-
- grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w
-
- # Case where we fit the intercept.
- if grad.shape[0] > n_features:
- grad[-1] = z0.sum()
- return out, grad
-
-
-def _logistic_loss(w, X, y, alpha, sample_weight=None):
- """Computes the logistic loss.
-
- Parameters
- ----------
- w : ndarray of shape (n_features,) or (n_features + 1,)
- Coefficient vector.
-
- X : {array-like, sparse matrix} of shape (n_samples, n_features)
- Training data.
-
- y : ndarray of shape (n_samples,)
- Array of labels.
-
- alpha : float
- Regularization parameter. alpha is equal to 1 / C.
-
- sample_weight : array-like of shape (n_samples,) default=None
- Array of weights that are assigned to individual samples.
- If not provided, then each sample is given unit weight.
-
- Returns
- -------
- out : float
- Logistic loss.
- """
- w, c, yz = _intercept_dot(w, X, y)
-
- if sample_weight is None:
- sample_weight = np.ones(y.shape[0])
-
- # Logistic loss is the negative of the log of the logistic function.
- out = -np.sum(sample_weight * log_logistic(yz)) + 0.5 * alpha * np.dot(w, w)
- return out
-
-
-def _logistic_grad_hess(w, X, y, alpha, sample_weight=None):
- """Computes the gradient and the Hessian, in the case of a logistic loss.
-
- Parameters
- ----------
- w : ndarray of shape (n_features,) or (n_features + 1,)
- Coefficient vector.
-
- X : {array-like, sparse matrix} of shape (n_samples, n_features)
- Training data.
-
- y : ndarray of shape (n_samples,)
- Array of labels.
-
- alpha : float
- Regularization parameter. alpha is equal to 1 / C.
-
- sample_weight : array-like of shape (n_samples,) default=None
- Array of weights that are assigned to individual samples.
- If not provided, then each sample is given unit weight.
-
- Returns
- -------
- grad : ndarray of shape (n_features,) or (n_features + 1,)
- Logistic gradient.
-
- Hs : callable
- Function that takes the gradient as a parameter and returns the
- matrix product of the Hessian and gradient.
- """
- n_samples, n_features = X.shape
- grad = np.empty_like(w)
- fit_intercept = grad.shape[0] > n_features
-
- w, c, yz = _intercept_dot(w, X, y)
-
- if sample_weight is None:
- sample_weight = np.ones(y.shape[0])
-
- z = expit(yz)
- z0 = sample_weight * (z - 1) * y
-
- grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w
-
- # Case where we fit the intercept.
- if fit_intercept:
- grad[-1] = z0.sum()
-
- # The mat-vec product of the Hessian
- d = sample_weight * z * (1 - z)
- if sparse.issparse(X):
- dX = safe_sparse_dot(sparse.dia_matrix((d, 0), shape=(n_samples, n_samples)), X)
- else:
- # Precompute as much as possible
- dX = d[:, np.newaxis] * X
-
- if fit_intercept:
- # Calculate the double derivative with respect to intercept
- # In the case of sparse matrices this returns a matrix object.
- dd_intercept = np.squeeze(np.array(dX.sum(axis=0)))
-
- def Hs(s):
- ret = np.empty_like(s)
- if sparse.issparse(X):
- ret[:n_features] = X.T.dot(dX.dot(s[:n_features]))
- else:
- ret[:n_features] = np.linalg.multi_dot([X.T, dX, s[:n_features]])
- ret[:n_features] += alpha * s[:n_features]
-
- # For the fit intercept case.
- if fit_intercept:
- ret[:n_features] += s[-1] * dd_intercept
- ret[-1] = dd_intercept.dot(s[:n_features])
- ret[-1] += d.sum() * s[-1]
- return ret
-
- return grad, Hs
-
-
-def _multinomial_loss(w, X, Y, alpha, sample_weight):
- """Computes multinomial loss and class probabilities.
-
- Parameters
- ----------
- w : ndarray of shape (n_classes * n_features,) or
- (n_classes * (n_features + 1),)
- Coefficient vector.
-
- X : {array-like, sparse matrix} of shape (n_samples, n_features)
- Training data.
-
- Y : ndarray of shape (n_samples, n_classes)
- Transformed labels according to the output of LabelBinarizer.
-
- alpha : float
- Regularization parameter. alpha is equal to 1 / C.
-
- sample_weight : array-like of shape (n_samples,)
- Array of weights that are assigned to individual samples.
-
- Returns
- -------
- loss : float
- Multinomial loss.
-
- p : ndarray of shape (n_samples, n_classes)
- Estimated class probabilities.
-
- w : ndarray of shape (n_classes, n_features)
- Reshaped param vector excluding intercept terms.
-
- Reference
- ---------
- Bishop, C. M. (2006). Pattern recognition and machine learning.
- Springer. (Chapter 4.3.4)
- """
- n_classes = Y.shape[1]
- n_features = X.shape[1]
- fit_intercept = w.size == (n_classes * (n_features + 1))
- w = w.reshape(n_classes, -1)
- sample_weight = sample_weight[:, np.newaxis]
- if fit_intercept:
- intercept = w[:, -1]
- w = w[:, :-1]
- else:
- intercept = 0
- p = safe_sparse_dot(X, w.T)
- p += intercept
- p -= logsumexp(p, axis=1)[:, np.newaxis]
- loss = -(sample_weight * Y * p).sum()
- loss += 0.5 * alpha * squared_norm(w)
- p = np.exp(p, p)
- return loss, p, w
-
-
-def _multinomial_loss_grad(w, X, Y, alpha, sample_weight):
- """Computes the multinomial loss, gradient and class probabilities.
-
- Parameters
- ----------
- w : ndarray of shape (n_classes * n_features,) or
- (n_classes * (n_features + 1),)
- Coefficient vector.
-
- X : {array-like, sparse matrix} of shape (n_samples, n_features)
- Training data.
-
- Y : ndarray of shape (n_samples, n_classes)
- Transformed labels according to the output of LabelBinarizer.
-
- alpha : float
- Regularization parameter. alpha is equal to 1 / C.
-
- sample_weight : array-like of shape (n_samples,)
- Array of weights that are assigned to individual samples.
-
- Returns
- -------
- loss : float
- Multinomial loss.
-
- grad : ndarray of shape (n_classes * n_features,) or \
- (n_classes * (n_features + 1),)
- Ravelled gradient of the multinomial loss.
-
- p : ndarray of shape (n_samples, n_classes)
- Estimated class probabilities
-
- Reference
- ---------
- Bishop, C. M. (2006). Pattern recognition and machine learning.
- Springer. (Chapter 4.3.4)
- """
- n_classes = Y.shape[1]
- n_features = X.shape[1]
- fit_intercept = w.size == n_classes * (n_features + 1)
- grad = np.zeros((n_classes, n_features + bool(fit_intercept)), dtype=X.dtype)
- loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight)
- sample_weight = sample_weight[:, np.newaxis]
- diff = sample_weight * (p - Y)
- grad[:, :n_features] = safe_sparse_dot(diff.T, X)
- grad[:, :n_features] += alpha * w
- if fit_intercept:
- grad[:, -1] = diff.sum(axis=0)
- return loss, grad.ravel(), p
-
-
-def _multinomial_grad_hess(w, X, Y, alpha, sample_weight):
- """
- Computes the gradient and the Hessian, in the case of a multinomial loss.
-
- Parameters
- ----------
- w : ndarray of shape (n_classes * n_features,) or
- (n_classes * (n_features + 1),)
- Coefficient vector.
-
- X : {array-like, sparse matrix} of shape (n_samples, n_features)
- Training data.
-
- Y : ndarray of shape (n_samples, n_classes)
- Transformed labels according to the output of LabelBinarizer.
-
- alpha : float
- Regularization parameter. alpha is equal to 1 / C.
-
- sample_weight : array-like of shape (n_samples,)
- Array of weights that are assigned to individual samples.
-
- Returns
- -------
- grad : ndarray of shape (n_classes * n_features,) or \
- (n_classes * (n_features + 1),)
- Ravelled gradient of the multinomial loss.
-
- hessp : callable
- Function that takes in a vector input of shape (n_classes * n_features)
- or (n_classes * (n_features + 1)) and returns matrix-vector product
- with hessian.
-
- References
- ----------
- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian.
- http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf
- """
- n_features = X.shape[1]
- n_classes = Y.shape[1]
- fit_intercept = w.size == (n_classes * (n_features + 1))
-
- # `loss` is unused. Refactoring to avoid computing it does not
- # significantly speed up the computation and decreases readability
- loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight)
- sample_weight = sample_weight[:, np.newaxis]
-
- # Hessian-vector product derived by applying the R-operator on the gradient
- # of the multinomial loss function.
- def hessp(v):
- v = v.reshape(n_classes, -1)
- if fit_intercept:
- inter_terms = v[:, -1]
- v = v[:, :-1]
- else:
- inter_terms = 0
- # r_yhat holds the result of applying the R-operator on the multinomial
- # estimator.
- r_yhat = safe_sparse_dot(X, v.T)
- r_yhat += inter_terms
- r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis]
- r_yhat *= p
- r_yhat *= sample_weight
- hessProd = np.zeros((n_classes, n_features + bool(fit_intercept)))
- hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X)
- hessProd[:, :n_features] += v * alpha
- if fit_intercept:
- hessProd[:, -1] = r_yhat.sum(axis=0)
- return hessProd.ravel()
-
- return grad, hessp
-
-
def _check_solver(solver, penalty, dual):
all_solvers = ["liblinear", "newton-cg", "lbfgs", "sag", "saga"]
if solver not in all_solvers:
@@ -504,6 +119,7 @@ def _logistic_regression_path(
max_squared_sum=None,
sample_weight=None,
l1_ratio=None,
+ n_threads=1,
):
"""Compute a Logistic Regression model for a list of regularization
parameters.
@@ -628,6 +244,9 @@ def _logistic_regression_path(
to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a
combination of L1 and L2.
+ n_threads : int, default=1
+ Number of OpenMP threads to use.
+
Returns
-------
coefs : ndarray of shape (n_cs, n_features) or (n_cs, n_features + 1)
@@ -695,12 +314,18 @@ def _logistic_regression_path(
# multinomial case this is not necessary.
if multi_class == "ovr":
w0 = np.zeros(n_features + int(fit_intercept), dtype=X.dtype)
- mask_classes = np.array([-1, 1])
mask = y == pos_class
y_bin = np.ones(y.shape, dtype=X.dtype)
- y_bin[~mask] = -1.0
- # for compute_class_weight
+ if solver in ["lbfgs", "newton-cg"]:
+ # HalfBinomialLoss, used for those solvers, represents y in [0, 1] instead
+ # of in [-1, 1].
+ mask_classes = np.array([0, 1])
+ y_bin[~mask] = 0.0
+ else:
+ mask_classes = np.array([-1, 1])
+ y_bin[~mask] = -1.0
+ # for compute_class_weight
if class_weight == "balanced":
class_weight_ = compute_class_weight(
class_weight, classes=mask_classes, y=y_bin
@@ -708,15 +333,19 @@ def _logistic_regression_path(
sample_weight *= class_weight_[le.fit_transform(y_bin)]
else:
- if solver not in ["sag", "saga"]:
+ if solver in ["sag", "saga", "lbfgs", "newton-cg"]:
+ # SAG, lbfgs and newton-cg multinomial solvers need LabelEncoder,
+ # not LabelBinarizer, i.e. y as a 1d-array of integers.
+ # LabelEncoder also saves memory compared to LabelBinarizer, especially
+ # when n_classes is large.
+ le = LabelEncoder()
+ Y_multi = le.fit_transform(y).astype(X.dtype, copy=False)
+ else:
+ # For liblinear solver, apply LabelBinarizer, i.e. y is one-hot encoded.
lbin = LabelBinarizer()
Y_multi = lbin.fit_transform(y)
if Y_multi.shape[1] == 1:
Y_multi = np.hstack([1 - Y_multi, Y_multi])
- else:
- # SAG multinomial solver needs LabelEncoder, not LabelBinarizer
- le = LabelEncoder()
- Y_multi = le.fit_transform(y).astype(X.dtype, copy=False)
w0 = np.zeros(
(classes.size, n_features + int(fit_intercept)), order="F", dtype=X.dtype
@@ -762,43 +391,45 @@ def _logistic_regression_path(
w0[:, : coef.shape[1]] = coef
if multi_class == "multinomial":
- # scipy.optimize.minimize and newton-cg accepts only
- # ravelled parameters.
if solver in ["lbfgs", "newton-cg"]:
- w0 = w0.ravel()
+ # scipy.optimize.minimize and newton-cg accept only ravelled parameters,
+ # i.e. 1d-arrays. LinearModelLoss expects classes to be contiguous and
+ # reconstructs the 2d-array via w0.reshape((n_classes, -1), order="F").
+ # As w0 is F-contiguous, ravel(order="F") also avoids a copy.
+ w0 = w0.ravel(order="F")
+ loss = LinearModelLoss(
+ base_loss=HalfMultinomialLoss(n_classes=classes.size),
+ fit_intercept=fit_intercept,
+ )
target = Y_multi
- if solver == "lbfgs":
-
- def func(x, *args):
- return _multinomial_loss_grad(x, *args)[0:2]
-
+ if solver in "lbfgs":
+ func = loss.loss_gradient
elif solver == "newton-cg":
-
- def func(x, *args):
- return _multinomial_loss(x, *args)[0]
-
- def grad(x, *args):
- return _multinomial_loss_grad(x, *args)[1]
-
- hess = _multinomial_grad_hess
+ func = loss.loss
+ grad = loss.gradient
+ hess = loss.gradient_hessian_product # hess = [gradient, hessp]
warm_start_sag = {"coef": w0.T}
else:
target = y_bin
if solver == "lbfgs":
- func = _logistic_loss_and_grad
+ loss = LinearModelLoss(
+ base_loss=HalfBinomialLoss(), fit_intercept=fit_intercept
+ )
+ func = loss.loss_gradient
elif solver == "newton-cg":
- func = _logistic_loss
-
- def grad(x, *args):
- return _logistic_loss_and_grad(x, *args)[1]
-
- hess = _logistic_grad_hess
+ loss = LinearModelLoss(
+ base_loss=HalfBinomialLoss(), fit_intercept=fit_intercept
+ )
+ func = loss.loss
+ grad = loss.gradient
+ hess = loss.gradient_hessian_product # hess = [gradient, hessp]
warm_start_sag = {"coef": np.expand_dims(w0, axis=1)}
coefs = list()
n_iter = np.zeros(len(Cs), dtype=np.int32)
for i, C in enumerate(Cs):
if solver == "lbfgs":
+ l2_reg_strength = 1.0 / C
iprint = [-1, 50, 1, 100, 101][
np.searchsorted(np.array([0, 1, 2, 3]), verbose)
]
@@ -807,7 +438,7 @@ def grad(x, *args):
w0,
method="L-BFGS-B",
jac=True,
- args=(X, target, 1.0 / C, sample_weight),
+ args=(X, target, sample_weight, l2_reg_strength, n_threads),
options={"iprint": iprint, "gtol": tol, "maxiter": max_iter},
)
n_iter_i = _check_optimize_result(
@@ -818,7 +449,8 @@ def grad(x, *args):
)
w0, loss = opt_res.x, opt_res.fun
elif solver == "newton-cg":
- args = (X, target, 1.0 / C, sample_weight)
+ l2_reg_strength = 1.0 / C
+ args = (X, target, sample_weight, l2_reg_strength, n_threads)
w0, n_iter_i = _newton_cg(
hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol
)
@@ -885,7 +517,10 @@ def grad(x, *args):
if multi_class == "multinomial":
n_classes = max(2, classes.size)
- multi_w0 = np.reshape(w0, (n_classes, -1))
+ if solver in ["lbfgs", "newton-cg"]:
+ multi_w0 = np.reshape(w0, (n_classes, -1), order="F")
+ else:
+ multi_w0 = w0
if n_classes == 2:
multi_w0 = multi_w0[1][np.newaxis, :]
coefs.append(multi_w0.copy())
@@ -1584,6 +1219,21 @@ def fit(self, X, y, sample_weight=None):
prefer = "threads"
else:
prefer = "processes"
+
+ # TODO: Refactor this to avoid joblib parallelism entirely when doing binary
+ # and multinomial multiclass classification and use joblib only for the
+ # one-vs-rest multiclass case.
+ if (
+ solver in ["lbfgs", "newton-cg"]
+ and len(classes_) == 1
+ and effective_n_jobs(self.n_jobs) == 1
+ ):
+ # In the future, we would like n_threads = _openmp_effective_n_threads()
+ # For the time being, we just do
+ n_threads = 1
+ else:
+ n_threads = 1
+
fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, prefer=prefer)(
path_func(
X,
@@ -1604,6 +1254,7 @@ def fit(self, X, y, sample_weight=None):
penalty=penalty,
max_squared_sum=max_squared_sum,
sample_weight=sample_weight,
+ n_threads=n_threads,
)
for class_, warm_start_coef_ in zip(classes_, warm_start_coef)
)
|
diff --git a/sklearn/linear_model/tests/test_linear_loss.py b/sklearn/linear_model/tests/test_linear_loss.py
new file mode 100644
index 0000000000000..d4e20ad69ca8a
--- /dev/null
+++ b/sklearn/linear_model/tests/test_linear_loss.py
@@ -0,0 +1,308 @@
+"""
+Tests for LinearModelLoss
+
+Note that correctness of losses (which compose LinearModelLoss) is already well
+covered in the _loss module.
+"""
+import pytest
+import numpy as np
+from numpy.testing import assert_allclose
+from scipy import linalg, optimize, sparse
+
+from sklearn._loss.loss import (
+ HalfBinomialLoss,
+ HalfMultinomialLoss,
+ HalfPoissonLoss,
+)
+from sklearn.datasets import make_low_rank_matrix
+from sklearn.linear_model._linear_loss import LinearModelLoss
+from sklearn.utils.extmath import squared_norm
+
+
+# We do not need to test all losses, just what LinearModelLoss does on top of the
+# base losses.
+LOSSES = [HalfBinomialLoss, HalfMultinomialLoss, HalfPoissonLoss]
+
+
+def random_X_y_coef(
+ linear_model_loss, n_samples, n_features, coef_bound=(-2, 2), seed=42
+):
+ """Random generate y, X and coef in valid range."""
+ rng = np.random.RandomState(seed)
+ n_dof = n_features + linear_model_loss.fit_intercept
+ X = make_low_rank_matrix(
+ n_samples=n_samples,
+ n_features=n_features,
+ random_state=rng,
+ )
+
+ if linear_model_loss.base_loss.is_multiclass:
+ n_classes = linear_model_loss.base_loss.n_classes
+ coef = np.empty((n_classes, n_dof))
+ coef.flat[:] = rng.uniform(
+ low=coef_bound[0],
+ high=coef_bound[1],
+ size=n_classes * n_dof,
+ )
+ if linear_model_loss.fit_intercept:
+ raw_prediction = X @ coef[:, :-1].T + coef[:, -1]
+ else:
+ raw_prediction = X @ coef.T
+ proba = linear_model_loss.base_loss.link.inverse(raw_prediction)
+
+ # y = rng.choice(np.arange(n_classes), p=proba) does not work.
+ # See https://stackoverflow.com/a/34190035/16761084
+ def choice_vectorized(items, p):
+ s = p.cumsum(axis=1)
+ r = rng.rand(p.shape[0])[:, None]
+ k = (s < r).sum(axis=1)
+ return items[k]
+
+ y = choice_vectorized(np.arange(n_classes), p=proba).astype(np.float64)
+ else:
+ coef = np.empty((n_dof,))
+ coef.flat[:] = rng.uniform(
+ low=coef_bound[0],
+ high=coef_bound[1],
+ size=n_dof,
+ )
+ if linear_model_loss.fit_intercept:
+ raw_prediction = X @ coef[:-1] + coef[-1]
+ else:
+ raw_prediction = X @ coef
+ y = linear_model_loss.base_loss.link.inverse(
+ raw_prediction + rng.uniform(low=-1, high=1, size=n_samples)
+ )
+
+ return X, y, coef
+
+
[email protected]("base_loss", LOSSES)
[email protected]("fit_intercept", [False, True])
[email protected]("sample_weight", [None, "range"])
[email protected]("l2_reg_strength", [0, 1])
+def test_loss_gradients_are_the_same(
+ base_loss, fit_intercept, sample_weight, l2_reg_strength
+):
+ """Test that loss and gradient are the same across different functions."""
+ loss = LinearModelLoss(base_loss=base_loss(), fit_intercept=fit_intercept)
+ X, y, coef = random_X_y_coef(
+ linear_model_loss=loss, n_samples=10, n_features=5, seed=42
+ )
+
+ if sample_weight == "range":
+ sample_weight = np.linspace(1, y.shape[0], num=y.shape[0])
+
+ l1 = loss.loss(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ g1 = loss.gradient(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ l2, g2 = loss.loss_gradient(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ g3, h3 = loss.gradient_hessian_product(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+
+ assert_allclose(l1, l2)
+ assert_allclose(g1, g2)
+ assert_allclose(g1, g3)
+
+ # same for sparse X
+ X = sparse.csr_matrix(X)
+ l1_sp = loss.loss(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ g1_sp = loss.gradient(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ l2_sp, g2_sp = loss.loss_gradient(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ g3_sp, h3_sp = loss.gradient_hessian_product(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+
+ assert_allclose(l1, l1_sp)
+ assert_allclose(l1, l2_sp)
+ assert_allclose(g1, g1_sp)
+ assert_allclose(g1, g2_sp)
+ assert_allclose(g1, g3_sp)
+ assert_allclose(h3(g1), h3_sp(g1_sp))
+
+
[email protected]("base_loss", LOSSES)
[email protected]("sample_weight", [None, "range"])
[email protected]("l2_reg_strength", [0, 1])
[email protected]("X_sparse", [False, True])
+def test_loss_gradients_hessp_intercept(
+ base_loss, sample_weight, l2_reg_strength, X_sparse
+):
+ """Test that loss and gradient handle intercept correctly."""
+ loss = LinearModelLoss(base_loss=base_loss(), fit_intercept=False)
+ loss_inter = LinearModelLoss(base_loss=base_loss(), fit_intercept=True)
+ n_samples, n_features = 10, 5
+ X, y, coef = random_X_y_coef(
+ linear_model_loss=loss, n_samples=n_samples, n_features=n_features, seed=42
+ )
+
+ X[:, -1] = 1 # make last column of 1 to mimic intercept term
+ X_inter = X[
+ :, :-1
+ ] # exclude intercept column as it is added automatically by loss_inter
+
+ if X_sparse:
+ X = sparse.csr_matrix(X)
+
+ if sample_weight == "range":
+ sample_weight = np.linspace(1, y.shape[0], num=y.shape[0])
+
+ l, g = loss.loss_gradient(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ _, hessp = loss.gradient_hessian_product(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ l_inter, g_inter = loss_inter.loss_gradient(
+ coef, X_inter, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ _, hessp_inter = loss_inter.gradient_hessian_product(
+ coef, X_inter, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+
+ # Note, that intercept gets no L2 penalty.
+ assert l == pytest.approx(
+ l_inter + 0.5 * l2_reg_strength * squared_norm(coef.T[-1])
+ )
+
+ g_inter_corrected = g_inter
+ g_inter_corrected.T[-1] += l2_reg_strength * coef.T[-1]
+ assert_allclose(g, g_inter_corrected)
+
+ s = np.random.RandomState(42).randn(*coef.shape)
+ h = hessp(s)
+ h_inter = hessp_inter(s)
+ h_inter_corrected = h_inter
+ h_inter_corrected.T[-1] += l2_reg_strength * s.T[-1]
+ assert_allclose(h, h_inter_corrected)
+
+
[email protected]("base_loss", LOSSES)
[email protected]("fit_intercept", [False, True])
[email protected]("sample_weight", [None, "range"])
[email protected]("l2_reg_strength", [0, 1])
+def test_gradients_hessians_numerically(
+ base_loss, fit_intercept, sample_weight, l2_reg_strength
+):
+ """Test gradients and hessians with numerical derivatives.
+
+ Gradient should equal the numerical derivatives of the loss function.
+ Hessians should equal the numerical derivatives of gradients.
+ """
+ loss = LinearModelLoss(base_loss=base_loss(), fit_intercept=fit_intercept)
+ n_samples, n_features = 10, 5
+ X, y, coef = random_X_y_coef(
+ linear_model_loss=loss, n_samples=n_samples, n_features=n_features, seed=42
+ )
+ coef = coef.ravel(order="F") # this is important only for multinomial loss
+
+ if sample_weight == "range":
+ sample_weight = np.linspace(1, y.shape[0], num=y.shape[0])
+
+ # 1. Check gradients numerically
+ eps = 1e-6
+ g, hessp = loss.gradient_hessian_product(
+ coef, X, y, sample_weight=sample_weight, l2_reg_strength=l2_reg_strength
+ )
+ # Use a trick to get central finite difference of accuracy 4 (five-point stencil)
+ # https://en.wikipedia.org/wiki/Numerical_differentiation
+ # https://en.wikipedia.org/wiki/Finite_difference_coefficient
+ # approx_g1 = (f(x + eps) - f(x - eps)) / (2*eps)
+ approx_g1 = optimize.approx_fprime(
+ coef,
+ lambda coef: loss.loss(
+ coef - eps,
+ X,
+ y,
+ sample_weight=sample_weight,
+ l2_reg_strength=l2_reg_strength,
+ ),
+ 2 * eps,
+ )
+ # approx_g2 = (f(x + 2*eps) - f(x - 2*eps)) / (4*eps)
+ approx_g2 = optimize.approx_fprime(
+ coef,
+ lambda coef: loss.loss(
+ coef - 2 * eps,
+ X,
+ y,
+ sample_weight=sample_weight,
+ l2_reg_strength=l2_reg_strength,
+ ),
+ 4 * eps,
+ )
+ # Five-point stencil approximation
+ # See: https://en.wikipedia.org/wiki/Five-point_stencil#1D_first_derivative
+ approx_g = (4 * approx_g1 - approx_g2) / 3
+ assert_allclose(g, approx_g, rtol=1e-2, atol=1e-8)
+
+ # 2. Check hessp numerically along the second direction of the gradient
+ vector = np.zeros_like(g)
+ vector[1] = 1
+ hess_col = hessp(vector)
+ # Computation of the Hessian is particularly fragile to numerical errors when doing
+ # simple finite differences. Here we compute the grad along a path in the direction
+ # of the vector and then use a least-square regression to estimate the slope
+ eps = 1e-3
+ d_x = np.linspace(-eps, eps, 30)
+ d_grad = np.array(
+ [
+ loss.gradient(
+ coef + t * vector,
+ X,
+ y,
+ sample_weight=sample_weight,
+ l2_reg_strength=l2_reg_strength,
+ )
+ for t in d_x
+ ]
+ )
+ d_grad -= d_grad.mean(axis=0)
+ approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
+ assert_allclose(approx_hess_col, hess_col, rtol=1e-3)
+
+
[email protected]("fit_intercept", [False, True])
+def test_multinomial_coef_shape(fit_intercept):
+ """Test that multinomial LinearModelLoss respects shape of coef."""
+ loss = LinearModelLoss(base_loss=HalfMultinomialLoss(), fit_intercept=fit_intercept)
+ n_samples, n_features = 10, 5
+ X, y, coef = random_X_y_coef(
+ linear_model_loss=loss, n_samples=n_samples, n_features=n_features, seed=42
+ )
+ s = np.random.RandomState(42).randn(*coef.shape)
+
+ l, g = loss.loss_gradient(coef, X, y)
+ g1 = loss.gradient(coef, X, y)
+ g2, hessp = loss.gradient_hessian_product(coef, X, y)
+ h = hessp(s)
+ assert g.shape == coef.shape
+ assert h.shape == coef.shape
+ assert_allclose(g, g1)
+ assert_allclose(g, g2)
+
+ coef_r = coef.ravel(order="F")
+ s_r = s.ravel(order="F")
+ l_r, g_r = loss.loss_gradient(coef_r, X, y)
+ g1_r = loss.gradient(coef_r, X, y)
+ g2_r, hessp_r = loss.gradient_hessian_product(coef_r, X, y)
+ h_r = hessp_r(s_r)
+ assert g_r.shape == coef_r.shape
+ assert h_r.shape == coef_r.shape
+ assert_allclose(g_r, g1_r)
+ assert_allclose(g_r, g2_r)
+
+ assert_allclose(g, g_r.reshape(loss.base_loss.n_classes, -1, order="F"))
+ assert_allclose(h, h_r.reshape(loss.base_loss.n_classes, -1, order="F"))
diff --git a/sklearn/linear_model/tests/test_logistic.py b/sklearn/linear_model/tests/test_logistic.py
index 3bdfec46e30dc..0c35795b8b642 100644
--- a/sklearn/linear_model/tests/test_logistic.py
+++ b/sklearn/linear_model/tests/test_logistic.py
@@ -5,8 +5,7 @@
import numpy as np
from numpy.testing import assert_allclose, assert_almost_equal
from numpy.testing import assert_array_almost_equal, assert_array_equal
-import scipy.sparse as sp
-from scipy import linalg, optimize, sparse
+from scipy import sparse
import pytest
@@ -28,18 +27,14 @@
from sklearn.exceptions import ConvergenceWarning
from sklearn.linear_model._logistic import (
- LogisticRegression,
+ _log_reg_scoring_path,
_logistic_regression_path,
+ LogisticRegression,
LogisticRegressionCV,
- _logistic_loss_and_grad,
- _logistic_grad_hess,
- _multinomial_grad_hess,
- _logistic_loss,
- _log_reg_scoring_path,
)
X = [[-1, 0], [0, 1], [1, 1]]
-X_sp = sp.csr_matrix(X)
+X_sp = sparse.csr_matrix(X)
Y1 = [0, 1, 1]
Y2 = [2, 1, 0]
iris = load_iris()
@@ -317,10 +312,10 @@ def test_sparsify():
pred_d_d = clf.decision_function(iris.data)
clf.sparsify()
- assert sp.issparse(clf.coef_)
+ assert sparse.issparse(clf.coef_)
pred_s_d = clf.decision_function(iris.data)
- sp_data = sp.coo_matrix(iris.data)
+ sp_data = sparse.coo_matrix(iris.data)
pred_s_s = clf.decision_function(sp_data)
clf.densify()
@@ -501,82 +496,6 @@ def test_liblinear_dual_random_state():
assert_array_almost_equal(lr1.coef_, lr3.coef_)
-def test_logistic_loss_and_grad():
- X_ref, y = make_classification(n_samples=20, random_state=0)
- n_features = X_ref.shape[1]
-
- X_sp = X_ref.copy()
- X_sp[X_sp < 0.1] = 0
- X_sp = sp.csr_matrix(X_sp)
- for X in (X_ref, X_sp):
- w = np.zeros(n_features)
-
- # First check that our derivation of the grad is correct
- loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.0)
- approx_grad = optimize.approx_fprime(
- w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.0)[0], 1e-3
- )
- assert_array_almost_equal(grad, approx_grad, decimal=2)
-
- # Second check that our intercept implementation is good
- w = np.zeros(n_features + 1)
- loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.0)
- assert_array_almost_equal(loss, loss_interp)
-
- approx_grad = optimize.approx_fprime(
- w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.0)[0], 1e-3
- )
- assert_array_almost_equal(grad_interp, approx_grad, decimal=2)
-
-
-def test_logistic_grad_hess():
- rng = np.random.RandomState(0)
- n_samples, n_features = 50, 5
- X_ref = rng.randn(n_samples, n_features)
- y = np.sign(X_ref.dot(5 * rng.randn(n_features)))
- X_ref -= X_ref.mean()
- X_ref /= X_ref.std()
- X_sp = X_ref.copy()
- X_sp[X_sp < 0.1] = 0
- X_sp = sp.csr_matrix(X_sp)
- for X in (X_ref, X_sp):
- w = np.full(n_features, 0.1)
-
- # First check that _logistic_grad_hess is consistent
- # with _logistic_loss_and_grad
- loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.0)
- grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.0)
- assert_array_almost_equal(grad, grad_2)
-
- # Now check our hessian along the second direction of the grad
- vector = np.zeros_like(grad)
- vector[1] = 1
- hess_col = hess(vector)
-
- # Computation of the Hessian is particularly fragile to numerical
- # errors when doing simple finite differences. Here we compute the
- # grad along a path in the direction of the vector and then use a
- # least-square regression to estimate the slope
- e = 1e-3
- d_x = np.linspace(-e, e, 30)
- d_grad = np.array(
- [_logistic_loss_and_grad(w + t * vector, X, y, alpha=1.0)[1] for t in d_x]
- )
-
- d_grad -= d_grad.mean(axis=0)
- approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
-
- assert_array_almost_equal(approx_hess_col, hess_col, decimal=3)
-
- # Second check that our intercept implementation is good
- w = np.zeros(n_features + 1)
- loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.0)
- loss_interp_2 = _logistic_loss(w, X, y, alpha=1.0)
- grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.0)
- assert_array_almost_equal(loss_interp, loss_interp_2)
- assert_array_almost_equal(grad_interp, grad_interp_2)
-
-
def test_logistic_cv():
# test for LogisticRegressionCV object
n_samples, n_features = 50, 5
@@ -690,7 +609,7 @@ def test_multinomial_logistic_regression_string_inputs():
def test_logistic_cv_sparse():
X, y = make_classification(n_samples=50, n_features=5, random_state=0)
X[X < 1.0] = 0.0
- csr = sp.csr_matrix(X)
+ csr = sparse.csr_matrix(X)
clf = LogisticRegressionCV()
clf.fit(X, y)
@@ -701,40 +620,6 @@ def test_logistic_cv_sparse():
assert clfs.C_ == clf.C_
-def test_intercept_logistic_helper():
- n_samples, n_features = 10, 5
- X, y = make_classification(
- n_samples=n_samples, n_features=n_features, random_state=0
- )
-
- # Fit intercept case.
- alpha = 1.0
- w = np.ones(n_features + 1)
- grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha)
- loss_interp = _logistic_loss(w, X, y, alpha)
-
- # Do not fit intercept. This can be considered equivalent to adding
- # a feature vector of ones, i.e column of one vectors.
- X_ = np.hstack((X, np.ones(10)[:, np.newaxis]))
- grad, hess = _logistic_grad_hess(w, X_, y, alpha)
- loss = _logistic_loss(w, X_, y, alpha)
-
- # In the fit_intercept=False case, the feature vector of ones is
- # penalized. This should be taken care of.
- assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss)
-
- # Check gradient.
- assert_array_almost_equal(grad_interp[:n_features], grad[:n_features])
- assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1])
-
- rng = np.random.RandomState(0)
- grad = rng.rand(n_features + 1)
- hess_interp = hess_interp(grad)
- hess = hess(grad)
- assert_array_almost_equal(hess_interp[:n_features], hess[:n_features])
- assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1])
-
-
def test_ovr_multinomial_iris():
# Test that OvR and multinomial are correct using the iris dataset.
train, target = iris.data, iris.target
@@ -1107,41 +992,6 @@ def test_logistic_regression_multinomial():
assert_allclose(clf_path.intercept_, ref_i.intercept_, rtol=2e-2)
-def test_multinomial_grad_hess():
- rng = np.random.RandomState(0)
- n_samples, n_features, n_classes = 100, 5, 3
- X = rng.randn(n_samples, n_features)
- w = rng.rand(n_classes, n_features)
- Y = np.zeros((n_samples, n_classes))
- ind = np.argmax(np.dot(X, w.T), axis=1)
- Y[range(0, n_samples), ind] = 1
- w = w.ravel()
- sample_weights = np.ones(X.shape[0])
- grad, hessp = _multinomial_grad_hess(
- w, X, Y, alpha=1.0, sample_weight=sample_weights
- )
- # extract first column of hessian matrix
- vec = np.zeros(n_features * n_classes)
- vec[0] = 1
- hess_col = hessp(vec)
-
- # Estimate hessian using least squares as done in
- # test_logistic_grad_hess
- e = 1e-3
- d_x = np.linspace(-e, e, 30)
- d_grad = np.array(
- [
- _multinomial_grad_hess(
- w + t * vec, X, Y, alpha=1.0, sample_weight=sample_weights
- )[0]
- for t in d_x
- ]
- )
- d_grad -= d_grad.mean(axis=0)
- approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
- assert_array_almost_equal(hess_col, approx_hess_col)
-
-
def test_liblinear_decision_function_zero():
# Test negative prediction when decision_function values are zero.
# Liblinear predicts the positive class when decision_function values
@@ -1533,8 +1383,8 @@ def test_dtype_match(solver, multi_class, fit_intercept):
y_32 = np.array(Y1).astype(np.float32)
X_64 = np.array(X).astype(np.float64)
y_64 = np.array(Y1).astype(np.float64)
- X_sparse_32 = sp.csr_matrix(X, dtype=np.float32)
- X_sparse_64 = sp.csr_matrix(X, dtype=np.float64)
+ X_sparse_32 = sparse.csr_matrix(X, dtype=np.float32)
+ X_sparse_64 = sparse.csr_matrix(X, dtype=np.float64)
solver_tol = 5e-4
lr_templ = LogisticRegression(
@@ -2236,7 +2086,7 @@ def test_large_sparse_matrix(solver):
# Non-regression test for pull-request #21093.
# generate sparse matrix with int64 indices
- X = sp.rand(20, 10, format="csr")
+ X = sparse.rand(20, 10, format="csr")
for attr in ["indices", "indptr"]:
setattr(X, attr, getattr(X, attr).astype("int64"))
y = np.random.randint(2, size=X.shape[0])
diff --git a/sklearn/linear_model/tests/test_sag.py b/sklearn/linear_model/tests/test_sag.py
index 88df6621f8176..d3a27c4088ab7 100644
--- a/sklearn/linear_model/tests/test_sag.py
+++ b/sklearn/linear_model/tests/test_sag.py
@@ -10,11 +10,12 @@
import scipy.sparse as sp
from scipy.special import logsumexp
+from sklearn._loss.loss import HalfMultinomialLoss
+from sklearn.linear_model._linear_loss import LinearModelLoss
from sklearn.linear_model._sag import get_auto_step_size
from sklearn.linear_model._sag_fast import _multinomial_grad_loss_all_samples
from sklearn.linear_model import LogisticRegression, Ridge
from sklearn.linear_model._base import make_dataset
-from sklearn.linear_model._logistic import _multinomial_loss_grad
from sklearn.utils.extmath import row_norms
from sklearn.utils._testing import assert_almost_equal
@@ -933,13 +934,14 @@ def test_multinomial_loss():
dataset, weights, intercept, n_samples, n_features, n_classes
)
# compute loss and gradient like in multinomial LogisticRegression
- lbin = LabelBinarizer()
- Y_bin = lbin.fit_transform(y)
- weights_intercept = np.vstack((weights, intercept)).T.ravel()
- loss_2, grad_2, _ = _multinomial_loss_grad(
- weights_intercept, X, Y_bin, 0.0, sample_weights
+ loss = LinearModelLoss(
+ base_loss=HalfMultinomialLoss(n_classes=n_classes),
+ fit_intercept=True,
+ )
+ weights_intercept = np.vstack((weights, intercept)).T
+ loss_2, grad_2 = loss.loss_gradient(
+ weights_intercept, X, y, l2_reg_strength=0.0, sample_weight=sample_weights
)
- grad_2 = grad_2.reshape(n_classes, -1)
grad_2 = grad_2[:, :-1].T
# comparison
@@ -951,7 +953,7 @@ def test_multinomial_loss_ground_truth():
# n_samples, n_features, n_classes = 4, 2, 3
n_classes = 3
X = np.array([[1.1, 2.2], [2.2, -4.4], [3.3, -2.2], [1.1, 1.1]])
- y = np.array([0, 1, 2, 0])
+ y = np.array([0, 1, 2, 0], dtype=np.float64)
lbin = LabelBinarizer()
Y_bin = lbin.fit_transform(y)
@@ -966,11 +968,14 @@ def test_multinomial_loss_ground_truth():
diff = sample_weights[:, np.newaxis] * (np.exp(p) - Y_bin)
grad_1 = np.dot(X.T, diff)
- weights_intercept = np.vstack((weights, intercept)).T.ravel()
- loss_2, grad_2, _ = _multinomial_loss_grad(
- weights_intercept, X, Y_bin, 0.0, sample_weights
+ loss = LinearModelLoss(
+ base_loss=HalfMultinomialLoss(n_classes=n_classes),
+ fit_intercept=True,
+ )
+ weights_intercept = np.vstack((weights, intercept)).T
+ loss_2, grad_2 = loss.loss_gradient(
+ weights_intercept, X, y, l2_reg_strength=0.0, sample_weight=sample_weights
)
- grad_2 = grad_2.reshape(n_classes, -1)
grad_2 = grad_2[:, :-1].T
assert_almost_equal(loss_1, loss_2)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 39f8e405ebf7c..b88e54b46a4bf 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -393,6 +393,15 @@ Changelog\n beginning which speeds up fitting.\n :pr:`22206` by :user:`Christian Lorentzen <lorentzenchr>`.\n \n+- |Enhancement| :class:`~linear_model.LogisticRegression` is faster for\n+ ``solvers=\"lbfgs\"`` and ``solver=\"newton-cg\"``, for binary and in particular for\n+ multiclass problems thanks to the new private loss function module. In the multiclass\n+ case, the memory consumption has also been reduced for these solvers as the target is\n+ now label encoded (mapped to integers) instead of label binarized (one-hot encoded).\n+ The more classes, the larger the benefit.\n+ :pr:`21808`, :pr:`20567` and :pr:`21814` by\n+ :user:`Christian Lorentzen <lorentzenchr>`.\n+\n - |Enhancement| Rename parameter `base_estimator` to `estimator` in\n :class:`linear_model.RANSACRegressor` to improve readability and consistency.\n `base_estimator` is deprecated and will be removed in 1.3.\n"
}
] |
1.01
|
39c341ad91b545c895ede9c6240a04659b82defb
|
[
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge. Increase the number of iterations.-multinomial-max_iter2]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_validation[newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[class_weight0-ovr]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[lbfgs-lbfgs failed to converge-multinomial-max_iter1]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers_multiclass",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.046415888336127795]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_cv_refit[l2-42]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge. Increase the number of iterations.-ovr-max_iter0]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[ovr-elasticnet]",
"sklearn/linear_model/tests/test_logistic.py::test_l1_ratio_param[2]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.5-2.1544346900318843]",
"sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[class_weight0-multinomial]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[lbfgs-lbfgs failed to converge-multinomial-max_iter2]",
"sklearn/linear_model/tests/test_logistic.py::test_scores_attribute_layout_elasticnet",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-10]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter3]",
"sklearn/linear_model/tests/test_logistic.py::test_check_solver_option[LogisticRegression]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[0.001]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.9-100.0]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_logistic_regression_string_inputs",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[precision-multiclass_agg_list1]",
"sklearn/linear_model/tests/test_logistic.py::test_saga_sparse",
"sklearn/linear_model/tests/test_logistic.py::test_n_iter[liblinear]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge. Increase the number of iterations.-multinomial-max_iter3]",
"sklearn/linear_model/tests/test_logistic.py::test_liblinear_logregcv_sparse",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[False-liblinear-ovr]",
"sklearn/linear_model/tests/test_logistic.py::test_logreg_l1_sparse_data",
"sklearn/linear_model/tests/test_logistic.py::test_predict_2_classes",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-False-False-sag]",
"sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[liblinear]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge. Increase the number of iterations.-ovr-max_iter1]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-False-True-sag]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.046415888336127795]",
"sklearn/linear_model/tests/test_logistic.py::test_liblinear_decision_function_zero",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-True-True-lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[lbfgs-lbfgs failed to converge-ovr-max_iter2]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-ovr-max_iter2]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-ovr-max_iter1]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-False-False-saga]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge. Increase the number of iterations.-multinomial-max_iter1]",
"sklearn/linear_model/tests/test_logistic.py::test_l1_ratios_param[l1_ratios1]",
"sklearn/linear_model/tests/test_logistic.py::test_lr_liblinear_warning",
"sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[balanced-auto]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[lbfgs-lbfgs failed to converge-multinomial-max_iter3]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter1]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter2]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_path_coefs_multinomial",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights",
"sklearn/linear_model/tests/test_logistic.py::test_ovr_multinomial_iris",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.1-2.1544346900318843]",
"sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[class_weight0-auto]",
"sklearn/linear_model/tests/test_logistic.py::test_nan",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-ovr-max_iter3]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-True-False-saga]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-2.1544346900318843]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter1]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[saga-LogisticRegressionCV]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-True-True-saga]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary_probabilities",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-False-True-newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_write_parameters",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.5-100.0]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-False-False-newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[recall-multiclass_agg_list4]",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[False-saga-ovr]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[liblinear-LogisticRegression]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_validation[lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-ovr-max_iter0]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_identifiability_on_iris[False]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[f1-multiclass_agg_list2]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-10]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-False-False-newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_penalty_none[newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[liblinear-LogisticRegressionCV]",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[False-newton-cg-multinomial]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.001]",
"sklearn/linear_model/tests/test_logistic.py::test_consistency_path",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[sag-LogisticRegressionCV]",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[True-liblinear-ovr]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-1000000.0]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-True-False-lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_predict_3_classes",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegression]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[sag-LogisticRegression]",
"sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_l1_ratios_param[something_wrong]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-0.1]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-100.0]",
"sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_error",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-False-True-newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_liblinear_dual_random_state",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-ovr-max_iter1]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-ovr-max_iter2]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[multinomial-elasticnet]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-False-True-saga]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_elasticnet_attribute_shapes",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-ovr-max_iter3]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_validation[sag]",
"sklearn/linear_model/tests/test_logistic.py::test_n_iter[saga]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[multinomial-l2]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.1-0.046415888336127795]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-False-False-lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[lbfgs-lbfgs failed to converge-multinomial-max_iter0]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-False-True-lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[lbfgs-lbfgs failed to converge-ovr-max_iter0]",
"sklearn/linear_model/tests/test_logistic.py::test_penalty_none[saga]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.5-0.046415888336127795]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net_ovr",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_mock_scorer",
"sklearn/linear_model/tests/test_logistic.py::test_penalty_none[sag]",
"sklearn/linear_model/tests/test_logistic.py::test_l1_ratio_param[-1]",
"sklearn/linear_model/tests/test_logistic.py::test_check_solver_option[LogisticRegressionCV]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_cv_refit[l1-42]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-ovr-max_iter1]",
"sklearn/linear_model/tests/test_logistic.py::test_logreg_intercept_scaling",
"sklearn/linear_model/tests/test_logistic.py::test_inconsistent_input",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.1-100.0]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[lbfgs-lbfgs failed to converge-ovr-max_iter3]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-True-True-saga]",
"sklearn/linear_model/tests/test_logistic.py::test_l1_ratios_param[l1_ratios0]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-True-True-newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_logisticregression_liblinear_sample_weight[params2]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-False-False-sag]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter0]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-True-True-sag]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-False-True-saga]",
"sklearn/linear_model/tests/test_logistic.py::test_predict_iris",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_validation[saga]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-1]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1000000.0]",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[True-newton-cg-multinomial]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[lbfgs-LogisticRegressionCV]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-True-False-newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_n_iter[lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-ovr-max_iter2]",
"sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[balanced-ovr]",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[True-saga-ovr]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-100]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[saga]",
"sklearn/linear_model/tests/test_logistic.py::test_logreg_l1",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.001]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[neg_log_loss-multiclass_agg_list3]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-True-False-sag]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegressionCV]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[ovr]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.1-0.001]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.9-2.1544346900318843]",
"sklearn/linear_model/tests/test_logistic.py::test_penalty_none[lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_n_iter[sag]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[1]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-2.1544346900318843]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-1000000.0]",
"sklearn/linear_model/tests/test_logistic.py::test_l1_ratios_param[None]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[liblinear-Liblinear failed to converge, increase the number of iterations.-ovr-max_iter0]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[auto-l2]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-True-False-newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter2]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-100]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.5-0.001]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[lbfgs-LogisticRegression]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[ovr-l2]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-2.1544346900318843]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-False-False-saga]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.9-0.046415888336127795]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-False-False-lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers",
"sklearn/linear_model/tests/test_logistic.py::test_logreg_intercept_scaling_zero",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multinomial",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_no_refit[auto-elasticnet]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-True-False-sag]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-True-False-saga]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-ovr-max_iter0]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-0.001]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegressionCV_GridSearchCV_elastic_net[multinomial]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start_converge_LR",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[sag]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-True-True-newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[lbfgs-lbfgs failed to converge-ovr-max_iter1]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge. Increase the number of iterations.-ovr-max_iter2]",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[True-newton-cg-ovr]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-1000]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[newton-cg]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[sag-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter3]",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[False-newton-cg-ovr]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_coeffs",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-0.001]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-True-False-lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_cv",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-True-True-sag]",
"sklearn/linear_model/tests/test_logistic.py::test_multinomial_identifiability_on_iris[True]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.001]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[ovr-False-True-lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[saga-LogisticRegression]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-False-True-sag]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.046415888336127795]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-multinomial-max_iter0]",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-100.0]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[saga-The max_iter was reached which means the coef_ did not converge-ovr-max_iter3]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-0.1]",
"sklearn/linear_model/tests/test_logistic.py::test_warm_start[multinomial-True-True-lbfgs]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_sparse",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_path_convergence_fail",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[False-saga-multinomial]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l2-0-1000]",
"sklearn/linear_model/tests/test_logistic.py::test_logreg_predict_proba_multinomial",
"sklearn/linear_model/tests/test_logistic.py::test_logisticregression_liblinear_sample_weight[params0]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_versus_sgd[0.9-0.001]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_vs_l1_l2[100]",
"sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[accuracy-multiclass_agg_list0]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge. Increase the number of iterations.-multinomial-max_iter0]",
"sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge. Increase the number of iterations.-ovr-max_iter3]",
"sklearn/linear_model/tests/test_logistic.py::test_elastic_net_l1_l2_equivalence[l1-1-1]",
"sklearn/linear_model/tests/test_logistic.py::test_l1_ratio_param[something_wrong]",
"sklearn/linear_model/tests/test_logistic.py::test_l1_ratio_param[None]",
"sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[saga]",
"sklearn/linear_model/tests/test_logistic.py::test_sample_weight_not_modified[balanced-multinomial]",
"sklearn/linear_model/tests/test_logistic.py::test_logisticregression_liblinear_sample_weight[params1]",
"sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[sag]",
"sklearn/linear_model/tests/test_logistic.py::test_dtype_match[True-saga-multinomial]",
"sklearn/linear_model/tests/test_logistic.py::test_sparsify",
"sklearn/linear_model/tests/test_logistic.py::test_saga_vs_liblinear",
"sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-100.0]"
] |
[
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-None-False-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-0-range-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-1-None-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-None-False-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_sag_regressor_computed_correctly",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-0-None-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_sag.py::test_sag_pobj_matches_logistic_regression",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-0-None-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-None-True-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_sag.py::test_binary_classifier_class_weight",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-1-range-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-None-False-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-1-range-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-None-True-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-1-None-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_classifier_single_class",
"sklearn/linear_model/tests/test_sag.py::test_multinomial_loss",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-1-None-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-1-None-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-0-range-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_sag_classifier_raises_error[saga]",
"sklearn/linear_model/tests/test_sag.py::test_multinomial_loss_ground_truth",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-None-True-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-range-True-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-range-False-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-0-range-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_sag_classifier_computed_correctly",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-1-range-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_sag.py::test_sag_classifier_raises_error[sag]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-1-range-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_sag_regressor[0]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_multinomial_coef_shape[False]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-range-True-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_get_auto_step_size",
"sklearn/linear_model/tests/test_sag.py::test_classifier_matching",
"sklearn/linear_model/tests/test_sag.py::test_sag_regressor[2]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-1-None-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_sag_regressor[1]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-1-range-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-range-False-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-None-False-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-0-None-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_step_size_alpha_error",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-range-False-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-range-False-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-None-True-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-range-False-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_multinomial_coef_shape[True]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-None-True-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_sag_multiclass_computed_correctly",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_multiclass_classifier_class_weight",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-range-False-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-None-False-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-0-None-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-0-None-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-range-True-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-0-None-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-range-True-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-range-True-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-0-range-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_sag_pobj_matches_ridge_regression",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[1-range-True-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[False-1-None-HalfPoissonLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-None-False-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_classifier_results",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_are_the_same[0-None-True-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfMultinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-0-range-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_sag.py::test_regressor_matching",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-1-range-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfBinomialLoss]",
"sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[True-0-range-HalfPoissonLoss]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "sklearn/linear_model/_linear_loss.py"
}
]
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 39f8e405ebf7c..b88e54b46a4bf 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -393,6 +393,15 @@ Changelog\n beginning which speeds up fitting.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| :class:`~linear_model.LogisticRegression` is faster for\n+ ``solvers=\"lbfgs\"`` and ``solver=\"newton-cg\"``, for binary and in particular for\n+ multiclass problems thanks to the new private loss function module. In the multiclass\n+ case, the memory consumption has also been reduced for these solvers as the target is\n+ now label encoded (mapped to integers) instead of label binarized (one-hot encoded).\n+ The more classes, the larger the benefit.\n+ :pr:`<PRID>`, :pr:`<PRID>` and :pr:`<PRID>` by\n+ :user:`<NAME>`.\n+\n - |Enhancement| Rename parameter `base_estimator` to `estimator` in\n :class:`linear_model.RANSACRegressor` to improve readability and consistency.\n `base_estimator` is deprecated and will be removed in 1.3.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 39f8e405ebf7c..b88e54b46a4bf 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -393,6 +393,15 @@ Changelog
beginning which speeds up fitting.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| :class:`~linear_model.LogisticRegression` is faster for
+ ``solvers="lbfgs"`` and ``solver="newton-cg"``, for binary and in particular for
+ multiclass problems thanks to the new private loss function module. In the multiclass
+ case, the memory consumption has also been reduced for these solvers as the target is
+ now label encoded (mapped to integers) instead of label binarized (one-hot encoded).
+ The more classes, the larger the benefit.
+ :pr:`<PRID>`, :pr:`<PRID>` and :pr:`<PRID>` by
+ :user:`<NAME>`.
+
- |Enhancement| Rename parameter `base_estimator` to `estimator` in
:class:`linear_model.RANSACRegressor` to improve readability and consistency.
`base_estimator` is deprecated and will be removed in 1.3.
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'sklearn/linear_model/_linear_loss.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22062
|
https://github.com/scikit-learn/scikit-learn/pull/22062
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index fa634e3e600fd..0674f1493b34b 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -303,6 +303,17 @@ Changelog
for the highs based solvers.
:pr:`21086` by :user:`Venkatachalam Natchiappan <venkyyuvy>`.
+- |Enhancement| Rename parameter `base_estimator` to `estimator` in
+ :class:`linear_model.RANSACRegressor` to improve readability and consistency.
+ `base_estimator` is deprecated and will be removed in 1.3.
+ :pr:`22062` by :user:`Adrian Trujillo <trujillo9616>`.
+
+- |Fix| :class:`linear_model.LassoLarsIC` now correctly computes AIC
+ and BIC. An error is now raised when `n_features > n_samples` and
+ when the noise variance is not provided.
+ :pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>` and
+ :user:`Andrés Babino <ababino>`.
+
:mod:`sklearn.metrics`
......................
diff --git a/sklearn/linear_model/_ransac.py b/sklearn/linear_model/_ransac.py
index c565c8c6ce403..7702e361d51d0 100644
--- a/sklearn/linear_model/_ransac.py
+++ b/sklearn/linear_model/_ransac.py
@@ -65,7 +65,7 @@ class RANSACRegressor(
Parameters
----------
- base_estimator : object, default=None
+ estimator : object, default=None
Base estimator object which implements the following methods:
* `fit(X, y)`: Fit model to given training data and target values.
@@ -76,7 +76,7 @@ class RANSACRegressor(
* `predict(X)`: Returns predicted values using the linear model,
which is used to compute residual error using loss function.
- If `base_estimator` is None, then
+ If `estimator` is None, then
:class:`~sklearn.linear_model.LinearRegression` is used for
target values of dtype float.
@@ -88,10 +88,10 @@ class RANSACRegressor(
as an absolute number of samples for `min_samples >= 1`, treated as a
relative number `ceil(min_samples * X.shape[0])` for
`min_samples < 1`. This is typically chosen as the minimal number of
- samples necessary to estimate the given `base_estimator`. By default a
+ samples necessary to estimate the given `estimator`. By default a
``sklearn.linear_model.LinearRegression()`` estimator is assumed and
`min_samples` is chosen as ``X.shape[1] + 1``. This parameter is highly
- dependent upon the model, so if a `base_estimator` other than
+ dependent upon the model, so if a `estimator` other than
:class:`linear_model.LinearRegression` is used, the user is
encouraged to provide a value.
@@ -174,10 +174,17 @@ class RANSACRegressor(
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
+ base_estimator : object, default="deprecated"
+ Use `estimator` instead.
+
+ .. deprecated:: 1.1
+ `base_estimator` is deprecated and will be removed in 1.3.
+ Use `estimator` instead.
+
Attributes
----------
estimator_ : object
- Best fitted model (copy of the `base_estimator` object).
+ Best fitted model (copy of the `estimator` object).
n_trials_ : int
Number of random selection trials until one of the stop criteria is
@@ -241,7 +248,7 @@ class RANSACRegressor(
def __init__(
self,
- base_estimator=None,
+ estimator=None,
*,
min_samples=None,
residual_threshold=None,
@@ -254,9 +261,10 @@ def __init__(
stop_probability=0.99,
loss="absolute_error",
random_state=None,
+ base_estimator="deprecated",
):
- self.base_estimator = base_estimator
+ self.estimator = estimator
self.min_samples = min_samples
self.residual_threshold = residual_threshold
self.is_data_valid = is_data_valid
@@ -268,6 +276,7 @@ def __init__(
self.stop_probability = stop_probability
self.random_state = random_state
self.loss = loss
+ self.base_estimator = base_estimator
def fit(self, X, y, sample_weight=None):
"""Fit estimator using RANSAC algorithm.
@@ -282,7 +291,7 @@ def fit(self, X, y, sample_weight=None):
sample_weight : array-like of shape (n_samples,), default=None
Individual weights for each sample
- raises error if sample_weight is passed and base_estimator
+ raises error if sample_weight is passed and estimator
fit method does not support it.
.. versionadded:: 0.18
@@ -301,7 +310,7 @@ def fit(self, X, y, sample_weight=None):
"""
# Need to validate separately here. We can't pass multi_ouput=True
# because that would allow y to be csr. Delay expensive finiteness
- # check to the base estimator's own input validation.
+ # check to the estimator's own input validation.
check_X_params = dict(accept_sparse="csr", force_all_finite=False)
check_y_params = dict(ensure_2d=False)
X, y = self._validate_data(
@@ -309,13 +318,21 @@ def fit(self, X, y, sample_weight=None):
)
check_consistent_length(X, y)
- if self.base_estimator is not None:
- base_estimator = clone(self.base_estimator)
+ if self.base_estimator != "deprecated":
+ warnings.warn(
+ "`base_estimator` was renamed to `estimator` in version 1.1 and "
+ "will be removed in 1.3.",
+ FutureWarning,
+ )
+ self.estimator = self.base_estimator
+
+ if self.estimator is not None:
+ estimator = clone(self.estimator)
else:
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
if self.min_samples is None:
- if not isinstance(base_estimator, LinearRegression):
+ if not isinstance(estimator, LinearRegression):
# FIXME: in 1.2, turn this warning into an error
warnings.warn(
"From version 1.2, `min_samples` needs to be explicitly "
@@ -392,14 +409,12 @@ def fit(self, X, y, sample_weight=None):
random_state = check_random_state(self.random_state)
try: # Not all estimator accept a random_state
- base_estimator.set_params(random_state=random_state)
+ estimator.set_params(random_state=random_state)
except ValueError:
pass
- estimator_fit_has_sample_weight = has_fit_parameter(
- base_estimator, "sample_weight"
- )
- estimator_name = type(base_estimator).__name__
+ estimator_fit_has_sample_weight = has_fit_parameter(estimator, "sample_weight")
+ estimator_name = type(estimator).__name__
if sample_weight is not None and not estimator_fit_has_sample_weight:
raise ValueError(
"%s does not support sample_weight. Samples"
@@ -451,21 +466,21 @@ def fit(self, X, y, sample_weight=None):
# fit model for current random sample set
if sample_weight is None:
- base_estimator.fit(X_subset, y_subset)
+ estimator.fit(X_subset, y_subset)
else:
- base_estimator.fit(
+ estimator.fit(
X_subset, y_subset, sample_weight=sample_weight[subset_idxs]
)
# check if estimated model is valid
if self.is_model_valid is not None and not self.is_model_valid(
- base_estimator, X_subset, y_subset
+ estimator, X_subset, y_subset
):
self.n_skips_invalid_model_ += 1
continue
# residuals of all data for current random sample model
- y_pred = base_estimator.predict(X)
+ y_pred = estimator.predict(X)
residuals_subset = loss_function(y, y_pred)
# classify data into inliers and outliers
@@ -483,7 +498,7 @@ def fit(self, X, y, sample_weight=None):
y_inlier_subset = y[inlier_idxs_subset]
# score of inlier data set
- score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset)
+ score_subset = estimator.score(X_inlier_subset, y_inlier_subset)
# same number of inliers but worse score -> skip current random
# sample
@@ -546,15 +561,15 @@ def fit(self, X, y, sample_weight=None):
# estimate final model using all inliers
if sample_weight is None:
- base_estimator.fit(X_inlier_best, y_inlier_best)
+ estimator.fit(X_inlier_best, y_inlier_best)
else:
- base_estimator.fit(
+ estimator.fit(
X_inlier_best,
y_inlier_best,
sample_weight=sample_weight[inlier_best_idxs_subset],
)
- self.estimator_ = base_estimator
+ self.estimator_ = estimator
self.inlier_mask_ = inlier_mask_best
return self
|
diff --git a/sklearn/linear_model/tests/test_ransac.py b/sklearn/linear_model/tests/test_ransac.py
index f26d2088263b8..53f6b2d1f75eb 100644
--- a/sklearn/linear_model/tests/test_ransac.py
+++ b/sklearn/linear_model/tests/test_ransac.py
@@ -30,9 +30,9 @@
def test_ransac_inliers_outliers():
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=5, random_state=0
+ estimator, min_samples=2, residual_threshold=5, random_state=0
)
# Estimate parameters of corrupted data
@@ -55,9 +55,9 @@ def is_data_valid(X, y):
X = rng.rand(10, 2)
y = rng.rand(10, 1)
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2,
residual_threshold=5,
is_data_valid=is_data_valid,
@@ -73,9 +73,9 @@ def is_model_valid(estimator, X, y):
assert y.shape[0] == 2
return False
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2,
residual_threshold=5,
is_model_valid=is_model_valid,
@@ -86,10 +86,10 @@ def is_model_valid(estimator, X, y):
def test_ransac_max_trials():
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2,
residual_threshold=5,
max_trials=0,
@@ -102,7 +102,7 @@ def test_ransac_max_trials():
# 1e-2 isn't enough, can still happen
# 2 is the what ransac defines as min_samples = X.shape[1] + 1
max_trials = _dynamic_max_trials(len(X) - len(outliers), X.shape[0], 2, 1 - 1e-9)
- ransac_estimator = RANSACRegressor(base_estimator, min_samples=2)
+ ransac_estimator = RANSACRegressor(estimator, min_samples=2)
for i in range(50):
ransac_estimator.set_params(min_samples=2, random_state=i)
ransac_estimator.fit(X, y)
@@ -110,9 +110,9 @@ def test_ransac_max_trials():
def test_ransac_stop_n_inliers():
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2,
residual_threshold=5,
stop_n_inliers=2,
@@ -124,9 +124,9 @@ def test_ransac_stop_n_inliers():
def test_ransac_stop_score():
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2,
residual_threshold=5,
stop_score=0,
@@ -143,9 +143,9 @@ def test_ransac_score():
y[0] = 1
y[1] = 100
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=0.5, random_state=0
+ estimator, min_samples=2, residual_threshold=0.5, random_state=0
)
ransac_estimator.fit(X, y)
@@ -159,9 +159,9 @@ def test_ransac_predict():
y[0] = 1
y[1] = 100
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=0.5, random_state=0
+ estimator, min_samples=2, residual_threshold=0.5, random_state=0
)
ransac_estimator.fit(X, y)
@@ -171,9 +171,9 @@ def test_ransac_predict():
def test_ransac_residuals_threshold_no_inliers():
# When residual_threshold=nan there are no inliers and a
# ValueError with a message should be raised
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2,
residual_threshold=float("nan"),
random_state=0,
@@ -192,9 +192,9 @@ def test_ransac_no_valid_data():
def is_data_valid(X, y):
return False
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, is_data_valid=is_data_valid, max_trials=5
+ estimator, is_data_valid=is_data_valid, max_trials=5
)
msg = "RANSAC could not find a valid consensus set"
@@ -209,9 +209,9 @@ def test_ransac_no_valid_model():
def is_model_valid(estimator, X, y):
return False
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, is_model_valid=is_model_valid, max_trials=5
+ estimator, is_model_valid=is_model_valid, max_trials=5
)
msg = "RANSAC could not find a valid consensus set"
@@ -226,9 +226,9 @@ def test_ransac_exceed_max_skips():
def is_data_valid(X, y):
return False
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, is_data_valid=is_data_valid, max_trials=5, max_skips=3
+ estimator, is_data_valid=is_data_valid, max_trials=5, max_skips=3
)
msg = "RANSAC skipped more iterations than `max_skips`"
@@ -251,9 +251,9 @@ def is_data_valid(X, y):
else:
return False
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, is_data_valid=is_data_valid, max_skips=3, max_trials=5
+ estimator, is_data_valid=is_data_valid, max_skips=3, max_trials=5
)
warning_message = (
"RANSAC found a valid consensus set but exited "
@@ -271,9 +271,9 @@ def is_data_valid(X, y):
def test_ransac_sparse_coo():
X_sparse = sparse.coo_matrix(X)
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=5, random_state=0
+ estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_estimator.fit(X_sparse, y)
@@ -286,9 +286,9 @@ def test_ransac_sparse_coo():
def test_ransac_sparse_csr():
X_sparse = sparse.csr_matrix(X)
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=5, random_state=0
+ estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_estimator.fit(X_sparse, y)
@@ -301,9 +301,9 @@ def test_ransac_sparse_csr():
def test_ransac_sparse_csc():
X_sparse = sparse.csc_matrix(X)
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=5, random_state=0
+ estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_estimator.fit(X_sparse, y)
@@ -315,10 +315,10 @@ def test_ransac_sparse_csc():
def test_ransac_none_estimator():
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=5, random_state=0
+ estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_none_estimator = RANSACRegressor(
None, min_samples=2, residual_threshold=5, random_state=0
@@ -333,30 +333,28 @@ def test_ransac_none_estimator():
def test_ransac_min_n_samples():
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator1 = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=5, random_state=0
+ estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_estimator2 = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2.0 / X.shape[0],
residual_threshold=5,
random_state=0,
)
ransac_estimator3 = RANSACRegressor(
- base_estimator, min_samples=-1, residual_threshold=5, random_state=0
+ estimator, min_samples=-1, residual_threshold=5, random_state=0
)
ransac_estimator4 = RANSACRegressor(
- base_estimator, min_samples=5.2, residual_threshold=5, random_state=0
+ estimator, min_samples=5.2, residual_threshold=5, random_state=0
)
ransac_estimator5 = RANSACRegressor(
- base_estimator, min_samples=2.0, residual_threshold=5, random_state=0
- )
- ransac_estimator6 = RANSACRegressor(
- base_estimator, residual_threshold=5, random_state=0
+ estimator, min_samples=2.0, residual_threshold=5, random_state=0
)
+ ransac_estimator6 = RANSACRegressor(estimator, residual_threshold=5, random_state=0)
ransac_estimator7 = RANSACRegressor(
- base_estimator, min_samples=X.shape[0] + 1, residual_threshold=5, random_state=0
+ estimator, min_samples=X.shape[0] + 1, residual_threshold=5, random_state=0
)
# GH #19390
ransac_estimator8 = RANSACRegressor(
@@ -394,9 +392,9 @@ def test_ransac_min_n_samples():
def test_ransac_multi_dimensional_targets():
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=5, random_state=0
+ estimator, min_samples=2, residual_threshold=5, random_state=0
)
# 3-D target values
@@ -424,19 +422,19 @@ def loss_mono(y_true, y_pred):
yyy = np.column_stack([y, y, y])
- base_estimator = LinearRegression()
+ estimator = LinearRegression()
ransac_estimator0 = RANSACRegressor(
- base_estimator, min_samples=2, residual_threshold=5, random_state=0
+ estimator, min_samples=2, residual_threshold=5, random_state=0
)
ransac_estimator1 = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2,
residual_threshold=5,
random_state=0,
loss=loss_multi1,
)
ransac_estimator2 = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2,
residual_threshold=5,
random_state=0,
@@ -462,7 +460,7 @@ def loss_mono(y_true, y_pred):
ransac_estimator0.predict(X), ransac_estimator2.predict(X)
)
ransac_estimator3 = RANSACRegressor(
- base_estimator,
+ estimator,
min_samples=2,
residual_threshold=5,
random_state=0,
@@ -475,8 +473,8 @@ def loss_mono(y_true, y_pred):
def test_ransac_default_residual_threshold():
- base_estimator = LinearRegression()
- ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, random_state=0)
+ estimator = LinearRegression()
+ ransac_estimator = RANSACRegressor(estimator, min_samples=2, random_state=0)
# Estimate parameters of corrupted data
ransac_estimator.fit(X, y)
@@ -519,17 +517,13 @@ def test_ransac_dynamic_max_trials():
assert _dynamic_max_trials(1, 100, 10, 0) == 0
assert _dynamic_max_trials(1, 100, 10, 1) == float("inf")
- base_estimator = LinearRegression()
- ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, stop_probability=-0.1
- )
+ estimator = LinearRegression()
+ ransac_estimator = RANSACRegressor(estimator, min_samples=2, stop_probability=-0.1)
with pytest.raises(ValueError):
ransac_estimator.fit(X, y)
- ransac_estimator = RANSACRegressor(
- base_estimator, min_samples=2, stop_probability=1.1
- )
+ ransac_estimator = RANSACRegressor(estimator, min_samples=2, stop_probability=1.1)
with pytest.raises(ValueError):
ransac_estimator.fit(X, y)
@@ -579,12 +573,12 @@ def test_ransac_fit_sample_weight():
assert_allclose(ransac_estimator.estimator_.coef_, ref_coef_)
- # check that if base_estimator.fit doesn't support
+ # check that if estimator.fit doesn't support
# sample_weight, raises error
- base_estimator = OrthogonalMatchingPursuit()
- ransac_estimator = RANSACRegressor(base_estimator, min_samples=10)
+ estimator = OrthogonalMatchingPursuit()
+ ransac_estimator = RANSACRegressor(estimator, min_samples=10)
- err_msg = f"{base_estimator.__class__.__name__} does not support sample_weight."
+ err_msg = f"{estimator.__class__.__name__} does not support sample_weight."
with pytest.raises(ValueError, match=err_msg):
ransac_estimator.fit(X, y, weights)
@@ -594,7 +588,7 @@ def test_ransac_final_model_fit_sample_weight():
rng = check_random_state(42)
sample_weight = rng.randint(1, 4, size=y.shape[0])
sample_weight = sample_weight / sample_weight.sum()
- ransac = RANSACRegressor(base_estimator=LinearRegression(), random_state=0)
+ ransac = RANSACRegressor(estimator=LinearRegression(), random_state=0)
ransac.fit(X, y, sample_weight=sample_weight)
final_model = LinearRegression()
@@ -614,8 +608,8 @@ def test_perfect_horizontal_line():
X = np.arange(100)[:, None]
y = np.zeros((100,))
- base_estimator = LinearRegression()
- ransac_estimator = RANSACRegressor(base_estimator, random_state=0)
+ estimator = LinearRegression()
+ ransac_estimator = RANSACRegressor(estimator, random_state=0)
ransac_estimator.fit(X, y)
assert_allclose(ransac_estimator.estimator_.coef_, 0.0)
@@ -639,3 +633,18 @@ def test_loss_deprecated(old_loss, new_loss):
est2 = RANSACRegressor(loss=new_loss, random_state=0)
est2.fit(X, y)
assert_allclose(est1.predict(X), est2.predict(X))
+
+
+def test_base_estimator_deprecated():
+ ransac_estimator = RANSACRegressor(
+ base_estimator=LinearRegression(),
+ min_samples=2,
+ residual_threshold=5,
+ random_state=0,
+ )
+ err_msg = (
+ "`base_estimator` was renamed to `estimator` in version 1.1 and "
+ "will be removed in 1.3."
+ )
+ with pytest.warns(FutureWarning, match=err_msg):
+ ransac_estimator.fit(X, y)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex fa634e3e600fd..0674f1493b34b 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -303,6 +303,17 @@ Changelog\n for the highs based solvers.\n :pr:`21086` by :user:`Venkatachalam Natchiappan <venkyyuvy>`.\n \n+- |Enhancement| Rename parameter `base_estimator` to `estimator` in\n+ :class:`linear_model.RANSACRegressor` to improve readability and consistency.\n+ `base_estimator` is deprecated and will be removed in 1.3.\n+ :pr:`22062` by :user:`Adrian Trujillo <trujillo9616>`.\n+\n+- |Fix| :class:`linear_model.LassoLarsIC` now correctly computes AIC\n+ and BIC. An error is now raised when `n_features > n_samples` and\n+ when the noise variance is not provided.\n+ :pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>` and\n+ :user:`Andrés Babino <ababino>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n"
}
] |
1.01
|
e4015289e0eeb390190ce0d051cee756bc5ecb33
|
[
"sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse_csc",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_is_model_valid",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_predict",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse_csr",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_max_trials",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_dynamic_max_trials",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_exceed_max_skips",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_min_n_samples",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_multi_dimensional_targets",
"sklearn/linear_model/tests/test_ransac.py::test_loss_deprecated[squared_loss-absolute_error]",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_is_data_valid",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_stop_score",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_inliers_outliers",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_score",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_warn_exceed_max_skips",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_no_valid_data",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse_coo",
"sklearn/linear_model/tests/test_ransac.py::test_loss_deprecated[absolute_loss-squared_error]",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_stop_n_inliers",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_residual_loss",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_residuals_threshold_no_inliers",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_default_residual_threshold",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_none_estimator",
"sklearn/linear_model/tests/test_ransac.py::test_perfect_horizontal_line",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_fit_sample_weight",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_no_valid_model"
] |
[
"sklearn/linear_model/tests/test_ransac.py::test_base_estimator_deprecated",
"sklearn/linear_model/tests/test_ransac.py::test_ransac_final_model_fit_sample_weight"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex fa634e3e600fd..0674f1493b34b 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -303,6 +303,17 @@ Changelog\n for the highs based solvers.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| Rename parameter `base_estimator` to `estimator` in\n+ :class:`linear_model.RANSACRegressor` to improve readability and consistency.\n+ `base_estimator` is deprecated and will be removed in 1.3.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n+- |Fix| :class:`linear_model.LassoLarsIC` now correctly computes AIC\n+ and BIC. An error is now raised when `n_features > n_samples` and\n+ when the noise variance is not provided.\n+ :pr:`<PRID>` by :user:`<NAME>` and\n+ :user:`<NAME>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index fa634e3e600fd..0674f1493b34b 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -303,6 +303,17 @@ Changelog
for the highs based solvers.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| Rename parameter `base_estimator` to `estimator` in
+ :class:`linear_model.RANSACRegressor` to improve readability and consistency.
+ `base_estimator` is deprecated and will be removed in 1.3.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
+- |Fix| :class:`linear_model.LassoLarsIC` now correctly computes AIC
+ and BIC. An error is now raised when `n_features > n_samples` and
+ when the noise variance is not provided.
+ :pr:`<PRID>` by :user:`<NAME>` and
+ :user:`<NAME>`.
+
:mod:`sklearn.metrics`
......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22148
|
https://github.com/scikit-learn/scikit-learn/pull/22148
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index eef1135855560..75cd2414647c4 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -337,6 +337,11 @@ Changelog
:pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>` and
:user:`Andrés Babino <ababino>`.
+- |Enhancement| :func:`linear_model.ElasticNet` and
+ and other linear model classes using coordinate descent show error
+ messages when non-finite parameter weights are produced. :pr:`22148`
+ by :user:`Christian Ritter <chritter>` and :user:`Norbert Preining <norbusan>`.
+
- |Fix| :class:`linear_model.ElasticNetCV` now produces correct
warning when `l1_ratio=0`.
:pr:`21724` by :user:`Yar Khine Phyo <yarkhinephyo>`.
diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py
index 7e4906962bffc..8785aa913fec2 100644
--- a/sklearn/linear_model/_coordinate_descent.py
+++ b/sklearn/linear_model/_coordinate_descent.py
@@ -1075,6 +1075,14 @@ def fit(self, X, y, sample_weight=None, check_input=True):
# workaround since _set_intercept will cast self.coef_ into X.dtype
self.coef_ = np.asarray(self.coef_, dtype=X.dtype)
+ # check for finiteness of coefficients
+ if not all(np.isfinite(w).all() for w in [self.coef_, self.intercept_]):
+ raise ValueError(
+ "Coordinate descent iterations resulted in non-finite parameter"
+ " values. The input data may contain large values and need to"
+ " be preprocessed."
+ )
+
# return self for chaining fit and predict calls
return self
|
diff --git a/sklearn/linear_model/tests/test_coordinate_descent.py b/sklearn/linear_model/tests/test_coordinate_descent.py
index c5ff1156875d4..2e65fb1fa23bb 100644
--- a/sklearn/linear_model/tests/test_coordinate_descent.py
+++ b/sklearn/linear_model/tests/test_coordinate_descent.py
@@ -167,6 +167,21 @@ def test_lasso_zero():
assert_almost_equal(clf.dual_gap_, 0)
+def test_enet_nonfinite_params():
+ # Check ElasticNet throws ValueError when dealing with non-finite parameter
+ # values
+ rng = np.random.RandomState(0)
+ n_samples = 10
+ fmax = np.finfo(np.float64).max
+ X = fmax * rng.uniform(size=(n_samples, 2))
+ y = rng.randint(0, 2, size=n_samples)
+
+ clf = ElasticNet(alpha=0.1)
+ msg = "Coordinate descent iterations resulted in non-finite parameter values"
+ with pytest.raises(ValueError, match=msg):
+ clf.fit(X, y)
+
+
def test_lasso_toy():
# Test Lasso on a toy example for various values of alpha.
# When validating this against glmnet notice that glmnet divides it
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex eef1135855560..75cd2414647c4 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -337,6 +337,11 @@ Changelog\n :pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>` and\n :user:`Andrés Babino <ababino>`.\n \n+- |Enhancement| :func:`linear_model.ElasticNet` and \n+ and other linear model classes using coordinate descent show error\n+ messages when non-finite parameter weights are produced. :pr:`22148`\n+ by :user:`Christian Ritter <chritter>` and :user:`Norbert Preining <norbusan>`.\n+\n - |Fix| :class:`linear_model.ElasticNetCV` now produces correct\n warning when `l1_ratio=0`.\n :pr:`21724` by :user:`Yar Khine Phyo <yarkhinephyo>`.\n"
}
] |
1.01
|
1d1aadd0711b87d2a11c80aad15df6f8cf156712
|
[
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_unknown_parameter[enet_path]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lars-params12]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_toy",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-1.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-1.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0.5-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence_with_regularizer_decrement",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeClassifier-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ARDRegression-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[False-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[auto-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_sparse[ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[OrthogonalMatchingPursuit-params8]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskLasso-params11]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_precompute_invalid_argument",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_l1_ratio",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_multitarget",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_multitask_lasso",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Ridge-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[BayesianRidge-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_gram_weighted_samples",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeCV-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_dense_descent_paths",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params9]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_with_some_model_selection",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_sparse[Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-1000000.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNetCV-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_parameters",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_dtype_enet_and_lassocv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeClassifier-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_random_descent",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-0.1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-ElasticNet-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-LinearRegression-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LassoCV-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_sparse[ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0.5-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_incorrect_gram",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_and_enet",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path_positive",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_readonly_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params10]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Ridge-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_dual_gap",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeClassifier-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[True-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_coef_shape_not_zero",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_check_input_false",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_readonly_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_lasso_and_multitask_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeCV-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LinearRegression-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_path_return_models_vs_new_return_gives_same_coefficients",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-1-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_enet_and_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-1-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[-1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-LinearRegression-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeCV-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-1000000.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0.5-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLarsIC-params14]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeClassifierCV-params9]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0.5-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-ElasticNet-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_float_precision",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[something_wrong]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeClassifierCV-params16]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LinearRegression-params13]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_unknown_parameter[lasso_path]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_zero",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_sparse[LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[10]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_cv_dtype",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_False_check_input_False",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-Ridge-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeCV-params15]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_uniform_targets",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multioutput_enetcv_error",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeClassifier-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[None]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeClassifier-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_toy",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-0.1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-Ridge-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-LinearRegression-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_overrided_gram_matrix",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_alpha_warning",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLars-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-Ridge-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_enet_and_multitask_enet_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeCV-params8]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lasso-params0]"
] |
[
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_nonfinite_params"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex eef1135855560..75cd2414647c4 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -337,6 +337,11 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n \n+- |Enhancement| :func:`linear_model.ElasticNet` and \n+ and other linear model classes using coordinate descent show error\n+ messages when non-finite parameter weights are produced. :pr:`<PRID>`\n+ by :user:`<NAME>` and :user:`<NAME>`.\n+\n - |Fix| :class:`linear_model.ElasticNetCV` now produces correct\n warning when `l1_ratio=0`.\n :pr:`<PRID>` by :user:`<NAME>`.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index eef1135855560..75cd2414647c4 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -337,6 +337,11 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
+- |Enhancement| :func:`linear_model.ElasticNet` and
+ and other linear model classes using coordinate descent show error
+ messages when non-finite parameter weights are produced. :pr:`<PRID>`
+ by :user:`<NAME>` and :user:`<NAME>`.
+
- |Fix| :class:`linear_model.ElasticNetCV` now produces correct
warning when `l1_ratio=0`.
:pr:`<PRID>` by :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22240
|
https://github.com/scikit-learn/scikit-learn/pull/22240
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index eef1135855560..496219491fd97 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -341,6 +341,11 @@ Changelog
warning when `l1_ratio=0`.
:pr:`21724` by :user:`Yar Khine Phyo <yarkhinephyo>`.
+- |Enhancement| :class:`linear_model.ElasticNet` and :class:`linear_model.Lasso`
+ now raise consistent error messages when passed invalid values for `l1_ratio`,
+ `alpha`, `max_iter` and `tol`.
+ :pr:`22240` by :user:`Arturo Amor <ArturoAmorQ>`.
+
:mod:`sklearn.metrics`
......................
diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py
index 7e4906962bffc..0c7ae0a7374d3 100644
--- a/sklearn/linear_model/_coordinate_descent.py
+++ b/sklearn/linear_model/_coordinate_descent.py
@@ -18,6 +18,7 @@
from ..base import RegressorMixin, MultiOutputMixin
from ._base import _preprocess_data, _deprecate_normalize
from ..utils import check_array
+from ..utils import check_scalar
from ..utils.validation import check_random_state
from ..model_selection import check_cv
from ..utils.extmath import safe_sparse_dot
@@ -903,6 +904,13 @@ def fit(self, X, y, sample_weight=None, check_input=True):
self.normalize, default=False, estimator_name=self.__class__.__name__
)
+ check_scalar(
+ self.alpha,
+ "alpha",
+ target_type=numbers.Real,
+ min_val=0.0,
+ )
+
if self.alpha == 0:
warnings.warn(
"With alpha=0, this algorithm does not converge "
@@ -917,15 +925,21 @@ def fit(self, X, y, sample_weight=None, check_input=True):
% self.precompute
)
- if (
- not isinstance(self.l1_ratio, numbers.Number)
- or self.l1_ratio < 0
- or self.l1_ratio > 1
- ):
- raise ValueError(
- f"l1_ratio must be between 0 and 1; got l1_ratio={self.l1_ratio}"
+ check_scalar(
+ self.l1_ratio,
+ "l1_ratio",
+ target_type=numbers.Real,
+ min_val=0.0,
+ max_val=1.0,
+ )
+
+ if self.max_iter is not None:
+ check_scalar(
+ self.max_iter, "max_iter", target_type=numbers.Integral, min_val=1
)
+ check_scalar(self.tol, "tol", target_type=numbers.Real, min_val=0.0)
+
# Remember if X is copied
X_copied = False
# We expect X and y to be float64 or float32 Fortran ordered arrays
|
diff --git a/sklearn/linear_model/tests/test_coordinate_descent.py b/sklearn/linear_model/tests/test_coordinate_descent.py
index c5ff1156875d4..6e7efe0930a00 100644
--- a/sklearn/linear_model/tests/test_coordinate_descent.py
+++ b/sklearn/linear_model/tests/test_coordinate_descent.py
@@ -106,17 +106,41 @@ def test_assure_warning_when_normalize(CoordinateDescentModel, normalize, n_warn
assert len(record) == n_warnings
[email protected]("l1_ratio", (-1, 2, None, 10, "something_wrong"))
-def test_l1_ratio_param_invalid(l1_ratio):
[email protected](
+ "params, err_type, err_msg",
+ [
+ ({"alpha": -1}, ValueError, "alpha == -1, must be >= 0.0"),
+ ({"l1_ratio": -1}, ValueError, "l1_ratio == -1, must be >= 0.0"),
+ ({"l1_ratio": 2}, ValueError, "l1_ratio == 2, must be <= 1.0"),
+ (
+ {"l1_ratio": "1"},
+ TypeError,
+ "l1_ratio must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ ),
+ ({"tol": -1.0}, ValueError, "tol == -1.0, must be >= 0."),
+ (
+ {"tol": "1"},
+ TypeError,
+ "tol must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ ),
+ ({"max_iter": 0}, ValueError, "max_iter == 0, must be >= 1."),
+ (
+ {"max_iter": "1"},
+ TypeError,
+ "max_iter must be an instance of <class 'numbers.Integral'>, not <class"
+ " 'str'>",
+ ),
+ ],
+)
+def test_param_invalid(params, err_type, err_msg):
# Check that correct error is raised when l1_ratio in ElasticNet
# is outside the correct range
X = np.array([[-1.0], [0.0], [1.0]])
- Y = [-1, 0, 1] # just a straight line
+ y = [-1, 0, 1] # just a straight line
- msg = "l1_ratio must be between 0 and 1; got l1_ratio="
- clf = ElasticNet(alpha=0.1, l1_ratio=l1_ratio)
- with pytest.raises(ValueError, match=msg):
- clf.fit(X, Y)
+ enet = ElasticNet(**params)
+ with pytest.raises(err_type, match=err_msg):
+ enet.fit(X, y)
@pytest.mark.parametrize("order", ["C", "F"])
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex eef1135855560..496219491fd97 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -341,6 +341,11 @@ Changelog\n warning when `l1_ratio=0`.\n :pr:`21724` by :user:`Yar Khine Phyo <yarkhinephyo>`.\n \n+- |Enhancement| :class:`linear_model.ElasticNet` and :class:`linear_model.Lasso`\n+ now raise consistent error messages when passed invalid values for `l1_ratio`,\n+ `alpha`, `max_iter` and `tol`.\n+ :pr:`22240` by :user:`Arturo Amor <ArturoAmorQ>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n"
}
] |
1.01
|
c131f7c96bc163b8c069854305ee9f6a51e24000
|
[
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[auto-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_sparse[LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[BayesianRidge-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeCV-params8]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_overrided_gram_matrix",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLarsIC-params14]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multioutput_enetcv_error",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-1000000.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeClassifier-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_readonly_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_check_input_false",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params9]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_cv_dtype",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_sparse[ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_zero",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_dual_gap",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-ElasticNet-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_enet_and_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-1000000.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_readonly_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path_positive",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_unknown_parameter[enet_path]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-1.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNetCV-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-LinearRegression-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeClassifierCV-params9]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-0.1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_with_some_model_selection",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-Ridge-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LassoCV-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-LinearRegression-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Ridge-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_lasso_and_multitask_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_multitask_lasso",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0.5-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ARDRegression-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_unknown_parameter[lasso_path]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_False_check_input_False",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_parameters",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-ElasticNet-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeCV-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_sparse[ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_dtype_enet_and_lassocv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-1-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_alpha_warning",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LinearRegression-params13]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_multitarget",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-Ridge-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-0.1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_toy",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeCV-params15]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_toy",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[False-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_gram_weighted_samples",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0.5-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_and_enet",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-LinearRegression-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeCV-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_dense_descent_paths",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[True-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeClassifier-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_incorrect_gram",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeCV-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0.5-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-1-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_enet_and_multitask_enet_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lars-params12]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_sparse[Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LinearRegression-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params10]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskLasso-params11]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_path_return_models_vs_new_return_gives_same_coefficients",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence_with_regularizer_decrement",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeClassifier-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0.5-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_random_descent",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_uniform_targets",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_float_precision",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_l1_ratio",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[LassoCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeClassifier-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-1.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[OrthogonalMatchingPursuit-params8]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Ridge-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeClassifierCV-params16]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_precompute_invalid_argument",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-Ridge-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_coef_shape_not_zero",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[ElasticNetCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeClassifier-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLars-params1]"
] |
[
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params6-ValueError-max_iter == 0, must be >= 1.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params0-ValueError-alpha == -1, must be >= 0.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params5-TypeError-tol must be an instance of <class 'numbers.Real'>, not <class 'str'>]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params4-ValueError-tol == -1.0, must be >= 0.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params3-TypeError-l1_ratio must be an instance of <class 'numbers.Real'>, not <class 'str'>]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params7-TypeError-max_iter must be an instance of <class 'numbers.Integral'>, not <class 'str'>]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params1-ValueError-l1_ratio == -1, must be >= 0.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params2-ValueError-l1_ratio == 2, must be <= 1.0]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex eef1135855560..496219491fd97 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -341,6 +341,11 @@ Changelog\n warning when `l1_ratio=0`.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| :class:`linear_model.ElasticNet` and :class:`linear_model.Lasso`\n+ now raise consistent error messages when passed invalid values for `l1_ratio`,\n+ `alpha`, `max_iter` and `tol`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index eef1135855560..496219491fd97 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -341,6 +341,11 @@ Changelog
warning when `l1_ratio=0`.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| :class:`linear_model.ElasticNet` and :class:`linear_model.Lasso`
+ now raise consistent error messages when passed invalid values for `l1_ratio`,
+ `alpha`, `max_iter` and `tol`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.metrics`
......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22950
|
https://github.com/scikit-learn/scikit-learn/pull/22950
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 732d2e8035aa6..4c61e08c15149 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -636,6 +636,10 @@ Changelog
of sample weights when the input is sparse.
:pr:`22899` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
+- |Feature| :class:`Ridge` with `solver="lsqr"` now supports to fit sparse input with
+ `fit_intercept=True`.
+ :pr:`22950` by :user:`Christian Lorentzen <lorentzenchr>`.
+
:mod:`sklearn.manifold`
.......................
diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py
index 900b5f7c221db..e05f68388ffd6 100644
--- a/sklearn/linear_model/_ridge.py
+++ b/sklearn/linear_model/_ridge.py
@@ -40,6 +40,22 @@
from ..utils.sparsefuncs import mean_variance_axis
+def _get_rescaled_operator(X, X_offset, sample_weight_sqrt):
+ """Create LinearOperator for matrix products with implicit centering.
+
+ Matrix product `LinearOperator @ coef` returns `(X - X_offset) @ coef`.
+ """
+
+ def matvec(b):
+ return X.dot(b) - sample_weight_sqrt * b.dot(X_offset)
+
+ def rmatvec(b):
+ return X.T.dot(b) - X_offset * b.dot(sample_weight_sqrt)
+
+ X1 = sparse.linalg.LinearOperator(shape=X.shape, matvec=matvec, rmatvec=rmatvec)
+ return X1
+
+
def _solve_sparse_cg(
X,
y,
@@ -54,25 +70,13 @@ def _solve_sparse_cg(
if sample_weight_sqrt is None:
sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)
- def _get_rescaled_operator(X):
-
- X_offset_scale = X_offset / X_scale
-
- def matvec(b):
- return X.dot(b) - sample_weight_sqrt * b.dot(X_offset_scale)
-
- def rmatvec(b):
- return X.T.dot(b) - X_offset_scale * b.dot(sample_weight_sqrt)
-
- X1 = sparse.linalg.LinearOperator(shape=X.shape, matvec=matvec, rmatvec=rmatvec)
- return X1
-
n_samples, n_features = X.shape
if X_offset is None or X_scale is None:
X1 = sp_linalg.aslinearoperator(X)
else:
- X1 = _get_rescaled_operator(X)
+ X_offset_scale = X_offset / X_scale
+ X1 = _get_rescaled_operator(X, X_offset_scale, sample_weight_sqrt)
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
@@ -137,7 +141,44 @@ def _mv(x):
return coefs
-def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3):
+def _solve_lsqr(
+ X,
+ y,
+ *,
+ alpha,
+ fit_intercept=True,
+ max_iter=None,
+ tol=1e-3,
+ X_offset=None,
+ X_scale=None,
+ sample_weight_sqrt=None,
+):
+ """Solve Ridge regression via LSQR.
+
+ We expect that y is always mean centered.
+ If X is dense, we expect it to be mean centered such that we can solve
+ ||y - Xw||_2^2 + alpha * ||w||_2^2
+
+ If X is sparse, we expect X_offset to be given such that we can solve
+ ||y - (X - X_offset)w||_2^2 + alpha * ||w||_2^2
+
+ With sample weights S=diag(sample_weight), this becomes
+ ||sqrt(S) (y - (X - X_offset) w)||_2^2 + alpha * ||w||_2^2
+ and we expect y and X to already be rescaled, i.e. sqrt(S) @ y, sqrt(S) @ X. In
+ this case, X_offset is the sample_weight weighted mean of X before scaling by
+ sqrt(S). The objective then reads
+ ||y - (X - sqrt(S) X_offset) w)||_2^2 + alpha * ||w||_2^2
+ """
+ if sample_weight_sqrt is None:
+ sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)
+
+ if sparse.issparse(X) and fit_intercept:
+ X_offset_scale = X_offset / X_scale
+ X1 = _get_rescaled_operator(X, X_offset_scale, sample_weight_sqrt)
+ else:
+ # No need to touch anything
+ X1 = X
+
n_samples, n_features = X.shape
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
n_iter = np.empty(y.shape[1], dtype=np.int32)
@@ -148,7 +189,7 @@ def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3):
for i in range(y.shape[1]):
y_column = y[:, i]
info = sp_linalg.lsqr(
- X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter
+ X1, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter
)
coefs[i] = info[0]
n_iter[i] = info[2]
@@ -351,7 +392,7 @@ def ridge_regression(
----------
X : {ndarray, sparse matrix, LinearOperator} of shape \
(n_samples, n_features)
- Training data
+ Training data.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values.
@@ -409,9 +450,9 @@ def ridge_regression(
`scipy.optimize.minimize`. It can be used only when `positive`
is True.
- All last six solvers support both dense and sparse data. However, only
- 'sag', 'sparse_cg', and 'lbfgs' support sparse input when `fit_intercept`
- is True.
+ All solvers except 'svd' support both dense and sparse data. However, only
+ 'lsqr', 'sag', 'sparse_cg', and 'lbfgs' support sparse input when
+ `fit_intercept` is True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
@@ -518,6 +559,7 @@ def _ridge_regression(
X_scale=None,
X_offset=None,
check_input=True,
+ fit_intercept=False,
):
has_sw = sample_weight is not None
@@ -629,7 +671,17 @@ def _ridge_regression(
)
elif solver == "lsqr":
- coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol)
+ coef, n_iter = _solve_lsqr(
+ X,
+ y,
+ alpha=alpha,
+ fit_intercept=fit_intercept,
+ max_iter=max_iter,
+ tol=tol,
+ X_offset=X_offset,
+ X_scale=X_scale,
+ sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
+ )
elif solver == "cholesky":
if n_features > n_samples:
@@ -764,15 +816,15 @@ def fit(self, X, y, sample_weight=None):
else:
solver = self.solver
elif sparse.issparse(X) and self.fit_intercept:
- if self.solver not in ["auto", "sparse_cg", "sag", "lbfgs"]:
+ if self.solver not in ["auto", "lbfgs", "lsqr", "sag", "sparse_cg"]:
raise ValueError(
"solver='{}' does not support fitting the intercept "
"on sparse data. Please set the solver to 'auto' or "
- "'sparse_cg', 'sag', 'lbfgs' "
+ "'lsqr', 'sparse_cg', 'sag', 'lbfgs' "
"or set `fit_intercept=False`".format(self.solver)
)
- if self.solver == "lbfgs":
- solver = "lbfgs"
+ if self.solver in ["lsqr", "lbfgs"]:
+ solver = self.solver
elif self.solver == "sag" and self.max_iter is None and self.tol > 1e-4:
warnings.warn(
'"sag" solver requires many iterations to fit '
@@ -846,6 +898,7 @@ def fit(self, X, y, sample_weight=None):
return_n_iter=True,
return_intercept=False,
check_input=False,
+ fit_intercept=self.fit_intercept,
**params,
)
self._set_intercept(X_offset, y_offset, X_scale)
@@ -944,9 +997,9 @@ class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
`scipy.optimize.minimize`. It can be used only when `positive`
is True.
- All last six solvers support both dense and sparse data. However, only
- 'sag', 'sparse_cg', and 'lbfgs' support sparse input when `fit_intercept`
- is True.
+ All solvers except 'svd' support both dense and sparse data. However, only
+ 'lsqr', 'sag', 'sparse_cg', and 'lbfgs' support sparse input when
+ `fit_intercept` is True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
|
diff --git a/sklearn/linear_model/tests/test_ridge.py b/sklearn/linear_model/tests/test_ridge.py
index 269952ddad659..e3bd6c6146ee9 100644
--- a/sklearn/linear_model/tests/test_ridge.py
+++ b/sklearn/linear_model/tests/test_ridge.py
@@ -1362,7 +1362,7 @@ def test_n_iter():
assert reg.n_iter_ is None
[email protected]("solver", ["sparse_cg", "lbfgs", "auto"])
[email protected]("solver", ["lsqr", "sparse_cg", "lbfgs", "auto"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
def test_ridge_fit_intercept_sparse(solver, with_sample_weight, global_random_seed):
"""Check that ridge finds the same coefs and intercept on dense and sparse input
@@ -1400,7 +1400,7 @@ def test_ridge_fit_intercept_sparse(solver, with_sample_weight, global_random_se
assert_allclose(dense_ridge.coef_, sparse_ridge.coef_)
[email protected]("solver", ["saga", "lsqr", "svd", "cholesky"])
[email protected]("solver", ["saga", "svd", "cholesky"])
def test_ridge_fit_intercept_sparse_error(solver):
X, y = _make_sparse_offset_regression(n_features=20, random_state=0)
X_csr = sp.csr_matrix(X)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 732d2e8035aa6..4c61e08c15149 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -636,6 +636,10 @@ Changelog\n of sample weights when the input is sparse.\n :pr:`22899` by :user:`Jérémie du Boisberranger <jeremiedbb>`.\n \n+- |Feature| :class:`Ridge` with `solver=\"lsqr\"` now supports to fit sparse input with\n+ `fit_intercept=True`.\n+ :pr:`22950` by :user:`Christian Lorentzen <lorentzenchr>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
1.01
|
48f363f35abec5b3611f96a2b91e9d4e2e1ce527
|
[
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_int_alphas",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sag_with_X_fortran",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params2-TypeError-alphas\\\\[2\\\\] must be an instance of float, not str-RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_classifiers]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[_mean_squared_error_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-True-sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[5]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params0-ValueError-alpha == -1, must be >= 0.0]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.01]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-True]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params1-TypeError-alpha must be an instance of float, not str]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_primal_dual_relationship",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_loo]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[bad]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params0-ValueError-alphas\\\\[1\\\\] == -1, must be > 0.0-RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv_normalize]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_shapes",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_vs_lstsq",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[neg_mean_squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_solver_not_supported",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_sample_weight",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_normalize_deprecated[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params5-TypeError-tol must be an instance of float, not str]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params2-TypeError-alphas\\\\[2\\\\] must be an instance of float, not str-RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match_cholesky",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_sag[42-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_individual_penalties",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_cg_max_iter",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sparse_svd",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_normalize_deprecated[RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params2-ValueError-max_iter == 0, must be >= 1.]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.001]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_error",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params1]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-False-sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_tolerance]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params0-ValueError-alphas\\\\[1\\\\] == -1, must be > 0.0-RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifier-params0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params1-ValueError-alphas\\\\[0\\\\] == -0.1, must be > 0.0-RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_loo_cv_asym_scoring",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_singular",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params1-ValueError-alphas\\\\[0\\\\] == -0.1, must be > 0.0-RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.01]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_intercept",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[1.0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params3-TypeError-max_iter must be an instance of int, not str]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sag]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_multi_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params2]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[gcv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_cv_individual_penalties",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-saga]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[1.0]",
"sklearn/linear_model/tests/test_ridge.py::test_n_iter",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_sag[42-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_convergence_fail",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_toy_ridge_object",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.001]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params4-ValueError-tol == -1.0, must be >= 0.]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights_cv",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[_accuracy_callable]"
] |
[
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-False-lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse[42-True-lsqr]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 732d2e8035aa6..4c61e08c15149 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -636,6 +636,10 @@ Changelog\n of sample weights when the input is sparse.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Feature| :class:`Ridge` with `solver=\"lsqr\"` now supports to fit sparse input with\n+ `fit_intercept=True`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 732d2e8035aa6..4c61e08c15149 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -636,6 +636,10 @@ Changelog
of sample weights when the input is sparse.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Feature| :class:`Ridge` with `solver="lsqr"` now supports to fit sparse input with
+ `fit_intercept=True`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.manifold`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21219
|
https://github.com/scikit-learn/scikit-learn/pull/21219
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 95367bb35ce10..2cf9d9226dbff 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -38,6 +38,13 @@ Changelog
:pr:`123456` by :user:`Joe Bloggs <joeongithub>`.
where 123456 is the *pull request* number, not the issue number.
+- |Enhancement| All scikit-learn models now generate a more informative
+ error message when some input contains unexpected `NaN` or infinite values.
+ In particular the message contains the input name ("X", "y" or
+ "sample_weight") and if an unexpected `NaN` value is found in `X`, the error
+ message suggests potential solutions.
+ :pr:`21219` by :user:`Olivier Grisel <ogrisel>`.
+
:mod:`sklearn.calibration`
..........................
@@ -131,6 +138,12 @@ Changelog
instead of `__init__`. :pr:`21430` by :user:`Desislava Vasileva <DessyVV>` and
:user:`Lucy Jimenez <LucyJimenez>`.
+- |Enhancement| `utils.validation.check_array` and `utils.validation.type_of_target`
+ now accept an `input_name` parameter to make the error message more
+ informative when passed invalid input data (e.g. with NaN or infinite
+ values).
+ :pr:`21219` by :user:`Olivier Grisel <ogrisel>`.
+
- |Enhancement| :func:`utils.validation.check_array` returns a float
ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension
array with `pd.NA`. :pr:`21278` by `Thomas Fan`_.
diff --git a/sklearn/_config.py b/sklearn/_config.py
index fe2d27f64857c..21c3cc1b4d142 100644
--- a/sklearn/_config.py
+++ b/sklearn/_config.py
@@ -148,7 +148,7 @@ def config_context(**new_config):
... assert_all_finite([float('nan')])
Traceback (most recent call last):
...
- ValueError: Input contains NaN, ...
+ ValueError: Input contains NaN...
See Also
--------
diff --git a/sklearn/base.py b/sklearn/base.py
index 557b2c25b2691..9fd41fcf247c8 100644
--- a/sklearn/base.py
+++ b/sklearn/base.py
@@ -531,15 +531,23 @@ def _validate_data(
It is recommended to call reset=True in `fit` and in the first
call to `partial_fit`. All other methods that validate `X`
should set `reset=False`.
+
validate_separately : False or tuple of dicts, default=False
Only used if y is not None.
If False, call validate_X_y(). Else, it must be a tuple of kwargs
to be used for calling check_array() on X and y respectively.
+
+ `estimator=self` is automatically added to these dicts to generate
+ more informative error message in case of invalid input data.
+
**check_params : kwargs
Parameters passed to :func:`sklearn.utils.check_array` or
:func:`sklearn.utils.check_X_y`. Ignored if validate_separately
is not False.
+ `estimator=self` is automatically added to these params to generate
+ more informative error message in case of invalid input data.
+
Returns
-------
out : {ndarray, sparse matrix} or tuple of these
@@ -557,10 +565,13 @@ def _validate_data(
no_val_X = isinstance(X, str) and X == "no_validation"
no_val_y = y is None or isinstance(y, str) and y == "no_validation"
+ default_check_params = {"estimator": self}
+ check_params = {**default_check_params, **check_params}
+
if no_val_X and no_val_y:
raise ValueError("Validation should be done on X, y or both.")
elif not no_val_X and no_val_y:
- X = check_array(X, **check_params)
+ X = check_array(X, input_name="X", **check_params)
out = X
elif no_val_X and not no_val_y:
y = _check_y(y, **check_params)
@@ -572,8 +583,12 @@ def _validate_data(
# on X and y isn't equivalent to just calling check_X_y()
# :(
check_X_params, check_y_params = validate_separately
- X = check_array(X, **check_X_params)
- y = check_array(y, **check_y_params)
+ if "estimator" not in check_X_params:
+ check_X_params = {**default_check_params, **check_X_params}
+ X = check_array(X, input_name="X", **check_X_params)
+ if "estimator" not in check_y_params:
+ check_y_params = {**default_check_params, **check_y_params}
+ y = check_array(y, input_name="y", **check_y_params)
else:
X, y = check_X_y(X, y, **check_params)
out = X, y
diff --git a/sklearn/cluster/_agglomerative.py b/sklearn/cluster/_agglomerative.py
index a4a22c73e182f..0a57278e99ba2 100644
--- a/sklearn/cluster/_agglomerative.py
+++ b/sklearn/cluster/_agglomerative.py
@@ -914,7 +914,7 @@ def fit(self, X, y=None):
self : object
Returns the fitted instance.
"""
- X = self._validate_data(X, ensure_min_samples=2, estimator=self)
+ X = self._validate_data(X, ensure_min_samples=2)
return self._fit(X)
def _fit(self, X):
@@ -1234,7 +1234,7 @@ def fit(self, X, y=None):
self : object
Returns the transformer.
"""
- X = self._validate_data(X, ensure_min_features=2, estimator=self)
+ X = self._validate_data(X, ensure_min_features=2)
super()._fit(X.T)
return self
diff --git a/sklearn/compose/_target.py b/sklearn/compose/_target.py
index 7814db9aabe75..e96729b2d91d7 100644
--- a/sklearn/compose/_target.py
+++ b/sklearn/compose/_target.py
@@ -209,6 +209,7 @@ def fit(self, X, y, **fit_params):
"""
y = check_array(
y,
+ input_name="y",
accept_sparse=False,
force_all_finite=True,
ensure_2d=False,
diff --git a/sklearn/covariance/_graph_lasso.py b/sklearn/covariance/_graph_lasso.py
index 81087c17de344..3bdda14de6ad0 100644
--- a/sklearn/covariance/_graph_lasso.py
+++ b/sklearn/covariance/_graph_lasso.py
@@ -465,9 +465,7 @@ def fit(self, X, y=None):
Returns the instance itself.
"""
# Covariance does not make sense for a single feature
- X = self._validate_data(
- X, ensure_min_features=2, ensure_min_samples=2, estimator=self
- )
+ X = self._validate_data(X, ensure_min_features=2, ensure_min_samples=2)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
@@ -856,7 +854,7 @@ def fit(self, X, y=None):
Returns the instance itself.
"""
# Covariance does not make sense for a single feature
- X = self._validate_data(X, ensure_min_features=2, estimator=self)
+ X = self._validate_data(X, ensure_min_features=2)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
diff --git a/sklearn/cross_decomposition/_pls.py b/sklearn/cross_decomposition/_pls.py
index 3d4012e6050ff..202a3c3cca064 100644
--- a/sklearn/cross_decomposition/_pls.py
+++ b/sklearn/cross_decomposition/_pls.py
@@ -212,7 +212,9 @@ def fit(self, X, Y):
X = self._validate_data(
X, dtype=np.float64, copy=self.copy, ensure_min_samples=2
)
- Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False)
+ Y = check_array(
+ Y, input_name="Y", dtype=np.float64, copy=self.copy, ensure_2d=False
+ )
if Y.ndim == 1:
Y = Y.reshape(-1, 1)
@@ -388,7 +390,9 @@ def transform(self, X, Y=None, copy=True):
# Apply rotation
x_scores = np.dot(X, self.x_rotations_)
if Y is not None:
- Y = check_array(Y, ensure_2d=False, copy=copy, dtype=FLOAT_DTYPES)
+ Y = check_array(
+ Y, input_name="Y", ensure_2d=False, copy=copy, dtype=FLOAT_DTYPES
+ )
if Y.ndim == 1:
Y = Y.reshape(-1, 1)
Y -= self._y_mean
@@ -424,7 +428,7 @@ def inverse_transform(self, X, Y=None):
This transformation will only be exact if `n_components=n_features`.
"""
check_is_fitted(self)
- X = check_array(X, dtype=FLOAT_DTYPES)
+ X = check_array(X, input_name="X", dtype=FLOAT_DTYPES)
# From pls space to original space
X_reconstructed = np.matmul(X, self.x_loadings_.T)
# Denormalize
@@ -432,7 +436,7 @@ def inverse_transform(self, X, Y=None):
X_reconstructed += self._x_mean
if Y is not None:
- Y = check_array(Y, dtype=FLOAT_DTYPES)
+ Y = check_array(Y, input_name="Y", dtype=FLOAT_DTYPES)
# From pls space to original space
Y_reconstructed = np.matmul(Y, self.y_loadings_.T)
# Denormalize
@@ -1036,7 +1040,9 @@ def fit(self, X, Y):
X = self._validate_data(
X, dtype=np.float64, copy=self.copy, ensure_min_samples=2
)
- Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False)
+ Y = check_array(
+ Y, input_name="Y", dtype=np.float64, copy=self.copy, ensure_2d=False
+ )
if Y.ndim == 1:
Y = Y.reshape(-1, 1)
@@ -1151,7 +1157,7 @@ def transform(self, X, Y=None):
Xr = (X - self._x_mean) / self._x_std
x_scores = np.dot(Xr, self.x_weights_)
if Y is not None:
- Y = check_array(Y, ensure_2d=False, dtype=np.float64)
+ Y = check_array(Y, input_name="Y", ensure_2d=False, dtype=np.float64)
if Y.ndim == 1:
Y = Y.reshape(-1, 1)
Yr = (Y - self._y_mean) / self._y_std
diff --git a/sklearn/discriminant_analysis.py b/sklearn/discriminant_analysis.py
index 001b4a23d0686..79faa8694a535 100644
--- a/sklearn/discriminant_analysis.py
+++ b/sklearn/discriminant_analysis.py
@@ -542,7 +542,7 @@ def fit(self, X, y):
Fitted estimator.
"""
X, y = self._validate_data(
- X, y, ensure_min_samples=2, estimator=self, dtype=[np.float64, np.float32]
+ X, y, ensure_min_samples=2, dtype=[np.float64, np.float32]
)
self.classes_ = unique_labels(y)
n_samples, _ = X.shape
diff --git a/sklearn/dummy.py b/sklearn/dummy.py
index 6b2133defce6f..fde922634d01b 100644
--- a/sklearn/dummy.py
+++ b/sklearn/dummy.py
@@ -530,7 +530,7 @@ def fit(self, X, y, sample_weight=None):
% (self.strategy, allowed_strategies)
)
- y = check_array(y, ensure_2d=False)
+ y = check_array(y, ensure_2d=False, input_name="y")
if len(y) == 0:
raise ValueError("y must not be empty.")
diff --git a/sklearn/isotonic.py b/sklearn/isotonic.py
index b61efc29ebdda..4b1687dea9605 100644
--- a/sklearn/isotonic.py
+++ b/sklearn/isotonic.py
@@ -116,7 +116,7 @@ def isotonic_regression(
by Michael J. Best and Nilotpal Chakravarti, section 3.
"""
order = np.s_[:] if increasing else np.s_[::-1]
- y = check_array(y, ensure_2d=False, dtype=[np.float64, np.float32])
+ y = check_array(y, ensure_2d=False, input_name="y", dtype=[np.float64, np.float32])
y = np.array(y[order], dtype=y.dtype)
sample_weight = _check_sample_weight(sample_weight, y, dtype=y.dtype, copy=True)
sample_weight = np.ascontiguousarray(sample_weight[order])
@@ -337,8 +337,10 @@ def fit(self, X, y, sample_weight=None):
new input data.
"""
check_params = dict(accept_sparse=False, ensure_2d=False)
- X = check_array(X, dtype=[np.float64, np.float32], **check_params)
- y = check_array(y, dtype=X.dtype, **check_params)
+ X = check_array(
+ X, input_name="X", dtype=[np.float64, np.float32], **check_params
+ )
+ y = check_array(y, input_name="y", dtype=X.dtype, **check_params)
check_consistent_length(X, y, sample_weight)
# Transform y by running the isotonic regression algorithm and
diff --git a/sklearn/linear_model/_omp.py b/sklearn/linear_model/_omp.py
index 8b94e4a32087f..7790171042d0f 100644
--- a/sklearn/linear_model/_omp.py
+++ b/sklearn/linear_model/_omp.py
@@ -1022,9 +1022,7 @@ def fit(self, X, y):
self.normalize, default=True, estimator_name=self.__class__.__name__
)
- X, y = self._validate_data(
- X, y, y_numeric=True, ensure_min_features=2, estimator=self
- )
+ X, y = self._validate_data(X, y, y_numeric=True, ensure_min_features=2)
X = as_float_array(X, copy=False, force_all_finite=False)
cv = check_cv(self.cv, classifier=False)
max_iter = (
diff --git a/sklearn/manifold/_spectral_embedding.py b/sklearn/manifold/_spectral_embedding.py
index 18e647307754e..e8cf61bfe783b 100644
--- a/sklearn/manifold/_spectral_embedding.py
+++ b/sklearn/manifold/_spectral_embedding.py
@@ -619,9 +619,7 @@ def fit(self, X, y=None):
Returns the instance itself.
"""
- X = self._validate_data(
- X, accept_sparse="csr", ensure_min_samples=2, estimator=self
- )
+ X = self._validate_data(X, accept_sparse="csr", ensure_min_samples=2)
random_state = check_random_state(self.random_state)
if isinstance(self.affinity, str):
diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py
index 81b35f1cf6f9e..07956c765ff3f 100644
--- a/sklearn/metrics/_classification.py
+++ b/sklearn/metrics/_classification.py
@@ -82,8 +82,8 @@ def _check_targets(y_true, y_pred):
y_pred : array or indicator matrix
"""
check_consistent_length(y_true, y_pred)
- type_true = type_of_target(y_true)
- type_pred = type_of_target(y_pred)
+ type_true = type_of_target(y_true, input_name="y_true")
+ type_pred = type_of_target(y_pred, input_name="y_pred")
y_type = {type_true, type_pred}
if y_type == {"binary", "multiclass"}:
@@ -2641,7 +2641,7 @@ def brier_score_loss(y_true, y_prob, *, sample_weight=None, pos_label=None):
assert_all_finite(y_prob)
check_consistent_length(y_true, y_prob, sample_weight)
- y_type = type_of_target(y_true)
+ y_type = type_of_target(y_true, input_name="y_true")
if y_type != "binary":
raise ValueError(
"Only binary classification is supported. The type of the target "
diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py
index badfff094f7fa..0707c8d2a951d 100644
--- a/sklearn/metrics/_ranking.py
+++ b/sklearn/metrics/_ranking.py
@@ -210,7 +210,7 @@ def _binary_uninterpolated_average_precision(
# guaranteed to be 1, as returned by precision_recall_curve
return -np.sum(np.diff(recall) * np.array(precision)[:-1])
- y_type = type_of_target(y_true)
+ y_type = type_of_target(y_true, input_name="y_true")
if y_type == "multilabel-indicator" and pos_label != 1:
raise ValueError(
"Parameter pos_label is fixed to 1 for "
@@ -541,7 +541,7 @@ class scores must correspond to the order of ``labels``,
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])
"""
- y_type = type_of_target(y_true)
+ y_type = type_of_target(y_true, input_name="y_true")
y_true = check_array(y_true, ensure_2d=False, dtype=None)
y_score = check_array(y_score, ensure_2d=False)
@@ -726,7 +726,7 @@ def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None):
Decreasing score values.
"""
# Check to make sure y_true is valid
- y_type = type_of_target(y_true)
+ y_type = type_of_target(y_true, input_name="y_true")
if not (y_type == "binary" or (y_type == "multiclass" and pos_label is not None)):
raise ValueError("{0} format is not supported".format(y_type))
@@ -1059,7 +1059,7 @@ def label_ranking_average_precision_score(y_true, y_score, *, sample_weight=None
raise ValueError("y_true and y_score have different shape")
# Handle badly formatted array and the degenerate case with one label
- y_type = type_of_target(y_true)
+ y_type = type_of_target(y_true, input_name="y_true")
if y_type != "multilabel-indicator" and not (
y_type == "binary" and y_true.ndim == 2
):
@@ -1140,7 +1140,7 @@ def coverage_error(y_true, y_score, *, sample_weight=None):
y_score = check_array(y_score, ensure_2d=False)
check_consistent_length(y_true, y_score, sample_weight)
- y_type = type_of_target(y_true)
+ y_type = type_of_target(y_true, input_name="y_true")
if y_type != "multilabel-indicator":
raise ValueError("{0} format is not supported".format(y_type))
@@ -1198,7 +1198,7 @@ def label_ranking_loss(y_true, y_score, *, sample_weight=None):
y_score = check_array(y_score, ensure_2d=False)
check_consistent_length(y_true, y_score, sample_weight)
- y_type = type_of_target(y_true)
+ y_type = type_of_target(y_true, input_name="y_true")
if y_type not in ("multilabel-indicator",):
raise ValueError("{0} format is not supported".format(y_type))
@@ -1345,7 +1345,7 @@ def _tie_averaged_dcg(y_true, y_score, discount_cumsum):
def _check_dcg_target_type(y_true):
- y_type = type_of_target(y_true)
+ y_type = type_of_target(y_true, input_name="y_true")
supported_fmt = (
"multilabel-indicator",
"continuous-multioutput",
@@ -1697,7 +1697,7 @@ def top_k_accuracy_score(
"""
y_true = check_array(y_true, ensure_2d=False, dtype=None)
y_true = column_or_1d(y_true)
- y_type = type_of_target(y_true)
+ y_type = type_of_target(y_true, input_name="y_true")
if y_type == "binary" and labels is not None and len(labels) > 2:
y_type = "multiclass"
y_score = check_array(y_score, ensure_2d=False)
diff --git a/sklearn/model_selection/_split.py b/sklearn/model_selection/_split.py
index fc38f3355d04e..e2939f6d96096 100644
--- a/sklearn/model_selection/_split.py
+++ b/sklearn/model_selection/_split.py
@@ -508,7 +508,7 @@ def __init__(self, n_splits=5):
def _iter_test_indices(self, X, y, groups):
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
- groups = check_array(groups, ensure_2d=False, dtype=None)
+ groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None)
unique_groups, groups = np.unique(groups, return_inverse=True)
n_groups = len(unique_groups)
@@ -744,7 +744,7 @@ def split(self, X, y, groups=None):
split. You can make the results identical by setting `random_state`
to an integer.
"""
- y = check_array(y, ensure_2d=False, dtype=None)
+ y = check_array(y, input_name="y", ensure_2d=False, dtype=None)
return super().split(X, y, groups)
@@ -1144,7 +1144,9 @@ def _iter_test_masks(self, X, y, groups):
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
# We make a copy of groups to avoid side-effects during iteration
- groups = check_array(groups, copy=True, ensure_2d=False, dtype=None)
+ groups = check_array(
+ groups, input_name="groups", copy=True, ensure_2d=False, dtype=None
+ )
unique_groups = np.unique(groups)
if len(unique_groups) <= 1:
raise ValueError(
@@ -1178,7 +1180,7 @@ def get_n_splits(self, X=None, y=None, groups=None):
"""
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
- groups = check_array(groups, ensure_2d=False, dtype=None)
+ groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None)
return len(np.unique(groups))
def split(self, X, y=None, groups=None):
@@ -1270,7 +1272,9 @@ def __init__(self, n_groups):
def _iter_test_masks(self, X, y, groups):
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
- groups = check_array(groups, copy=True, ensure_2d=False, dtype=None)
+ groups = check_array(
+ groups, input_name="groups", copy=True, ensure_2d=False, dtype=None
+ )
unique_groups = np.unique(groups)
if self.n_groups >= len(unique_groups):
raise ValueError(
@@ -1310,7 +1314,7 @@ def get_n_splits(self, X=None, y=None, groups=None):
"""
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
- groups = check_array(groups, ensure_2d=False, dtype=None)
+ groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None)
return int(comb(len(np.unique(groups)), self.n_groups, exact=True))
def split(self, X, y=None, groups=None):
@@ -1802,7 +1806,7 @@ def __init__(
def _iter_indices(self, X, y, groups):
if groups is None:
raise ValueError("The 'groups' parameter should not be None.")
- groups = check_array(groups, ensure_2d=False, dtype=None)
+ groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None)
classes, group_indices = np.unique(groups, return_inverse=True)
for group_train, group_test in super()._iter_indices(X=classes):
# these are the indices of classes in the partition
@@ -1919,7 +1923,7 @@ def __init__(
def _iter_indices(self, X, y, groups=None):
n_samples = _num_samples(X)
- y = check_array(y, ensure_2d=False, dtype=None)
+ y = check_array(y, input_name="y", ensure_2d=False, dtype=None)
n_train, n_test = _validate_shuffle_split(
n_samples,
self.test_size,
@@ -2019,7 +2023,7 @@ def split(self, X, y, groups=None):
split. You can make the results identical by setting `random_state`
to an integer.
"""
- y = check_array(y, ensure_2d=False, dtype=None)
+ y = check_array(y, input_name="y", ensure_2d=False, dtype=None)
return super().split(X, y, groups)
@@ -2300,7 +2304,7 @@ def check_cv(cv=5, y=None, *, classifier=False):
if (
classifier
and (y is not None)
- and (type_of_target(y) in ("binary", "multiclass"))
+ and (type_of_target(y, input_name="y") in ("binary", "multiclass"))
):
return StratifiedKFold(cv)
else:
diff --git a/sklearn/preprocessing/_data.py b/sklearn/preprocessing/_data.py
index db865456db7e0..88fdc7ea85c48 100644
--- a/sklearn/preprocessing/_data.py
+++ b/sklearn/preprocessing/_data.py
@@ -453,7 +453,6 @@ def partial_fit(self, X, y=None):
X = self._validate_data(
X,
reset=first_pass,
- estimator=self,
dtype=FLOAT_DTYPES,
force_all_finite="allow-nan",
)
@@ -841,7 +840,6 @@ def partial_fit(self, X, y=None, sample_weight=None):
X = self._validate_data(
X,
accept_sparse=("csr", "csc"),
- estimator=self,
dtype=FLOAT_DTYPES,
force_all_finite="allow-nan",
reset=first_call,
@@ -975,7 +973,6 @@ def transform(self, X, copy=None):
reset=False,
accept_sparse="csr",
copy=copy,
- estimator=self,
dtype=FLOAT_DTYPES,
force_all_finite="allow-nan",
)
@@ -1017,7 +1014,6 @@ def inverse_transform(self, X, copy=None):
X,
accept_sparse="csr",
copy=copy,
- estimator=self,
dtype=FLOAT_DTYPES,
force_all_finite="allow-nan",
)
@@ -1175,7 +1171,6 @@ def partial_fit(self, X, y=None):
X,
reset=first_pass,
accept_sparse=("csr", "csc"),
- estimator=self,
dtype=FLOAT_DTYPES,
force_all_finite="allow-nan",
)
@@ -1215,7 +1210,6 @@ def transform(self, X):
accept_sparse=("csr", "csc"),
copy=self.copy,
reset=False,
- estimator=self,
dtype=FLOAT_DTYPES,
force_all_finite="allow-nan",
)
@@ -1244,7 +1238,6 @@ def inverse_transform(self, X):
X,
accept_sparse=("csr", "csc"),
copy=self.copy,
- estimator=self,
dtype=FLOAT_DTYPES,
force_all_finite="allow-nan",
)
@@ -1488,7 +1481,6 @@ def fit(self, X, y=None):
X = self._validate_data(
X,
accept_sparse="csc",
- estimator=self,
dtype=FLOAT_DTYPES,
force_all_finite="allow-nan",
)
@@ -1551,7 +1543,6 @@ def transform(self, X):
X,
accept_sparse=("csr", "csc"),
copy=self.copy,
- estimator=self,
dtype=FLOAT_DTYPES,
reset=False,
force_all_finite="allow-nan",
@@ -1585,7 +1576,6 @@ def inverse_transform(self, X):
X,
accept_sparse=("csr", "csc"),
copy=self.copy,
- estimator=self,
dtype=FLOAT_DTYPES,
force_all_finite="allow-nan",
)
diff --git a/sklearn/preprocessing/_label.py b/sklearn/preprocessing/_label.py
index 4410988513f39..b475bd031a059 100644
--- a/sklearn/preprocessing/_label.py
+++ b/sklearn/preprocessing/_label.py
@@ -289,7 +289,7 @@ def fit(self, y):
self : object
Returns the instance itself.
"""
- self.y_type_ = type_of_target(y)
+ self.y_type_ = type_of_target(y, input_name="y")
if "multioutput" in self.y_type_:
raise ValueError(
"Multioutput target data is not supported with label binarization"
@@ -475,7 +475,9 @@ def label_binarize(y, *, classes, neg_label=0, pos_label=1, sparse_output=False)
if not isinstance(y, list):
# XXX Workaround that will be removed when list of list format is
# dropped
- y = check_array(y, accept_sparse="csr", ensure_2d=False, dtype=None)
+ y = check_array(
+ y, input_name="y", accept_sparse="csr", ensure_2d=False, dtype=None
+ )
else:
if _num_samples(y) == 0:
raise ValueError("y has 0 samples: %r" % y)
diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py
index ccc6ff23ed8fc..1f7b91621457a 100644
--- a/sklearn/utils/estimator_checks.py
+++ b/sklearn/utils/estimator_checks.py
@@ -168,17 +168,33 @@ def check_supervised_y_no_nan(name, estimator_orig):
estimator = clone(estimator_orig)
rng = np.random.RandomState(888)
X = rng.randn(10, 5)
- y = np.full(10, np.inf)
- y = _enforce_estimator_tags_y(estimator, y)
- match = (
- "Input contains NaN, infinity or a value too large for " r"dtype\('float64'\)."
- )
- err_msg = (
- f"Estimator {name} should have raised error on fitting array y with NaN value."
- )
- with raises(ValueError, match=match, err_msg=err_msg):
- estimator.fit(X, y)
+ for value in [np.nan, np.inf]:
+ y = np.full(10, value)
+ y = _enforce_estimator_tags_y(estimator, y)
+
+ module_name = estimator.__module__
+ if module_name.startswith("sklearn.") and not (
+ "test_" in module_name or module_name.endswith("_testing")
+ ):
+ # In scikit-learn we want the error message to mention the input
+ # name and be specific about the kind of unexpected value.
+ if np.isinf(value):
+ match = (
+ r"Input (y|Y) contains infinity or a value too large for"
+ r" dtype\('float64'\)."
+ )
+ else:
+ match = r"Input (y|Y) contains NaN."
+ else:
+ # Do not impose a particular error message to third-party libraries.
+ match = None
+ err_msg = (
+ f"Estimator {name} should have raised error on fitting array y with inf"
+ " value."
+ )
+ with raises(ValueError, match=match, err_msg=err_msg):
+ estimator.fit(X, y)
def _yield_regressor_checks(regressor):
@@ -1725,9 +1741,11 @@ def check_estimators_nan_inf(name, estimator_orig):
y = np.ones(10)
y[:5] = 0
y = _enforce_estimator_tags_y(estimator_orig, y)
- error_string_fit = "Estimator doesn't check for NaN and inf in fit."
- error_string_predict = "Estimator doesn't check for NaN and inf in predict."
- error_string_transform = "Estimator doesn't check for NaN and inf in transform."
+ error_string_fit = f"Estimator {name} doesn't check for NaN and inf in fit."
+ error_string_predict = f"Estimator {name} doesn't check for NaN and inf in predict."
+ error_string_transform = (
+ f"Estimator {name} doesn't check for NaN and inf in transform."
+ )
for X_train in [X_train_nan, X_train_inf]:
# catch deprecation warnings
with ignore_warnings(category=FutureWarning):
diff --git a/sklearn/utils/multiclass.py b/sklearn/utils/multiclass.py
index d734ab591ce2a..62183c91a5fcd 100644
--- a/sklearn/utils/multiclass.py
+++ b/sklearn/utils/multiclass.py
@@ -28,7 +28,9 @@ def _unique_multiclass(y):
def _unique_indicator(y):
- return np.arange(check_array(y, accept_sparse=["csr", "csc", "coo"]).shape[1])
+ return np.arange(
+ check_array(y, input_name="y", accept_sparse=["csr", "csc", "coo"]).shape[1]
+ )
_FN_UNIQUE_LABELS = {
@@ -187,7 +189,7 @@ def check_classification_targets(y):
----------
y : array-like
"""
- y_type = type_of_target(y)
+ y_type = type_of_target(y, input_name="y")
if y_type not in [
"binary",
"multiclass",
@@ -198,7 +200,7 @@ def check_classification_targets(y):
raise ValueError("Unknown label type: %r" % y_type)
-def type_of_target(y):
+def type_of_target(y, input_name=""):
"""Determine the type of data indicated by the target.
Note that this type is the most specific type that can be inferred.
@@ -214,6 +216,11 @@ def type_of_target(y):
----------
y : array-like
+ input_name : str, default=""
+ The data name used to construct the error message.
+
+ .. versionadded:: 1.1.0
+
Returns
-------
target_type : str
@@ -322,7 +329,7 @@ def type_of_target(y):
# check float and contains non-integer float values
if y.dtype.kind == "f" and np.any(y != y.astype(int)):
# [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.]
- _assert_all_finite(y)
+ _assert_all_finite(y, input_name=input_name)
return "continuous" + suffix
if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1):
diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py
index 7c16ca5cc5f5e..6dc16f5761d05 100644
--- a/sklearn/utils/validation.py
+++ b/sklearn/utils/validation.py
@@ -87,7 +87,9 @@ def inner_f(*args, **kwargs):
return _inner_deprecate_positional_args
-def _assert_all_finite(X, allow_nan=False, msg_dtype=None):
+def _assert_all_finite(
+ X, allow_nan=False, msg_dtype=None, estimator_name=None, input_name=""
+):
"""Like assert_all_finite, but only for ndarray."""
# validation is also imported in extmath
from .extmath import _safe_accumulator_op
@@ -103,26 +105,52 @@ def _assert_all_finite(X, allow_nan=False, msg_dtype=None):
if is_float and (np.isfinite(_safe_accumulator_op(np.sum, X))):
pass
elif is_float:
- msg_err = "Input contains {} or a value too large for {!r}."
if (
allow_nan
and np.isinf(X).any()
or not allow_nan
and not np.isfinite(X).all()
):
- type_err = "infinity" if allow_nan else "NaN, infinity"
- raise ValueError(
- msg_err.format(
- type_err, msg_dtype if msg_dtype is not None else X.dtype
+ if not allow_nan and np.isnan(X).any():
+ type_err = "NaN"
+ else:
+ msg_dtype = msg_dtype if msg_dtype is not None else X.dtype
+ type_err = f"infinity or a value too large for {msg_dtype!r}"
+ padded_input_name = input_name + " " if input_name else ""
+ msg_err = f"Input {padded_input_name}contains {type_err}."
+ if (
+ not allow_nan
+ and estimator_name
+ and input_name == "X"
+ and np.isnan(X).any()
+ ):
+ # Improve the error message on how to handle missing values in
+ # scikit-learn.
+ msg_err += (
+ f"\n{estimator_name} does not accept missing values"
+ " encoded as NaN natively. For supervised learning, you might want"
+ " to consider sklearn.ensemble.HistGradientBoostingClassifier and"
+ " Regressor which accept missing values encoded as NaNs natively."
+ " Alternatively, it is possible to preprocess the data, for"
+ " instance by using an imputer transformer in a pipeline or drop"
+ " samples with missing values. See"
+ " https://scikit-learn.org/stable/modules/impute.html"
)
- )
+ raise ValueError(msg_err)
+
# for object dtype data, we only check for NaNs (GH-13254)
elif X.dtype == np.dtype("object") and not allow_nan:
if _object_dtype_isnan(X).any():
raise ValueError("Input contains NaN")
-def assert_all_finite(X, *, allow_nan=False):
+def assert_all_finite(
+ X,
+ *,
+ allow_nan=False,
+ estimator_name=None,
+ input_name="",
+):
"""Throw a ValueError if X contains NaN or infinity.
Parameters
@@ -130,8 +158,22 @@ def assert_all_finite(X, *, allow_nan=False):
X : {ndarray, sparse matrix}
allow_nan : bool, default=False
+
+ estimator_name : str, default=None
+ The estimator name, used to construct the error message.
+
+ input_name : str, default=""
+ The data name used to construct the error message. In particular
+ if `input_name` is "X" and the data has NaN values and
+ allow_nan is False, the error message will link to the imputer
+ documentation.
"""
- _assert_all_finite(X.data if sp.issparse(X) else X, allow_nan)
+ _assert_all_finite(
+ X.data if sp.issparse(X) else X,
+ allow_nan=allow_nan,
+ estimator_name=estimator_name,
+ input_name=input_name,
+ )
def as_float_array(X, *, copy=True, force_all_finite=True):
@@ -379,7 +421,14 @@ def indexable(*iterables):
def _ensure_sparse_format(
- spmatrix, accept_sparse, dtype, copy, force_all_finite, accept_large_sparse
+ spmatrix,
+ accept_sparse,
+ dtype,
+ copy,
+ force_all_finite,
+ accept_large_sparse,
+ estimator_name=None,
+ input_name="",
):
"""Convert a sparse matrix to a given format.
@@ -419,6 +468,16 @@ def _ensure_sparse_format(
.. versionchanged:: 0.23
Accepts `pd.NA` and converts it into `np.nan`
+
+ estimator_name : str, default=None
+ The estimator name, used to construct the error message.
+
+ input_name : str, default=""
+ The data name used to construct the error message. In particular
+ if `input_name` is "X" and the data has NaN values and
+ allow_nan is False, the error message will link to the imputer
+ documentation.
+
Returns
-------
spmatrix_converted : sparse matrix.
@@ -475,7 +534,12 @@ def _ensure_sparse_format(
stacklevel=2,
)
else:
- _assert_all_finite(spmatrix.data, allow_nan=force_all_finite == "allow-nan")
+ _assert_all_finite(
+ spmatrix.data,
+ allow_nan=force_all_finite == "allow-nan",
+ estimator_name=estimator_name,
+ input_name=input_name,
+ )
return spmatrix
@@ -490,6 +554,15 @@ def _ensure_no_complex_data(array):
raise ValueError("Complex data not supported\n{}\n".format(array))
+def _check_estimator_name(estimator):
+ if estimator is not None:
+ if isinstance(estimator, str):
+ return estimator
+ else:
+ return estimator.__class__.__name__
+ return None
+
+
def _pandas_dtype_needs_early_conversion(pd_dtype):
"""Return True if pandas extension pd_dtype need to be converted early."""
try:
@@ -531,6 +604,7 @@ def check_array(
ensure_min_samples=1,
ensure_min_features=1,
estimator=None,
+ input_name="",
):
"""Input validation on an array, list, sparse matrix or similar.
@@ -610,6 +684,14 @@ def check_array(
estimator : str or estimator instance, default=None
If passed, include the name of the estimator in warning messages.
+ input_name : str, default=""
+ The data name used to construct the error message. In particular
+ if `input_name` is "X" and the data has NaN values and
+ allow_nan is False, the error message will link to the imputer
+ documentation.
+
+ .. versionadded:: 1.1.0
+
Returns
-------
array_converted : object
@@ -695,13 +777,7 @@ def check_array(
)
)
- if estimator is not None:
- if isinstance(estimator, str):
- estimator_name = estimator
- else:
- estimator_name = estimator.__class__.__name__
- else:
- estimator_name = "Estimator"
+ estimator_name = _check_estimator_name(estimator)
context = " by %s" % estimator_name if estimator is not None else ""
# When all dataframe columns are sparse, convert to a sparse array
@@ -728,6 +804,8 @@ def check_array(
copy=copy,
force_all_finite=force_all_finite,
accept_large_sparse=accept_large_sparse,
+ estimator_name=estimator_name,
+ input_name=input_name,
)
else:
# If np.array(..) gives ComplexWarning, then we convert the warning
@@ -744,7 +822,13 @@ def check_array(
# then conversion float -> int would be disallowed.
array = np.asarray(array, order=order)
if array.dtype.kind == "f":
- _assert_all_finite(array, allow_nan=False, msg_dtype=dtype)
+ _assert_all_finite(
+ array,
+ allow_nan=False,
+ msg_dtype=dtype,
+ estimator_name=estimator_name,
+ input_name=input_name,
+ )
array = array.astype(dtype, casting="unsafe", copy=False)
else:
array = np.asarray(array, order=order, dtype=dtype)
@@ -801,7 +885,12 @@ def check_array(
)
if force_all_finite:
- _assert_all_finite(array, allow_nan=force_all_finite == "allow-nan")
+ _assert_all_finite(
+ array,
+ input_name=input_name,
+ estimator_name=estimator_name,
+ allow_nan=force_all_finite == "allow-nan",
+ )
if ensure_min_samples > 0:
n_samples = _num_samples(array)
@@ -978,24 +1067,32 @@ def check_X_y(
ensure_min_samples=ensure_min_samples,
ensure_min_features=ensure_min_features,
estimator=estimator,
+ input_name="X",
)
- y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric)
+ y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric, estimator=estimator)
check_consistent_length(X, y)
return X, y
-def _check_y(y, multi_output=False, y_numeric=False):
+def _check_y(y, multi_output=False, y_numeric=False, estimator=None):
"""Isolated part of check_X_y dedicated to y validation"""
if multi_output:
y = check_array(
- y, accept_sparse="csr", force_all_finite=True, ensure_2d=False, dtype=None
+ y,
+ accept_sparse="csr",
+ force_all_finite=True,
+ ensure_2d=False,
+ dtype=None,
+ input_name="y",
+ estimator=estimator,
)
else:
+ estimator_name = _check_estimator_name(estimator)
y = column_or_1d(y, warn=True)
- _assert_all_finite(y)
+ _assert_all_finite(y, input_name="y", estimator_name=estimator_name)
_ensure_no_complex_data(y)
if y_numeric and y.dtype.kind == "O":
y = y.astype(np.float64)
@@ -1563,6 +1660,7 @@ def _check_sample_weight(
dtype=dtype,
order="C",
copy=copy,
+ input_name="sample_weight",
)
if sample_weight.ndim != 1:
raise ValueError("Sample weights must be 1D array or scalar")
|
diff --git a/sklearn/feature_selection/tests/test_sequential.py b/sklearn/feature_selection/tests/test_sequential.py
index d4e6af5c667c2..486cc6d90f09c 100644
--- a/sklearn/feature_selection/tests/test_sequential.py
+++ b/sklearn/feature_selection/tests/test_sequential.py
@@ -123,7 +123,7 @@ def test_nan_support():
sfs.fit(X, y)
sfs.transform(X)
- with pytest.raises(ValueError, match="Input contains NaN"):
+ with pytest.raises(ValueError, match="Input X contains NaN"):
# LinearRegression does not support nans
SequentialFeatureSelector(LinearRegression(), cv=2).fit(X, y)
diff --git a/sklearn/impute/tests/test_impute.py b/sklearn/impute/tests/test_impute.py
index 9a4da4a9230a0..1d8c81e244060 100644
--- a/sklearn/impute/tests/test_impute.py
+++ b/sklearn/impute/tests/test_impute.py
@@ -1277,7 +1277,7 @@ def test_missing_indicator_with_imputer(X, missing_values, X_trans_exp):
@pytest.mark.parametrize(
"imputer_missing_values, missing_value, err_msg",
[
- ("NaN", np.nan, "Input contains NaN"),
+ ("NaN", np.nan, "Input X contains NaN"),
("-1", -1, "types are expected to be both numerical."),
],
)
diff --git a/sklearn/impute/tests/test_knn.py b/sklearn/impute/tests/test_knn.py
index b153f3a458161..098899bc1a0f1 100644
--- a/sklearn/impute/tests/test_knn.py
+++ b/sklearn/impute/tests/test_knn.py
@@ -39,7 +39,7 @@ def test_knn_imputer_default_with_invalid_input(na):
[6, 6, 2, 5, 7],
]
)
- with pytest.raises(ValueError, match="Input contains (infinity|NaN)"):
+ with pytest.raises(ValueError, match="Input X contains (infinity|NaN)"):
KNNImputer(missing_values=na).fit(X)
# Test with inf present in matrix passed in transform()
@@ -65,7 +65,7 @@ def test_knn_imputer_default_with_invalid_input(na):
]
)
imputer = KNNImputer(missing_values=na).fit(X_fit)
- with pytest.raises(ValueError, match="Input contains (infinity|NaN)"):
+ with pytest.raises(ValueError, match="Input X contains (infinity|NaN)"):
imputer.transform(X)
# negative n_neighbors
@@ -82,9 +82,7 @@ def test_knn_imputer_default_with_invalid_input(na):
[np.nan, 6, 0, 5, 13],
]
)
- msg = (
- r"Input contains NaN, infinity or a value too large for " r"dtype\('float64'\)"
- )
+ msg = "Input X contains NaN"
with pytest.raises(ValueError, match=msg):
imputer.fit(X)
diff --git a/sklearn/metrics/cluster/tests/test_common.py b/sklearn/metrics/cluster/tests/test_common.py
index 49fd0f06c51f7..98c9a0155a6d3 100644
--- a/sklearn/metrics/cluster/tests/test_common.py
+++ b/sklearn/metrics/cluster/tests/test_common.py
@@ -214,6 +214,6 @@ def test_inf_nan_input(metric_name, metric_func):
else:
X = np.random.randint(10, size=(2, 10))
invalids = [(X, [np.inf, np.inf]), (X, [np.nan, np.nan]), (X, [np.nan, np.inf])]
- with pytest.raises(ValueError, match="contains NaN, infinity"):
+ with pytest.raises(ValueError, match=r"contains (NaN|infinity)"):
for args in invalids:
metric_func(*args)
diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py
index d5a4fa7adfa17..dfd43ef34096f 100644
--- a/sklearn/metrics/tests/test_common.py
+++ b/sklearn/metrics/tests/test_common.py
@@ -902,7 +902,7 @@ def test_thresholded_invariance_string_vs_numbers_labels(name):
)
@pytest.mark.parametrize("y_true, y_score", invalids_nan_inf)
def test_regression_thresholded_inf_nan_input(metric, y_true, y_score):
- with pytest.raises(ValueError, match="contains NaN, infinity"):
+ with pytest.raises(ValueError, match=r"contains (NaN|infinity)"):
metric(y_true, y_score)
@@ -913,12 +913,29 @@ def test_regression_thresholded_inf_nan_input(metric, y_true, y_score):
# Add an additional case for classification only
# non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/6809
- [([np.nan, 1, 2], [1, 2, 3])], # type: ignore
+ [
+ ([np.nan, 1, 2], [1, 2, 3]),
+ ([np.inf, 1, 2], [1, 2, 3]),
+ ], # type: ignore
)
def test_classification_inf_nan_input(metric, y_true, y_score):
"""check that classification metrics raise a message mentioning the
occurrence of non-finite values in the target vectors."""
- err_msg = "Input contains NaN, infinity or a value too large"
+ if not np.isfinite(y_true).all():
+ input_name = "y_true"
+ if np.isnan(y_true).any():
+ unexpected_value = "NaN"
+ else:
+ unexpected_value = "infinity or a value too large"
+ else:
+ input_name = "y_pred"
+ if np.isnan(y_score).any():
+ unexpected_value = "NaN"
+ else:
+ unexpected_value = "infinity or a value too large"
+
+ err_msg = f"Input {input_name} contains {unexpected_value}"
+
with pytest.raises(ValueError, match=err_msg):
metric(y_true, y_score)
diff --git a/sklearn/utils/tests/test_estimator_checks.py b/sklearn/utils/tests/test_estimator_checks.py
index c4f954790cd26..0c444e2caa5e0 100644
--- a/sklearn/utils/tests/test_estimator_checks.py
+++ b/sklearn/utils/tests/test_estimator_checks.py
@@ -496,7 +496,7 @@ def test_check_estimator():
except ImportError:
pass
# check that predict does input validation (doesn't accept dicts in input)
- msg = "Estimator doesn't check for NaN and inf in predict"
+ msg = "Estimator NoCheckinPredict doesn't check for NaN and inf in predict"
with raises(AssertionError, match=msg):
check_estimator(NoCheckinPredict())
# check that estimator state does not change
diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py
index 00c6cf85dda4d..18f88373b02f3 100644
--- a/sklearn/utils/tests/test_validation.py
+++ b/sklearn/utils/tests/test_validation.py
@@ -175,23 +175,75 @@ def test_check_array_force_all_finite_valid(value, force_all_finite, retype):
@pytest.mark.parametrize(
- "value, force_all_finite, match_msg",
+ "value, input_name, force_all_finite, match_msg",
[
- (np.inf, True, "Input contains NaN, infinity"),
- (np.inf, "allow-nan", "Input contains infinity"),
- (np.nan, True, "Input contains NaN, infinity"),
- (np.nan, "allow-inf", 'force_all_finite should be a bool or "allow-nan"'),
- (np.nan, 1, "Input contains NaN, infinity"),
+ (np.inf, "", True, "Input contains infinity"),
+ (np.inf, "X", True, "Input X contains infinity"),
+ (np.inf, "sample_weight", True, "Input sample_weight contains infinity"),
+ (np.inf, "X", "allow-nan", "Input X contains infinity"),
+ (np.nan, "", True, "Input contains NaN"),
+ (np.nan, "X", True, "Input X contains NaN"),
+ (np.nan, "y", True, "Input y contains NaN"),
+ (
+ np.nan,
+ "",
+ "allow-inf",
+ 'force_all_finite should be a bool or "allow-nan"',
+ ),
+ (np.nan, "", 1, "Input contains NaN"),
],
)
@pytest.mark.parametrize("retype", [np.asarray, sp.csr_matrix])
def test_check_array_force_all_finiteinvalid(
- value, force_all_finite, match_msg, retype
+ value, input_name, force_all_finite, match_msg, retype
):
- X = retype(np.arange(4).reshape(2, 2).astype(float))
+ X = retype(np.arange(4).reshape(2, 2).astype(np.float64))
X[0, 0] = value
with pytest.raises(ValueError, match=match_msg):
- check_array(X, force_all_finite=force_all_finite, accept_sparse=True)
+ check_array(
+ X,
+ input_name=input_name,
+ force_all_finite=force_all_finite,
+ accept_sparse=True,
+ )
+
+
[email protected]("input_name", ["X", "y", "sample_weight"])
[email protected]("retype", [np.asarray, sp.csr_matrix])
+def test_check_array_links_to_imputer_doc_only_for_X(input_name, retype):
+ data = retype(np.arange(4).reshape(2, 2).astype(np.float64))
+ data[0, 0] = np.nan
+ estimator = SVR()
+ extended_msg = (
+ f"\n{estimator.__class__.__name__} does not accept missing values"
+ " encoded as NaN natively. For supervised learning, you might want"
+ " to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor"
+ " which accept missing values encoded as NaNs natively."
+ " Alternatively, it is possible to preprocess the"
+ " data, for instance by using an imputer transformer in a pipeline"
+ " or drop samples with missing values. See"
+ " https://scikit-learn.org/stable/modules/impute.html"
+ )
+
+ with pytest.raises(ValueError, match=f"Input {input_name} contains NaN") as ctx:
+ check_array(
+ data,
+ estimator=estimator,
+ input_name=input_name,
+ accept_sparse=True,
+ )
+
+ if input_name == "X":
+ assert extended_msg in ctx.value.args[0]
+ else:
+ assert extended_msg not in ctx.value.args[0]
+
+ if input_name == "X":
+ # Veriy that _validate_data is automatically called with the right argument
+ # to generate the same exception:
+ with pytest.raises(ValueError, match=f"Input {input_name} contains NaN") as ctx:
+ SVR().fit(data, np.ones(data.shape[0]))
+ assert extended_msg in ctx.value.args[0]
def test_check_array_force_all_finite_object():
@@ -212,15 +264,15 @@ def test_check_array_force_all_finite_object():
[
(
np.array([[1, np.nan]]),
- "Input contains NaN, infinity or a value too large for.*int",
+ "Input contains NaN.",
),
(
np.array([[1, np.nan]]),
- "Input contains NaN, infinity or a value too large for.*int",
+ "Input contains NaN.",
),
(
np.array([[1, np.inf]]),
- "Input contains NaN, infinity or a value too large for.*int",
+ "Input contains infinity or a value too large for.*int",
),
(np.array([[1, np.nan]], dtype=object), "cannot convert float NaN to integer"),
],
@@ -425,7 +477,7 @@ def test_check_array_pandas_na_support(pd_dtype, dtype, expected_dtype):
assert_allclose(X_checked, X_np)
assert X_checked.dtype == expected_dtype
- msg = "Input contains NaN, infinity"
+ msg = "Input contains NaN"
with pytest.raises(ValueError, match=msg):
check_array(X, force_all_finite=True)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 95367bb35ce10..2cf9d9226dbff 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -38,6 +38,13 @@ Changelog\n :pr:`123456` by :user:`Joe Bloggs <joeongithub>`.\n where 123456 is the *pull request* number, not the issue number.\n \n+- |Enhancement| All scikit-learn models now generate a more informative\n+ error message when some input contains unexpected `NaN` or infinite values.\n+ In particular the message contains the input name (\"X\", \"y\" or\n+ \"sample_weight\") and if an unexpected `NaN` value is found in `X`, the error\n+ message suggests potential solutions.\n+ :pr:`21219` by :user:`Olivier Grisel <ogrisel>`.\n+\n :mod:`sklearn.calibration`\n ..........................\n \n@@ -131,6 +138,12 @@ Changelog\n instead of `__init__`. :pr:`21430` by :user:`Desislava Vasileva <DessyVV>` and\n :user:`Lucy Jimenez <LucyJimenez>`.\n \n+- |Enhancement| `utils.validation.check_array` and `utils.validation.type_of_target`\n+ now accept an `input_name` parameter to make the error message more\n+ informative when passed invalid input data (e.g. with NaN or infinite\n+ values).\n+ :pr:`21219` by :user:`Olivier Grisel <ogrisel>`.\n+\n - |Enhancement| :func:`utils.validation.check_array` returns a float\n ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension\n array with `pd.NA`. :pr:`21278` by `Thomas Fan`_.\n"
}
] |
1.01
|
bd871537415a80b0505daabeaa8bfe4dd5f30e6d
|
[
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric10]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int64-longlong-integer]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric11]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric18]",
"sklearn/metrics/cluster/tests/test_common.py::test_single_sample[adjusted_rand_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric13]",
"sklearn/metrics/tests/test_common.py::test_averaging_binary_multilabel_all_zeroes",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric11]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric26]",
"sklearn/metrics/cluster/tests/test_common.py::test_symmetry[rand_score-y11-y21]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric36]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[matthews_corrcoef]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[mutual_info_score-mutual_info_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric7]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-f1_score-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int8]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric9]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_is_fitted",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-roc_auc_score]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_fit_attribute",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[coo]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric13]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[r2_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_callable_metric",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric14]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[precision_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[normalized_mutual_info_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric18]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[det_curve]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_recall_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int8-byte-integer]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[multi-index]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_verify[-1]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_drops_all_nan_features[-1]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_recall_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-bool]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f0.5_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_zero_nan_imputes_the_same[-1]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovo_roc_auc]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant_imag]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric16]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt16]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X3-cannot convert float NaN to integer]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int16]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[hamming_loss]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt8]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[normalized_mutual_info_score-normalized_mutual_info_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovo_roc_auc]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint16-ushort-unsignedinteger]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[distance-nan]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f1_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[bool]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_pinball_loss]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[rand_score-rand_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric12]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_precision_score]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dok_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f0.5_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[4-distance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[normalized_confusion_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_jaccard_score]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_precision_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X4]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric22]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-metric3-False]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_pinball_loss]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-float]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_poisson_deviance]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function_version",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_jaccard_score]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dia_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-top_k_accuracy_score]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f0.5_score]",
"sklearn/utils/tests/test_validation.py::test_np_matrix",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintc-uint32-unsignedinteger]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f1_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Float32]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_roc_auc]",
"sklearn/utils/tests/test_validation.py::test_check_array_complex_data_error",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f0.5_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X0]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[explained_variance_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[homogeneity_score-homogeneity_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric14]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric13]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X1]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_squared_error]",
"sklearn/metrics/cluster/tests/test_common.py::test_normalized_output[normalized_mutual_info_score]",
"sklearn/utils/tests/test_validation.py::test_num_features[dataframe]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-max_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric37]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric9]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovo_roc_auc]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[adjusted_rand_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric24]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-median_absolute_error]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[v_measure_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric16]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csc_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric19]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric18]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_gamma_deviance]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_type_exception",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[nan-None]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric20]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovo_roc_auc]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant_imag]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[r2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[matthews_corrcoef_score]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-label_ranking_loss]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[-1-None]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[samples_jaccard_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_one_n_neighbors[-1]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int8]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[d2_tweedie_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-int]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric17]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_pandas",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[log_loss]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[homogeneity_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f0.5_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt8]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f1_score]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[tuple]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-average_precision_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[longdouble-float16]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[adjusted_rand_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_non_symmetry[completeness_score-y11-y21]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[rand_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_all_samples_are_neighbors[nan]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hamming_loss]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-False]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric31]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_recall_score]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[mixed]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric16]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Float32]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric34]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_confusion_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[lil_matrix]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric34]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovr_roc_auc]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[completeness_score]",
"sklearn/impute/tests/test_knn.py::test_knn_tags[nan-True]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-coverage_error]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[byte-uint16]",
"sklearn/utils/tests/test_validation.py::test_check_array_min_samples_and_features_messages",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-False]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[davies_bouldin_score-davies_bouldin_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-roc_auc_score]",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in_pandas",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric23]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float32]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric12]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[log_loss]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csr]",
"sklearn/metrics/tests/test_common.py::test_single_sample[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric8]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric17]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[intc-int32-integer]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_symmetry_consistency",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-label_ranking_loss]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csc_matrix]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[davies_bouldin_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_symmetry[adjusted_mutual_info_score-y14-y24]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric30]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[roc_auc_score]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float64]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f0.5_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_symmetric_non_symmetric_union",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-jaccard_score-False]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_absolute_percentage_error]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-bool]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/utils/tests/test_validation.py::test_check_sample_weight",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_zero_one_loss]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint32-uint64]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric3]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[recall_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/cluster/tests/test_common.py::test_symmetry[fowlkes_mallows_score-y16-y26]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[balanced_accuracy_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintp-ulonglong-unsignedinteger]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric9]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_zero_nan_imputes_the_same[nan]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f0.5_score]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[bsr]",
"sklearn/metrics/cluster/tests/test_common.py::test_normalized_output[adjusted_rand_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[top_k_accuracy_score]",
"sklearn/utils/tests/test_validation.py::test_num_features[list]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X2]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric17]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f2_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_symmetry[v_measure_score-y12-y22]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[zero_one_loss]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[2-distance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-median_absolute_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_object_conversion",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-allow-nan]",
"sklearn/utils/tests/test_validation.py::test_check_consistent_length",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[f1_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_recall_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[calinski_harabasz_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric11]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint-uint64-unsignedinteger]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f0.5_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[adjusted_mutual_info_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-max_error]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[int]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-ndcg_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[False]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[adjusted_balanced_accuracy_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csc]",
"sklearn/metrics/cluster/tests/test_common.py::test_normalized_output[completeness_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_multilabel_confusion_matrix]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-dict]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric3]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_pinball_loss]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_distance[-1]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_gamma_deviance]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_removes_all_na_features[nan]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-average_precision_score-True]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric30]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_recall_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_single_sample[mutual_info_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[1-distance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[r2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric9]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[silhouette_manhattan]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric35]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-allow-nan]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[log_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric33]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f2_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int16-int32]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hinge_loss]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[indices1]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric15]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric3]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric30]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_verify[nan]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric16]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric8]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[bsr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric17]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_precision_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[silhouette_manhattan]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[balanced_accuracy_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[calinski_harabasz_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[zero_one_loss]",
"sklearn/utils/tests/test_validation.py::test_check_array_series",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-max_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[median_absolute_error]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_one_n_neighbors[nan]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_jaccard_score]",
"sklearn/utils/tests/test_validation.py::test_check_symmetric",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-average_precision_score-True]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_recall_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int8]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric39]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[2-uniform]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[bsr]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_percentage_error]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-str]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_precision_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csr]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-bool]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X0-Input contains NaN.]",
"sklearn/metrics/cluster/tests/test_common.py::test_normalized_output[adjusted_mutual_info_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric21]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[precision_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-int]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric11]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[recall_score]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X0]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_class",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f1_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_distance[nan]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-max_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[explained_variance_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[nan-0]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-ndcg_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-str]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X1-Input contains NaN.]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Float64]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_gamma_deviance]",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csr]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_single_sample[adjusted_mutual_info_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Float64]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-label_ranking_average_precision_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[mutual_info_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-metric3-False]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-float]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_removes_all_na_features[-1]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[accuracy_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[adjusted_mutual_info_score-adjusted_mutual_info_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_precision_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-float]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric7]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric9]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[nan-0]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_numpy",
"sklearn/metrics/cluster/tests/test_common.py::test_single_sample[fowlkes_mallows_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric18]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric32]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_jaccard_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_on_mock_dataframe",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[zero_one_loss]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int16]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X1]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric18]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_score-False]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-f1_score-False]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_jaccard_score]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csr]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric31]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[fowlkes_mallows_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric12]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric2]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/utils/tests/test_validation.py::test_num_features[array]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_percentage_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_warning",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_roc_auc]",
"sklearn/utils/tests/test_validation.py::test_as_float_array",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_jaccard_score]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric41]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_precision_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_no_exception",
"sklearn/metrics/cluster/tests/test_common.py::test_normalized_output[fowlkes_mallows_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f1_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_non_symmetry[homogeneity_score-y10-y20]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric31]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[hamming_loss]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[float16-float32]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f2_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_single_sample[rand_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric27]",
"sklearn/utils/tests/test_validation.py::test_num_features[tuple]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric16]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[v_measure_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[True]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric35]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[det_curve]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_percentage_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int16]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_uniform[nan]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[partial_roc_auc]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-inf-False]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[rand_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f0.5_score]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name1-float-2-4-neither-err_msg0]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name2-int-2-4-neither-err_msg1]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[homogeneity_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[completeness_score-completeness_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric3]",
"sklearn/metrics/tests/test_common.py::test_single_sample[cohen_kappa_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt8]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric34]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f0.5_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[short-int16-integer]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[roc_auc_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[uniform-nan]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[silhouette_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[max_error]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-str]",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_precision_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[5-uniform]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_stability",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hinge_loss]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_attributes",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric13]",
"sklearn/utils/tests/test_validation.py::test_suppress_validation",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[calinski_harabasz_score-calinski_harabasz_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[normalized_mutual_info_score]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant pos]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric7]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f2_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int_-intp-integer]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[None]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[all negative]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[asarray]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[explained_variance_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[davies_bouldin_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Float32]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric31]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric14]",
"sklearn/impute/tests/test_knn.py::test_knn_tags[-1-False]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f1_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[str]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric14]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[recall_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_normal_deviance]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X2]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X3]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[cohen_kappa_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[ubyte-uint8-unsignedinteger]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric3]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric7]",
"sklearn/utils/tests/test_validation.py::test_check_array",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-recall_score-False]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-label_ranking_average_precision_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[adjusted_rand_score-adjusted_rand_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric16]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[average_precision_score]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[5-test_name3-int-2-4-neither-err_msg2]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-hinge_loss]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[adjusted_mutual_info_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-float]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric31]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric13]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric25]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ndcg_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[3-uniform]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_absolute_percentage_error]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name6-int-2-4-bad parameter value-err_msg5]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[zero_one_loss]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_drops_all_nan_features[nan]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name5-int-2-4-left-err_msg4]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f1_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_uniform[-1]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric14]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-hinge_loss]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_casting",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric8]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[median_absolute_error]",
"sklearn/utils/tests/test_validation.py::test_ordering",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_no_averaging_labels",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric8]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric40]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-log_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_recall_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[-1-0]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric38]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float64]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric35]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric34]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_single_sample[homogeneity_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[max_error]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_all_samples_are_neighbors[-1]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric30]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[2-test_name4-int-2-4-right-err_msg3]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[weighted_recall_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_deprecated_matrix",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[max_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X1]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[v_measure_score-v_measure_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[mutual_info_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric12]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[silhouette_manhattan-metric_func10]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric31]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_jaccard_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int-long-integer]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-roc_auc_score]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric10]",
"sklearn/metrics/cluster/tests/test_common.py::test_normalized_output[v_measure_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_precision_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-int]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-jaccard_score-False]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[5-distance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-coverage_error]",
"sklearn/metrics/cluster/tests/test_common.py::test_single_sample[completeness_score]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[list]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[nan-None]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_percentage_error]",
"sklearn/metrics/cluster/tests/test_common.py::test_symmetry[adjusted_rand_score-y10-y20]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric11]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-log_loss]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[completeness_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric7]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric34]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_jaccard_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-dict]",
"sklearn/metrics/cluster/tests/test_common.py::test_single_sample[normalized_mutual_info_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[single-float32-floating]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric12]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[log_loss]",
"sklearn/utils/tests/test_validation.py::test_retrieve_samples_from_non_standard_shape",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[r2_score]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[array]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[float]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovr_roc_auc]",
"sklearn/utils/tests/test_validation.py::test_memmap",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-int]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_precision_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[uniform--1]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[silhouette_score-silhouette_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/cluster/tests/test_common.py::test_symmetry[mutual_info_score-y13-y23]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric18]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[3-distance]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[coo]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[r2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_precision_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_inf_nan_input[fowlkes_mallows_score-fowlkes_mallows_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X3]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_multilabel_confusion_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[float32-double]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint8-int8]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_error]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[4-uniform]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[dcg_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[double-float64-floating]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-inf-False]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric17]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X0]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[hinge_loss]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[float16-half-floating]",
"sklearn/metrics/cluster/tests/test_common.py::test_normalized_output[rand_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f1_score]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[single]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_pinball_loss]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int0-long-integer]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f2_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_format_invariance[fowlkes_mallows_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[roc_auc_score]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[coo_matrix]",
"sklearn/metrics/cluster/tests/test_common.py::test_single_sample[v_measure_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[explained_variance_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[-1-0]",
"sklearn/utils/tests/test_validation.py::test_check_X_y_informative_error",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f1_score]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csc]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_average_precision_score]",
"sklearn/metrics/cluster/tests/test_common.py::test_symmetry[normalized_mutual_info_score-y15-y25]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[distance--1]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-dict]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_zero_one_loss]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csc_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_score-False]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[coo]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X1-Input contains NaN.]",
"sklearn/metrics/cluster/tests/test_common.py::test_permute_labels[silhouette_score]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[1-uniform]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Float64]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f0.5_score]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-str]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[ushort-uint32]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f0.5_score]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float32]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-brier_score_loss]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-dict]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[accuracy_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[longfloat-longdouble-floating]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[explained_variance_score]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[True]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric35]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[explained_variance_score]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int32-long]",
"sklearn/metrics/tests/test_common.py::test_multilabel_representation_invariance",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric28]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f1_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X0-Input contains NaN.]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X3-cannot convert float NaN to integer]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[jaccard_score]",
"sklearn/utils/tests/test_validation.py::test_has_fit_parameter",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[<lambda>]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix_sample]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric10]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric30]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[r2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_roc_auc]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[-1-None]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-recall_score-False]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-bool]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[array]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt16]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[max_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric8]",
"sklearn/metrics/cluster/tests/test_common.py::test_normalized_output[homogeneity_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-label_ranking_loss]"
] |
[
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric16]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[1-array7-int-10-2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-jaccard_score]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric39]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-array]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric35]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[nan]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric21]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric15]",
"sklearn/impute/tests/test_impute.py::test_imputation_pipeline_grid_search",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric23]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[0-array-auto]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric32]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-1]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-X-allow-nan-Input X contains infinity]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric34]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[False]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_invalid_strategy[const]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric20]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-zero_one_loss]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[0-array-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric18]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_rank_one",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric28]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[None-median]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric20]",
"sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[SimpleImputer]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric21]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[roman]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan--True-Input contains NaN]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric2]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[extra_value-array0-object-extra_value-2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-precision_score]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit0-X_trans0-params0-have missing values in transform but have no missing values in fit]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-multilabel_confusion_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X2-Input contains infinity or a value too large for.*int]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-coo_matrix-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric32]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-lil_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-recall_score]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-None]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[inf--inf-min_value >= max_value.]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric3]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_stochasticity",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric20]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-X]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric3]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[a-array2-object-a-2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric35]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[10-array6-int-10-2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric37]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-sample_weight-True-Input sample_weight contains infinity]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric7]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[list-mean]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_error_param[1--0.001-ValueError-should be a non-negative float]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric38]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric3]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[inf]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[descending]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-confusion_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[None]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric24]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[category]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric18]",
"sklearn/impute/tests/test_impute.py::test_imputation_median_special_cases",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric29]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-None]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[median]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric36]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-sample_weight-True-Input sample_weight contains infinity]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric15]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_no_missing",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric34]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[0-array-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric16]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[scalars]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-cohen_kappa_score]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator1]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-multilabel_confusion_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric25]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[category]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-hamming_loss]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_feature_names_out",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_verbose",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric41]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_no_missing",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric27]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric19]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[-1]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric29]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric32]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_default_with_invalid_input[nan]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-jaccard_score]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[median]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_invalid_strategy[None]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-array-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan--allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric35]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[median]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip_truncnorm",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric21]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric19]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[5]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-X-True-Input X contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-X]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_string",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-f1_score]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X0]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[lil_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-cohen_kappa_score]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[NAN]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype2-most_frequent]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-0-int32-array]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric38]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype1-most_frequent]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric15]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csc_matrix-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-precision_score]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-None]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric10]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-coo_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric29]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric19]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-rs_imputer2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric26]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csc_matrix-auto]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric29]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[most_frequent]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric23]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-<lambda>]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[lil_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric38]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[1-array5-int-10-1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-lil_matrix-auto]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric31]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-array-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric27]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric7]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-0-int32-array]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[-1--1-types are expected to be both numerical.-IterativeImputer]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric19]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-matthews_corrcoef]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[0]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric29]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[object]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_error_invalid_type[1.0-nan]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric23]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric34]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_error_param[-1-0.001-ValueError-should be a positive integer]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric21]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X1-nan-X_trans_exp1]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric15]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-sample_weight]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[random]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-jaccard_score]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[-1]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric33]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-bsr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric20]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric27]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[str-median]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric36]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit3-X_trans3-params3-MissingIndicator does not support data with dtype]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric21]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric22]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[object-median]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric38]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_all_missing",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric23]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-multilabel_confusion_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan--allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric20]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-X-True-Input X contains NaN]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric29]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X2-Input contains infinity or a value too large for.*int]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric25]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[min_value2-max_value2-_value' should be of shape]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric21]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric33]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-bsr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric7]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-lil_matrix-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric36]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[NaN-nan-Input X contains NaN-IterativeImputer]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric41]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan--1-Input contains NaN]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric38]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric38]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric20]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric19]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[None-default]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_no_explicit_zeros",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric27]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric36]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[bsr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-matthews_corrcoef]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-csc_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-recall_score]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csr_matrix-auto]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric24]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator4]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[coo_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-multilabel_confusion_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-array-auto]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[constant-missing_value]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csr_matrix-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-matthews_corrcoef]",
"sklearn/impute/tests/test_impute.py::test_imputation_order[ascending-idx_order0]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[list-median]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric18]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csc_matrix-False]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[ascending]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-y-True-Input y contains NaN]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype2-constant]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-array]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric27]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric23]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[constant]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[most_frequent-b]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric32]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric31]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[None]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[0]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[100-0-min_value >= max_value.]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric10]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[None-vs-inf]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X3-None-X_trans_exp3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-recall_score]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-array]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[str-most_frequent]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric16]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[nan]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-jaccard_score]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[3]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_zero_iters",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric10]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[mean]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric38]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[nan]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[mean]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric19]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[None-mean]",
"sklearn/impute/tests/test_impute.py::test_imputation_order[descending-idx_order1]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-cohen_kappa_score]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric20]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric29]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[most_frequent]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-precision_score]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-X-allow-nan-Input X contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-y-True-Input y contains NaN]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric25]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-rs_imputer2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric27]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_invalid_strategy[101]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-sample_weight]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric39]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-X-True-Input X contains infinity]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-f1_score]",
"sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[IterativeImputer]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-coo_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric28]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit2-X_trans2-params2-'sparse' has to be a boolean or 'auto']",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric16]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[-1--1-types are expected to be both numerical.-SimpleImputer]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-y]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric31]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[str-mean]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[10-array4-int-10-2]",
"sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[mean]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[constant]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric19]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-coo_matrix-auto]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric26]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X1]",
"sklearn/impute/tests/test_knn.py::test_knn_imputer_default_with_invalid_input[-1]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan--True-Input contains NaN]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-accuracy_score]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[min_value-array3-object-z-2]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csc_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric40]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype1-constant]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[Scalar-vs-vector]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric23]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric21]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-matthews_corrcoef]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric34]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[str-constant]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[most_frequent_value-array1-object-extra_value-1]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric36]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-coo_matrix-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric33]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_float[asarray]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-confusion_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[median]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[NAN]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-lil_matrix-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-f1_score]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[arabic]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric23]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric27]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric37]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-bsr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric40]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-y]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_additive_matrix",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-accuracy_score]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[None]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric32]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_truncated_normal_posterior",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-<lambda>]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X0-a-X_trans_exp0]",
"sklearn/impute/tests/test_impute.py::test_imputation_copy",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[NaN-nan-Input X contains NaN-SimpleImputer]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric41]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric32]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-recall_score]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator2]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csr_matrix-True]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X2-nan-X_trans_exp2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric34]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-rs_imputer2]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit1-X_trans1-params1-'features' has to be either 'missing-only' or 'all']",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf--True-Input contains infinity]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[nan]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric41]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_float[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan--1-Input contains NaN]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf--True-Input contains infinity]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists-with-inf]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric24]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[dataframe-mean]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[mean]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-accuracy_score]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[dataframe-median]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_error_invalid_type[1-0]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric15]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-X-True-Input X contains NaN]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-lil_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-balanced_accuracy_score]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-csc_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-zero_one_loss]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[most_frequent]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric32]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_integer",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-1]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[object]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-confusion_matrix]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csr_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric7]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[object-mean]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-zero_one_loss]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-array]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_early_stopping",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-hamming_loss]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-coo_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric24]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 95367bb35ce10..2cf9d9226dbff 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -38,6 +38,13 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`.\n where <PRID> is the *pull request* number, not the issue number.\n \n+- |Enhancement| All scikit-learn models now generate a more informative\n+ error message when some input contains unexpected `NaN` or infinite values.\n+ In particular the message contains the input name (\"X\", \"y\" or\n+ \"sample_weight\") and if an unexpected `NaN` value is found in `X`, the error\n+ message suggests potential solutions.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.calibration`\n ..........................\n \n@@ -131,6 +138,12 @@ Changelog\n instead of `__init__`. :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n \n+- |Enhancement| `utils.validation.check_array` and `utils.validation.type_of_target`\n+ now accept an `input_name` parameter to make the error message more\n+ informative when passed invalid input data (e.g. with NaN or infinite\n+ values).\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Enhancement| :func:`utils.validation.check_array` returns a float\n ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension\n array with `pd.NA`. :pr:`<PRID>` by `<NAME>`_.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 95367bb35ce10..2cf9d9226dbff 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -38,6 +38,13 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`.
where <PRID> is the *pull request* number, not the issue number.
+- |Enhancement| All scikit-learn models now generate a more informative
+ error message when some input contains unexpected `NaN` or infinite values.
+ In particular the message contains the input name ("X", "y" or
+ "sample_weight") and if an unexpected `NaN` value is found in `X`, the error
+ message suggests potential solutions.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.calibration`
..........................
@@ -131,6 +138,12 @@ Changelog
instead of `__init__`. :pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
+- |Enhancement| `utils.validation.check_array` and `utils.validation.type_of_target`
+ now accept an `input_name` parameter to make the error message more
+ informative when passed invalid input data (e.g. with NaN or infinite
+ values).
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Enhancement| :func:`utils.validation.check_array` returns a float
ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension
array with `pd.NA`. :pr:`<PRID>` by `<NAME>`_.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22249
|
https://github.com/scikit-learn/scikit-learn/pull/22249
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c0f705a8ceef7..aa1a71466fce0 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -314,6 +314,12 @@ Changelog
`max_iter` and `tol`.
:pr:`21341` by :user:`Arturo Amor <ArturoAmorQ>`.
+:mod:`sklearn.isotonic`
+.......................
+
+- |Enhancement| Adds :term:`get_feature_names_out` to `IsotonicRegression`.
+ :pr:`22249` by `Thomas Fan`_.
+
:mod:`sklearn.linear_model`
...........................
diff --git a/sklearn/isotonic.py b/sklearn/isotonic.py
index 4b1687dea9605..ef8fb3f332e71 100644
--- a/sklearn/isotonic.py
+++ b/sklearn/isotonic.py
@@ -416,6 +416,26 @@ def predict(self, T):
"""
return self.transform(T)
+ # We implement get_feature_names_out here instead of using
+ # `_ClassNamePrefixFeaturesOutMixin`` because `input_features` are ignored.
+ # `input_features` are ignored because `IsotonicRegression` accepts 1d
+ # arrays and the semantics of `feature_names_in_` are not clear for 1d arrays.
+ def get_feature_names_out(self, input_features=None):
+ """Get output feature names for transformation.
+
+ Parameters
+ ----------
+ input_features : array-like of str or None, default=None
+ Ignored.
+
+ Returns
+ -------
+ feature_names_out : ndarray of str objects
+ An ndarray with one string i.e. ["isotonicregression0"].
+ """
+ class_name = self.__class__.__name__.lower()
+ return np.asarray([f"{class_name}0"], dtype=object)
+
def __getstate__(self):
"""Pickle-protocol - return state of the estimator."""
state = super().__getstate__()
|
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index a8178a4219485..49ee681316554 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -382,7 +382,6 @@ def test_pandas_column_name_consistency(estimator):
GET_FEATURES_OUT_MODULES_TO_IGNORE = [
"cluster",
"ensemble",
- "isotonic",
"kernel_approximation",
"preprocessing",
"manifold",
diff --git a/sklearn/tests/test_isotonic.py b/sklearn/tests/test_isotonic.py
index 4c8ea220e75c0..25f9e26d70d34 100644
--- a/sklearn/tests/test_isotonic.py
+++ b/sklearn/tests/test_isotonic.py
@@ -695,3 +695,18 @@ def test_isotonic_regression_sample_weight_not_overwritten():
IsotonicRegression().fit(X, y, sample_weight=sample_weight_fit)
assert_allclose(sample_weight_fit, sample_weight_original)
+
+
[email protected]("shape", ["1d", "2d"])
+def test_get_feature_names_out(shape):
+ """Check `get_feature_names_out` for `IsotonicRegression`."""
+ X = np.arange(10)
+ if shape == "2d":
+ X = X.reshape(-1, 1)
+ y = np.arange(10)
+
+ iso = IsotonicRegression().fit(X, y)
+ names = iso.get_feature_names_out()
+ assert isinstance(names, np.ndarray)
+ assert names.dtype == object
+ assert_array_equal(["isotonicregression0"], names)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c0f705a8ceef7..aa1a71466fce0 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -314,6 +314,12 @@ Changelog\n `max_iter` and `tol`.\n :pr:`21341` by :user:`Arturo Amor <ArturoAmorQ>`.\n \n+:mod:`sklearn.isotonic`\n+.......................\n+\n+- |Enhancement| Adds :term:`get_feature_names_out` to `IsotonicRegression`.\n+ :pr:`22249` by `Thomas Fan`_.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
1.01
|
49043fc769d0affc92e3641d2d5f8f8de2421611
|
[
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_bad",
"sklearn/tests/test_isotonic.py::test_make_unique_tolerance[float32]",
"sklearn/tests/test_isotonic.py::test_isotonic_thresholds[True]",
"sklearn/tests/test_isotonic.py::test_isotonic_sample_weight_parameter_default_value",
"sklearn/tests/test_isotonic.py::test_isotonic_sample_weight",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_raise",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_nan",
"sklearn/tests/test_isotonic.py::test_input_shape_validation",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_clip",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_pickle",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_sample_weight_not_overwritten",
"sklearn/tests/test_isotonic.py::test_isotonic_ymin_ymax",
"sklearn/tests/test_isotonic.py::test_make_unique_dtype",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_auto_decreasing",
"sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[float64]",
"sklearn/tests/test_isotonic.py::test_isotonic_zero_weight_loop",
"sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[int32]",
"sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[float32]",
"sklearn/tests/test_isotonic.py::test_isotonic_duplicate_min_entry",
"sklearn/tests/test_isotonic.py::test_isotonic_min_max_boundaries",
"sklearn/tests/test_isotonic.py::test_assert_raises_exceptions",
"sklearn/tests/test_isotonic.py::test_isotonic_2darray_more_than_1_feature",
"sklearn/tests/test_isotonic.py::test_check_ci_warn",
"sklearn/tests/test_isotonic.py::test_isotonic_copy_before_fit",
"sklearn/tests/test_isotonic.py::test_make_unique_tolerance[float64]",
"sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[int64]",
"sklearn/tests/test_isotonic.py::test_isotonic_regression",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_secondary_",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_with_ties_in_differently_sized_groups",
"sklearn/tests/test_isotonic.py::test_fast_predict",
"sklearn/tests/test_isotonic.py::test_isotonic_thresholds[False]",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_max",
"sklearn/tests/test_isotonic.py::test_permutation_invariance",
"sklearn/tests/test_isotonic.py::test_isotonic_dtype",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_reversed",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_min",
"sklearn/tests/test_isotonic.py::test_isotonic_make_unique_tolerance",
"sklearn/tests/test_isotonic.py::test_isotonic_non_regression_inf_slope",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_bad_after",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_auto_increasing"
] |
[
"sklearn/tests/test_isotonic.py::test_get_feature_names_out[1d]",
"sklearn/tests/test_isotonic.py::test_get_feature_names_out[2d]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c0f705a8ceef7..aa1a71466fce0 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -314,6 +314,12 @@ Changelog\n `max_iter` and `tol`.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.isotonic`\n+.......................\n+\n+- |Enhancement| Adds :term:`get_feature_names_out` to `IsotonicRegression`.\n+ :pr:`<PRID>` by `<NAME>`_.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c0f705a8ceef7..aa1a71466fce0 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -314,6 +314,12 @@ Changelog
`max_iter` and `tol`.
:pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.isotonic`
+.......................
+
+- |Enhancement| Adds :term:`get_feature_names_out` to `IsotonicRegression`.
+ :pr:`<PRID>` by `<NAME>`_.
+
:mod:`sklearn.linear_model`
...........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19794
|
https://github.com/scikit-learn/scikit-learn/pull/19794
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 7ecffa9e18279..a18f14ee95b20 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -542,6 +542,26 @@ Changelog
:class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`9087` by
:user:`Arthur Imbert <Henley13>` and :pr:`22525` by :user:`Meekail Zain <micky774>`.
+:mod:`sklearn.manifold`
+.......................
+
+- |Feature| :class:`sklearn.manifold.Isomap` now supports radius-based
+ neighbors via the `radius` argument.
+ :pr:`19794` by :user:`Zhehao Liu <MaxwellLZH>`.
+
+- |Enhancement| :func:`manifold.spectral_embedding` and
+ :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will
+ preserve this dtype.
+ :pr:`21534` by :user:`Andrew Knyazev <lobpcg>`.
+
+- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`
+ and :class:`manifold.LocallyLinearEmbedding`. :pr:`22254` by `Thomas Fan`_.
+
+- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of
+ the previous uniform on [0, 1] random initial approximations to eigenvectors
+ in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.
+ :pr:`21565` by :user:`Andrew Knyazev <lobpcg>`.
+
:mod:`sklearn.metrics`
......................
@@ -575,22 +595,6 @@ Changelog
in the multiclass case when ``multiclass='ovr'`` which will return the score
per class. :pr:`19158` by :user:`Nicki Skafte <SkafteNicki>`.
-:mod:`sklearn.manifold`
-.......................
-
-- |Enhancement| :func:`manifold.spectral_embedding` and
- :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will
- preserve this dtype.
- :pr:`21534` by :user:`Andrew Knyazev <lobpcg>`.
-
-- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`
- and :class:`manifold.LocallyLinearEmbedding`. :pr:`22254` by `Thomas Fan`_.
-
-- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of
- the previous uniform on [0, 1] random initial approximations to eigenvectors
- in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.
- :pr:`21565` by :user:`Andrew Knyazev <lobpcg>`.
-
:mod:`sklearn.model_selection`
..............................
diff --git a/sklearn/manifold/_isomap.py b/sklearn/manifold/_isomap.py
index c0300edb8c8bb..6e23da19ac694 100644
--- a/sklearn/manifold/_isomap.py
+++ b/sklearn/manifold/_isomap.py
@@ -5,6 +5,7 @@
import warnings
import numpy as np
+
import scipy
from scipy.sparse import issparse
from scipy.sparse.csgraph import shortest_path
@@ -12,6 +13,7 @@
from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..neighbors import NearestNeighbors, kneighbors_graph
+from ..neighbors import radius_neighbors_graph
from ..utils.validation import check_is_fitted
from ..decomposition import KernelPCA
from ..preprocessing import KernelCenterer
@@ -28,8 +30,15 @@ class Isomap(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
Parameters
----------
- n_neighbors : int, default=5
- Number of neighbors to consider for each point.
+ n_neighbors : int or None, default=5
+ Number of neighbors to consider for each point. If `n_neighbors` is an int,
+ then `radius` must be `None`.
+
+ radius : float or None, default=None
+ Limiting distance of neighbors to return. If `radius` is a float,
+ then `n_neighbors` must be set to `None`.
+
+ .. versionadded:: 1.1
n_components : int, default=2
Number of coordinates for the manifold.
@@ -156,6 +165,7 @@ def __init__(
self,
*,
n_neighbors=5,
+ radius=None,
n_components=2,
eigen_solver="auto",
tol=0,
@@ -168,6 +178,7 @@ def __init__(
metric_params=None,
):
self.n_neighbors = n_neighbors
+ self.radius = radius
self.n_components = n_components
self.eigen_solver = eigen_solver
self.tol = tol
@@ -180,8 +191,16 @@ def __init__(
self.metric_params = metric_params
def _fit_transform(self, X):
+ if self.n_neighbors is not None and self.radius is not None:
+ raise ValueError(
+ "Both n_neighbors and radius are provided. Use"
+ f" Isomap(radius={self.radius}, n_neighbors=None) if intended to use"
+ " radius-based neighbors"
+ )
+
self.nbrs_ = NearestNeighbors(
n_neighbors=self.n_neighbors,
+ radius=self.radius,
algorithm=self.neighbors_algorithm,
metric=self.metric,
p=self.p,
@@ -202,21 +221,32 @@ def _fit_transform(self, X):
n_jobs=self.n_jobs,
)
- kng = kneighbors_graph(
- self.nbrs_,
- self.n_neighbors,
- metric=self.metric,
- p=self.p,
- metric_params=self.metric_params,
- mode="distance",
- n_jobs=self.n_jobs,
- )
+ if self.n_neighbors is not None:
+ nbg = kneighbors_graph(
+ self.nbrs_,
+ self.n_neighbors,
+ metric=self.metric,
+ p=self.p,
+ metric_params=self.metric_params,
+ mode="distance",
+ n_jobs=self.n_jobs,
+ )
+ else:
+ nbg = radius_neighbors_graph(
+ self.nbrs_,
+ radius=self.radius,
+ metric=self.metric,
+ p=self.p,
+ metric_params=self.metric_params,
+ mode="distance",
+ n_jobs=self.n_jobs,
+ )
# Compute the number of connected components, and connect the different
# components to be able to compute a shortest path between all pairs
# of samples in the graph.
# Similar fix to cluster._agglomerative._fix_connectivity.
- n_connected_components, labels = connected_components(kng)
+ n_connected_components, labels = connected_components(nbg)
if n_connected_components > 1:
if self.metric == "precomputed" and issparse(X):
raise RuntimeError(
@@ -236,9 +266,9 @@ def _fit_transform(self, X):
)
# use array validated by NearestNeighbors
- kng = _fix_connected_components(
+ nbg = _fix_connected_components(
X=self.nbrs_._fit_X,
- graph=kng,
+ graph=nbg,
n_connected_components=n_connected_components,
component_labels=labels,
mode="distance",
@@ -249,9 +279,9 @@ def _fit_transform(self, X):
if parse_version(scipy.__version__) < parse_version("1.3.2"):
# make identical samples have a nonzero distance, to account for
# issues in old scipy Floyd-Warshall implementation.
- kng.data += 1e-15
+ nbg.data += 1e-15
- self.dist_matrix_ = shortest_path(kng, method=self.path_method, directed=False)
+ self.dist_matrix_ = shortest_path(nbg, method=self.path_method, directed=False)
G = self.dist_matrix_**2
G *= -0.5
@@ -349,7 +379,10 @@ def transform(self, X):
X transformed in the new space.
"""
check_is_fitted(self)
- distances, indices = self.nbrs_.kneighbors(X, return_distance=True)
+ if self.n_neighbors is not None:
+ distances, indices = self.nbrs_.kneighbors(X, return_distance=True)
+ else:
+ distances, indices = self.nbrs_.radius_neighbors(X, return_distance=True)
# Create the graph of shortest distances from X to
# training data via the nearest neighbors of X.
|
diff --git a/sklearn/manifold/tests/test_isomap.py b/sklearn/manifold/tests/test_isomap.py
index 515bc4e46c9d7..73365b08a5cfb 100644
--- a/sklearn/manifold/tests/test_isomap.py
+++ b/sklearn/manifold/tests/test_isomap.py
@@ -1,5 +1,6 @@
from itertools import product
import numpy as np
+import math
from numpy.testing import (
assert_almost_equal,
assert_array_almost_equal,
@@ -14,6 +15,7 @@
from sklearn import preprocessing
from sklearn.datasets import make_blobs
from sklearn.metrics.pairwise import pairwise_distances
+from sklearn.utils._testing import assert_allclose, assert_allclose_dense_sparse
from scipy.sparse import rand as sparse_rand
@@ -21,51 +23,63 @@
path_methods = ["auto", "FW", "D"]
-def test_isomap_simple_grid():
- # Isomap should preserve distances when all neighbors are used
- N_per_side = 5
- Npts = N_per_side**2
- n_neighbors = Npts - 1
-
+def create_sample_data(n_pts=25, add_noise=False):
# grid of equidistant points in 2D, n_components = n_dim
- X = np.array(list(product(range(N_per_side), repeat=2)))
+ n_per_side = int(math.sqrt(n_pts))
+ X = np.array(list(product(range(n_per_side), repeat=2)))
+ if add_noise:
+ # add noise in a third dimension
+ rng = np.random.RandomState(0)
+ noise = 0.1 * rng.randn(n_pts, 1)
+ X = np.concatenate((X, noise), 1)
+ return X
+
+
[email protected]("n_neighbors, radius", [(24, None), (None, np.inf)])
+def test_isomap_simple_grid(n_neighbors, radius):
+ # Isomap should preserve distances when all neighbors are used
+ n_pts = 25
+ X = create_sample_data(n_pts=n_pts, add_noise=False)
# distances from each point to all others
- G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance").toarray()
+ if n_neighbors is not None:
+ G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance")
+ else:
+ G = neighbors.radius_neighbors_graph(X, radius, mode="distance")
for eigen_solver in eigen_solvers:
for path_method in path_methods:
clf = manifold.Isomap(
n_neighbors=n_neighbors,
+ radius=radius,
n_components=2,
eigen_solver=eigen_solver,
path_method=path_method,
)
clf.fit(X)
- G_iso = neighbors.kneighbors_graph(
- clf.embedding_, n_neighbors, mode="distance"
- ).toarray()
- assert_array_almost_equal(G, G_iso)
+ if n_neighbors is not None:
+ G_iso = neighbors.kneighbors_graph(
+ clf.embedding_, n_neighbors, mode="distance"
+ )
+ else:
+ G_iso = neighbors.radius_neighbors_graph(
+ clf.embedding_, radius, mode="distance"
+ )
+ assert_allclose_dense_sparse(G, G_iso)
-def test_isomap_reconstruction_error():
[email protected]("n_neighbors, radius", [(24, None), (None, np.inf)])
+def test_isomap_reconstruction_error(n_neighbors, radius):
# Same setup as in test_isomap_simple_grid, with an added dimension
- N_per_side = 5
- Npts = N_per_side**2
- n_neighbors = Npts - 1
-
- # grid of equidistant points in 2D, n_components = n_dim
- X = np.array(list(product(range(N_per_side), repeat=2)))
-
- # add noise in a third dimension
- rng = np.random.RandomState(0)
- noise = 0.1 * rng.randn(Npts, 1)
- X = np.concatenate((X, noise), 1)
+ n_pts = 25
+ X = create_sample_data(n_pts=n_pts, add_noise=True)
# compute input kernel
- G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance").toarray()
-
+ if n_neighbors is not None:
+ G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance").toarray()
+ else:
+ G = neighbors.radius_neighbors_graph(X, radius, mode="distance").toarray()
centerer = preprocessing.KernelCenterer()
K = centerer.fit_transform(-0.5 * G**2)
@@ -73,6 +87,7 @@ def test_isomap_reconstruction_error():
for path_method in path_methods:
clf = manifold.Isomap(
n_neighbors=n_neighbors,
+ radius=radius,
n_components=2,
eigen_solver=eigen_solver,
path_method=path_method,
@@ -80,18 +95,24 @@ def test_isomap_reconstruction_error():
clf.fit(X)
# compute output kernel
- G_iso = neighbors.kneighbors_graph(
- clf.embedding_, n_neighbors, mode="distance"
- ).toarray()
-
+ if n_neighbors is not None:
+ G_iso = neighbors.kneighbors_graph(
+ clf.embedding_, n_neighbors, mode="distance"
+ )
+ else:
+ G_iso = neighbors.radius_neighbors_graph(
+ clf.embedding_, radius, mode="distance"
+ )
+ G_iso = G_iso.toarray()
K_iso = centerer.fit_transform(-0.5 * G_iso**2)
# make sure error agrees
- reconstruction_error = np.linalg.norm(K - K_iso) / Npts
+ reconstruction_error = np.linalg.norm(K - K_iso) / n_pts
assert_almost_equal(reconstruction_error, clf.reconstruction_error())
-def test_transform():
[email protected]("n_neighbors, radius", [(2, None), (None, 0.5)])
+def test_transform(n_neighbors, radius):
n_samples = 200
n_components = 10
noise_scale = 0.01
@@ -100,7 +121,9 @@ def test_transform():
X, y = datasets.make_s_curve(n_samples, random_state=0)
# Compute isomap embedding
- iso = manifold.Isomap(n_components=n_components)
+ iso = manifold.Isomap(
+ n_components=n_components, n_neighbors=n_neighbors, radius=radius
+ )
X_iso = iso.fit_transform(X)
# Re-embed a noisy version of the points
@@ -112,13 +135,17 @@ def test_transform():
assert np.sqrt(np.mean((X_iso - X_iso2) ** 2)) < 2 * noise_scale
-def test_pipeline():
[email protected]("n_neighbors, radius", [(2, None), (None, 10.0)])
+def test_pipeline(n_neighbors, radius):
# check that Isomap works fine as a transformer in a Pipeline
# only checks that no error is raised.
# TODO check that it actually does something useful
X, y = datasets.make_blobs(random_state=0)
clf = pipeline.Pipeline(
- [("isomap", manifold.Isomap()), ("clf", neighbors.KNeighborsClassifier())]
+ [
+ ("isomap", manifold.Isomap(n_neighbors=n_neighbors, radius=radius)),
+ ("clf", neighbors.KNeighborsClassifier()),
+ ]
)
clf.fit(X, y)
assert 0.9 < clf.score(X, y)
@@ -204,6 +231,34 @@ def test_sparse_input():
clf.fit(X)
+def test_isomap_fit_precomputed_radius_graph():
+ # Isomap.fit_transform must yield similar result when using
+ # a precomputed distance matrix.
+
+ X, y = datasets.make_s_curve(200, random_state=0)
+ radius = 10
+
+ g = neighbors.radius_neighbors_graph(X, radius=radius, mode="distance")
+ isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="precomputed")
+ isomap.fit(g)
+ precomputed_result = isomap.embedding_
+
+ isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="minkowski")
+ result = isomap.fit_transform(X)
+ assert_allclose(precomputed_result, result)
+
+
+def test_isomap_raise_error_when_neighbor_and_radius_both_set():
+ # Isomap.fit_transform must raise a ValueError if
+ # radius and n_neighbors are provided.
+
+ X, _ = datasets.load_digits(return_X_y=True)
+ isomap = manifold.Isomap(n_neighbors=3, radius=5.5)
+ msg = "Both n_neighbors and radius are provided"
+ with pytest.raises(ValueError, match=msg):
+ isomap.fit_transform(X)
+
+
def test_multiple_connected_components():
# Test that a warning is raised when the graph has multiple components
X = np.array([0, 1, 2, 5, 6, 7])[:, None]
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 7ecffa9e18279..a18f14ee95b20 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -542,6 +542,26 @@ Changelog\n :class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`9087` by\n :user:`Arthur Imbert <Henley13>` and :pr:`22525` by :user:`Meekail Zain <micky774>`.\n \n+:mod:`sklearn.manifold`\n+.......................\n+\n+- |Feature| :class:`sklearn.manifold.Isomap` now supports radius-based\n+ neighbors via the `radius` argument.\n+ :pr:`19794` by :user:`Zhehao Liu <MaxwellLZH>`.\n+\n+- |Enhancement| :func:`manifold.spectral_embedding` and\n+ :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will\n+ preserve this dtype.\n+ :pr:`21534` by :user:`Andrew Knyazev <lobpcg>`.\n+\n+- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`\n+ and :class:`manifold.LocallyLinearEmbedding`. :pr:`22254` by `Thomas Fan`_.\n+\n+- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of\n+ the previous uniform on [0, 1] random initial approximations to eigenvectors\n+ in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.\n+ :pr:`21565` by :user:`Andrew Knyazev <lobpcg>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n@@ -575,22 +595,6 @@ Changelog\n in the multiclass case when ``multiclass='ovr'`` which will return the score\n per class. :pr:`19158` by :user:`Nicki Skafte <SkafteNicki>`.\n \n-:mod:`sklearn.manifold`\n-.......................\n-\n-- |Enhancement| :func:`manifold.spectral_embedding` and\n- :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will\n- preserve this dtype.\n- :pr:`21534` by :user:`Andrew Knyazev <lobpcg>`.\n-\n-- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`\n- and :class:`manifold.LocallyLinearEmbedding`. :pr:`22254` by `Thomas Fan`_.\n-\n-- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of\n- the previous uniform on [0, 1] random initial approximations to eigenvectors\n- in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.\n- :pr:`21565` by :user:`Andrew Knyazev <lobpcg>`.\n-\n :mod:`sklearn.model_selection`\n ..............................\n \n"
}
] |
1.01
|
1c94c0b0be3b9146aae41376f3f4ef3853e0ca97
|
[
"sklearn/manifold/tests/test_isomap.py::test_sparse_input",
"sklearn/manifold/tests/test_isomap.py::test_isomap_clone_bug",
"sklearn/manifold/tests/test_isomap.py::test_different_metric",
"sklearn/manifold/tests/test_isomap.py::test_multiple_connected_components",
"sklearn/manifold/tests/test_isomap.py::test_multiple_connected_components_metric_precomputed",
"sklearn/manifold/tests/test_isomap.py::test_pipeline_with_nearest_neighbors_transformer",
"sklearn/manifold/tests/test_isomap.py::test_get_feature_names_out"
] |
[
"sklearn/manifold/tests/test_isomap.py::test_transform[None-0.5]",
"sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[None-inf]",
"sklearn/manifold/tests/test_isomap.py::test_pipeline[None-10.0]",
"sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[None-inf]",
"sklearn/manifold/tests/test_isomap.py::test_isomap_fit_precomputed_radius_graph",
"sklearn/manifold/tests/test_isomap.py::test_isomap_raise_error_when_neighbor_and_radius_both_set",
"sklearn/manifold/tests/test_isomap.py::test_transform[2-None]",
"sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error[24-None]",
"sklearn/manifold/tests/test_isomap.py::test_pipeline[2-None]",
"sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid[24-None]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 7ecffa9e18279..a18f14ee95b20 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -542,6 +542,26 @@ Changelog\n :class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`<PRID>` by\n :user:`<NAME>` and :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.manifold`\n+.......................\n+\n+- |Feature| :class:`sklearn.manifold.Isomap` now supports radius-based\n+ neighbors via the `radius` argument.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n+- |Enhancement| :func:`manifold.spectral_embedding` and\n+ :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will\n+ preserve this dtype.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n+- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`\n+ and :class:`manifold.LocallyLinearEmbedding`. :pr:`<PRID>` by `<NAME>`_.\n+\n+- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of\n+ the previous uniform on [0, 1] random initial approximations to eigenvectors\n+ in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n@@ -575,22 +595,6 @@ Changelog\n in the multiclass case when ``multiclass='ovr'`` which will return the score\n per class. :pr:`<PRID>` by :user:`<NAME>`.\n \n-:mod:`sklearn.manifold`\n-.......................\n-\n-- |Enhancement| :func:`manifold.spectral_embedding` and\n- :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will\n- preserve this dtype.\n- :pr:`<PRID>` by :user:`<NAME>`.\n-\n-- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`\n- and :class:`manifold.LocallyLinearEmbedding`. :pr:`<PRID>` by `<NAME>`_.\n-\n-- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of\n- the previous uniform on [0, 1] random initial approximations to eigenvectors\n- in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.\n- :pr:`<PRID>` by :user:`<NAME>`.\n-\n :mod:`sklearn.model_selection`\n ..............................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 7ecffa9e18279..a18f14ee95b20 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -542,6 +542,26 @@ Changelog
:class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`<PRID>` by
:user:`<NAME>` and :pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.manifold`
+.......................
+
+- |Feature| :class:`sklearn.manifold.Isomap` now supports radius-based
+ neighbors via the `radius` argument.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
+- |Enhancement| :func:`manifold.spectral_embedding` and
+ :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will
+ preserve this dtype.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
+- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`
+ and :class:`manifold.LocallyLinearEmbedding`. :pr:`<PRID>` by `<NAME>`_.
+
+- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of
+ the previous uniform on [0, 1] random initial approximations to eigenvectors
+ in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.metrics`
......................
@@ -575,22 +595,6 @@ Changelog
in the multiclass case when ``multiclass='ovr'`` which will return the score
per class. :pr:`<PRID>` by :user:`<NAME>`.
-:mod:`sklearn.manifold`
-.......................
-
-- |Enhancement| :func:`manifold.spectral_embedding` and
- :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will
- preserve this dtype.
- :pr:`<PRID>` by :user:`<NAME>`.
-
-- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`
- and :class:`manifold.LocallyLinearEmbedding`. :pr:`<PRID>` by `<NAME>`_.
-
-- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of
- the previous uniform on [0, 1] random initial approximations to eigenvectors
- in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.
- :pr:`<PRID>` by :user:`<NAME>`.
-
:mod:`sklearn.model_selection`
..............................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21606
|
https://github.com/scikit-learn/scikit-learn/pull/21606
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index b9651a1e1b6f8..329f87813a389 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -187,6 +187,11 @@ Changelog
multilabel classification.
:pr:`19689` by :user:`Guillaume Lemaitre <glemaitre>`.
+- |Enhancement| :class:`linear_model.RidgeCV` and
+ :class:`linear_model.RidgeClassifierCV` now raise consistent error message
+ when passed invalid values for `alphas`.
+ :pr:`21606` by :user:`Arturo Amor <ArturoAmorQ>`.
+
- |Enhancement| :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`
now raise consistent error message when passed invalid values for `alpha`,
`max_iter` and `tol`.
diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py
index 09ef46ffc7ebe..1426201a893aa 100644
--- a/sklearn/linear_model/_ridge.py
+++ b/sklearn/linear_model/_ridge.py
@@ -10,6 +10,7 @@
from abc import ABCMeta, abstractmethod
+from functools import partial
import warnings
import numpy as np
@@ -1864,12 +1865,6 @@ def fit(self, X, y, sample_weight=None):
self.alphas = np.asarray(self.alphas)
- if np.any(self.alphas <= 0):
- raise ValueError(
- "alphas must be strictly positive. Got {} containing some "
- "negative or null value instead.".format(self.alphas)
- )
-
X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data(
X,
y,
@@ -2038,9 +2033,30 @@ def fit(self, X, y, sample_weight=None):
the validation score.
"""
cv = self.cv
+
+ check_scalar_alpha = partial(
+ check_scalar,
+ target_type=numbers.Real,
+ min_val=0.0,
+ include_boundaries="neither",
+ )
+
+ if isinstance(self.alphas, (np.ndarray, list, tuple)):
+ n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas)
+ if n_alphas != 1:
+ for index, alpha in enumerate(self.alphas):
+ alpha = check_scalar_alpha(alpha, f"alphas[{index}]")
+ else:
+ self.alphas[0] = check_scalar_alpha(self.alphas[0], "alphas")
+ else:
+ # check for single non-iterable item
+ self.alphas = check_scalar_alpha(self.alphas, "alphas")
+
+ alphas = np.asarray(self.alphas)
+
if cv is None:
estimator = _RidgeGCV(
- self.alphas,
+ alphas,
fit_intercept=self.fit_intercept,
normalize=self.normalize,
scoring=self.scoring,
@@ -2059,7 +2075,8 @@ def fit(self, X, y, sample_weight=None):
raise ValueError("cv!=None and store_cv_values=True are incompatible")
if self.alpha_per_target:
raise ValueError("cv!=None and alpha_per_target=True are incompatible")
- parameters = {"alpha": self.alphas}
+
+ parameters = {"alpha": alphas}
solver = "sparse_cg" if sparse.issparse(X) else "auto"
model = RidgeClassifier if is_classifier(self) else Ridge
gs = GridSearchCV(
|
diff --git a/sklearn/linear_model/tests/test_ridge.py b/sklearn/linear_model/tests/test_ridge.py
index 1160e2db57fc6..975d16df06f12 100644
--- a/sklearn/linear_model/tests/test_ridge.py
+++ b/sklearn/linear_model/tests/test_ridge.py
@@ -1270,19 +1270,51 @@ def test_ridgecv_int_alphas():
ridge.fit(X, y)
-def test_ridgecv_negative_alphas():
- X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
- y = [1, 1, 1, -1, -1]
[email protected]("Estimator", [RidgeCV, RidgeClassifierCV])
[email protected](
+ "params, err_type, err_msg",
+ [
+ ({"alphas": (1, -1, -100)}, ValueError, r"alphas\[1\] == -1, must be > 0.0"),
+ (
+ {"alphas": (-0.1, -1.0, -10.0)},
+ ValueError,
+ r"alphas\[0\] == -0.1, must be > 0.0",
+ ),
+ (
+ {"alphas": (1, 1.0, "1")},
+ TypeError,
+ r"alphas\[2\] must be an instance of <class 'numbers.Real'>, not <class"
+ r" 'str'>",
+ ),
+ ],
+)
+def test_ridgecv_alphas_validation(Estimator, params, err_type, err_msg):
+ """Check the `alphas` validation in RidgeCV and RidgeClassifierCV."""
- # Negative integers
- ridge = RidgeCV(alphas=(-1, -10, -100))
- with pytest.raises(ValueError, match="alphas must be strictly positive"):
- ridge.fit(X, y)
+ n_samples, n_features = 5, 5
+ X = rng.randn(n_samples, n_features)
+ y = rng.randint(0, 2, n_samples)
- # Negative floats
- ridge = RidgeCV(alphas=(-0.1, -1.0, -10.0))
- with pytest.raises(ValueError, match="alphas must be strictly positive"):
- ridge.fit(X, y)
+ with pytest.raises(err_type, match=err_msg):
+ Estimator(**params).fit(X, y)
+
+
[email protected]("Estimator", [RidgeCV, RidgeClassifierCV])
+def test_ridgecv_alphas_scalar(Estimator):
+ """Check the case when `alphas` is a scalar.
+ This case was supported in the past when `alphas` where converted
+ into array in `__init__`.
+ We add this test to ensure backward compatibility.
+ """
+
+ n_samples, n_features = 5, 5
+ X = rng.randn(n_samples, n_features)
+ if Estimator is RidgeCV:
+ y = rng.randn(n_samples)
+ else:
+ y = rng.randint(0, 2, n_samples)
+
+ Estimator(alphas=1).fit(X, y)
def test_raises_value_error_if_solver_not_supported():
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex b9651a1e1b6f8..329f87813a389 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -187,6 +187,11 @@ Changelog\n multilabel classification.\n :pr:`19689` by :user:`Guillaume Lemaitre <glemaitre>`.\n \n+- |Enhancement| :class:`linear_model.RidgeCV` and\n+ :class:`linear_model.RidgeClassifierCV` now raise consistent error message\n+ when passed invalid values for `alphas`.\n+ :pr:`21606` by :user:`Arturo Amor <ArturoAmorQ>`.\n+\n - |Enhancement| :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`\n now raise consistent error message when passed invalid values for `alpha`,\n `max_iter` and `tol`.\n"
}
] |
1.01
|
cacc034bba73859390a005445d634b1aa3ca7fe1
|
[
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_int_alphas",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params1-TypeError-alpha must be an instance of <class 'numbers.Real'>, not <class 'str'>]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sag_with_X_fortran",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-True]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_classifiers]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[_mean_squared_error_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[5]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params0-ValueError-alpha == -1, must be >= 0.0]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.01]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-True]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_primal_dual_relationship",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_loo]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[bad]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params5-TypeError-tol must be an instance of <class 'numbers.Real'>, not <class 'str'>]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv_normalize]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_shapes",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_vs_lstsq",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[neg_mean_squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_solver_not_supported",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_sample_weight",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match_cholesky",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_individual_penalties",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_cg_max_iter",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sparse_svd",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params2-ValueError-max_iter == 0, must be >= 1.]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.001]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params3-TypeError-max_iter must be an instance of <class 'numbers.Integral'>, not <class 'str'>]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_error",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params1]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_tolerance]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifier-params0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_loo_cv_asym_scoring",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_singular",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.01]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_intercept",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[1.0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sag]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_multi_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params2]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[gcv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_cv_individual_penalties",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-saga]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[1.0]",
"sklearn/linear_model/tests/test_ridge.py::test_n_iter",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_convergence_fail",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_toy_ridge_object",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.001]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params4-ValueError-tol == -1.0, must be >= 0.]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights_cv",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[_accuracy_callable]"
] |
[
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params2-TypeError-alphas\\\\[2\\\\] must be an instance of <class 'numbers.Real'>, not <class 'str'>-RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params0-ValueError-alphas\\\\[1\\\\] == -1, must be > 0.0-RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params2-TypeError-alphas\\\\[2\\\\] must be an instance of <class 'numbers.Real'>, not <class 'str'>-RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params0-ValueError-alphas\\\\[1\\\\] == -1, must be > 0.0-RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params1-ValueError-alphas\\\\[0\\\\] == -0.1, must be > 0.0-RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params1-ValueError-alphas\\\\[0\\\\] == -0.1, must be > 0.0-RidgeClassifierCV]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex b9651a1e1b6f8..329f87813a389 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -187,6 +187,11 @@ Changelog\n multilabel classification.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| :class:`linear_model.RidgeCV` and\n+ :class:`linear_model.RidgeClassifierCV` now raise consistent error message\n+ when passed invalid values for `alphas`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Enhancement| :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`\n now raise consistent error message when passed invalid values for `alpha`,\n `max_iter` and `tol`.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index b9651a1e1b6f8..329f87813a389 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -187,6 +187,11 @@ Changelog
multilabel classification.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| :class:`linear_model.RidgeCV` and
+ :class:`linear_model.RidgeClassifierCV` now raise consistent error message
+ when passed invalid values for `alphas`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Enhancement| :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`
now raise consistent error message when passed invalid values for `alpha`,
`max_iter` and `tol`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21341
|
https://github.com/scikit-learn/scikit-learn/pull/21341
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index e2ff5bc76fce2..b9651a1e1b6f8 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -187,6 +187,11 @@ Changelog
multilabel classification.
:pr:`19689` by :user:`Guillaume Lemaitre <glemaitre>`.
+- |Enhancement| :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`
+ now raise consistent error message when passed invalid values for `alpha`,
+ `max_iter` and `tol`.
+ :pr:`21341` by :user:`Arturo Amor <ArturoAmorQ>`.
+
:mod:`sklearn.linear_model`
...........................
diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py
index 1a501e8404f62..09ef46ffc7ebe 100644
--- a/sklearn/linear_model/_ridge.py
+++ b/sklearn/linear_model/_ridge.py
@@ -13,6 +13,7 @@
import warnings
import numpy as np
+import numbers
from scipy import linalg
from scipy import sparse
from scipy import optimize
@@ -26,6 +27,7 @@
from ..utils.extmath import row_norms
from ..utils import check_array
from ..utils import check_consistent_length
+from ..utils import check_scalar
from ..utils import compute_sample_weight
from ..utils import column_or_1d
from ..utils.validation import check_is_fitted
@@ -557,6 +559,17 @@ def _ridge_regression(
# we implement sample_weight via a simple rescaling.
X, y = _rescale_data(X, y, sample_weight)
+ # Some callers of this method might pass alpha as single
+ # element array which already has been validated.
+ if alpha is not None and not isinstance(alpha, (np.ndarray, tuple)):
+ alpha = check_scalar(
+ alpha,
+ "alpha",
+ target_type=numbers.Real,
+ min_val=0.0,
+ include_boundaries="left",
+ )
+
# There should be either 1 or n_targets penalties
alpha = np.asarray(alpha, dtype=X.dtype).ravel()
if alpha.size not in [1, n_targets]:
@@ -742,6 +755,13 @@ def fit(self, X, y, sample_weight=None):
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
+ if self.max_iter is not None:
+ self.max_iter = check_scalar(
+ self.max_iter, "max_iter", target_type=numbers.Integral, min_val=1
+ )
+
+ self.tol = check_scalar(self.tol, "tol", target_type=numbers.Real, min_val=0.0)
+
# when X is sparse we only remove offset from y
X, y, X_offset, y_offset, X_scale = self._preprocess_data(
X,
|
diff --git a/sklearn/linear_model/tests/test_ridge.py b/sklearn/linear_model/tests/test_ridge.py
index 58d2804d89aca..1160e2db57fc6 100644
--- a/sklearn/linear_model/tests/test_ridge.py
+++ b/sklearn/linear_model/tests/test_ridge.py
@@ -335,6 +335,42 @@ def test_ridge_individual_penalties():
ridge.fit(X, y)
[email protected](
+ "params, err_type, err_msg",
+ [
+ ({"alpha": -1}, ValueError, "alpha == -1, must be >= 0.0"),
+ (
+ {"alpha": "1"},
+ TypeError,
+ "alpha must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ ),
+ ({"max_iter": 0}, ValueError, "max_iter == 0, must be >= 1."),
+ (
+ {"max_iter": "1"},
+ TypeError,
+ "max_iter must be an instance of <class 'numbers.Integral'>, not <class"
+ " 'str'>",
+ ),
+ ({"tol": -1.0}, ValueError, "tol == -1.0, must be >= 0."),
+ (
+ {"tol": "1"},
+ TypeError,
+ "tol must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ ),
+ ],
+)
+def test_ridge_params_validation(params, err_type, err_msg):
+ """Check the parameters validation in Ridge."""
+
+ rng = np.random.RandomState(42)
+ n_samples, n_features, n_targets = 20, 10, 5
+ X = rng.randn(n_samples, n_features)
+ y = rng.randn(n_samples, n_targets)
+
+ with pytest.raises(err_type, match=err_msg):
+ Ridge(**params).fit(X, y)
+
+
@pytest.mark.parametrize("n_col", [(), (1,), (3,)])
def test_X_CenterStackOp(n_col):
rng = np.random.RandomState(0)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex e2ff5bc76fce2..b9651a1e1b6f8 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -187,6 +187,11 @@ Changelog\n multilabel classification.\n :pr:`19689` by :user:`Guillaume Lemaitre <glemaitre>`.\n \n+- |Enhancement| :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`\n+ now raise consistent error message when passed invalid values for `alpha`,\n+ `max_iter` and `tol`.\n+ :pr:`21341` by :user:`Arturo Amor <ArturoAmorQ>`.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
1.01
|
80ebe21ec280892df98a02d8fdd61cbf3988ccd6
|
[
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[1.0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_convergence_fail",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_vs_lstsq",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_individual_penalties",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_shapes",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_intercept",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[1.0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_primal_dual_relationship",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_loo]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_classifiers]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col0]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.001]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_int_alphas",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_loo_cv_asym_scoring",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_n_iter",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.01]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.001]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_sample_weight",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_error",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.01]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights_cv",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[_mean_squared_error_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[neg_mean_squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[1]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_cg_max_iter",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv_normalize]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sparse_svd",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_toy_ridge_object",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_negative_alphas",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[bad]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-saga]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match_cholesky",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sag_with_X_fortran",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-True]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[5]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifier-params0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_singular",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_solver_not_supported",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_cv_individual_penalties",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_multi_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_tolerance]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[gcv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[svd]"
] |
[
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params5-TypeError-tol must be an instance of <class 'numbers.Real'>, not <class 'str'>]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params0-ValueError-alpha == -1, must be >= 0.0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params1-TypeError-alpha must be an instance of <class 'numbers.Real'>, not <class 'str'>]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params4-ValueError-tol == -1.0, must be >= 0.]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params2-ValueError-max_iter == 0, must be >= 1.]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params3-TypeError-max_iter must be an instance of <class 'numbers.Integral'>, not <class 'str'>]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex e2ff5bc76fce2..b9651a1e1b6f8 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -187,6 +187,11 @@ Changelog\n multilabel classification.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`\n+ now raise consistent error message when passed invalid values for `alpha`,\n+ `max_iter` and `tol`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index e2ff5bc76fce2..b9651a1e1b6f8 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -187,6 +187,11 @@ Changelog
multilabel classification.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`
+ now raise consistent error message when passed invalid values for `alpha`,
+ `max_iter` and `tol`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.linear_model`
...........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21334
|
https://github.com/scikit-learn/scikit-learn/pull/21334
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 7141080afbc06..261b6f8eac6bf 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -58,6 +58,22 @@ Changelog
- |Fix| :class:`decomposition.FastICA` now validates input parameters in `fit` instead of `__init__`.
:pr:`21432` by :user:`Hannah Bohle <hhnnhh>` and :user:`Maren Westermann <marenwestermann>`.
+- |API| Adds :term:`get_feature_names_out` to all transformers in the
+ :mod:`~sklearn.decomposition` module:
+ :class:`~sklearn.decomposition.DictionaryLearning`,
+ :class:`~sklearn.decomposition.FactorAnalysis`,
+ :class:`~sklearn.decomposition.FastICA`,
+ :class:`~sklearn.decomposition.IncrementalPCA`,
+ :class:`~sklearn.decomposition.KernelPCA`,
+ :class:`~sklearn.decomposition.LatentDirichletAllocation`,
+ :class:`~sklearn.decomposition.MiniBatchDictionaryLearning`,
+ :class:`~sklearn.decomposition.MiniBatchSparsePCA`,
+ :class:`~sklearn.decomposition.NMF`,
+ :class:`~sklearn.decomposition.PCA`,
+ :class:`~sklearn.decomposition.SparsePCA`,
+ and :class:`~sklearn.decomposition.TruncatedSVD`. :pr:`21334` by
+ `Thomas Fan`_.
+
:mod:`sklearn.impute`
.....................
diff --git a/sklearn/base.py b/sklearn/base.py
index 241dac26dd3ca..557b2c25b2691 100644
--- a/sklearn/base.py
+++ b/sklearn/base.py
@@ -24,6 +24,8 @@
from .utils.validation import _check_y
from .utils.validation import _num_features
from .utils.validation import _check_feature_names_in
+from .utils.validation import _generate_get_feature_names_out
+from .utils.validation import check_is_fitted
from .utils._estimator_html_repr import estimator_html_repr
from .utils.validation import _get_feature_names
@@ -879,6 +881,31 @@ def get_feature_names_out(self, input_features=None):
return _check_feature_names_in(self, input_features)
+class _ClassNamePrefixFeaturesOutMixin:
+ """Mixin class for transformers that generate their own names by prefixing.
+
+ Assumes that `_n_features_out` is defined for the estimator.
+ """
+
+ def get_feature_names_out(self, input_features=None):
+ """Get output feature names for transformation.
+
+ Parameters
+ ----------
+ input_features : array-like of str or None, default=None
+ Only used to validate feature names with the names seen in :meth:`fit`.
+
+ Returns
+ -------
+ feature_names_out : ndarray of str objects
+ Transformed feature names.
+ """
+ check_is_fitted(self, "_n_features_out")
+ return _generate_get_feature_names_out(
+ self, self._n_features_out, input_features=input_features
+ )
+
+
class DensityMixin:
"""Mixin class for all density estimators in scikit-learn."""
diff --git a/sklearn/decomposition/_base.py b/sklearn/decomposition/_base.py
index e503a52ee1f92..7904ce17f7212 100644
--- a/sklearn/decomposition/_base.py
+++ b/sklearn/decomposition/_base.py
@@ -11,12 +11,14 @@
import numpy as np
from scipy import linalg
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..utils.validation import check_is_fitted
from abc import ABCMeta, abstractmethod
-class _BasePCA(TransformerMixin, BaseEstimator, metaclass=ABCMeta):
+class _BasePCA(
+ _ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta
+):
"""Base class for PCA methods.
Warning: This class should not be used directly.
@@ -154,3 +156,8 @@ def inverse_transform(self, X):
)
else:
return np.dot(X, self.components_) + self.mean_
+
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.components_.shape[0]
diff --git a/sklearn/decomposition/_dict_learning.py b/sklearn/decomposition/_dict_learning.py
index 3ade7727a8b7e..e4edaf31c9c32 100644
--- a/sklearn/decomposition/_dict_learning.py
+++ b/sklearn/decomposition/_dict_learning.py
@@ -14,7 +14,7 @@
from scipy import linalg
from joblib import Parallel, effective_n_jobs
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..utils import deprecated
from ..utils import check_array, check_random_state, gen_even_slices, gen_batches
from ..utils.extmath import randomized_svd, row_norms, svd_flip
@@ -1014,7 +1014,7 @@ def dict_learning_online(
return dictionary
-class _BaseSparseCoding(TransformerMixin):
+class _BaseSparseCoding(_ClassNamePrefixFeaturesOutMixin, TransformerMixin):
"""Base class from SparseCoder and DictionaryLearning algorithms."""
def __init__(
@@ -1315,6 +1315,11 @@ def n_features_in_(self):
"""Number of features seen during `fit`."""
return self.dictionary.shape[1]
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.n_components_
+
class DictionaryLearning(_BaseSparseCoding, BaseEstimator):
"""Dictionary learning.
@@ -1587,6 +1592,11 @@ def fit(self, X, y=None):
self.error_ = E
return self
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.components_.shape[0]
+
class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):
"""Mini-batch dictionary learning.
@@ -1926,3 +1936,8 @@ def partial_fit(self, X, y=None, iter_offset=None):
self.inner_stats_ = (A, B)
self.iter_offset_ = iter_offset + 1
return self
+
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.components_.shape[0]
diff --git a/sklearn/decomposition/_factor_analysis.py b/sklearn/decomposition/_factor_analysis.py
index fcf96cb0eb532..8ff5b54d4e839 100644
--- a/sklearn/decomposition/_factor_analysis.py
+++ b/sklearn/decomposition/_factor_analysis.py
@@ -25,14 +25,14 @@
from scipy import linalg
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..utils import check_random_state
from ..utils.extmath import fast_logdet, randomized_svd, squared_norm
from ..utils.validation import check_is_fitted
from ..exceptions import ConvergenceWarning
-class FactorAnalysis(TransformerMixin, BaseEstimator):
+class FactorAnalysis(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Factor Analysis (FA).
A simple linear generative model with Gaussian latent variables.
@@ -426,6 +426,11 @@ def _rotate(self, components, n_components=None, tol=1e-6):
else:
raise ValueError("'method' must be in %s, not %s" % (implemented, method))
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.components_.shape[0]
+
def _ortho_rotation(components, method="varimax", tol=1e-6, max_iter=100):
"""Return rotated components."""
diff --git a/sklearn/decomposition/_fastica.py b/sklearn/decomposition/_fastica.py
index 9d4bcc9026926..6eb10ce59505b 100644
--- a/sklearn/decomposition/_fastica.py
+++ b/sklearn/decomposition/_fastica.py
@@ -14,7 +14,7 @@
import numpy as np
from scipy import linalg
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..exceptions import ConvergenceWarning
from ..utils import check_array, as_float_array, check_random_state
@@ -319,7 +319,7 @@ def my_g(x):
return None, est._unmixing, sources
-class FastICA(TransformerMixin, BaseEstimator):
+class FastICA(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""FastICA: a fast algorithm for Independent Component Analysis.
The implementation is based on [1]_.
@@ -689,3 +689,8 @@ def inverse_transform(self, X, copy=True):
X += self.mean_
return X
+
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.components_.shape[0]
diff --git a/sklearn/decomposition/_kernel_pca.py b/sklearn/decomposition/_kernel_pca.py
index aee9b46899cd6..ff0fd223512c1 100644
--- a/sklearn/decomposition/_kernel_pca.py
+++ b/sklearn/decomposition/_kernel_pca.py
@@ -10,15 +10,18 @@
from ..utils._arpack import _init_arpack_v0
from ..utils.extmath import svd_flip, _randomized_eigsh
-from ..utils.validation import check_is_fitted, _check_psd_eigenvalues
+from ..utils.validation import (
+ check_is_fitted,
+ _check_psd_eigenvalues,
+)
from ..utils.deprecation import deprecated
from ..exceptions import NotFittedError
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..preprocessing import KernelCenterer
from ..metrics.pairwise import pairwise_kernels
-class KernelPCA(TransformerMixin, BaseEstimator):
+class KernelPCA(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Kernel Principal component analysis (KPCA).
Non-linear dimensionality reduction through the use of kernels (see
@@ -546,3 +549,8 @@ def _more_tags(self):
"preserves_dtype": [np.float64, np.float32],
"pairwise": self.kernel == "precomputed",
}
+
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.eigenvalues_.shape[0]
diff --git a/sklearn/decomposition/_lda.py b/sklearn/decomposition/_lda.py
index a723e3451e24f..6db9d900566eb 100644
--- a/sklearn/decomposition/_lda.py
+++ b/sklearn/decomposition/_lda.py
@@ -16,7 +16,7 @@
from scipy.special import gammaln, logsumexp
from joblib import Parallel, effective_n_jobs
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..utils import check_random_state, gen_batches, gen_even_slices
from ..utils.validation import check_non_negative
from ..utils.validation import check_is_fitted
@@ -138,7 +138,9 @@ def _update_doc_distribution(
return (doc_topic_distr, suff_stats)
-class LatentDirichletAllocation(TransformerMixin, BaseEstimator):
+class LatentDirichletAllocation(
+ _ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
+):
"""Latent Dirichlet Allocation with online variational Bayes algorithm.
The implementation is based on [1]_ and [2]_.
@@ -887,3 +889,8 @@ def perplexity(self, X, sub_sampling=False):
X, reset_n_features=True, whom="LatentDirichletAllocation.perplexity"
)
return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling)
+
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.components_.shape[0]
diff --git a/sklearn/decomposition/_nmf.py b/sklearn/decomposition/_nmf.py
index d914bd5b6126d..e388fdd45c201 100644
--- a/sklearn/decomposition/_nmf.py
+++ b/sklearn/decomposition/_nmf.py
@@ -15,11 +15,14 @@
from ._cdnmf_fast import _update_cdnmf_fast
from .._config import config_context
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..exceptions import ConvergenceWarning
from ..utils import check_random_state, check_array
from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm
-from ..utils.validation import check_is_fitted, check_non_negative
+from ..utils.validation import (
+ check_is_fitted,
+ check_non_negative,
+)
EPSILON = np.finfo(np.float32).eps
@@ -1109,7 +1112,7 @@ def non_negative_factorization(
return W, H, n_iter
-class NMF(TransformerMixin, BaseEstimator):
+class NMF(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Non-Negative Matrix Factorization (NMF).
Find two non-negative matrices (W, H) whose product approximates the non-
@@ -1708,3 +1711,8 @@ def inverse_transform(self, W):
"""
check_is_fitted(self)
return np.dot(W, self.components_)
+
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.components_.shape[0]
diff --git a/sklearn/decomposition/_sparse_pca.py b/sklearn/decomposition/_sparse_pca.py
index 1d7b4d6dfc063..31c8d2168a3e6 100644
--- a/sklearn/decomposition/_sparse_pca.py
+++ b/sklearn/decomposition/_sparse_pca.py
@@ -7,11 +7,11 @@
from ..utils import check_random_state
from ..utils.validation import check_is_fitted
from ..linear_model import ridge_regression
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ._dict_learning import dict_learning, dict_learning_online
-class SparsePCA(TransformerMixin, BaseEstimator):
+class SparsePCA(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Sparse Principal Components Analysis (SparsePCA).
Finds the set of sparse components that can optimally reconstruct
@@ -236,6 +236,11 @@ def transform(self, X):
return U
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.components_.shape[0]
+
class MiniBatchSparsePCA(SparsePCA):
"""Mini-batch Sparse Principal Components Analysis.
diff --git a/sklearn/decomposition/_truncated_svd.py b/sklearn/decomposition/_truncated_svd.py
index 21ed87eca5fd1..01d79f742302f 100644
--- a/sklearn/decomposition/_truncated_svd.py
+++ b/sklearn/decomposition/_truncated_svd.py
@@ -10,7 +10,7 @@
import scipy.sparse as sp
from scipy.sparse.linalg import svds
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..utils import check_array, check_random_state
from ..utils._arpack import _init_arpack_v0
from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip
@@ -21,7 +21,7 @@
__all__ = ["TruncatedSVD"]
-class TruncatedSVD(TransformerMixin, BaseEstimator):
+class TruncatedSVD(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Dimensionality reduction using truncated SVD (aka LSA).
This transformer performs linear dimensionality reduction by means of
@@ -273,3 +273,8 @@ def inverse_transform(self, X):
def _more_tags(self):
return {"preserves_dtype": [np.float64, np.float32]}
+
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ return self.components_.shape[0]
diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py
index 0380af76f5140..7662f03f85ce5 100644
--- a/sklearn/utils/validation.py
+++ b/sklearn/utils/validation.py
@@ -1702,7 +1702,7 @@ def _get_feature_names(X):
return feature_names
-def _check_feature_names_in(estimator, input_features=None):
+def _check_feature_names_in(estimator, input_features=None, *, generate_names=True):
"""Get output feature names for transformation.
Parameters
@@ -1716,9 +1716,13 @@ def _check_feature_names_in(estimator, input_features=None):
- If `input_features` is an array-like, then `input_features` must
match `feature_names_in_` if `feature_names_in_` is defined.
+ generate_names : bool, default=True
+ Wether to generate names when `input_features` is `None` and
+ `estimator.feature_names_in_` is not defined.
+
Returns
-------
- feature_names_in : ndarray of str
+ feature_names_in : ndarray of str or `None`
Feature names in.
"""
@@ -1742,8 +1746,40 @@ def _check_feature_names_in(estimator, input_features=None):
if feature_names_in_ is not None:
return feature_names_in_
+ if not generate_names:
+ return
+
# Generates feature names if `n_features_in_` is defined
if n_features_in_ is None:
raise ValueError("Unable to generate feature names without n_features_in_")
return np.asarray([f"x{i}" for i in range(n_features_in_)], dtype=object)
+
+
+def _generate_get_feature_names_out(estimator, n_features_out, input_features=None):
+ """Generate feature names out for estimator using the estimator name as the prefix.
+
+ The input_feature names are validated but not used. This function is useful
+ for estimators that generate their own names based on `n_features_out`, i.e. PCA.
+
+ Parameters
+ ----------
+ estimator : estimator instance
+ Estimator producing output feature names.
+
+ n_feature_out : int
+ Number of feature names out.
+
+ input_features : array-like of str or None, default=None
+ Only used to validate feature names with `estimator.feature_names_in_`.
+
+ Returns
+ -------
+ feature_names_in : ndarray of str or `None`
+ Feature names in.
+ """
+ _check_feature_names_in(estimator, input_features, generate_names=False)
+ estimator_name = estimator.__class__.__name__.lower()
+ return np.asarray(
+ [f"{estimator_name}{i}" for i in range(n_features_out)], dtype=object
+ )
|
diff --git a/sklearn/decomposition/tests/test_dict_learning.py b/sklearn/decomposition/tests/test_dict_learning.py
index 1270287ec844a..9ce477fffcd9d 100644
--- a/sklearn/decomposition/tests/test_dict_learning.py
+++ b/sklearn/decomposition/tests/test_dict_learning.py
@@ -664,3 +664,21 @@ def test_warning_default_transform_alpha(Estimator):
dl = Estimator(alpha=0.1)
with pytest.warns(FutureWarning, match="default transform_alpha"):
dl.fit_transform(X)
+
+
[email protected](
+ "estimator",
+ [SparseCoder(X.T), DictionaryLearning(), MiniBatchDictionaryLearning()],
+ ids=lambda x: x.__class__.__name__,
+)
+def test_get_feature_names_out(estimator):
+ """Check feature names for dict learning estimators."""
+ estimator.fit(X)
+ n_components = X.shape[1]
+
+ feature_names_out = estimator.get_feature_names_out()
+ estimator_name = estimator.__class__.__name__.lower()
+ assert_array_equal(
+ feature_names_out,
+ [f"{estimator_name}{i}" for i in range(n_components)],
+ )
diff --git a/sklearn/decomposition/tests/test_incremental_pca.py b/sklearn/decomposition/tests/test_incremental_pca.py
index 756300d970072..2ae2187452eee 100644
--- a/sklearn/decomposition/tests/test_incremental_pca.py
+++ b/sklearn/decomposition/tests/test_incremental_pca.py
@@ -5,6 +5,7 @@
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose_dense_sparse
+from numpy.testing import assert_array_equal
from sklearn import datasets
from sklearn.decomposition import PCA, IncrementalPCA
@@ -427,3 +428,11 @@ def test_incremental_pca_fit_overflow_error():
pca.fit(A)
np.testing.assert_allclose(ipca.singular_values_, pca.singular_values_)
+
+
+def test_incremental_pca_feature_names_out():
+ """Check feature names out for IncrementalPCA."""
+ ipca = IncrementalPCA(n_components=2).fit(iris.data)
+
+ names = ipca.get_feature_names_out()
+ assert_array_equal([f"incrementalpca{i}" for i in range(2)], names)
diff --git a/sklearn/decomposition/tests/test_kernel_pca.py b/sklearn/decomposition/tests/test_kernel_pca.py
index e7ae53fd5188b..72b40ec83e308 100644
--- a/sklearn/decomposition/tests/test_kernel_pca.py
+++ b/sklearn/decomposition/tests/test_kernel_pca.py
@@ -559,3 +559,12 @@ def test_kernel_pca_alphas_deprecated():
msg = r"Attribute `alphas_` was deprecated in version 1\.0"
with pytest.warns(FutureWarning, match=msg):
kp.alphas_
+
+
+def test_kernel_pca_feature_names_out():
+ """Check feature names out for KernelPCA."""
+ X, *_ = make_blobs(n_samples=100, n_features=4, random_state=0)
+ kpca = KernelPCA(n_components=2).fit(X)
+
+ names = kpca.get_feature_names_out()
+ assert_array_equal([f"kernelpca{i}" for i in range(2)], names)
diff --git a/sklearn/decomposition/tests/test_nmf.py b/sklearn/decomposition/tests/test_nmf.py
index 3b056bf9ee0b1..19eecdbba99e0 100644
--- a/sklearn/decomposition/tests/test_nmf.py
+++ b/sklearn/decomposition/tests/test_nmf.py
@@ -741,3 +741,13 @@ def test_init_default_deprecation():
NMF().fit(A)
with pytest.warns(FutureWarning, match=msg):
non_negative_factorization(A)
+
+
+def test_feature_names_out():
+ """Check feature names out for NMF."""
+ random_state = np.random.RandomState(0)
+ X = np.abs(random_state.randn(10, 4))
+ nmf = NMF(n_components=3, init="nndsvda").fit(X)
+
+ names = nmf.get_feature_names_out()
+ assert_array_equal([f"nmf{i}" for i in range(3)], names)
diff --git a/sklearn/decomposition/tests/test_online_lda.py b/sklearn/decomposition/tests/test_online_lda.py
index 811f3186ce503..e3ce951f7b6da 100644
--- a/sklearn/decomposition/tests/test_online_lda.py
+++ b/sklearn/decomposition/tests/test_online_lda.py
@@ -4,6 +4,7 @@
from scipy.linalg import block_diag
from scipy.sparse import csr_matrix
from scipy.special import psi
+from numpy.testing import assert_array_equal
import pytest
@@ -427,3 +428,14 @@ def check_verbosity(verbose, evaluate_every, expected_lines, expected_perplexiti
)
def test_verbosity(verbose, evaluate_every, expected_lines, expected_perplexities):
check_verbosity(verbose, evaluate_every, expected_lines, expected_perplexities)
+
+
+def test_lda_feature_names_out():
+ """Check feature names out for LatentDirichletAllocation."""
+ n_components, X = _build_sparse_mtx()
+ lda = LatentDirichletAllocation(n_components=n_components).fit(X)
+
+ names = lda.get_feature_names_out()
+ assert_array_equal(
+ [f"latentdirichletallocation{i}" for i in range(n_components)], names
+ )
diff --git a/sklearn/decomposition/tests/test_pca.py b/sklearn/decomposition/tests/test_pca.py
index e7973fd8aa3af..95b790616c02e 100644
--- a/sklearn/decomposition/tests/test_pca.py
+++ b/sklearn/decomposition/tests/test_pca.py
@@ -1,5 +1,6 @@
import numpy as np
import scipy as sp
+from numpy.testing import assert_array_equal
import pytest
@@ -656,3 +657,11 @@ def test_assess_dimesion_rank_one():
assert np.isfinite(_assess_dimension(s, rank=1, n_samples=n_samples))
for rank in range(2, n_features):
assert _assess_dimension(s, rank, n_samples) == -np.inf
+
+
+def test_feature_names_out():
+ """Check feature names out for PCA."""
+ pca = PCA(n_components=2).fit(iris.data)
+
+ names = pca.get_feature_names_out()
+ assert_array_equal([f"pca{i}" for i in range(2)], names)
diff --git a/sklearn/decomposition/tests/test_sparse_pca.py b/sklearn/decomposition/tests/test_sparse_pca.py
index 79ad3d0e6006f..c77aabf9c182c 100644
--- a/sklearn/decomposition/tests/test_sparse_pca.py
+++ b/sklearn/decomposition/tests/test_sparse_pca.py
@@ -5,6 +5,7 @@
import pytest
import numpy as np
+from numpy.testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
@@ -203,3 +204,17 @@ def test_spca_n_components_(SPCA, n_components):
assert model.n_components_ == n_components
else:
assert model.n_components_ == n_features
+
+
[email protected]("SPCA", [SparsePCA, MiniBatchSparsePCA])
+def test_spca_feature_names_out(SPCA):
+ """Check feature names out for *SparsePCA."""
+ rng = np.random.RandomState(0)
+ n_samples, n_features = 12, 10
+ X = rng.randn(n_samples, n_features)
+
+ model = SPCA(n_components=4).fit(X)
+ names = model.get_feature_names_out()
+
+ estimator_name = SPCA.__name__.lower()
+ assert_array_equal([f"{estimator_name}{i}" for i in range(4)], names)
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index e06a060546713..01fc98deeea91 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -363,7 +363,6 @@ def test_pandas_column_name_consistency(estimator):
GET_FEATURES_OUT_MODULES_TO_IGNORE = [
"cluster",
"cross_decomposition",
- "decomposition",
"discriminant_analysis",
"ensemble",
"isotonic",
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 7141080afbc06..261b6f8eac6bf 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -58,6 +58,22 @@ Changelog\n - |Fix| :class:`decomposition.FastICA` now validates input parameters in `fit` instead of `__init__`.\n :pr:`21432` by :user:`Hannah Bohle <hhnnhh>` and :user:`Maren Westermann <marenwestermann>`.\n \n+- |API| Adds :term:`get_feature_names_out` to all transformers in the\n+ :mod:`~sklearn.decomposition` module:\n+ :class:`~sklearn.decomposition.DictionaryLearning`,\n+ :class:`~sklearn.decomposition.FactorAnalysis`,\n+ :class:`~sklearn.decomposition.FastICA`,\n+ :class:`~sklearn.decomposition.IncrementalPCA`,\n+ :class:`~sklearn.decomposition.KernelPCA`,\n+ :class:`~sklearn.decomposition.LatentDirichletAllocation`,\n+ :class:`~sklearn.decomposition.MiniBatchDictionaryLearning`,\n+ :class:`~sklearn.decomposition.MiniBatchSparsePCA`,\n+ :class:`~sklearn.decomposition.NMF`,\n+ :class:`~sklearn.decomposition.PCA`,\n+ :class:`~sklearn.decomposition.SparsePCA`,\n+ and :class:`~sklearn.decomposition.TruncatedSVD`. :pr:`21334` by\n+ `Thomas Fan`_.\n+\n :mod:`sklearn.impute`\n .....................\n \n"
}
] |
1.01
|
8955057049c5c8cc5a7d8380e236f6a5efcf1c05
|
[
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_partial_fit",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[True-full]",
"sklearn/decomposition/tests/test_pca.py::test_pca[3-arpack]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[lil_matrix]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_score[online]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-random-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-nndsvd-mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[False-randomized]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[randomized-0-must be between 1 and min\\\\(n_samples, n_features\\\\)-data0]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_num_features_change",
"sklearn/decomposition/tests/test_dict_learning.py::test_warning_default_transform_alpha[MiniBatchDictionaryLearning]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-nndsvda-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_overcomplete",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[False-False]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_by_explained_variance[X2-0.5-2]",
"sklearn/decomposition/tests/test_pca.py::test_pca_dtype_preservation[arpack]",
"sklearn/decomposition/tests/test_pca.py::test_pca[3-auto]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_score_perplexity",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_negative_input",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[0.0-1.0-cd-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-0.0-cd-int32-float64]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_fit_transform",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[1.0-0.0-cd-random]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data0-arpack-3]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-0.0-mu-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-0.0-mu-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_initialize_nn_output",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-random-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-0.0-cd-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-random-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-0.0-cd-float64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_by_explained_variance[X0-0.95-2]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_unavailable_positivity[omp]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_batch_signs",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-nndsvdar-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_initialize_close",
"sklearn/decomposition/tests/test_nmf.py::test_parameter_checking",
"sklearn/decomposition/tests/test_pca.py::test_fit_mle_too_few_samples",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[True-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[False-full]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-1.0-mu-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-0.0-mu-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-None-mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_zero_noise_variance_edge_cases[randomized]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[0.0-0.0-cd-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_init_default_deprecation",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-nndsvdar-cd]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-False-lasso_cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[randomized-correlated-data]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-nndsvda-cd]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csr_matrix]",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[full]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-nndsvda-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_regularization[cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[full]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection[randomized]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[randomized-random-data]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-0.0-mu-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-nndsvd-cd]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_lars_positive_parameter",
"sklearn/decomposition/tests/test_pca.py::test_pca[2-randomized]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_negative_beta_loss",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[same-0.0-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-True-threshold]",
"sklearn/decomposition/tests/test_online_lda.py::test_dirichlet_expectation",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values_consistency[arpack]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[arpack-random-data]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[arpack-2-must be strictly less than min-data1]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-0.0-mu-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-1.0-mu-float32-float32]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_overcomplete",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[1.0-1.0-cd]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[full-True]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[online]",
"sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[randomized]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_partial_fit_multi_jobs",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_nonzero_coefs",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto-3-n_components={}L? must be between {}L? and min\\\\(n_samples, n_features\\\\)={}L? with svd_solver=\\\\'{}\\\\'-data1]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_lars_positive_parameter",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto-3-n_components={}L? must be between {}L? and min\\\\(n_samples, n_features\\\\)={}L? with svd_solver=\\\\'{}\\\\'-data0]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_lars[False]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-1.0-mu-int32-float64]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_score[batch]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_pca_vs_spca",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_lassocd_readonly_data",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-1.0-mu-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_n_components_greater_n_features",
"sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[full]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-nndsvdar-mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score[auto]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_initialization",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_positivity[True-lasso_cd]",
"sklearn/decomposition/tests/test_nmf.py::test_beta_divergence",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_coder_n_features_in",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_underflow",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-nndsvd-cd]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_coder_estimator_clone",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_coder_parallel_mmap",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_verbosity",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-True-lasso_cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-nndsvdar-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-nndsvda-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-nndsvd-cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection[auto]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-0.0-cd-float32-float32]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_lars_dict_positivity[False]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_shapes_omp",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-None-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_unknown_fit_algorithm",
"sklearn/decomposition/tests/test_online_lda.py::test_verbosity[False-0-0-0]",
"sklearn/decomposition/tests/test_pca.py::test_pca[1-auto]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-1.0-cd-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-nndsvd-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-nndsvdar-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-1.0-cd-float64-float64]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-False-threshold]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-random-mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_bad_solver",
"sklearn/decomposition/tests/test_pca.py::test_pca[2-auto]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_iter_offset",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[1.0-0.0-cd-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-nndsvdar-cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[arpack]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-1.0-cd-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-0.0-cd-float64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_small_eigenvalues_mle",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[same-0.0-mu-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-1.0-cd-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-0.0-cd-float32-float32]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-True-lasso_cd]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_partial_fit_float_division",
"sklearn/decomposition/tests/test_pca.py::test_pca_score_consistency_solvers[arpack]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-1.0-cd-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[same-1.0-cd-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-nndsvda-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_error",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[same-1.0-mu-nndsvd]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_split",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_positivity[False-threshold]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[True-arpack]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-1.0-cd-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-0.0-cd-int64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca_zero_noise_variance_edge_cases[full]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[1.0-1.0-cd-nndsvd]",
"sklearn/decomposition/tests/test_online_lda.py::test_invalid_params",
"sklearn/decomposition/tests/test_online_lda.py::test_verbosity[True-0-3-0]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection[full]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-1.0-cd-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-1.0-cd-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-random-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-nndsvd-cd]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data1-arpack-3]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_mle_error[randomized]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-True-lasso_lars]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-True-lasso_lars]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[1.0-1.0-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-nndsvda-cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sparse_input[arpack]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-0.0-mu-float64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values_consistency[randomized]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto--1-n_components={}L? must be between {}L? and min\\\\(n_samples, n_features\\\\)={}L? with svd_solver=\\\\'{}\\\\'-data1]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data1-5-full]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-1.0-cd-int64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[arpack-True]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_set_params",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_by_explained_variance[X1-0.01-1]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_check_projection",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_batch_rank",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[batch]",
"sklearn/decomposition/tests/test_pca.py::test_pca[1-arpack]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[auto-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[auto-correlated-data]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score[arpack]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_shapes",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data0-randomized-4]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[full-random-data]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score[randomized]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_lars_dict_positivity[True]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[same-0.0-cd-random]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[1.0-0.0-mu-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-0.0-mu-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-nndsvda-mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sanity_noise_variance[full]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_against_pca_random_data",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-0.0-cd-int32-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca[3-full]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[False-True]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_mle[full]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-nndsvd-mu]",
"sklearn/decomposition/tests/test_online_lda.py::test_perplexity_input_format",
"sklearn/decomposition/tests/test_pca.py::test_pca_sparse_input[auto]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_coder_common_transformer",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[0.0-1.0-mu-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-random-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-1.0-mu-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[1.0-0.0-mu-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-random-cd]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_mini_batch_correct_shapes",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform_custom_init",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_fit_overflow_error",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-None-cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_equivalence_solver[arpack]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_transform_nan",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-1.0-mu-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_regularization[mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[same-0.0-cd]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_positivity[False-lasso_cd]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[randomized-False]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-True-lasso_cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-nndsvda-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-1.0-mu-int32-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[arpack]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_perplexity",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-False-lasso_cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sanity_noise_variance[auto]",
"sklearn/decomposition/tests/test_online_lda.py::test_verbosity[False-1-0-0]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_coder_deprecation",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-nndsvdar-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-random-cd]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_preplexity_mismatch",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[same-1.0-cd-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_custom_init_dtype_error",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[randomized]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[1.0-1.0-cd-random]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_spca_n_components_[None-SparsePCA]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[full-False]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_scaling_fit_transform",
"sklearn/decomposition/tests/test_pca.py::test_pca_dtype_preservation[auto]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-nndsvda-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_error_default_sparsity",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-None-mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_dtype_preservation[randomized]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[0.0-0.0-cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_equivalence_solver[randomized]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[0.0-1.0-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-True-threshold]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-1.0-mu-float32-float32]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sanity_noise_variance[randomized]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_batch_values",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-nndsvdar-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[same-1.0-mu-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[1.0-0.0-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[same-1.0-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-1.0-mu-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-random-mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[auto]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[True-randomized]",
"sklearn/decomposition/tests/test_pca.py::test_pca[1-full]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto-1.0-must be of type int-data1]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_whitening",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-0.0-cd-float64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score_consistency_solvers[randomized]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sparse_input[randomized]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-False-lasso_lars]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_positivity[True-threshold]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-1.0-cd-float32-float32]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_coder_estimator",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[online]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_decreasing[mu]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_default_prior_params",
"sklearn/decomposition/tests/test_pca.py::test_whitening[arpack-False]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-0.0-mu-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-0.0-cd-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-nndsvdar-mu]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_mle_error[arpack]",
"sklearn/decomposition/tests/test_nmf.py::test_initialize_variants",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[0.0-1.0-cd-random]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_singular_values",
"sklearn/decomposition/tests/test_pca.py::test_whitening[randomized-True]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[1.0-1.0-mu-nndsvd]",
"sklearn/decomposition/tests/test_pca.py::test_pca[3-randomized]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_checking",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_initialization",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[0.0-0.0-cd-random]",
"sklearn/decomposition/tests/test_pca.py::test_pca_dim",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-random-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-0.0-mu-float64-float64]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_shapes",
"sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[arpack]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-True-lasso_cd]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_dense_input",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-nndsvdar-mu]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_online",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-0.0-nndsvdar-cd]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_fit_transform_tall",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data0-full-4]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[True-True]",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[cd]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_positivity[True-lasso_lars]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-False-threshold]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_batch",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-nndsvd-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[0.0-0.0-mu-nndsvd]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_shapes",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-0.0-cd-int64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_2",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-0.0-mu-int32-float64]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_against_pca_iris",
"sklearn/decomposition/tests/test_pca.py::test_pca_sparse_input[full]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_no_component_error",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-nndsvd-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_decreasing[cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-1.0-cd-int64-float64]",
"sklearn/decomposition/tests/test_dict_learning.py::test_warning_default_transform_alpha[DictionaryLearning]",
"sklearn/decomposition/tests/test_pca.py::test_assess_dimesion_rank_one",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data1-full-4]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[auto]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-1.0-cd-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[1.0-0.0-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_input",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-True-threshold]",
"sklearn/decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data2-50-full]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-True-lasso_lars]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csc_matrix]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data1-randomized-4]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-False-lasso_lars]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-False-lasso_cd]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_correct_shapes",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-0.0-mu-int64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data3-10-randomized]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_transform",
"sklearn/decomposition/tests/test_dict_learning.py::test_update_dict",
"sklearn/decomposition/tests/test_pca.py::test_pca[1-randomized]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[arpack-0-must be between 1 and min\\\\(n_samples, n_features\\\\)-data1]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[batch]",
"sklearn/decomposition/tests/test_pca.py::test_mle_redundant_data",
"sklearn/decomposition/tests/test_sparse_pca.py::test_fit_transform_parallel",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_positivity[False-lasso_lars]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[1.0-1.0-mu-int64-float64]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-True-threshold]",
"sklearn/decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data0-0.5-full]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-nndsvdar-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-0.0-cd-int32-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sanity_noise_variance[arpack]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_spca_n_components_[3-SparsePCA]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-False-lasso_cd]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[1.0-1.0-mu-random]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[auto-random-data]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_validation",
"sklearn/decomposition/tests/test_pca.py::test_n_components_mle[auto]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[same-1.0-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-random-mu]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_1",
"sklearn/decomposition/tests/test_pca.py::test_assess_dimension_bad_rank",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_partial_fit",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[cd]",
"sklearn/decomposition/tests/test_nmf.py::test_special_sparse_dot",
"sklearn/decomposition/tests/test_pca.py::test_mle_simple_case",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[0.0-0.0-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-False-threshold]",
"sklearn/decomposition/tests/test_online_lda.py::test_verbosity[True-1-3-3]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-0.0-nndsvda-cd]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_3",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_inverse",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[0.0-1.0-mu-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[0.0-1.0-mu-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-None-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_unavailable_positivity[lars]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_spca_n_components_[None-MiniBatchSparsePCA]",
"sklearn/decomposition/tests/test_dict_learning.py::test_unknown_method",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[randomized]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_empty_docs",
"sklearn/decomposition/tests/test_pca.py::test_pca_dtype_preservation[full]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[arpack-0-must be between 1 and min\\\\(n_samples, n_features\\\\)-data0]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-nndsvd-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-False-lasso_lars]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_lars_code_positivity",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_reconstruction",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-1.0-mu-int64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[arpack-2-must be strictly less than min-data0]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[0.0-1.0-cd]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[auto-True]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_transform[batch]",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[auto]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-nndsvda-cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score[full]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[cd]",
"sklearn/decomposition/tests/test_pca.py::test_pca[2-arpack]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_explained_variances",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_partial_fit",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-False-threshold]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[same-0.0-mu-float64-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca[2-full]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[full-correlated-data]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_spca_n_components_[3-MiniBatchSparsePCA]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-1.0-None-mu]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto-1.0-must be of type int-data0]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_reconstruction_parallel",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[False-arpack]",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_transform[online]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_lars[True]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[same-0.0-mu-random]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_n_components_none",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[0.0-1.0-nndsvd-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_multiplicative_update_sparse",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[same-0.0-cd-nndsvd]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_readonly_initialization",
"sklearn/decomposition/tests/test_online_lda.py::test_verbosity[True-2-3-1]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score3",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-nndsvd-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-False-lasso_lars]",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_transform",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection[arpack]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[same-1.0-random-mu]",
"sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-True-lasso_lars]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto--1-n_components={}L? must be between {}L? and min\\\\(n_samples, n_features\\\\)={}L? with svd_solver=\\\\'{}\\\\'-data0]",
"sklearn/decomposition/tests/test_pca.py::test_pca_n_components_mostly_explained_variance_ratio",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[0.0-0.0-mu-random]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[arpack-correlated-data]",
"sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_estimator_shapes",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[randomized-0-must be between 1 and min\\\\(n_samples, n_features\\\\)-data1]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[1.0-0.0-nndsvda-cd]"
] |
[
"sklearn/decomposition/tests/test_sparse_pca.py::test_spca_feature_names_out[SparsePCA]",
"sklearn/decomposition/tests/test_dict_learning.py::test_get_feature_names_out[DictionaryLearning]",
"sklearn/decomposition/tests/test_nmf.py::test_feature_names_out",
"sklearn/decomposition/tests/test_online_lda.py::test_lda_feature_names_out",
"sklearn/decomposition/tests/test_dict_learning.py::test_get_feature_names_out[MiniBatchDictionaryLearning]",
"sklearn/decomposition/tests/test_sparse_pca.py::test_spca_feature_names_out[MiniBatchSparsePCA]",
"sklearn/decomposition/tests/test_dict_learning.py::test_get_feature_names_out[SparseCoder]",
"sklearn/decomposition/tests/test_pca.py::test_feature_names_out",
"sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_feature_names_out"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 7141080afbc06..261b6f8eac6bf 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -58,6 +58,22 @@ Changelog\n - |Fix| :class:`decomposition.FastICA` now validates input parameters in `fit` instead of `__init__`.\n :pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.\n \n+- |API| Adds :term:`get_feature_names_out` to all transformers in the\n+ :mod:`~sklearn.decomposition` module:\n+ :class:`~sklearn.decomposition.DictionaryLearning`,\n+ :class:`~sklearn.decomposition.FactorAnalysis`,\n+ :class:`~sklearn.decomposition.FastICA`,\n+ :class:`~sklearn.decomposition.IncrementalPCA`,\n+ :class:`~sklearn.decomposition.KernelPCA`,\n+ :class:`~sklearn.decomposition.LatentDirichletAllocation`,\n+ :class:`~sklearn.decomposition.MiniBatchDictionaryLearning`,\n+ :class:`~sklearn.decomposition.MiniBatchSparsePCA`,\n+ :class:`~sklearn.decomposition.NMF`,\n+ :class:`~sklearn.decomposition.PCA`,\n+ :class:`~sklearn.decomposition.SparsePCA`,\n+ and :class:`~sklearn.decomposition.TruncatedSVD`. :pr:`<PRID>` by\n+ `Thomas Fan`_.\n+\n :mod:`sklearn.impute`\n .....................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 7141080afbc06..261b6f8eac6bf 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -58,6 +58,22 @@ Changelog
- |Fix| :class:`decomposition.FastICA` now validates input parameters in `fit` instead of `__init__`.
:pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.
+- |API| Adds :term:`get_feature_names_out` to all transformers in the
+ :mod:`~sklearn.decomposition` module:
+ :class:`~sklearn.decomposition.DictionaryLearning`,
+ :class:`~sklearn.decomposition.FactorAnalysis`,
+ :class:`~sklearn.decomposition.FastICA`,
+ :class:`~sklearn.decomposition.IncrementalPCA`,
+ :class:`~sklearn.decomposition.KernelPCA`,
+ :class:`~sklearn.decomposition.LatentDirichletAllocation`,
+ :class:`~sklearn.decomposition.MiniBatchDictionaryLearning`,
+ :class:`~sklearn.decomposition.MiniBatchSparsePCA`,
+ :class:`~sklearn.decomposition.NMF`,
+ :class:`~sklearn.decomposition.PCA`,
+ :class:`~sklearn.decomposition.SparsePCA`,
+ and :class:`~sklearn.decomposition.TruncatedSVD`. :pr:`<PRID>` by
+ `Thomas Fan`_.
+
:mod:`sklearn.impute`
.....................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21086
|
https://github.com/scikit-learn/scikit-learn/pull/21086
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 37dc4c56dc860..e6cf2d70efbba 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -221,7 +221,10 @@ Changelog
a parameter in order to provide an estimate of the noise variance.
This is particularly relevant when `n_features > n_samples` and the
estimator of the noise variance cannot be computed.
- :pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>`
+ :pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>`.
+
+- |Enhancement| :class:`linear_model.QuantileRegressor` support sparse inputs.
+ :pr:`21086` by :user:`Venkatachalam Natchiappan <venkyyuvy>`.
- |Fix| :class:`linear_model.LassoLarsIC` now correctly computes AIC
and BIC. An error is now raised when `n_features > n_samples` and
diff --git a/sklearn/linear_model/_quantile.py b/sklearn/linear_model/_quantile.py
index 352f13db48245..2e605f4d43d5a 100644
--- a/sklearn/linear_model/_quantile.py
+++ b/sklearn/linear_model/_quantile.py
@@ -4,11 +4,13 @@
import warnings
import numpy as np
+from scipy import sparse
from scipy.optimize import linprog
from ..base import BaseEstimator, RegressorMixin
from ._base import LinearModel
from ..exceptions import ConvergenceWarning
+from ..utils import _safe_indexing
from ..utils.validation import _check_sample_weight
from ..utils.fixes import sp_version, parse_version
@@ -44,6 +46,8 @@ class QuantileRegressor(LinearModel, RegressorMixin, BaseEstimator):
Method used by :func:`scipy.optimize.linprog` to solve the linear
programming formulation. Note that the highs methods are recommended
for usage with `scipy>=1.6.0` because they are the fastest ones.
+ Solvers "highs-ds", "highs-ipm" and "highs" support
+ sparse input data.
solver_options : dict, default=None
Additional parameters passed to :func:`scipy.optimize.linprog` as
@@ -112,7 +116,7 @@ def fit(self, X, y, sample_weight=None):
Parameters
----------
- X : array-like of shape (n_samples, n_features)
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
@@ -127,7 +131,11 @@ def fit(self, X, y, sample_weight=None):
Returns self.
"""
X, y = self._validate_data(
- X, y, accept_sparse=False, y_numeric=True, multi_output=False
+ X,
+ y,
+ accept_sparse=["csc", "csr", "coo"],
+ y_numeric=True,
+ multi_output=False,
)
sample_weight = _check_sample_weight(sample_weight, X)
@@ -218,13 +226,17 @@ def fit(self, X, y, sample_weight=None):
#
# Filtering out zero samples weights from the beginning makes life
# easier for the linprog solver.
- mask = sample_weight != 0
- n_mask = int(np.sum(mask)) # use n_mask instead of n_samples
+ indices = np.nonzero(sample_weight)[0]
+ n_indices = len(indices) # use n_mask instead of n_samples
+ if n_indices < len(sample_weight):
+ sample_weight = sample_weight[indices]
+ X = _safe_indexing(X, indices)
+ y = _safe_indexing(y, indices)
c = np.concatenate(
[
np.full(2 * n_params, fill_value=alpha),
- sample_weight[mask] * self.quantile,
- sample_weight[mask] * (1 - self.quantile),
+ sample_weight * self.quantile,
+ sample_weight * (1 - self.quantile),
]
)
if self.fit_intercept:
@@ -232,23 +244,29 @@ def fit(self, X, y, sample_weight=None):
c[0] = 0
c[n_params] = 0
- A_eq = np.concatenate(
- [
- np.ones((n_mask, 1)),
- X[mask],
- -np.ones((n_mask, 1)),
- -X[mask],
- np.eye(n_mask),
- -np.eye(n_mask),
- ],
- axis=1,
- )
+ if sparse.issparse(X):
+ if self.solver not in ["highs-ds", "highs-ipm", "highs"]:
+ raise ValueError(
+ f"Solver {self.solver} does not support sparse X. "
+ "Use solver 'highs' for example."
+ )
+ # Note that highs methods do convert to csc.
+ # Therefore, we work with csc matrices as much as possible.
+ eye = sparse.eye(n_indices, dtype=X.dtype, format="csc")
+ if self.fit_intercept:
+ ones = sparse.csc_matrix(np.ones(shape=(n_indices, 1), dtype=X.dtype))
+ A_eq = sparse.hstack([ones, X, -ones, -X, eye, -eye], format="csc")
+ else:
+ A_eq = sparse.hstack([X, -X, eye, -eye], format="csc")
else:
- A_eq = np.concatenate(
- [X[mask], -X[mask], np.eye(n_mask), -np.eye(n_mask)], axis=1
- )
-
- b_eq = y[mask]
+ eye = np.eye(n_indices)
+ if self.fit_intercept:
+ ones = np.ones((n_indices, 1))
+ A_eq = np.concatenate([ones, X, -ones, -X, eye, -eye], axis=1)
+ else:
+ A_eq = np.concatenate([X, -X, eye, -eye], axis=1)
+
+ b_eq = y
result = linprog(
c=c,
|
diff --git a/sklearn/linear_model/tests/test_quantile.py b/sklearn/linear_model/tests/test_quantile.py
index 9f29ae1b3604e..caf35830ea553 100644
--- a/sklearn/linear_model/tests/test_quantile.py
+++ b/sklearn/linear_model/tests/test_quantile.py
@@ -6,6 +6,7 @@
import pytest
from pytest import approx
from scipy.optimize import minimize
+from scipy import sparse
from sklearn.datasets import make_regression
from sklearn.exceptions import ConvergenceWarning
@@ -45,6 +46,21 @@ def test_init_parameters_validation(X_y_data, params, err_msg):
QuantileRegressor(**params).fit(X, y)
[email protected](
+ sp_version < parse_version("1.3.0"),
+ reason="Solver 'revised simplex' is only available with of scipy>=1.3.0",
+)
[email protected]("solver", ["interior-point", "revised simplex"])
+def test_incompatible_solver_for_sparse_input(X_y_data, solver):
+ X, y = X_y_data
+ X_sparse = sparse.csc_matrix(X)
+ err_msg = (
+ f"Solver {solver} does not support sparse X. Use solver 'highs' for example."
+ )
+ with pytest.raises(ValueError, match=err_msg):
+ QuantileRegressor(solver=solver).fit(X_sparse, y)
+
+
@pytest.mark.parametrize("solver", ("highs-ds", "highs-ipm", "highs"))
@pytest.mark.skipif(
sp_version >= parse_version("1.6.0"),
@@ -250,3 +266,28 @@ def test_linprog_failure():
msg = "Linear programming for QuantileRegressor did not succeed."
with pytest.warns(ConvergenceWarning, match=msg):
reg.fit(X, y)
+
+
[email protected](
+ sp_version <= parse_version("1.6.0"),
+ reason="Solvers are available as of scipy 1.6.0",
+)
[email protected](
+ "sparse_format", [sparse.csc_matrix, sparse.csr_matrix, sparse.coo_matrix]
+)
[email protected]("solver", ["highs", "highs-ds", "highs-ipm"])
[email protected]("fit_intercept", [True, False])
+def test_sparse_input(sparse_format, solver, fit_intercept):
+ """Test that sparse and dense X give same results."""
+ X, y = make_regression(n_samples=100, n_features=20, random_state=1, noise=1.0)
+ X_sparse = sparse_format(X)
+ alpha = 1e-4
+ quant_dense = QuantileRegressor(alpha=alpha, fit_intercept=fit_intercept).fit(X, y)
+ quant_sparse = QuantileRegressor(
+ alpha=alpha, fit_intercept=fit_intercept, solver=solver
+ ).fit(X_sparse, y)
+ assert_allclose(quant_sparse.coef_, quant_dense.coef_, rtol=1e-2)
+ if fit_intercept:
+ assert quant_sparse.intercept_ == approx(quant_dense.intercept_)
+ # check that we still predict fraction
+ assert 0.45 <= np.mean(y < quant_sparse.predict(X_sparse)) <= 0.55
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 37dc4c56dc860..e6cf2d70efbba 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -221,7 +221,10 @@ Changelog\n a parameter in order to provide an estimate of the noise variance.\n This is particularly relevant when `n_features > n_samples` and the\n estimator of the noise variance cannot be computed.\n- :pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>`\n+ :pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>`.\n+\n+- |Enhancement| :class:`linear_model.QuantileRegressor` support sparse inputs.\n+ :pr:`21086` by :user:`Venkatachalam Natchiappan <venkyyuvy>`.\n \n - |Fix| :class:`linear_model.LassoLarsIC` now correctly computes AIC\n and BIC. An error is now raised when `n_features > n_samples` and\n"
}
] |
1.01
|
056f993b411c1fa5cf6a2ced8e51de03617b25b4
|
[
"sklearn/linear_model/tests/test_quantile.py::test_init_parameters_validation[params5-The argument fit_intercept must be bool]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_equals_huber_for_low_epsilon[False]",
"sklearn/linear_model/tests/test_quantile.py::test_equivariance[0.5]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.51-0-1-10]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_estimates_calibration[0.05]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_estimates_calibration[0.5]",
"sklearn/linear_model/tests/test_quantile.py::test_equivariance[0.8]",
"sklearn/linear_model/tests/test_quantile.py::test_init_parameters_validation[params0-Quantile should be strictly between 0.0 and 1.0]",
"sklearn/linear_model/tests/test_quantile.py::test_init_parameters_validation[params1-Quantile should be strictly between 0.0 and 1.0]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_sample_weight",
"sklearn/linear_model/tests/test_quantile.py::test_init_parameters_validation[params4-Penalty alpha must be a non-negative number]",
"sklearn/linear_model/tests/test_quantile.py::test_equivariance[0.2]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_estimates_calibration[0.9]",
"sklearn/linear_model/tests/test_quantile.py::test_init_parameters_validation[params8-Invalid value for argument solver_options]",
"sklearn/linear_model/tests/test_quantile.py::test_init_parameters_validation[params6-The argument fit_intercept must be bool]",
"sklearn/linear_model/tests/test_quantile.py::test_init_parameters_validation[params2-Quantile should be strictly between 0.0 and 1.0]",
"sklearn/linear_model/tests/test_quantile.py::test_too_new_solver_methods_raise_error[highs-ds]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.5-0.01-1-1]",
"sklearn/linear_model/tests/test_quantile.py::test_too_new_solver_methods_raise_error[highs-ipm]",
"sklearn/linear_model/tests/test_quantile.py::test_too_new_solver_methods_raise_error[highs]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.5-0-1-None]",
"sklearn/linear_model/tests/test_quantile.py::test_linprog_failure",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_equals_huber_for_low_epsilon[True]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.49-0-1-1]",
"sklearn/linear_model/tests/test_quantile.py::test_init_parameters_validation[params7-Invalid value for argument solver]",
"sklearn/linear_model/tests/test_quantile.py::test_init_parameters_validation[params3-Quantile should be strictly between 0.0 and 1.0]",
"sklearn/linear_model/tests/test_quantile.py::test_quantile_toy_example[0.5-100-2-0]"
] |
[
"sklearn/linear_model/tests/test_quantile.py::test_incompatible_solver_for_sparse_input[revised simplex]",
"sklearn/linear_model/tests/test_quantile.py::test_incompatible_solver_for_sparse_input[interior-point]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 37dc4c56dc860..e6cf2d70efbba 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -221,7 +221,10 @@ Changelog\n a parameter in order to provide an estimate of the noise variance.\n This is particularly relevant when `n_features > n_samples` and the\n estimator of the noise variance cannot be computed.\n- :pr:`<PRID>` by :user:`<NAME>`\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n+- |Enhancement| :class:`linear_model.QuantileRegressor` support sparse inputs.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n \n - |Fix| :class:`linear_model.LassoLarsIC` now correctly computes AIC\n and BIC. An error is now raised when `n_features > n_samples` and\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 37dc4c56dc860..e6cf2d70efbba 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -221,7 +221,10 @@ Changelog
a parameter in order to provide an estimate of the noise variance.
This is particularly relevant when `n_features > n_samples` and the
estimator of the noise variance cannot be computed.
- :pr:`<PRID>` by :user:`<NAME>`
+ :pr:`<PRID>` by :user:`<NAME>`.
+
+- |Enhancement| :class:`linear_model.QuantileRegressor` support sparse inputs.
+ :pr:`<PRID>` by :user:`<NAME>`.
- |Fix| :class:`linear_model.LassoLarsIC` now correctly computes AIC
and BIC. An error is now raised when `n_features > n_samples` and
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17266
|
https://github.com/scikit-learn/scikit-learn/pull/17266
|
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index 730b094581276..079313a45c3d0 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -2005,6 +2005,19 @@ then the explained variance is estimated as follow:
The best possible score is 1.0, lower values are worse.
+Note: when the prediction residuals have zero mean, the Explained Variance
+score and the :ref:`r2_score` are identical.
+
+In the particular case where the true target is constant, the Explained
+Variance score is not finite: it is either ``NaN`` (perfect predictions) or
+``-Inf`` (imperfect predictions). Such non-finite scores may prevent correct
+model optimization such as grid-search cross-validation to be performed
+correctly. For this reason the default behaviour of
+:func:`explained_variance_score` is to replace them with 1.0 (perfect
+predictions) or 0.0 (imperfect predictions). You can set the ``force_finite``
+parameter to ``False`` to prevent this fix from happening and fallback on the
+original Explained Variance score.
+
Here is a small example of usage of the :func:`explained_variance_score`
function::
@@ -2019,6 +2032,18 @@ function::
array([0.967..., 1. ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.990...
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2]
+ >>> explained_variance_score(y_true, y_pred)
+ 1.0
+ >>> explained_variance_score(y_true, y_pred, force_finite=False)
+ nan
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2 + 1e-8]
+ >>> explained_variance_score(y_true, y_pred)
+ 0.0
+ >>> explained_variance_score(y_true, y_pred, force_finite=False)
+ -inf
.. _max_error:
@@ -2241,8 +2266,11 @@ predicted by the model, through the proportion of explained variance.
As such variance is dataset dependent, R² may not be meaningfully comparable
across different datasets. Best possible score is 1.0 and it can be negative
(because the model can be arbitrarily worse). A constant model that always
-predicts the expected value of y, disregarding the input features, would get a
-R² score of 0.0.
+predicts the expected (average) value of y, disregarding the input features,
+would get an :math:`R^2` score of 0.0.
+
+Note: when the prediction residuals have zero mean, the :math:`R^2` score and
+the :ref:`explained_variance_score` are identical.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value for total :math:`n` samples,
@@ -2257,6 +2285,14 @@ where :math:`\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i` and :math:`\sum_{i=1}^{n}
Note that :func:`r2_score` calculates unadjusted R² without correcting for
bias in sample variance of y.
+In the particular case where the true target is constant, the :math:`R^2` score is
+not finite: it is either ``NaN`` (perfect predictions) or ``-Inf`` (imperfect
+predictions). Such non-finite scores may prevent correct model optimization
+such as grid-search cross-validation to be performed correctly. For this reason
+the default behaviour of :func:`r2_score` is to replace them with 1.0 (perfect
+predictions) or 0.0 (imperfect predictions). If ``force_finite``
+is set to ``False``, this score falls back on the original :math:`R^2` definition.
+
Here is a small example of usage of the :func:`r2_score` function::
>>> from sklearn.metrics import r2_score
@@ -2276,7 +2312,18 @@ Here is a small example of usage of the :func:`r2_score` function::
array([0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.925...
-
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2]
+ >>> r2_score(y_true, y_pred)
+ 1.0
+ >>> r2_score(y_true, y_pred, force_finite=False)
+ nan
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2 + 1e-8]
+ >>> r2_score(y_true, y_pred)
+ 0.0
+ >>> r2_score(y_true, y_pred, force_finite=False)
+ -inf
.. topic:: Example:
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 5d49a6fd281c7..d67d08ac45f6b 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -288,6 +288,12 @@ Changelog
:mod:`sklearn.metrics`
......................
+- |Feature| :func:`r2_score` and :func:`explained_variance_score` have a new
+ `force_finite` parameter. Setting this parameter to `False` will return the
+ actual non-finite score in case of perfect predictions or constant `y_true`,
+ instead of the finite approximation (`1.0` and `0.0` respectively) currently
+ returned by default. :pr:`17266` by :user:`Sylvain Marié <smarie>`.
+
- |API| :class:`metrics.DistanceMetric` has been moved from
:mod:`sklearn.neighbors` to :mod:`sklearn.metric`.
Using `neighbors.DistanceMetric` for imports is still valid for
diff --git a/sklearn/metrics/_regression.py b/sklearn/metrics/_regression.py
index ffa2b0b8218aa..ad7257ad55037 100644
--- a/sklearn/metrics/_regression.py
+++ b/sklearn/metrics/_regression.py
@@ -22,6 +22,7 @@
# Christian Lorentzen <[email protected]>
# Ashutosh Hathidara <[email protected]>
# Uttam kumar <[email protected]>
+# Sylvain Marie <[email protected]>
# License: BSD 3 clause
import warnings
@@ -608,13 +609,74 @@ def median_absolute_error(
return np.average(output_errors, weights=multioutput)
+def _assemble_r2_explained_variance(
+ numerator, denominator, n_outputs, multioutput, force_finite
+):
+ """Common part used by explained variance score and :math:`R^2` score."""
+
+ nonzero_denominator = denominator != 0
+
+ if not force_finite:
+ # Standard formula, that may lead to NaN or -Inf
+ output_scores = 1 - (numerator / denominator)
+ else:
+ nonzero_numerator = numerator != 0
+ # Default = Zero Numerator = perfect predictions. Set to 1.0
+ # (note: even if denominator is zero, thus avoiding NaN scores)
+ output_scores = np.ones([n_outputs])
+ # Non-zero Numerator and Non-zero Denominator: use the formula
+ valid_score = nonzero_denominator & nonzero_numerator
+ output_scores[valid_score] = 1 - (
+ numerator[valid_score] / denominator[valid_score]
+ )
+ # Non-zero Numerator and Zero Denominator:
+ # arbitrary set to 0.0 to avoid -inf scores
+ output_scores[nonzero_numerator & ~nonzero_denominator] = 0.0
+
+ if isinstance(multioutput, str):
+ if multioutput == "raw_values":
+ # return scores individually
+ return output_scores
+ elif multioutput == "uniform_average":
+ # Passing None as weights to np.average results is uniform mean
+ avg_weights = None
+ elif multioutput == "variance_weighted":
+ avg_weights = denominator
+ if not np.any(nonzero_denominator):
+ # All weights are zero, np.average would raise a ZeroDiv error.
+ # This only happens when all y are constant (or 1-element long)
+ # Since weights are all equal, fall back to uniform weights.
+ avg_weights = None
+ else:
+ avg_weights = multioutput
+
+ return np.average(output_scores, weights=avg_weights)
+
+
def explained_variance_score(
- y_true, y_pred, *, sample_weight=None, multioutput="uniform_average"
+ y_true,
+ y_pred,
+ *,
+ sample_weight=None,
+ multioutput="uniform_average",
+ force_finite=True,
):
"""Explained variance regression score function.
Best possible score is 1.0, lower values are worse.
+ In the particular case when ``y_true`` is constant, the explained variance
+ score is not finite: it is either ``NaN`` (perfect predictions) or
+ ``-Inf`` (imperfect predictions). To prevent such non-finite numbers to
+ pollute higher-level experiments such as a grid search cross-validation,
+ by default these cases are replaced with 1.0 (perfect predictions) or 0.0
+ (imperfect predictions) respectively. If ``force_finite``
+ is set to ``False``, this score falls back on the original :math:`R^2`
+ definition.
+
+ Note: when the prediction residuals have zero mean, the Explained Variance
+ score is identical to the :func:`R^2 score <r2_score>`.
+
Read more in the :ref:`User Guide <explained_variance_score>`.
Parameters
@@ -643,6 +705,15 @@ def explained_variance_score(
Scores of all outputs are averaged, weighted by the variances
of each individual output.
+ force_finite : bool, default=True
+ Flag indicating if ``NaN`` and ``-Inf`` scores resulting from constant
+ data should be replaced with real numbers (``1.0`` if prediction is
+ perfect, ``0.0`` otherwise). Default is ``True``, a convenient setting
+ for hyperparameters' search procedures (e.g. grid search
+ cross-validation).
+
+ .. versionadded:: 1.1
+
Returns
-------
score : float or ndarray of floats
@@ -663,6 +734,18 @@ def explained_variance_score(
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='uniform_average')
0.983...
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2]
+ >>> explained_variance_score(y_true, y_pred)
+ 1.0
+ >>> explained_variance_score(y_true, y_pred, force_finite=False)
+ nan
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2 + 1e-8]
+ >>> explained_variance_score(y_true, y_pred)
+ 0.0
+ >>> explained_variance_score(y_true, y_pred, force_finite=False)
+ -inf
"""
y_type, y_true, y_pred, multioutput = _check_reg_targets(
y_true, y_pred, multioutput
@@ -677,35 +760,41 @@ def explained_variance_score(
y_true_avg = np.average(y_true, weights=sample_weight, axis=0)
denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0)
- nonzero_numerator = numerator != 0
- nonzero_denominator = denominator != 0
- valid_score = nonzero_numerator & nonzero_denominator
- output_scores = np.ones(y_true.shape[1])
-
- output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score])
- output_scores[nonzero_numerator & ~nonzero_denominator] = 0.0
- if isinstance(multioutput, str):
- if multioutput == "raw_values":
- # return scores individually
- return output_scores
- elif multioutput == "uniform_average":
- # passing to np.average() None as weights results is uniform mean
- avg_weights = None
- elif multioutput == "variance_weighted":
- avg_weights = denominator
- else:
- avg_weights = multioutput
-
- return np.average(output_scores, weights=avg_weights)
+ return _assemble_r2_explained_variance(
+ numerator=numerator,
+ denominator=denominator,
+ n_outputs=y_true.shape[1],
+ multioutput=multioutput,
+ force_finite=force_finite,
+ )
-def r2_score(y_true, y_pred, *, sample_weight=None, multioutput="uniform_average"):
+def r2_score(
+ y_true,
+ y_pred,
+ *,
+ sample_weight=None,
+ multioutput="uniform_average",
+ force_finite=True,
+):
""":math:`R^2` (coefficient of determination) regression score function.
Best possible score is 1.0 and it can be negative (because the
- model can be arbitrarily worse). A constant model that always
- predicts the expected value of y, disregarding the input features,
- would get a :math:`R^2` score of 0.0.
+ model can be arbitrarily worse). In the general case when the true y is
+ non-constant, a constant model that always predicts the average y
+ disregarding the input features would get a :math:`R^2` score of 0.0.
+
+ In the particular case when ``y_true`` is constant, the :math:`R^2` score
+ is not finite: it is either ``NaN`` (perfect predictions) or ``-Inf``
+ (imperfect predictions). To prevent such non-finite numbers to pollute
+ higher-level experiments such as a grid search cross-validation, by default
+ these cases are replaced with 1.0 (perfect predictions) or 0.0 (imperfect
+ predictions) respectively. You can set ``force_finite`` to ``False`` to
+ prevent this fix from happening.
+
+ Note: when the prediction residuals have zero mean, the :math:`R^2` score
+ is identical to the
+ :func:`Explained Variance score <explained_variance_score>`.
Read more in the :ref:`User Guide <r2_score>`.
@@ -740,6 +829,15 @@ def r2_score(y_true, y_pred, *, sample_weight=None, multioutput="uniform_average
.. versionchanged:: 0.19
Default value of multioutput is 'uniform_average'.
+ force_finite : bool, default=True
+ Flag indicating if ``NaN`` and ``-Inf`` scores resulting from constant
+ data should be replaced with real numbers (``1.0`` if prediction is
+ perfect, ``0.0`` otherwise). Default is ``True``, a convenient setting
+ for hyperparameters' search procedures (e.g. grid search
+ cross-validation).
+
+ .. versionadded:: 1.1
+
Returns
-------
z : float or ndarray of floats
@@ -785,6 +883,18 @@ def r2_score(y_true, y_pred, *, sample_weight=None, multioutput="uniform_average
>>> y_pred = [3, 2, 1]
>>> r2_score(y_true, y_pred)
-3.0
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2]
+ >>> r2_score(y_true, y_pred)
+ 1.0
+ >>> r2_score(y_true, y_pred, force_finite=False)
+ nan
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2 + 1e-8]
+ >>> r2_score(y_true, y_pred)
+ 0.0
+ >>> r2_score(y_true, y_pred, force_finite=False)
+ -inf
"""
y_type, y_true, y_pred, multioutput = _check_reg_targets(
y_true, y_pred, multioutput
@@ -806,33 +916,14 @@ def r2_score(y_true, y_pred, *, sample_weight=None, multioutput="uniform_average
denominator = (
weight * (y_true - np.average(y_true, axis=0, weights=sample_weight)) ** 2
).sum(axis=0, dtype=np.float64)
- nonzero_denominator = denominator != 0
- nonzero_numerator = numerator != 0
- valid_score = nonzero_denominator & nonzero_numerator
- output_scores = np.ones([y_true.shape[1]])
- output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score])
- # arbitrary set to zero to avoid -inf scores, having a constant
- # y_true is not interesting for scoring a regression anyway
- output_scores[nonzero_numerator & ~nonzero_denominator] = 0.0
- if isinstance(multioutput, str):
- if multioutput == "raw_values":
- # return scores individually
- return output_scores
- elif multioutput == "uniform_average":
- # passing None as weights results is uniform mean
- avg_weights = None
- elif multioutput == "variance_weighted":
- avg_weights = denominator
- # avoid fail on constant y or one-element arrays
- if not np.any(nonzero_denominator):
- if not np.any(nonzero_numerator):
- return 1.0
- else:
- return 0.0
- else:
- avg_weights = multioutput
- return np.average(output_scores, weights=avg_weights)
+ return _assemble_r2_explained_variance(
+ numerator=numerator,
+ denominator=denominator,
+ n_outputs=y_true.shape[1],
+ multioutput=multioutput,
+ force_finite=force_finite,
+ )
def max_error(y_true, y_pred):
|
diff --git a/sklearn/metrics/tests/test_regression.py b/sklearn/metrics/tests/test_regression.py
index 1a64be4e5ab53..249a3646fe41b 100644
--- a/sklearn/metrics/tests/test_regression.py
+++ b/sklearn/metrics/tests/test_regression.py
@@ -50,7 +50,11 @@ def test_regression_metrics(n_samples=50):
assert mape > 1e6
assert_almost_equal(max_error(y_true, y_pred), 1.0)
assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2)
+ assert_almost_equal(r2_score(y_true, y_pred, force_finite=False), 0.995, 2)
assert_almost_equal(explained_variance_score(y_true, y_pred), 1.0)
+ assert_almost_equal(
+ explained_variance_score(y_true, y_pred, force_finite=False), 1.0
+ )
assert_almost_equal(
mean_tweedie_deviance(y_true, y_pred, power=0),
mean_squared_error(y_true, y_pred),
@@ -135,8 +139,47 @@ def test_multioutput_regression():
error = r2_score(y_true, y_pred, multioutput="uniform_average")
assert_almost_equal(error, -0.875)
+ # constant `y_true` with force_finite=True leads to 1. or 0.
+ yc = [5.0, 5.0]
+ error = r2_score(yc, [5.0, 5.0], multioutput="variance_weighted")
+ assert_almost_equal(error, 1.0)
+ error = r2_score(yc, [5.0, 5.1], multioutput="variance_weighted")
+ assert_almost_equal(error, 0.0)
+
+ # Setting force_finite=False results in the nan for 4th output propagating
+ error = r2_score(
+ y_true, y_pred, multioutput="variance_weighted", force_finite=False
+ )
+ assert_almost_equal(error, np.nan)
+ error = r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False)
+ assert_almost_equal(error, np.nan)
+
+ # Dropping the 4th output to check `force_finite=False` for nominal
+ y_true = y_true[:, :-1]
+ y_pred = y_pred[:, :-1]
+ error = r2_score(y_true, y_pred, multioutput="variance_weighted")
+ error2 = r2_score(
+ y_true, y_pred, multioutput="variance_weighted", force_finite=False
+ )
+ assert_almost_equal(error, error2)
+ error = r2_score(y_true, y_pred, multioutput="uniform_average")
+ error2 = r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False)
+ assert_almost_equal(error, error2)
+
+ # constant `y_true` with force_finite=False leads to NaN or -Inf.
+ error = r2_score(
+ yc, [5.0, 5.0], multioutput="variance_weighted", force_finite=False
+ )
+ assert_almost_equal(error, np.nan)
+ error = r2_score(
+ yc, [5.0, 6.0], multioutput="variance_weighted", force_finite=False
+ )
+ assert_almost_equal(error, -np.inf)
+
def test_regression_metrics_at_limits():
+ # Single-sample case
+ # Note: for r2 and d2_tweedie see also test_regression_single_sample
assert_almost_equal(mean_squared_error([0.0], [0.0]), 0.0)
assert_almost_equal(mean_squared_error([0.0], [0.0], squared=False), 0.0)
assert_almost_equal(mean_squared_log_error([0.0], [0.0]), 0.0)
@@ -146,7 +189,17 @@ def test_regression_metrics_at_limits():
assert_almost_equal(median_absolute_error([0.0], [0.0]), 0.0)
assert_almost_equal(max_error([0.0], [0.0]), 0.0)
assert_almost_equal(explained_variance_score([0.0], [0.0]), 1.0)
+
+ # Perfect cases
assert_almost_equal(r2_score([0.0, 1], [0.0, 1]), 1.0)
+
+ # Non-finite cases
+ # R² and explained variance have a fix by default for non-finite cases
+ for s in (r2_score, explained_variance_score):
+ assert_almost_equal(s([0, 0], [1, -1]), 0.0)
+ assert_almost_equal(s([0, 0], [1, -1], force_finite=False), -np.inf)
+ assert_almost_equal(s([1, 1], [1, 1]), 1.0)
+ assert_almost_equal(s([1, 1], [1, 1], force_finite=False), np.nan)
msg = (
"Mean Squared Logarithmic Error cannot be used when targets "
"contain negative values."
@@ -270,6 +323,9 @@ def test_regression_multioutput_array():
mape = mean_absolute_percentage_error(y_true, y_pred, multioutput="raw_values")
r = r2_score(y_true, y_pred, multioutput="raw_values")
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values")
+ evs2 = explained_variance_score(
+ y_true, y_pred, multioutput="raw_values", force_finite=False
+ )
assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2)
assert_array_almost_equal(mae, [0.25, 0.625], decimal=2)
@@ -277,6 +333,7 @@ def test_regression_multioutput_array():
assert_array_almost_equal(mape, [0.0778, 0.2262], decimal=2)
assert_array_almost_equal(r, [0.95, 0.93], decimal=2)
assert_array_almost_equal(evs, [0.95, 0.93], decimal=2)
+ assert_array_almost_equal(evs2, [0.95, 0.93], decimal=2)
# mean_absolute_error and mean_squared_error are equal because
# it is a binary problem.
@@ -300,17 +357,38 @@ def test_regression_multioutput_array():
[[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="raw_values"
)
assert_array_almost_equal(evs, [0, -1.25], decimal=2)
+ evs2 = explained_variance_score(
+ [[0, -1], [0, 1]],
+ [[2, 2], [1, 1]],
+ multioutput="raw_values",
+ force_finite=False,
+ )
+ assert_array_almost_equal(evs2, [-np.inf, -1.25], decimal=2)
# Checking for the condition in which both numerator and denominator is
# zero.
- y_true = [[1, 3], [-1, 2]]
- y_pred = [[1, 4], [-1, 1]]
+ y_true = [[1, 3], [1, 2]]
+ y_pred = [[1, 4], [1, 1]]
r2 = r2_score(y_true, y_pred, multioutput="raw_values")
assert_array_almost_equal(r2, [1.0, -3.0], decimal=2)
assert np.mean(r2) == r2_score(y_true, y_pred, multioutput="uniform_average")
+ r22 = r2_score(y_true, y_pred, multioutput="raw_values", force_finite=False)
+ assert_array_almost_equal(r22, [np.nan, -3.0], decimal=2)
+ assert_almost_equal(
+ np.mean(r22),
+ r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False),
+ )
+
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values")
assert_array_almost_equal(evs, [1.0, -3.0], decimal=2)
assert np.mean(evs) == explained_variance_score(y_true, y_pred)
+ evs2 = explained_variance_score(
+ y_true, y_pred, multioutput="raw_values", force_finite=False
+ )
+ assert_array_almost_equal(evs2, [np.nan, -3.0], decimal=2)
+ assert_almost_equal(
+ np.mean(evs2), explained_variance_score(y_true, y_pred, force_finite=False)
+ )
# Handling msle separately as it does not accept negative inputs.
y_true = np.array([[0.5, 1], [1, 2], [7, 6]])
@@ -332,6 +410,9 @@ def test_regression_custom_weights():
mapew = mean_absolute_percentage_error(y_true, y_pred, multioutput=[0.4, 0.6])
rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6])
evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6])
+ evsw2 = explained_variance_score(
+ y_true, y_pred, multioutput=[0.4, 0.6], force_finite=False
+ )
assert_almost_equal(msew, 0.39, decimal=2)
assert_almost_equal(rmsew, 0.59, decimal=2)
@@ -339,6 +420,7 @@ def test_regression_custom_weights():
assert_almost_equal(mapew, 0.1668, decimal=2)
assert_almost_equal(rw, 0.94, decimal=2)
assert_almost_equal(evsw, 0.94, decimal=2)
+ assert_almost_equal(evsw2, 0.94, decimal=2)
# Handling msle separately as it does not accept negative inputs.
y_true = np.array([[0.5, 1], [1, 2], [7, 6]])
|
[
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex 730b094581276..079313a45c3d0 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -2005,6 +2005,19 @@ then the explained variance is estimated as follow:\n \n The best possible score is 1.0, lower values are worse.\n \n+Note: when the prediction residuals have zero mean, the Explained Variance\n+score and the :ref:`r2_score` are identical.\n+\n+In the particular case where the true target is constant, the Explained\n+Variance score is not finite: it is either ``NaN`` (perfect predictions) or\n+``-Inf`` (imperfect predictions). Such non-finite scores may prevent correct\n+model optimization such as grid-search cross-validation to be performed\n+correctly. For this reason the default behaviour of\n+:func:`explained_variance_score` is to replace them with 1.0 (perfect\n+predictions) or 0.0 (imperfect predictions). You can set the ``force_finite``\n+parameter to ``False`` to prevent this fix from happening and fallback on the\n+original Explained Variance score.\n+\n Here is a small example of usage of the :func:`explained_variance_score`\n function::\n \n@@ -2019,6 +2032,18 @@ function::\n array([0.967..., 1. ])\n >>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])\n 0.990...\n+ >>> y_true = [-2, -2, -2]\n+ >>> y_pred = [-2, -2, -2]\n+ >>> explained_variance_score(y_true, y_pred)\n+ 1.0\n+ >>> explained_variance_score(y_true, y_pred, force_finite=False)\n+ nan\n+ >>> y_true = [-2, -2, -2]\n+ >>> y_pred = [-2, -2, -2 + 1e-8]\n+ >>> explained_variance_score(y_true, y_pred)\n+ 0.0\n+ >>> explained_variance_score(y_true, y_pred, force_finite=False)\n+ -inf\n \n .. _max_error:\n \n@@ -2241,8 +2266,11 @@ predicted by the model, through the proportion of explained variance.\n As such variance is dataset dependent, R² may not be meaningfully comparable\n across different datasets. Best possible score is 1.0 and it can be negative\n (because the model can be arbitrarily worse). A constant model that always\n-predicts the expected value of y, disregarding the input features, would get a\n-R² score of 0.0.\n+predicts the expected (average) value of y, disregarding the input features,\n+would get an :math:`R^2` score of 0.0.\n+\n+Note: when the prediction residuals have zero mean, the :math:`R^2` score and\n+the :ref:`explained_variance_score` are identical.\n \n If :math:`\\hat{y}_i` is the predicted value of the :math:`i`-th sample\n and :math:`y_i` is the corresponding true value for total :math:`n` samples,\n@@ -2257,6 +2285,14 @@ where :math:`\\bar{y} = \\frac{1}{n} \\sum_{i=1}^{n} y_i` and :math:`\\sum_{i=1}^{n}\n Note that :func:`r2_score` calculates unadjusted R² without correcting for\n bias in sample variance of y.\n \n+In the particular case where the true target is constant, the :math:`R^2` score is\n+not finite: it is either ``NaN`` (perfect predictions) or ``-Inf`` (imperfect\n+predictions). Such non-finite scores may prevent correct model optimization\n+such as grid-search cross-validation to be performed correctly. For this reason\n+the default behaviour of :func:`r2_score` is to replace them with 1.0 (perfect\n+predictions) or 0.0 (imperfect predictions). If ``force_finite``\n+is set to ``False``, this score falls back on the original :math:`R^2` definition.\n+\n Here is a small example of usage of the :func:`r2_score` function::\n \n >>> from sklearn.metrics import r2_score\n@@ -2276,7 +2312,18 @@ Here is a small example of usage of the :func:`r2_score` function::\n array([0.965..., 0.908...])\n >>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])\n 0.925...\n-\n+ >>> y_true = [-2, -2, -2]\n+ >>> y_pred = [-2, -2, -2]\n+ >>> r2_score(y_true, y_pred)\n+ 1.0\n+ >>> r2_score(y_true, y_pred, force_finite=False)\n+ nan\n+ >>> y_true = [-2, -2, -2]\n+ >>> y_pred = [-2, -2, -2 + 1e-8]\n+ >>> r2_score(y_true, y_pred)\n+ 0.0\n+ >>> r2_score(y_true, y_pred, force_finite=False)\n+ -inf\n \n .. topic:: Example:\n \n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 5d49a6fd281c7..d67d08ac45f6b 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -288,6 +288,12 @@ Changelog\n :mod:`sklearn.metrics`\n ......................\n \n+- |Feature| :func:`r2_score` and :func:`explained_variance_score` have a new\n+ `force_finite` parameter. Setting this parameter to `False` will return the\n+ actual non-finite score in case of perfect predictions or constant `y_true`,\n+ instead of the finite approximation (`1.0` and `0.0` respectively) currently\n+ returned by default. :pr:`17266` by :user:`Sylvain Marié <smarie>`.\n+\n - |API| :class:`metrics.DistanceMetric` has been moved from\n :mod:`sklearn.neighbors` to :mod:`sklearn.metric`.\n Using `neighbors.DistanceMetric` for imports is still valid for\n"
}
] |
1.01
|
f87b5ae223b01414a83a610246a40dae2356a039
|
[
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-normal]",
"sklearn/metrics/tests/test_regression.py::test__check_reg_targets_exception",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-normal]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-uniform]",
"sklearn/metrics/tests/test_regression.py::test_dummy_quantile_parameter_tuning",
"sklearn/metrics/tests/test_regression.py::test_tweedie_deviance_continuity",
"sklearn/metrics/tests/test_regression.py::test_mean_absolute_percentage_error",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-uniform]",
"sklearn/metrics/tests/test_regression.py::test_regression_single_sample[r2_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-exponential]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-exponential]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-lognormal]",
"sklearn/metrics/tests/test_regression.py::test_regression_single_sample[d2_tweedie_score]",
"sklearn/metrics/tests/test_regression.py::test__check_reg_targets",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-exponential]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-lognormal]",
"sklearn/metrics/tests/test_regression.py::test_deprecation_positional_arguments_mape",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-normal]",
"sklearn/metrics/tests/test_regression.py::test_mean_squared_error_multioutput_raw_value_squared",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-uniform]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-lognormal]"
] |
[
"sklearn/metrics/tests/test_regression.py::test_regression_multioutput_array",
"sklearn/metrics/tests/test_regression.py::test_regression_metrics_at_limits",
"sklearn/metrics/tests/test_regression.py::test_regression_custom_weights",
"sklearn/metrics/tests/test_regression.py::test_regression_metrics",
"sklearn/metrics/tests/test_regression.py::test_multioutput_regression"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex 730b094581276..079313a45c3d0 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -2005,6 +2005,19 @@ then the explained variance is estimated as follow:\n \n The best possible score is 1.0, lower values are worse.\n \n+Note: when the prediction residuals have zero mean, the Explained Variance\n+score and the :ref:`r2_score` are identical.\n+\n+In the particular case where the true target is constant, the Explained\n+Variance score is not finite: it is either ``NaN`` (perfect predictions) or\n+``-Inf`` (imperfect predictions). Such non-finite scores may prevent correct\n+model optimization such as grid-search cross-validation to be performed\n+correctly. For this reason the default behaviour of\n+:func:`explained_variance_score` is to replace them with 1.0 (perfect\n+predictions) or 0.0 (imperfect predictions). You can set the ``force_finite``\n+parameter to ``False`` to prevent this fix from happening and fallback on the\n+original Explained Variance score.\n+\n Here is a small example of usage of the :func:`explained_variance_score`\n function::\n \n@@ -2019,6 +2032,18 @@ function::\n array([0.967..., 1. ])\n >>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])\n 0.990...\n+ >>> y_true = [-2, -2, -2]\n+ >>> y_pred = [-2, -2, -2]\n+ >>> explained_variance_score(y_true, y_pred)\n+ 1.0\n+ >>> explained_variance_score(y_true, y_pred, force_finite=False)\n+ nan\n+ >>> y_true = [-2, -2, -2]\n+ >>> y_pred = [-2, -2, -2 + 1e-8]\n+ >>> explained_variance_score(y_true, y_pred)\n+ 0.0\n+ >>> explained_variance_score(y_true, y_pred, force_finite=False)\n+ -inf\n \n .. _max_error:\n \n@@ -2241,8 +2266,11 @@ predicted by the model, through the proportion of explained variance.\n As such variance is dataset dependent, R² may not be meaningfully comparable\n across different datasets. Best possible score is 1.0 and it can be negative\n (because the model can be arbitrarily worse). A constant model that always\n-predicts the expected value of y, disregarding the input features, would get a\n-R² score of 0.0.\n+predicts the expected (average) value of y, disregarding the input features,\n+would get an :math:`R^2` score of 0.0.\n+\n+Note: when the prediction residuals have zero mean, the :math:`R^2` score and\n+the :ref:`explained_variance_score` are identical.\n \n If :math:`\\hat{y}_i` is the predicted value of the :math:`i`-th sample\n and :math:`y_i` is the corresponding true value for total :math:`n` samples,\n@@ -2257,6 +2285,14 @@ where :math:`\\bar{y} = \\frac{1}{n} \\sum_{i=1}^{n} y_i` and :math:`\\sum_{i=1}^{n}\n Note that :func:`r2_score` calculates unadjusted R² without correcting for\n bias in sample variance of y.\n \n+In the particular case where the true target is constant, the :math:`R^2` score is\n+not finite: it is either ``NaN`` (perfect predictions) or ``-Inf`` (imperfect\n+predictions). Such non-finite scores may prevent correct model optimization\n+such as grid-search cross-validation to be performed correctly. For this reason\n+the default behaviour of :func:`r2_score` is to replace them with 1.0 (perfect\n+predictions) or 0.0 (imperfect predictions). If ``force_finite``\n+is set to ``False``, this score falls back on the original :math:`R^2` definition.\n+\n Here is a small example of usage of the :func:`r2_score` function::\n \n >>> from sklearn.metrics import r2_score\n@@ -2276,7 +2312,18 @@ Here is a small example of usage of the :func:`r2_score` function::\n array([0.965..., 0.908...])\n >>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])\n 0.925...\n-\n+ >>> y_true = [-2, -2, -2]\n+ >>> y_pred = [-2, -2, -2]\n+ >>> r2_score(y_true, y_pred)\n+ 1.0\n+ >>> r2_score(y_true, y_pred, force_finite=False)\n+ nan\n+ >>> y_true = [-2, -2, -2]\n+ >>> y_pred = [-2, -2, -2 + 1e-8]\n+ >>> r2_score(y_true, y_pred)\n+ 0.0\n+ >>> r2_score(y_true, y_pred, force_finite=False)\n+ -inf\n \n .. topic:: Example:\n \n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 5d49a6fd281c7..d67d08ac45f6b 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -288,6 +288,12 @@ Changelog\n :mod:`sklearn.metrics`\n ......................\n \n+- |Feature| :func:`r2_score` and :func:`explained_variance_score` have a new\n+ `force_finite` parameter. Setting this parameter to `False` will return the\n+ actual non-finite score in case of perfect predictions or constant `y_true`,\n+ instead of the finite approximation (`1.0` and `0.0` respectively) currently\n+ returned by default. :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |API| :class:`metrics.DistanceMetric` has been moved from\n :mod:`sklearn.neighbors` to :mod:`sklearn.metric`.\n Using `neighbors.DistanceMetric` for imports is still valid for\n"
}
] |
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index 730b094581276..079313a45c3d0 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -2005,6 +2005,19 @@ then the explained variance is estimated as follow:
The best possible score is 1.0, lower values are worse.
+Note: when the prediction residuals have zero mean, the Explained Variance
+score and the :ref:`r2_score` are identical.
+
+In the particular case where the true target is constant, the Explained
+Variance score is not finite: it is either ``NaN`` (perfect predictions) or
+``-Inf`` (imperfect predictions). Such non-finite scores may prevent correct
+model optimization such as grid-search cross-validation to be performed
+correctly. For this reason the default behaviour of
+:func:`explained_variance_score` is to replace them with 1.0 (perfect
+predictions) or 0.0 (imperfect predictions). You can set the ``force_finite``
+parameter to ``False`` to prevent this fix from happening and fallback on the
+original Explained Variance score.
+
Here is a small example of usage of the :func:`explained_variance_score`
function::
@@ -2019,6 +2032,18 @@ function::
array([0.967..., 1. ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.990...
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2]
+ >>> explained_variance_score(y_true, y_pred)
+ 1.0
+ >>> explained_variance_score(y_true, y_pred, force_finite=False)
+ nan
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2 + 1e-8]
+ >>> explained_variance_score(y_true, y_pred)
+ 0.0
+ >>> explained_variance_score(y_true, y_pred, force_finite=False)
+ -inf
.. _max_error:
@@ -2241,8 +2266,11 @@ predicted by the model, through the proportion of explained variance.
As such variance is dataset dependent, R² may not be meaningfully comparable
across different datasets. Best possible score is 1.0 and it can be negative
(because the model can be arbitrarily worse). A constant model that always
-predicts the expected value of y, disregarding the input features, would get a
-R² score of 0.0.
+predicts the expected (average) value of y, disregarding the input features,
+would get an :math:`R^2` score of 0.0.
+
+Note: when the prediction residuals have zero mean, the :math:`R^2` score and
+the :ref:`explained_variance_score` are identical.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value for total :math:`n` samples,
@@ -2257,6 +2285,14 @@ where :math:`\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i` and :math:`\sum_{i=1}^{n}
Note that :func:`r2_score` calculates unadjusted R² without correcting for
bias in sample variance of y.
+In the particular case where the true target is constant, the :math:`R^2` score is
+not finite: it is either ``NaN`` (perfect predictions) or ``-Inf`` (imperfect
+predictions). Such non-finite scores may prevent correct model optimization
+such as grid-search cross-validation to be performed correctly. For this reason
+the default behaviour of :func:`r2_score` is to replace them with 1.0 (perfect
+predictions) or 0.0 (imperfect predictions). If ``force_finite``
+is set to ``False``, this score falls back on the original :math:`R^2` definition.
+
Here is a small example of usage of the :func:`r2_score` function::
>>> from sklearn.metrics import r2_score
@@ -2276,7 +2312,18 @@ Here is a small example of usage of the :func:`r2_score` function::
array([0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.925...
-
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2]
+ >>> r2_score(y_true, y_pred)
+ 1.0
+ >>> r2_score(y_true, y_pred, force_finite=False)
+ nan
+ >>> y_true = [-2, -2, -2]
+ >>> y_pred = [-2, -2, -2 + 1e-8]
+ >>> r2_score(y_true, y_pred)
+ 0.0
+ >>> r2_score(y_true, y_pred, force_finite=False)
+ -inf
.. topic:: Example:
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 5d49a6fd281c7..d67d08ac45f6b 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -288,6 +288,12 @@ Changelog
:mod:`sklearn.metrics`
......................
+- |Feature| :func:`r2_score` and :func:`explained_variance_score` have a new
+ `force_finite` parameter. Setting this parameter to `False` will return the
+ actual non-finite score in case of perfect predictions or constant `y_true`,
+ instead of the finite approximation (`1.0` and `0.0` respectively) currently
+ returned by default. :pr:`<PRID>` by :user:`<NAME>`.
+
- |API| :class:`metrics.DistanceMetric` has been moved from
:mod:`sklearn.neighbors` to :mod:`sklearn.metric`.
Using `neighbors.DistanceMetric` for imports is still valid for
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21078
|
https://github.com/scikit-learn/scikit-learn/pull/21078
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index a473908d8f1e7..cc1af2f237bf9 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -61,6 +61,13 @@ Changelog
error when 'min_idf' or 'max_idf' are floating-point numbers greater than 1.
:pr:`20752` by :user:`Alek Lefebvre <AlekLefebvre>`.
+:mod:`sklearn.impute`
+.....................
+
+- |API| Adds :meth:`get_feature_names_out` to :class:`impute.SimpleImputer`,
+ :class:`impute.KNNImputer`, :class:`impute.IterativeImputer`, and
+ :class:`impute.MissingIndicator`. :pr:`21078` by `Thomas Fan`_.
+
:mod:`sklearn.linear_model`
...........................
diff --git a/sklearn/impute/_base.py b/sklearn/impute/_base.py
index 32ec1624f0c2f..c97a8d24d4578 100644
--- a/sklearn/impute/_base.py
+++ b/sklearn/impute/_base.py
@@ -15,6 +15,7 @@
from ..utils.sparsefuncs import _get_median
from ..utils.validation import check_is_fitted
from ..utils.validation import FLOAT_DTYPES
+from ..utils.validation import _check_feature_names_in
from ..utils._mask import _get_mask
from ..utils import is_scalar_nan
@@ -113,6 +114,13 @@ def _concatenate_indicator(self, X_imputed, X_indicator):
return hstack((X_imputed, X_indicator))
+ def _concatenate_indicator_feature_names_out(self, names, input_features):
+ if not self.add_indicator:
+ return names
+
+ indicator_names = self.indicator_.get_feature_names_out(input_features)
+ return np.concatenate([names, indicator_names])
+
def _more_tags(self):
return {"allow_nan": is_scalar_nan(self.missing_values)}
@@ -596,6 +604,30 @@ def inverse_transform(self, X):
X_original[full_mask] = self.missing_values
return X_original
+ def get_feature_names_out(self, input_features=None):
+ """Get output feature names for transformation.
+
+ Parameters
+ ----------
+ input_features : array-like of str or None, default=None
+ Input features.
+
+ - If `input_features` is `None`, then `feature_names_in_` is
+ used as feature names in. If `feature_names_in_` is not defined,
+ then names are generated: `[x0, x1, ..., x(n_features_in_)]`.
+ - If `input_features` is an array-like, then `input_features` must
+ match `feature_names_in_` if `feature_names_in_` is defined.
+
+ Returns
+ -------
+ feature_names_out : ndarray of str objects
+ Transformed feature names.
+ """
+ input_features = _check_feature_names_in(self, input_features)
+ non_missing_mask = np.logical_not(_get_mask(self.statistics_, np.nan))
+ names = input_features[non_missing_mask]
+ return self._concatenate_indicator_feature_names_out(names, input_features)
+
class MissingIndicator(TransformerMixin, BaseEstimator):
"""Binary indicators for missing values.
@@ -922,6 +954,35 @@ def fit_transform(self, X, y=None):
return imputer_mask
+ def get_feature_names_out(self, input_features=None):
+ """Get output feature names for transformation.
+
+ Parameters
+ ----------
+ input_features : array-like of str or None, default=None
+ Input features.
+
+ - If `input_features` is `None`, then `feature_names_in_` is
+ used as feature names in. If `feature_names_in_` is not defined,
+ then names are generated: `[x0, x1, ..., x(n_features_in_)]`.
+ - If `input_features` is an array-like, then `input_features` must
+ match `feature_names_in_` if `feature_names_in_` is defined.
+
+ Returns
+ -------
+ feature_names_out : ndarray of str objects
+ Transformed feature names.
+ """
+ input_features = _check_feature_names_in(self, input_features)
+ prefix = self.__class__.__name__.lower()
+ return np.asarray(
+ [
+ f"{prefix}_{feature_name}"
+ for feature_name in input_features[self.features_]
+ ],
+ dtype=object,
+ )
+
def _more_tags(self):
return {
"allow_nan": True,
diff --git a/sklearn/impute/_iterative.py b/sklearn/impute/_iterative.py
index 321c1f537520d..908ab5c9efeb1 100644
--- a/sklearn/impute/_iterative.py
+++ b/sklearn/impute/_iterative.py
@@ -10,6 +10,7 @@
from ..preprocessing import normalize
from ..utils import check_array, check_random_state, _safe_indexing, is_scalar_nan
from ..utils.validation import FLOAT_DTYPES, check_is_fitted
+from ..utils.validation import _check_feature_names_in
from ..utils._mask import _get_mask
from ._base import _BaseImputer
@@ -774,3 +775,26 @@ def fit(self, X, y=None):
"""
self.fit_transform(X)
return self
+
+ def get_feature_names_out(self, input_features=None):
+ """Get output feature names for transformation.
+
+ Parameters
+ ----------
+ input_features : array-like of str or None, default=None
+ Input features.
+
+ - If `input_features` is `None`, then `feature_names_in_` is
+ used as feature names in. If `feature_names_in_` is not defined,
+ then names are generated: `[x0, x1, ..., x(n_features_in_)]`.
+ - If `input_features` is an array-like, then `input_features` must
+ match `feature_names_in_` if `feature_names_in_` is defined.
+
+ Returns
+ -------
+ feature_names_out : ndarray of str objects
+ Transformed feature names.
+ """
+ input_features = _check_feature_names_in(self, input_features)
+ names = self.initial_imputer_.get_feature_names_out(input_features)
+ return self._concatenate_indicator_feature_names_out(names, input_features)
diff --git a/sklearn/impute/_knn.py b/sklearn/impute/_knn.py
index c2bd1410e8ecd..ad7e3537d445f 100644
--- a/sklearn/impute/_knn.py
+++ b/sklearn/impute/_knn.py
@@ -13,6 +13,7 @@
from ..utils import is_scalar_nan
from ..utils._mask import _get_mask
from ..utils.validation import check_is_fitted
+from ..utils.validation import _check_feature_names_in
class KNNImputer(_BaseImputer):
@@ -206,6 +207,7 @@ def fit(self, X, y=None):
_check_weights(self.weights)
self._fit_X = X
self._mask_fit_X = _get_mask(self._fit_X, self.missing_values)
+ self._valid_mask = ~np.all(self._mask_fit_X, axis=0)
super()._fit_indicator(self._mask_fit_X)
@@ -242,7 +244,7 @@ def transform(self, X):
mask = _get_mask(X, self.missing_values)
mask_fit_X = self._mask_fit_X
- valid_mask = ~np.all(mask_fit_X, axis=0)
+ valid_mask = self._valid_mask
X_indicator = super()._transform_indicator(mask)
@@ -327,3 +329,26 @@ def process_chunk(dist_chunk, start):
pass
return super()._concatenate_indicator(X[:, valid_mask], X_indicator)
+
+ def get_feature_names_out(self, input_features=None):
+ """Get output feature names for transformation.
+
+ Parameters
+ ----------
+ input_features : array-like of str or None, default=None
+ Input features.
+
+ - If `input_features` is `None`, then `feature_names_in_` is
+ used as feature names in. If `feature_names_in_` is not defined,
+ then names are generated: `[x0, x1, ..., x(n_features_in_)]`.
+ - If `input_features` is an array-like, then `input_features` must
+ match `feature_names_in_` if `feature_names_in_` is defined.
+
+ Returns
+ -------
+ feature_names_out : ndarray of str objects
+ Transformed feature names.
+ """
+ input_features = _check_feature_names_in(self, input_features)
+ names = input_features[self._valid_mask]
+ return self._concatenate_indicator_feature_names_out(names, input_features)
|
diff --git a/sklearn/impute/tests/test_common.py b/sklearn/impute/tests/test_common.py
index c35245ac8c253..0c13547ce9b4c 100644
--- a/sklearn/impute/tests/test_common.py
+++ b/sklearn/impute/tests/test_common.py
@@ -14,7 +14,7 @@
from sklearn.impute import SimpleImputer
-IMPUTERS = [IterativeImputer(), KNNImputer(), SimpleImputer()]
+IMPUTERS = [IterativeImputer(tol=0.1), KNNImputer(), SimpleImputer()]
SPARSE_IMPUTERS = [SimpleImputer()]
@@ -122,3 +122,42 @@ def test_imputers_pandas_na_integer_array_support(imputer, add_indicator):
X_trans = imputer.fit_transform(X_df)
assert_allclose(X_trans_expected, X_trans)
+
+
[email protected]("imputer", IMPUTERS, ids=lambda x: x.__class__.__name__)
[email protected]("add_indicator", [True, False])
+def test_imputers_feature_names_out_pandas(imputer, add_indicator):
+ """Check feature names out for imputers."""
+ pd = pytest.importorskip("pandas")
+ marker = np.nan
+ imputer = imputer.set_params(add_indicator=add_indicator, missing_values=marker)
+
+ X = np.array(
+ [
+ [marker, 1, 5, 3, marker, 1],
+ [2, marker, 1, 4, marker, 2],
+ [6, 3, 7, marker, marker, 3],
+ [1, 2, 9, 8, marker, 4],
+ ]
+ )
+ X_df = pd.DataFrame(X, columns=["a", "b", "c", "d", "e", "f"])
+ imputer.fit(X_df)
+
+ names = imputer.get_feature_names_out()
+
+ if add_indicator:
+ expected_names = [
+ "a",
+ "b",
+ "c",
+ "d",
+ "f",
+ "missingindicator_a",
+ "missingindicator_b",
+ "missingindicator_d",
+ "missingindicator_e",
+ ]
+ assert_array_equal(expected_names, names)
+ else:
+ expected_names = ["a", "b", "c", "d", "f"]
+ assert_array_equal(expected_names, names)
diff --git a/sklearn/impute/tests/test_impute.py b/sklearn/impute/tests/test_impute.py
index 2534f94116b57..9a4da4a9230a0 100644
--- a/sklearn/impute/tests/test_impute.py
+++ b/sklearn/impute/tests/test_impute.py
@@ -1493,3 +1493,22 @@ def test_most_frequent(expected, array, dtype, extra_value, n_repeat):
assert expected == _most_frequent(
np.array(array, dtype=dtype), extra_value, n_repeat
)
+
+
+def test_missing_indicator_feature_names_out():
+ """Check that missing indicator return the feature names with a prefix."""
+ pd = pytest.importorskip("pandas")
+
+ missing_values = np.nan
+ X = pd.DataFrame(
+ [
+ [missing_values, missing_values, 1, missing_values],
+ [4, missing_values, 2, 10],
+ ],
+ columns=["a", "b", "c", "d"],
+ )
+
+ indicator = MissingIndicator(missing_values=missing_values).fit(X)
+ feature_names = indicator.get_feature_names_out()
+ expected_names = ["missingindicator_a", "missingindicator_b", "missingindicator_d"]
+ assert_array_equal(expected_names, feature_names)
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index 4f6818081c67d..139a2bfb9702a 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -365,7 +365,6 @@ def test_pandas_column_name_consistency(estimator):
"decomposition",
"discriminant_analysis",
"ensemble",
- "impute",
"isotonic",
"kernel_approximation",
"preprocessing",
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex a473908d8f1e7..cc1af2f237bf9 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -61,6 +61,13 @@ Changelog\n error when 'min_idf' or 'max_idf' are floating-point numbers greater than 1.\n :pr:`20752` by :user:`Alek Lefebvre <AlekLefebvre>`.\n \n+:mod:`sklearn.impute`\n+.....................\n+\n+- |API| Adds :meth:`get_feature_names_out` to :class:`impute.SimpleImputer`,\n+ :class:`impute.KNNImputer`, :class:`impute.IterativeImputer`, and\n+ :class:`impute.MissingIndicator`. :pr:`21078` by `Thomas Fan`_.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
1.01
|
7601f87b7a8faaf0d3bd14add9a050b127cbb865
|
[
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-0-int32-array]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[1-array5-int-10-1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_no_missing",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-coo_matrix-auto]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[random]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[descending]",
"sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[mean]",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator[imputer1--1]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_verbose",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator[imputer2--1]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[scalars]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[mean]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[constant]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-array]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[object]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_no_explicit_zeros",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator[imputer2-0]",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator[imputer0-nan]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-array-True]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_early_stopping",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[None-default]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[object]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype2-most_frequent]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-array]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[-1]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_error_param[1--0.001-ValueError-should be a non-negative float]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-rs_imputer2]",
"sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-imputer1]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype1-most_frequent]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_string",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator[imputer0-0]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[0-array-True]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csr_matrix-auto]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-array-False]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[constant-missing_value]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[most_frequent_value-array1-object-extra_value-1]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X0]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-None]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip_truncnorm",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[mean]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator3]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X0-a-X_trans_exp0]",
"sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-imputer0]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[min_value2-max_value2-_value' should be of shape]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X1]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[nan]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_additive_matrix",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[0]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csc_matrix-True]",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[imputer0--1]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[-1--1-types are expected to be both numerical.-IterativeImputer]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-None]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-array]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit3-X_trans3-params3-MissingIndicator does not support data with dtype]",
"sklearn/impute/tests/test_impute.py::test_imputation_order[ascending-idx_order0]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csr_matrix-False]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[SimpleImputer]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[-1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-array]",
"sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[imputer0]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[Scalar-vs-vector]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-lil_matrix-False]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_error_param[-1-0.001-ValueError-should be a positive integer]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[str-median]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator4]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[nan]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[median]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-1]",
"sklearn/impute/tests/test_impute.py::test_imputation_order[descending-idx_order1]",
"sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-imputer2]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[NAN]",
"sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[imputer2]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[object-mean]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[-1--1-types are expected to be both numerical.-SimpleImputer]",
"sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-imputer1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[3]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_truncated_normal_posterior",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[inf--inf-min_value >= max_value.]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[str-most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype2-constant]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-0-int32-array]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_float[asarray]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[0-array-auto]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_all_missing",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_rank_one",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[False]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[0]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[None-median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X3-None-X_trans_exp3]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[None]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[object-median]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[dataframe-median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_invalid_strategy[101]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[ascending]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-array-auto]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[NAN]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-rs_imputer2]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[None-vs-inf]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[arabic]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[True]",
"sklearn/impute/tests/test_impute.py::test_imputation_copy",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[inf]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[roman]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-coo_matrix-True]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[list-median]",
"sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[imputer1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[a-array2-object-a-2]",
"sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[IterativeImputer]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[nan]",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator[imputer0--1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X1-nan-X_trans_exp1]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator2]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[100-0-min_value >= max_value.]",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator[imputer2-nan]",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator[imputer1-nan]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[most_frequent]",
"sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-imputer2]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[constant]",
"sklearn/impute/tests/test_impute.py::test_imputation_median_special_cases",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[None]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[NaN-nan-Input contains NaN-IterativeImputer]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[str-constant]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit1-X_trans1-params1-'features' has to be either 'missing-only' or 'all']",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[0-array-False]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[10-array6-int-10-2]",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator[imputer1-0]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[None-mean]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[category]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[NaN-nan-Input contains NaN-SimpleImputer]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-lil_matrix-True]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_zero_iters",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[mean]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[5]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-None]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_error_invalid_type[1-0]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-lil_matrix-auto]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X2-nan-X_trans_exp2]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[None]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csc_matrix-False]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csc_matrix-auto]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-1]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-coo_matrix-False]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csr_matrix-True]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[extra_value-array0-object-extra_value-2]",
"sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit0-X_trans0-params0-have missing values in transform but have no missing values in fit]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype1-constant]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[dataframe-mean]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists-with-inf]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_no_missing",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_invalid_strategy[None]",
"sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[imputer0-nan]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-rs_imputer2]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[category]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_error_invalid_type[1.0-nan]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[most_frequent-b]",
"sklearn/impute/tests/test_impute.py::test_imputation_pipeline_grid_search",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_integer",
"sklearn/impute/tests/test_impute.py::test_most_frequent[1-array7-int-10-2]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform_exceptions[nan]",
"sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-imputer0]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[str-mean]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit2-X_trans2-params2-'sparse' has to be a boolean or 'auto']",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_float[csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_stochasticity",
"sklearn/impute/tests/test_impute.py::test_most_frequent[min_value-array3-object-z-2]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_invalid_strategy[const]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[]",
"sklearn/impute/tests/test_impute.py::test_most_frequent[10-array4-int-10-2]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[list-mean]"
] |
[
"sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-IterativeImputer]",
"sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-KNNImputer]",
"sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-SimpleImputer]",
"sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-IterativeImputer]",
"sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-SimpleImputer]",
"sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-KNNImputer]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_feature_names_out"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex a473908d8f1e7..cc1af2f237bf9 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -61,6 +61,13 @@ Changelog\n error when 'min_idf' or 'max_idf' are floating-point numbers greater than 1.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.impute`\n+.....................\n+\n+- |API| Adds :meth:`get_feature_names_out` to :class:`impute.SimpleImputer`,\n+ :class:`impute.KNNImputer`, :class:`impute.IterativeImputer`, and\n+ :class:`impute.MissingIndicator`. :pr:`<PRID>` by `<NAME>`_.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index a473908d8f1e7..cc1af2f237bf9 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -61,6 +61,13 @@ Changelog
error when 'min_idf' or 'max_idf' are floating-point numbers greater than 1.
:pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.impute`
+.....................
+
+- |API| Adds :meth:`get_feature_names_out` to :class:`impute.SimpleImputer`,
+ :class:`impute.KNNImputer`, :class:`impute.IterativeImputer`, and
+ :class:`impute.MissingIndicator`. :pr:`<PRID>` by `<NAME>`_.
+
:mod:`sklearn.linear_model`
...........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21534
|
https://github.com/scikit-learn/scikit-learn/pull/21534
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 542636b1642f7..64e3c57a92214 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -117,6 +117,14 @@ Changelog
backward compatibility, but this alias will be removed in 1.3.
:pr:`21177` by :user:`Julien Jerphanion <jjerphan>`.
+:mod:`sklearn.manifold`
+.......................
+
+- |Enhancement| :func:`manifold.spectral_embedding` and
+ :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will
+ preserve this dtype.
+ :pr:`21534` by :user:`Andrew Knyazev <lobpcg>`.
+
:mod:`sklearn.model_selection`
..............................
diff --git a/sklearn/manifold/_spectral_embedding.py b/sklearn/manifold/_spectral_embedding.py
index e8cf61bfe783b..793f3958c64d2 100644
--- a/sklearn/manifold/_spectral_embedding.py
+++ b/sklearn/manifold/_spectral_embedding.py
@@ -315,8 +315,9 @@ def spectral_embedding(
# problem.
if not sparse.issparse(laplacian):
warnings.warn("AMG works better for sparse matrices")
- # lobpcg needs double precision floats
- laplacian = check_array(laplacian, dtype=np.float64, accept_sparse=True)
+ laplacian = check_array(
+ laplacian, dtype=[np.float64, np.float32], accept_sparse=True
+ )
laplacian = _set_diag(laplacian, 1, norm_laplacian)
# The Laplacian matrix is always singular, having at least one zero
@@ -337,6 +338,7 @@ def spectral_embedding(
# Create initial approximation X to eigenvectors
X = random_state.rand(laplacian.shape[0], n_components + 1)
X[:, 0] = dd.ravel()
+ X = X.astype(laplacian.dtype)
_, diffusion_map = lobpcg(laplacian, X, M=M, tol=1.0e-5, largest=False)
embedding = diffusion_map.T
if norm_laplacian:
@@ -346,8 +348,9 @@ def spectral_embedding(
raise ValueError
if eigen_solver == "lobpcg":
- # lobpcg needs double precision floats
- laplacian = check_array(laplacian, dtype=np.float64, accept_sparse=True)
+ laplacian = check_array(
+ laplacian, dtype=[np.float64, np.float32], accept_sparse=True
+ )
if n_nodes < 5 * n_components + 1:
# see note above under arpack why lobpcg has problems with small
# number of nodes
@@ -366,6 +369,7 @@ def spectral_embedding(
# approximation X to eigenvectors
X = random_state.rand(laplacian.shape[0], n_components + 1)
X[:, 0] = dd.ravel()
+ X = X.astype(laplacian.dtype)
_, diffusion_map = lobpcg(
laplacian, X, tol=1e-5, largest=False, maxiter=2000
)
|
diff --git a/sklearn/manifold/tests/test_spectral_embedding.py b/sklearn/manifold/tests/test_spectral_embedding.py
index 8454accb7c59b..0f4bca2b07419 100644
--- a/sklearn/manifold/tests/test_spectral_embedding.py
+++ b/sklearn/manifold/tests/test_spectral_embedding.py
@@ -19,6 +19,15 @@
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
+try:
+ from pyamg import smoothed_aggregation_solver # noqa
+
+ pyamg_available = True
+except ImportError:
+ pyamg_available = False
+skip_if_no_pyamg = pytest.mark.skipif(
+ not pyamg_available, reason="PyAMG is required for the tests in this function."
+)
# non centered, sparse centers to check the
centers = np.array(
@@ -85,7 +94,16 @@ def test_sparse_graph_connected_component():
assert_array_equal(component_1, component_2)
-def test_spectral_embedding_two_components(seed=36):
[email protected](
+ "eigen_solver",
+ [
+ "arpack",
+ "lobpcg",
+ pytest.param("amg", marks=skip_if_no_pyamg),
+ ],
+)
[email protected]("dtype", [np.float32, np.float64])
+def test_spectral_embedding_two_components(eigen_solver, dtype, seed=36):
# Test spectral embedding with two components
random_state = np.random.RandomState(seed)
n_sample = 100
@@ -117,31 +135,46 @@ def test_spectral_embedding_two_components(seed=36):
true_label[0:n_sample] = 1
se_precomp = SpectralEmbedding(
- n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed)
+ n_components=1,
+ affinity="precomputed",
+ random_state=np.random.RandomState(seed),
+ eigen_solver=eigen_solver,
)
- embedded_coordinate = se_precomp.fit_transform(affinity)
- # Some numpy versions are touchy with types
- embedded_coordinate = se_precomp.fit_transform(affinity.astype(np.float32))
- # thresholding on the first components using 0.
- label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float")
- assert normalized_mutual_info_score(true_label, label_) == pytest.approx(1.0)
+ for dtype in [np.float32, np.float64]:
+ embedded_coordinate = se_precomp.fit_transform(affinity.astype(dtype))
+ # thresholding on the first components using 0.
+ label_ = np.array(embedded_coordinate.ravel() < 0, dtype=np.int64)
+ assert normalized_mutual_info_score(true_label, label_) == pytest.approx(1.0)
@pytest.mark.parametrize("X", [S, sparse.csr_matrix(S)], ids=["dense", "sparse"])
-def test_spectral_embedding_precomputed_affinity(X, seed=36):
[email protected](
+ "eigen_solver",
+ [
+ "arpack",
+ "lobpcg",
+ pytest.param("amg", marks=skip_if_no_pyamg),
+ ],
+)
[email protected]("dtype", (np.float32, np.float64))
+def test_spectral_embedding_precomputed_affinity(X, eigen_solver, dtype, seed=36):
# Test spectral embedding with precomputed kernel
gamma = 1.0
se_precomp = SpectralEmbedding(
- n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed)
+ n_components=2,
+ affinity="precomputed",
+ random_state=np.random.RandomState(seed),
+ eigen_solver=eigen_solver,
)
se_rbf = SpectralEmbedding(
n_components=2,
affinity="rbf",
gamma=gamma,
random_state=np.random.RandomState(seed),
+ eigen_solver=eigen_solver,
)
- embed_precomp = se_precomp.fit_transform(rbf_kernel(X, gamma=gamma))
- embed_rbf = se_rbf.fit_transform(X)
+ embed_precomp = se_precomp.fit_transform(rbf_kernel(X.astype(dtype), gamma=gamma))
+ embed_rbf = se_rbf.fit_transform(X.astype(dtype))
assert_array_almost_equal(se_precomp.affinity_matrix_, se_rbf.affinity_matrix_)
_assert_equal_with_sign_flipping(embed_precomp, embed_rbf, 0.05)
@@ -205,10 +238,11 @@ def test_spectral_embedding_callable_affinity(X, seed=36):
@pytest.mark.filterwarnings(
"ignore:scipy.linalg.pinv2 is deprecated:DeprecationWarning:pyamg.*"
)
-def test_spectral_embedding_amg_solver(seed=36):
- # Test spectral embedding with amg solver
- pytest.importorskip("pyamg")
-
[email protected](
+ not pyamg_available, reason="PyAMG is required for the tests in this function."
+)
[email protected]("dtype", (np.float32, np.float64))
+def test_spectral_embedding_amg_solver(dtype, seed=36):
se_amg = SpectralEmbedding(
n_components=2,
affinity="nearest_neighbors",
@@ -223,8 +257,8 @@ def test_spectral_embedding_amg_solver(seed=36):
n_neighbors=5,
random_state=np.random.RandomState(seed),
)
- embed_amg = se_amg.fit_transform(S)
- embed_arpack = se_arpack.fit_transform(S)
+ embed_amg = se_amg.fit_transform(S.astype(dtype))
+ embed_arpack = se_arpack.fit_transform(S.astype(dtype))
_assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5)
# same with special case in which amg is not actually used
@@ -239,8 +273,8 @@ def test_spectral_embedding_amg_solver(seed=36):
).toarray()
se_amg.affinity = "precomputed"
se_arpack.affinity = "precomputed"
- embed_amg = se_amg.fit_transform(affinity)
- embed_arpack = se_arpack.fit_transform(affinity)
+ embed_amg = se_amg.fit_transform(affinity.astype(dtype))
+ embed_arpack = se_arpack.fit_transform(affinity.astype(dtype))
_assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5)
@@ -258,12 +292,15 @@ def test_spectral_embedding_amg_solver(seed=36):
@pytest.mark.filterwarnings(
"ignore:scipy.linalg.pinv2 is deprecated:DeprecationWarning:pyamg.*"
)
-def test_spectral_embedding_amg_solver_failure():
[email protected](
+ not pyamg_available, reason="PyAMG is required for the tests in this function."
+)
[email protected]("dtype", (np.float32, np.float64))
+def test_spectral_embedding_amg_solver_failure(dtype, seed=36):
# Non-regression test for amg solver failure (issue #13393 on github)
- pytest.importorskip("pyamg")
- seed = 36
num_nodes = 100
X = sparse.rand(num_nodes, num_nodes, density=0.1, random_state=seed)
+ X = X.astype(dtype)
upper = sparse.triu(X) - sparse.diags(X.diagonal())
sym_matrix = upper + upper.T
embedding = spectral_embedding(
@@ -314,7 +351,9 @@ def test_spectral_embedding_unknown_eigensolver(seed=36):
def test_spectral_embedding_unknown_affinity(seed=36):
# Test that SpectralClustering fails with an unknown affinity type
se = SpectralEmbedding(
- n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed)
+ n_components=1,
+ affinity="<unknown>",
+ random_state=np.random.RandomState(seed),
)
with pytest.raises(ValueError):
se.fit(S)
@@ -399,6 +438,50 @@ def test_spectral_embedding_first_eigen_vector():
assert np.std(embedding[:, 1]) > 1e-3
[email protected](
+ "eigen_solver",
+ [
+ "arpack",
+ "lobpcg",
+ pytest.param("amg", marks=skip_if_no_pyamg),
+ ],
+)
[email protected]("dtype", [np.float32, np.float64])
+def test_spectral_embedding_preserves_dtype(eigen_solver, dtype):
+ """Check that `SpectralEmbedding is preserving the dtype of the fitted
+ attribute and transformed data.
+
+ Ideally, this test should be covered by the common test
+ `check_transformer_preserve_dtypes`. However, this test only run
+ with transformers implementing `transform` while `SpectralEmbedding`
+ implements only `fit_transform`.
+ """
+ X = S.astype(dtype)
+ se = SpectralEmbedding(
+ n_components=2, affinity="rbf", eigen_solver=eigen_solver, random_state=0
+ )
+ X_trans = se.fit_transform(X)
+
+ assert X_trans.dtype == dtype
+ assert se.embedding_.dtype == dtype
+ assert se.affinity_matrix_.dtype == dtype
+
+
[email protected](
+ pyamg_available,
+ reason="PyAMG is installed and we should not test for an error.",
+)
+def test_error_pyamg_not_available():
+ se_precomp = SpectralEmbedding(
+ n_components=2,
+ affinity="rbf",
+ eigen_solver="amg",
+ )
+ err_msg = "The eigen_solver was set to 'amg', but pyamg is not available."
+ with pytest.raises(ValueError, match=err_msg):
+ se_precomp.fit_transform(S)
+
+
# TODO: Remove in 1.1
@pytest.mark.parametrize("affinity", ["precomputed", "precomputed_nearest_neighbors"])
def test_spectral_embedding_pairwise_deprecated(affinity):
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 542636b1642f7..64e3c57a92214 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -117,6 +117,14 @@ Changelog\n backward compatibility, but this alias will be removed in 1.3.\n :pr:`21177` by :user:`Julien Jerphanion <jjerphan>`.\n \n+:mod:`sklearn.manifold`\n+.......................\n+\n+- |Enhancement| :func:`manifold.spectral_embedding` and\n+ :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will\n+ preserve this dtype.\n+ :pr:`21534` by :user:`Andrew Knyazev <lobpcg>`.\n+\n :mod:`sklearn.model_selection`\n ..............................\n \n"
}
] |
1.01
|
8cfbc38ab8864b68f9a504f96857bb2e527c9bbb
|
[
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_two_components[float64-arpack]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_callable_affinity[sparse]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_pairwise_deprecated[precomputed]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_two_components[float64-lobpcg]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_precomputed_nearest_neighbors_filtering",
"sklearn/manifold/tests/test_spectral_embedding.py::test_pipeline_spectral_clustering",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_unknown_affinity",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float32-arpack-dense]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_two_components[float32-arpack]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float64-lobpcg-sparse]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_deterministic",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_unnormalized",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_preserves_dtype[float64-lobpcg]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float32-lobpcg-sparse]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_preserves_dtype[float64-arpack]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_first_eigen_vector",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_callable_affinity[dense]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float64-arpack-dense]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float64-arpack-sparse]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_two_components[float32-lobpcg]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_preserves_dtype[float32-arpack]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_connectivity",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float32-lobpcg-dense]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_pairwise_deprecated[precomputed_nearest_neighbors]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_error_pyamg_not_available",
"sklearn/manifold/tests/test_spectral_embedding.py::test_sparse_graph_connected_component",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float64-lobpcg-dense]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_precomputed_affinity[float32-arpack-sparse]",
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_unknown_eigensolver"
] |
[
"sklearn/manifold/tests/test_spectral_embedding.py::test_spectral_embedding_preserves_dtype[float32-lobpcg]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 542636b1642f7..64e3c57a92214 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -117,6 +117,14 @@ Changelog\n backward compatibility, but this alias will be removed in 1.3.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.manifold`\n+.......................\n+\n+- |Enhancement| :func:`manifold.spectral_embedding` and\n+ :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will\n+ preserve this dtype.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.model_selection`\n ..............................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 542636b1642f7..64e3c57a92214 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -117,6 +117,14 @@ Changelog
backward compatibility, but this alias will be removed in 1.3.
:pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.manifold`
+.......................
+
+- |Enhancement| :func:`manifold.spectral_embedding` and
+ :class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will
+ preserve this dtype.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.model_selection`
..............................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22118
|
https://github.com/scikit-learn/scikit-learn/pull/22118
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index b7000bcf7cbb2..c3e6c4f2f674b 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -996,6 +996,8 @@ details.
metrics.mean_tweedie_deviance
metrics.d2_tweedie_score
metrics.mean_pinball_loss
+ metrics.d2_pinball_score
+ metrics.d2_absolute_error_score
Multilabel ranking metrics
--------------------------
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index a1fce2d3454dc..8468dce3f93c5 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -101,6 +101,9 @@ Scoring Function
'neg_mean_poisson_deviance' :func:`metrics.mean_poisson_deviance`
'neg_mean_gamma_deviance' :func:`metrics.mean_gamma_deviance`
'neg_mean_absolute_percentage_error' :func:`metrics.mean_absolute_percentage_error`
+'d2_absolute_error_score' :func:`metrics.d2_absolute_error_score`
+'d2_pinball_score' :func:`metrics.d2_pinball_score`
+'d2_tweedie_score' :func:`metrics.d2_tweedie_score`
==================================== ============================================== ==================================
@@ -1968,7 +1971,8 @@ The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure regression performance. Some of those have been enhanced
to handle the multioutput case: :func:`mean_squared_error`,
:func:`mean_absolute_error`, :func:`r2_score`,
-:func:`explained_variance_score` and :func:`mean_pinball_loss`.
+:func:`explained_variance_score`, :func:`mean_pinball_loss`, :func:`d2_pinball_score`
+and :func:`d2_absolute_error_score`.
These functions have an ``multioutput`` keyword argument which specifies the
@@ -2370,8 +2374,8 @@ is defined as
\sum_{i=0}^{n_\text{samples} - 1}
\begin{cases}
(y_i-\hat{y}_i)^2, & \text{for }p=0\text{ (Normal)}\\
- 2(y_i \log(y/\hat{y}_i) + \hat{y}_i - y_i), & \text{for}p=1\text{ (Poisson)}\\
- 2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1), & \text{for}p=2\text{ (Gamma)}\\
+ 2(y_i \log(y/\hat{y}_i) + \hat{y}_i - y_i), & \text{for }p=1\text{ (Poisson)}\\
+ 2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1), & \text{for }p=2\text{ (Gamma)}\\
2\left(\frac{\max(y_i,0)^{2-p}}{(1-p)(2-p)}-
\frac{y\,\hat{y}^{1-p}_i}{1-p}+\frac{\hat{y}^{2-p}_i}{2-p}\right),
& \text{otherwise}
@@ -2414,34 +2418,6 @@ the difference in errors decreases. Finally, by setting, ``power=2``::
we would get identical errors. The deviance when ``power=2`` is thus only
sensitive to relative errors.
-.. _d2_tweedie_score:
-
-D² score, the coefficient of determination
--------------------------------------------
-
-The :func:`d2_tweedie_score` function computes the percentage of deviance
-explained. It is a generalization of R², where the squared error is replaced by
-the Tweedie deviance. D², also known as McFadden's likelihood ratio index, is
-calculated as
-
-.. math::
-
- D^2(y, \hat{y}) = 1 - \frac{\text{D}(y, \hat{y})}{\text{D}(y, \bar{y})} \,.
-
-The argument ``power`` defines the Tweedie power as for
-:func:`mean_tweedie_deviance`. Note that for `power=0`,
-:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).
-
-Like R², the best possible score is 1.0 and it can be negative (because the
-model can be arbitrarily worse). A constant model that always predicts the
-expected value of y, disregarding the input features, would get a D² score
-of 0.0.
-
-A scorer object with a specific choice of ``power`` can be built by::
-
- >>> from sklearn.metrics import d2_tweedie_score, make_scorer
- >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)
-
.. _pinball_loss:
Pinball loss
@@ -2506,6 +2482,93 @@ explained in the example linked below.
hyper-parameters of quantile regression models on data with non-symmetric
noise and outliers.
+.. _d2_score:
+
+D² score
+--------
+
+The D² score computes the fraction of deviance explained.
+It is a generalization of R², where the squared error is generalized and replaced
+by a deviance of choice :math:`\text{dev}(y, \hat{y})`
+(e.g., Tweedie, pinball or mean absolute error). D² is a form of a *skill score*.
+It is calculated as
+
+.. math::
+
+ D^2(y, \hat{y}) = 1 - \frac{\text{dev}(y, \hat{y})}{\text{dev}(y, y_{\text{null}})} \,.
+
+Where :math:`y_{\text{null}}` is the optimal prediction of an intercept-only model
+(e.g., the mean of `y_true` for the Tweedie case, the median for absolute
+error and the alpha-quantile for pinball loss).
+
+Like R², the best possible score is 1.0 and it can be negative (because the
+model can be arbitrarily worse). A constant model that always predicts
+:math:`y_{\text{null}}`, disregarding the input features, would get a D² score
+of 0.0.
+
+D² Tweedie score
+^^^^^^^^^^^^^^^^
+
+The :func:`d2_tweedie_score` function implements the special case of D²
+where :math:`\text{dev}(y, \hat{y})` is the Tweedie deviance, see :ref:`mean_tweedie_deviance`.
+It is also known as D² Tweedie and is related to McFadden's likelihood ratio index.
+
+The argument ``power`` defines the Tweedie power as for
+:func:`mean_tweedie_deviance`. Note that for `power=0`,
+:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).
+
+A scorer object with a specific choice of ``power`` can be built by::
+
+ >>> from sklearn.metrics import d2_tweedie_score, make_scorer
+ >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)
+
+D² pinball score
+^^^^^^^^^^^^^^^^^^^^^
+
+The :func:`d2_pinball_score` function implements the special case
+of D² with the pinball loss, see :ref:`pinball_loss`, i.e.:
+
+.. math::
+
+ \text{dev}(y, \hat{y}) = \text{pinball}(y, \hat{y}).
+
+The argument ``alpha`` defines the slope of the pinball loss as for
+:func:`mean_pinball_loss` (:ref:`pinball_loss`). It determines the
+quantile level ``alpha`` for which the pinball loss and also D²
+are optimal. Note that for `alpha=0.5` (the default) :func:`d2_pinball_score`
+equals :func:`d2_absolute_error_score`.
+
+A scorer object with a specific choice of ``alpha`` can be built by::
+
+ >>> from sklearn.metrics import d2_pinball_score, make_scorer
+ >>> d2_pinball_score_08 = make_scorer(d2_pinball_score, alpha=0.8)
+
+D² absolute error score
+^^^^^^^^^^^^^^^^^^^^^^^
+
+The :func:`d2_absolute_error_score` function implements the special case of
+the :ref:`mean_absolute_error`:
+
+.. math::
+
+ \text{dev}(y, \hat{y}) = \text{MAE}(y, \hat{y}).
+
+Here are some usage examples of the :func:`d2_absolute_error_score` function::
+
+ >>> from sklearn.metrics import d2_absolute_error_score
+ >>> y_true = [3, -0.5, 2, 7]
+ >>> y_pred = [2.5, 0.0, 2, 8]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ 0.764...
+ >>> y_true = [1, 2, 3]
+ >>> y_pred = [1, 2, 3]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ 1.0
+ >>> y_true = [1, 2, 3]
+ >>> y_pred = [2, 2, 2]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ 0.0
+
.. _clustering_metrics:
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index b9ab45e1d344a..85053e5a68679 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -630,6 +630,14 @@ Changelog
instead of the finite approximation (`1.0` and `0.0` respectively) currently
returned by default. :pr:`17266` by :user:`Sylvain Marié <smarie>`.
+- |Feature| :func:`d2_pinball_score` and :func:`d2_absolute_error_score`
+ calculate the :math:`D^2` regression score for the pinball loss and the
+ absolute error respectively. :func:`d2_absolute_error_score` is a special case
+ of :func:`d2_pinball_score` with a fixed quantile parameter `alpha=0.5`
+ for ease of use and discovery. The :math:`D^2` scores are generalizations
+ of the `r2_score` and can be interpeted as the fraction of deviance explained.
+ :pr:`22118` by :user:`Ohad Michel <ohadmich>`
+
- |Enhancement| :func:`metrics.top_k_accuracy_score` raises an improved error
message when `y_true` is binary and `y_score` is 2d. :pr:`22284` by `Thomas Fan`_.
diff --git a/sklearn/metrics/__init__.py b/sklearn/metrics/__init__.py
index e4339229c5b64..02ae7d41ebc31 100644
--- a/sklearn/metrics/__init__.py
+++ b/sklearn/metrics/__init__.py
@@ -77,6 +77,8 @@
from ._regression import mean_poisson_deviance
from ._regression import mean_gamma_deviance
from ._regression import d2_tweedie_score
+from ._regression import d2_pinball_score
+from ._regression import d2_absolute_error_score
from ._scorer import check_scoring
@@ -113,6 +115,8 @@
"consensus_score",
"coverage_error",
"d2_tweedie_score",
+ "d2_absolute_error_score",
+ "d2_pinball_score",
"dcg_score",
"davies_bouldin_score",
"DetCurveDisplay",
diff --git a/sklearn/metrics/_regression.py b/sklearn/metrics/_regression.py
index c701320f9c23a..de8aef20aa7c2 100644
--- a/sklearn/metrics/_regression.py
+++ b/sklearn/metrics/_regression.py
@@ -23,6 +23,7 @@
# Ashutosh Hathidara <[email protected]>
# Uttam kumar <[email protected]>
# Sylvain Marie <[email protected]>
+# Ohad Michel <[email protected]>
# License: BSD 3 clause
import warnings
@@ -54,6 +55,9 @@
"mean_tweedie_deviance",
"mean_poisson_deviance",
"mean_gamma_deviance",
+ "d2_tweedie_score",
+ "d2_pinball_score",
+ "d2_absolute_error_score",
]
@@ -70,6 +74,9 @@ def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric"):
'variance_weighted'] or None
None is accepted due to backward compatibility of r2_score().
+ dtype : str or list, default="numeric"
+ the dtype argument passed to check_array.
+
Returns
-------
type_true : one of {'continuous', continuous-multioutput'}
@@ -87,9 +94,6 @@ def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric"):
Custom output weights if ``multioutput`` is array-like or
just the corresponding argument if ``multioutput`` is a
correct keyword.
-
- dtype : str or list, default="numeric"
- the dtype argument passed to check_array.
"""
check_consistent_length(y_true, y_pred)
y_true = check_array(y_true, ensure_2d=False, dtype=dtype)
@@ -1102,13 +1106,13 @@ def mean_gamma_deviance(y_true, y_pred, *, sample_weight=None):
def d2_tweedie_score(y_true, y_pred, *, sample_weight=None, power=0):
- """D^2 regression score function, percentage of Tweedie deviance explained.
+ """D^2 regression score function, fraction of Tweedie deviance explained.
Best possible score is 1.0 and it can be negative (because the model can be
arbitrarily worse). A model that always uses the empirical mean of `y_true` as
constant prediction, disregarding the input features, gets a D^2 score of 0.0.
- Read more in the :ref:`User Guide <d2_tweedie_score>`.
+ Read more in the :ref:`User Guide <d2_score>`.
.. versionadded:: 1.0
@@ -1203,3 +1207,237 @@ def d2_tweedie_score(y_true, y_pred, *, sample_weight=None, power=0):
denominator = np.average(dev, weights=sample_weight)
return 1 - numerator / denominator
+
+
+def d2_pinball_score(
+ y_true, y_pred, *, sample_weight=None, alpha=0.5, multioutput="uniform_average"
+):
+ """
+ :math:`D^2` regression score function, fraction of pinball loss explained.
+
+ Best possible score is 1.0 and it can be negative (because the model can be
+ arbitrarily worse). A model that always uses the empirical alpha-quantile of
+ `y_true` as constant prediction, disregarding the input features,
+ gets a :math:`D^2` score of 0.0.
+
+ Read more in the :ref:`User Guide <d2_score>`.
+
+ .. versionadded:: 1.1
+
+ Parameters
+ ----------
+ y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
+ Ground truth (correct) target values.
+
+ y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
+ Estimated target values.
+
+ sample_weight : array-like of shape (n_samples,), optional
+ Sample weights.
+
+ alpha : float, default=0.5
+ Slope of the pinball deviance. It determines the quantile level alpha
+ for which the pinball deviance and also D2 are optimal.
+ The default `alpha=0.5` is equivalent to `d2_absolute_error_score`.
+
+ multioutput : {'raw_values', 'uniform_average'} or array-like of shape \
+ (n_outputs,), default='uniform_average'
+ Defines aggregating of multiple output values.
+ Array-like value defines weights used to average scores.
+
+ 'raw_values' :
+ Returns a full set of errors in case of multioutput input.
+
+ 'uniform_average' :
+ Scores of all outputs are averaged with uniform weight.
+
+ Returns
+ -------
+ score : float or ndarray of floats
+ The :math:`D^2` score with a pinball deviance
+ or ndarray of scores if `multioutput='raw_values'`.
+
+ Notes
+ -----
+ Like :math:`R^2`, :math:`D^2` score may be negative
+ (it need not actually be the square of a quantity D).
+
+ This metric is not well-defined for a single point and will return a NaN
+ value if n_samples is less than two.
+
+ References
+ ----------
+ .. [1] Eq. (7) of `Koenker, Roger; Machado, José A. F. (1999).
+ "Goodness of Fit and Related Inference Processes for Quantile Regression"
+ <http://dx.doi.org/10.1080/01621459.1999.10473882>`_
+ .. [2] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J.
+ Wainwright. "Statistical Learning with Sparsity: The Lasso and
+ Generalizations." (2015). https://trevorhastie.github.io
+
+ Examples
+ --------
+ >>> from sklearn.metrics import d2_pinball_score
+ >>> y_true = [1, 2, 3]
+ >>> y_pred = [1, 3, 3]
+ >>> d2_pinball_score(y_true, y_pred)
+ 0.5
+ >>> d2_pinball_score(y_true, y_pred, alpha=0.9)
+ 0.772...
+ >>> d2_pinball_score(y_true, y_pred, alpha=0.1)
+ -1.045...
+ >>> d2_pinball_score(y_true, y_true, alpha=0.1)
+ 1.0
+ """
+ y_type, y_true, y_pred, multioutput = _check_reg_targets(
+ y_true, y_pred, multioutput
+ )
+ check_consistent_length(y_true, y_pred, sample_weight)
+
+ if _num_samples(y_pred) < 2:
+ msg = "D^2 score is not well-defined with less than two samples."
+ warnings.warn(msg, UndefinedMetricWarning)
+ return float("nan")
+
+ numerator = mean_pinball_loss(
+ y_true,
+ y_pred,
+ sample_weight=sample_weight,
+ alpha=alpha,
+ multioutput="raw_values",
+ )
+
+ if sample_weight is None:
+ y_quantile = np.tile(
+ np.percentile(y_true, q=alpha * 100, axis=0), (len(y_true), 1)
+ )
+ else:
+ sample_weight = _check_sample_weight(sample_weight, y_true)
+ y_quantile = np.tile(
+ _weighted_percentile(
+ y_true, sample_weight=sample_weight, percentile=alpha * 100
+ ),
+ (len(y_true), 1),
+ )
+
+ denominator = mean_pinball_loss(
+ y_true,
+ y_quantile,
+ sample_weight=sample_weight,
+ alpha=alpha,
+ multioutput="raw_values",
+ )
+
+ nonzero_numerator = numerator != 0
+ nonzero_denominator = denominator != 0
+ valid_score = nonzero_numerator & nonzero_denominator
+ output_scores = np.ones(y_true.shape[1])
+
+ output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score])
+ output_scores[nonzero_numerator & ~nonzero_denominator] = 0.0
+
+ if isinstance(multioutput, str):
+ if multioutput == "raw_values":
+ # return scores individually
+ return output_scores
+ elif multioutput == "uniform_average":
+ # passing None as weights to np.average results in uniform mean
+ avg_weights = None
+ else:
+ raise ValueError(
+ "multioutput is expected to be 'raw_values' "
+ "or 'uniform_average' but we got %r"
+ " instead." % multioutput
+ )
+ else:
+ avg_weights = multioutput
+
+ return np.average(output_scores, weights=avg_weights)
+
+
+def d2_absolute_error_score(
+ y_true, y_pred, *, sample_weight=None, multioutput="uniform_average"
+):
+ """
+ :math:`D^2` regression score function, \
+ fraction of absolute error explained.
+
+ Best possible score is 1.0 and it can be negative (because the model can be
+ arbitrarily worse). A model that always uses the empirical median of `y_true`
+ as constant prediction, disregarding the input features,
+ gets a :math:`D^2` score of 0.0.
+
+ Read more in the :ref:`User Guide <d2_score>`.
+
+ .. versionadded:: 1.1
+
+ Parameters
+ ----------
+ y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
+ Ground truth (correct) target values.
+
+ y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
+ Estimated target values.
+
+ sample_weight : array-like of shape (n_samples,), optional
+ Sample weights.
+
+ multioutput : {'raw_values', 'uniform_average'} or array-like of shape \
+ (n_outputs,), default='uniform_average'
+ Defines aggregating of multiple output values.
+ Array-like value defines weights used to average scores.
+
+ 'raw_values' :
+ Returns a full set of errors in case of multioutput input.
+
+ 'uniform_average' :
+ Scores of all outputs are averaged with uniform weight.
+
+ Returns
+ -------
+ score : float or ndarray of floats
+ The :math:`D^2` score with an absolute error deviance
+ or ndarray of scores if 'multioutput' is 'raw_values'.
+
+ Notes
+ -----
+ Like :math:`R^2`, :math:`D^2` score may be negative
+ (it need not actually be the square of a quantity D).
+
+ This metric is not well-defined for single samples and will return a NaN
+ value if n_samples is less than two.
+
+ References
+ ----------
+ .. [1] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J.
+ Wainwright. "Statistical Learning with Sparsity: The Lasso and
+ Generalizations." (2015). https://trevorhastie.github.io
+
+ Examples
+ --------
+ >>> from sklearn.metrics import d2_absolute_error_score
+ >>> y_true = [3, -0.5, 2, 7]
+ >>> y_pred = [2.5, 0.0, 2, 8]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ 0.764...
+ >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
+ >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
+ >>> d2_absolute_error_score(y_true, y_pred, multioutput='uniform_average')
+ 0.691...
+ >>> d2_absolute_error_score(y_true, y_pred, multioutput='raw_values')
+ array([0.8125 , 0.57142857])
+ >>> y_true = [1, 2, 3]
+ >>> y_pred = [1, 2, 3]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ 1.0
+ >>> y_true = [1, 2, 3]
+ >>> y_pred = [2, 2, 2]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ 0.0
+ >>> y_true = [1, 2, 3]
+ >>> y_pred = [3, 2, 1]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ -1.0
+ """
+ return d2_pinball_score(
+ y_true, y_pred, sample_weight=sample_weight, alpha=0.5, multioutput=multioutput
+ )
|
diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py
index dfd43ef34096f..1e627f9f86676 100644
--- a/sklearn/metrics/tests/test_common.py
+++ b/sklearn/metrics/tests/test_common.py
@@ -30,6 +30,8 @@
from sklearn.metrics import confusion_matrix
from sklearn.metrics import coverage_error
from sklearn.metrics import d2_tweedie_score
+from sklearn.metrics import d2_pinball_score
+from sklearn.metrics import d2_absolute_error_score
from sklearn.metrics import det_curve
from sklearn.metrics import explained_variance_score
from sklearn.metrics import f1_score
@@ -112,6 +114,8 @@
"mean_gamma_deviance": mean_gamma_deviance,
"mean_compound_poisson_deviance": partial(mean_tweedie_deviance, power=1.4),
"d2_tweedie_score": partial(d2_tweedie_score, power=1.4),
+ "d2_pinball_score": d2_pinball_score,
+ "d2_absolute_error_score": d2_absolute_error_score,
}
CLASSIFICATION_METRICS = {
@@ -446,6 +450,8 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"explained_variance_score",
"mean_absolute_percentage_error",
"mean_pinball_loss",
+ "d2_pinball_score",
+ "d2_absolute_error_score",
}
# Symmetric with respect to their input arguments y_true and y_pred
@@ -513,6 +519,8 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"mean_poisson_deviance",
"mean_compound_poisson_deviance",
"d2_tweedie_score",
+ "d2_pinball_score",
+ "d2_absolute_error_score",
"mean_absolute_percentage_error",
}
diff --git a/sklearn/metrics/tests/test_regression.py b/sklearn/metrics/tests/test_regression.py
index f5ffc648ed21b..a95125493047b 100644
--- a/sklearn/metrics/tests/test_regression.py
+++ b/sklearn/metrics/tests/test_regression.py
@@ -22,6 +22,8 @@
from sklearn.metrics import r2_score
from sklearn.metrics import mean_tweedie_deviance
from sklearn.metrics import d2_tweedie_score
+from sklearn.metrics import d2_pinball_score
+from sklearn.metrics import d2_absolute_error_score
from sklearn.metrics import make_scorer
from sklearn.metrics._regression import _check_reg_targets
@@ -62,6 +64,26 @@ def test_regression_metrics(n_samples=50):
assert_almost_equal(
d2_tweedie_score(y_true, y_pred, power=0), r2_score(y_true, y_pred)
)
+ dev_median = np.abs(y_true - np.median(y_true)).sum()
+ assert_array_almost_equal(
+ d2_absolute_error_score(y_true, y_pred),
+ 1 - np.abs(y_true - y_pred).sum() / dev_median,
+ )
+ alpha = 0.2
+ pinball_loss = lambda y_true, y_pred, alpha: alpha * np.maximum(
+ y_true - y_pred, 0
+ ) + (1 - alpha) * np.maximum(y_pred - y_true, 0)
+ y_quantile = np.percentile(y_true, q=alpha * 100)
+ assert_almost_equal(
+ d2_pinball_score(y_true, y_pred, alpha=alpha),
+ 1
+ - pinball_loss(y_true, y_pred, alpha).sum()
+ / pinball_loss(y_true, y_quantile, alpha).sum(),
+ )
+ assert_almost_equal(
+ d2_absolute_error_score(y_true, y_pred),
+ d2_pinball_score(y_true, y_pred, alpha=0.5),
+ )
# Tweedie deviance needs positive y_pred, except for p=0,
# p>=2 needs positive y_true
@@ -139,6 +161,20 @@ def test_multioutput_regression():
error = r2_score(y_true, y_pred, multioutput="uniform_average")
assert_almost_equal(error, -0.875)
+ score = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values")
+ raw_expected_score = [
+ 1
+ - np.abs(y_true[:, i] - y_pred[:, i]).sum()
+ / np.abs(y_true[:, i] - np.median(y_true[:, i])).sum()
+ for i in range(y_true.shape[1])
+ ]
+ # in the last case, the denominator vanishes and hence we get nan,
+ # but since the the numerator vanishes as well the expected score is 1.0
+ raw_expected_score = np.where(np.isnan(raw_expected_score), 1, raw_expected_score)
+ assert_array_almost_equal(score, raw_expected_score)
+
+ score = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="uniform_average")
+ assert_almost_equal(score, raw_expected_score.mean())
# constant `y_true` with force_finite=True leads to 1. or 0.
yc = [5.0, 5.0]
error = r2_score(yc, [5.0, 5.0], multioutput="variance_weighted")
@@ -192,6 +228,7 @@ def test_regression_metrics_at_limits():
# Perfect cases
assert_almost_equal(r2_score([0.0, 1], [0.0, 1]), 1.0)
+ assert_almost_equal(d2_pinball_score([0.0, 1], [0.0, 1]), 1.0)
# Non-finite cases
# R² and explained variance have a fix by default for non-finite cases
@@ -319,10 +356,15 @@ def test_regression_multioutput_array():
)
with pytest.raises(ValueError, match=err_msg):
mean_pinball_loss(y_true, y_pred, multioutput="variance_weighted")
+
+ with pytest.raises(ValueError, match=err_msg):
+ d2_pinball_score(y_true, y_pred, multioutput="variance_weighted")
+
pbl = mean_pinball_loss(y_true, y_pred, multioutput="raw_values")
mape = mean_absolute_percentage_error(y_true, y_pred, multioutput="raw_values")
r = r2_score(y_true, y_pred, multioutput="raw_values")
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values")
+ d2ps = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values")
evs2 = explained_variance_score(
y_true, y_pred, multioutput="raw_values", force_finite=False
)
@@ -333,6 +375,7 @@ def test_regression_multioutput_array():
assert_array_almost_equal(mape, [0.0778, 0.2262], decimal=2)
assert_array_almost_equal(r, [0.95, 0.93], decimal=2)
assert_array_almost_equal(evs, [0.95, 0.93], decimal=2)
+ assert_array_almost_equal(d2ps, [0.833, 0.722], decimal=2)
assert_array_almost_equal(evs2, [0.95, 0.93], decimal=2)
# mean_absolute_error and mean_squared_error are equal because
@@ -343,10 +386,12 @@ def test_regression_multioutput_array():
mae = mean_absolute_error(y_true, y_pred, multioutput="raw_values")
pbl = mean_pinball_loss(y_true, y_pred, multioutput="raw_values")
r = r2_score(y_true, y_pred, multioutput="raw_values")
+ d2ps = d2_pinball_score(y_true, y_pred, multioutput="raw_values")
assert_array_almost_equal(mse, [1.0, 1.0], decimal=2)
assert_array_almost_equal(mae, [1.0, 1.0], decimal=2)
assert_array_almost_equal(pbl, [0.5, 0.5], decimal=2)
assert_array_almost_equal(r, [0.0, 0.0], decimal=2)
+ assert_array_almost_equal(d2ps, [0.0, 0.0], decimal=2)
r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="raw_values")
assert_array_almost_equal(r, [0, -3.5], decimal=2)
@@ -382,6 +427,8 @@ def test_regression_multioutput_array():
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values")
assert_array_almost_equal(evs, [1.0, -3.0], decimal=2)
assert np.mean(evs) == explained_variance_score(y_true, y_pred)
+ d2ps = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values")
+ assert_array_almost_equal(d2ps, [1.0, -1.0], decimal=2)
evs2 = explained_variance_score(
y_true, y_pred, multioutput="raw_values", force_finite=False
)
@@ -410,6 +457,7 @@ def test_regression_custom_weights():
mapew = mean_absolute_percentage_error(y_true, y_pred, multioutput=[0.4, 0.6])
rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6])
evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6])
+ d2psw = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput=[0.4, 0.6])
evsw2 = explained_variance_score(
y_true, y_pred, multioutput=[0.4, 0.6], force_finite=False
)
@@ -420,6 +468,7 @@ def test_regression_custom_weights():
assert_almost_equal(mapew, 0.1668, decimal=2)
assert_almost_equal(rw, 0.94, decimal=2)
assert_almost_equal(evsw, 0.94, decimal=2)
+ assert_almost_equal(d2psw, 0.766, decimal=2)
assert_almost_equal(evsw2, 0.94, decimal=2)
# Handling msle separately as it does not accept negative inputs.
@@ -432,7 +481,7 @@ def test_regression_custom_weights():
assert_almost_equal(msle, msle2, decimal=2)
[email protected]("metric", [r2_score, d2_tweedie_score])
[email protected]("metric", [r2_score, d2_tweedie_score, d2_pinball_score])
def test_regression_single_sample(metric):
y_true = [0]
y_pred = [1]
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex b7000bcf7cbb2..c3e6c4f2f674b 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -996,6 +996,8 @@ details.\n metrics.mean_tweedie_deviance\n metrics.d2_tweedie_score\n metrics.mean_pinball_loss\n+ metrics.d2_pinball_score\n+ metrics.d2_absolute_error_score\n \n Multilabel ranking metrics\n --------------------------\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex a1fce2d3454dc..8468dce3f93c5 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -101,6 +101,9 @@ Scoring Function\n 'neg_mean_poisson_deviance' :func:`metrics.mean_poisson_deviance`\n 'neg_mean_gamma_deviance' :func:`metrics.mean_gamma_deviance`\n 'neg_mean_absolute_percentage_error' :func:`metrics.mean_absolute_percentage_error`\n+'d2_absolute_error_score' :func:`metrics.d2_absolute_error_score`\n+'d2_pinball_score' :func:`metrics.d2_pinball_score`\n+'d2_tweedie_score' :func:`metrics.d2_tweedie_score`\n ==================================== ============================================== ==================================\n \n \n@@ -1968,7 +1971,8 @@ The :mod:`sklearn.metrics` module implements several loss, score, and utility\n functions to measure regression performance. Some of those have been enhanced\n to handle the multioutput case: :func:`mean_squared_error`,\n :func:`mean_absolute_error`, :func:`r2_score`,\n-:func:`explained_variance_score` and :func:`mean_pinball_loss`.\n+:func:`explained_variance_score`, :func:`mean_pinball_loss`, :func:`d2_pinball_score`\n+and :func:`d2_absolute_error_score`.\n \n \n These functions have an ``multioutput`` keyword argument which specifies the\n@@ -2370,8 +2374,8 @@ is defined as\n \\sum_{i=0}^{n_\\text{samples} - 1}\n \\begin{cases}\n (y_i-\\hat{y}_i)^2, & \\text{for }p=0\\text{ (Normal)}\\\\\n- 2(y_i \\log(y/\\hat{y}_i) + \\hat{y}_i - y_i), & \\text{for}p=1\\text{ (Poisson)}\\\\\n- 2(\\log(\\hat{y}_i/y_i) + y_i/\\hat{y}_i - 1), & \\text{for}p=2\\text{ (Gamma)}\\\\\n+ 2(y_i \\log(y/\\hat{y}_i) + \\hat{y}_i - y_i), & \\text{for }p=1\\text{ (Poisson)}\\\\\n+ 2(\\log(\\hat{y}_i/y_i) + y_i/\\hat{y}_i - 1), & \\text{for }p=2\\text{ (Gamma)}\\\\\n 2\\left(\\frac{\\max(y_i,0)^{2-p}}{(1-p)(2-p)}-\n \\frac{y\\,\\hat{y}^{1-p}_i}{1-p}+\\frac{\\hat{y}^{2-p}_i}{2-p}\\right),\n & \\text{otherwise}\n@@ -2414,34 +2418,6 @@ the difference in errors decreases. Finally, by setting, ``power=2``::\n we would get identical errors. The deviance when ``power=2`` is thus only\n sensitive to relative errors.\n \n-.. _d2_tweedie_score:\n-\n-D² score, the coefficient of determination\n--------------------------------------------\n-\n-The :func:`d2_tweedie_score` function computes the percentage of deviance\n-explained. It is a generalization of R², where the squared error is replaced by\n-the Tweedie deviance. D², also known as McFadden's likelihood ratio index, is\n-calculated as\n-\n-.. math::\n-\n- D^2(y, \\hat{y}) = 1 - \\frac{\\text{D}(y, \\hat{y})}{\\text{D}(y, \\bar{y})} \\,.\n-\n-The argument ``power`` defines the Tweedie power as for\n-:func:`mean_tweedie_deviance`. Note that for `power=0`,\n-:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).\n-\n-Like R², the best possible score is 1.0 and it can be negative (because the\n-model can be arbitrarily worse). A constant model that always predicts the\n-expected value of y, disregarding the input features, would get a D² score\n-of 0.0.\n-\n-A scorer object with a specific choice of ``power`` can be built by::\n-\n- >>> from sklearn.metrics import d2_tweedie_score, make_scorer\n- >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)\n-\n .. _pinball_loss:\n \n Pinball loss\n@@ -2506,6 +2482,93 @@ explained in the example linked below.\n hyper-parameters of quantile regression models on data with non-symmetric\n noise and outliers.\n \n+.. _d2_score:\n+\n+D² score\n+--------\n+\n+The D² score computes the fraction of deviance explained. \n+It is a generalization of R², where the squared error is generalized and replaced \n+by a deviance of choice :math:`\\text{dev}(y, \\hat{y})`\n+(e.g., Tweedie, pinball or mean absolute error). D² is a form of a *skill score*.\n+It is calculated as\n+\n+.. math::\n+\n+ D^2(y, \\hat{y}) = 1 - \\frac{\\text{dev}(y, \\hat{y})}{\\text{dev}(y, y_{\\text{null}})} \\,.\n+\n+Where :math:`y_{\\text{null}}` is the optimal prediction of an intercept-only model\n+(e.g., the mean of `y_true` for the Tweedie case, the median for absolute \n+error and the alpha-quantile for pinball loss).\n+\n+Like R², the best possible score is 1.0 and it can be negative (because the\n+model can be arbitrarily worse). A constant model that always predicts\n+:math:`y_{\\text{null}}`, disregarding the input features, would get a D² score\n+of 0.0.\n+\n+D² Tweedie score\n+^^^^^^^^^^^^^^^^\n+\n+The :func:`d2_tweedie_score` function implements the special case of D² \n+where :math:`\\text{dev}(y, \\hat{y})` is the Tweedie deviance, see :ref:`mean_tweedie_deviance`. \n+It is also known as D² Tweedie and is related to McFadden's likelihood ratio index.\n+\n+The argument ``power`` defines the Tweedie power as for\n+:func:`mean_tweedie_deviance`. Note that for `power=0`,\n+:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).\n+\n+A scorer object with a specific choice of ``power`` can be built by::\n+\n+ >>> from sklearn.metrics import d2_tweedie_score, make_scorer\n+ >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)\n+\n+D² pinball score\n+^^^^^^^^^^^^^^^^^^^^^\n+\n+The :func:`d2_pinball_score` function implements the special case\n+of D² with the pinball loss, see :ref:`pinball_loss`, i.e.:\n+\n+.. math::\n+\n+ \\text{dev}(y, \\hat{y}) = \\text{pinball}(y, \\hat{y}).\n+\n+The argument ``alpha`` defines the slope of the pinball loss as for\n+:func:`mean_pinball_loss` (:ref:`pinball_loss`). It determines the \n+quantile level ``alpha`` for which the pinball loss and also D²\n+are optimal. Note that for `alpha=0.5` (the default) :func:`d2_pinball_score`\n+equals :func:`d2_absolute_error_score`.\n+\n+A scorer object with a specific choice of ``alpha`` can be built by::\n+\n+ >>> from sklearn.metrics import d2_pinball_score, make_scorer\n+ >>> d2_pinball_score_08 = make_scorer(d2_pinball_score, alpha=0.8)\n+\n+D² absolute error score\n+^^^^^^^^^^^^^^^^^^^^^^^\n+\n+The :func:`d2_absolute_error_score` function implements the special case of\n+the :ref:`mean_absolute_error`:\n+\n+.. math::\n+\n+ \\text{dev}(y, \\hat{y}) = \\text{MAE}(y, \\hat{y}).\n+\n+Here are some usage examples of the :func:`d2_absolute_error_score` function::\n+\n+ >>> from sklearn.metrics import d2_absolute_error_score\n+ >>> y_true = [3, -0.5, 2, 7]\n+ >>> y_pred = [2.5, 0.0, 2, 8]\n+ >>> d2_absolute_error_score(y_true, y_pred)\n+ 0.764...\n+ >>> y_true = [1, 2, 3]\n+ >>> y_pred = [1, 2, 3]\n+ >>> d2_absolute_error_score(y_true, y_pred)\n+ 1.0\n+ >>> y_true = [1, 2, 3]\n+ >>> y_pred = [2, 2, 2]\n+ >>> d2_absolute_error_score(y_true, y_pred)\n+ 0.0\n+\n \n .. _clustering_metrics:\n \n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex b9ab45e1d344a..85053e5a68679 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -630,6 +630,14 @@ Changelog\n instead of the finite approximation (`1.0` and `0.0` respectively) currently\n returned by default. :pr:`17266` by :user:`Sylvain Marié <smarie>`.\n \n+- |Feature| :func:`d2_pinball_score` and :func:`d2_absolute_error_score`\n+ calculate the :math:`D^2` regression score for the pinball loss and the\n+ absolute error respectively. :func:`d2_absolute_error_score` is a special case\n+ of :func:`d2_pinball_score` with a fixed quantile parameter `alpha=0.5`\n+ for ease of use and discovery. The :math:`D^2` scores are generalizations\n+ of the `r2_score` and can be interpeted as the fraction of deviance explained.\n+ :pr:`22118` by :user:`Ohad Michel <ohadmich>`\n+\n - |Enhancement| :func:`metrics.top_k_accuracy_score` raises an improved error\n message when `y_true` is binary and `y_score` is 2d. :pr:`22284` by `Thomas Fan`_.\n \n"
}
] |
1.01
|
142e388fa004e3367fdfc0be4a194be0d0c61c8c
|
[] |
[
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric21]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric37]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric29]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric29]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric3]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric33]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric38]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric30]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-exponential]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric27]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric19]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f1_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric18]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_representation_invariance",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric32]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric31]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric11]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric19]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric31]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric9]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric24]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric20]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric31]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric8]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric30]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric22]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix_sample]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric14]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric22]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-average_precision_score-True]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric21]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric10]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric30]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric20]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric38]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric14]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric2]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-normal]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric16]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-log_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric34]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric23]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric23]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric16]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[det_curve]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric21]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric19]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-recall_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric35]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric7]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric24]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric12]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric41]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[hamming_loss]",
"sklearn/metrics/tests/test_regression.py::test_mean_absolute_percentage_error",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric29]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[r2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric41]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric29]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric31]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric41]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[r2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric14]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric15]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample[explained_variance_score]",
"sklearn/metrics/tests/test_regression.py::test_multioutput_regression",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric33]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric19]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric18]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric13]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric33]",
"sklearn/metrics/tests/test_regression.py::test__check_reg_targets_exception",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric15]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric40]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-f1_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric8]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric39]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric9]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric38]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric16]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-max_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric13]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric10]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[max_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric23]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric41]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric25]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric27]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric36]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric40]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric29]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric27]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric32]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric12]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric21]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric37]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric20]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_precision_score]",
"sklearn/metrics/tests/test_regression.py::test_regression_metrics_at_limits",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric40]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric10]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric24]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric20]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric19]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric2]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_squared_error]",
"sklearn/metrics/tests/test_regression.py::test__check_reg_targets",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric37]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric32]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric25]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric12]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric36]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[r2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric39]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric28]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric40]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric22]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric11]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric7]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric31]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric25]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric15]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric32]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric17]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric3]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[partial_roc_auc]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-normal]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric26]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric32]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[balanced_accuracy_score]",
"sklearn/metrics/tests/test_regression.py::test_regression_custom_weights",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric18]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric33]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric28]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric3]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric41]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric34]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric11]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[<lambda>]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric9]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric25]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric32]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric38]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric34]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric32]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric19]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric3]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric36]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric15]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric38]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f2_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-uniform]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric34]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric18]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-median_absolute_error]",
"sklearn/metrics/tests/test_regression.py::test_mean_squared_error_multioutput_raw_value_squared",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric15]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric18]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric3]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-jaccard_score-False]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric11]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric30]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric8]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric22]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric17]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric25]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric2]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric23]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric36]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric35]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric16]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric27]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric30]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-f1_score-False]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric31]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric12]",
"sklearn/metrics/tests/test_common.py::test_single_sample[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric33]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric30]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric2]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetry_consistency",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric28]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric23]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric26]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric31]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric13]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric34]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric16]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_squared_error]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-uniform]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-metric3-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-d2_absolute_error_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-exponential]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric27]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric14]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric31]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_regression.py::test_regression_multioutput_array",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric32]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-log_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_regression.py::test_tweedie_deviance_continuity",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric30]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric30]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric34]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric3]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_score-False]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-lognormal]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric8]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric23]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric22]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric36]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric2]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric30]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric37]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric20]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric8]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric20]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric15]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric11]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric27]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric12]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric26]",
"sklearn/metrics/tests/test_common.py::test_no_averaging_labels",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric38]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric17]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_single_sample[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-confusion_matrix]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-uniform]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric10]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-metric3-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric3]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric28]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric17]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric23]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric10]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric39]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric18]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-max_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-exponential]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric34]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric31]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric17]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric18]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric27]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric14]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric29]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric33]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-max_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric40]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric13]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric7]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric15]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric35]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric18]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-jaccard_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric3]",
"sklearn/metrics/tests/test_regression.py::test_regression_single_sample[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric23]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric35]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-ndcg_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-normal]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric20]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric9]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric16]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric31]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric34]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric19]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[d2_absolute_error_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric28]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric9]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric3]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric41]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric3]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric18]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric28]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[det_curve]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric2]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-f1_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric37]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric21]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-average_precision_score-True]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric20]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric31]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[top_k_accuracy_score]",
"sklearn/metrics/tests/test_regression.py::test_regression_metrics",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-recall_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric24]",
"sklearn/metrics/tests/test_common.py::test_averaging_binary_multilabel_all_zeroes",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric35]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric26]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric7]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric3]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric25]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric27]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[max_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric29]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-lognormal]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric41]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric19]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric24]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric2]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric38]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-jaccard_score]",
"sklearn/metrics/tests/test_regression.py::test_regression_single_sample[d2_pinball_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric39]",
"sklearn/metrics/tests/test_regression.py::test_dummy_quantile_parameter_tuning",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f0.5_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-lognormal]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric38]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[hamming_loss]",
"sklearn/metrics/tests/test_regression.py::test_regression_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric13]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true6-y_score6-metric25]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric10]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex b7000bcf7cbb2..c3e6c4f2f674b 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -996,6 +996,8 @@ details.\n metrics.mean_tweedie_deviance\n metrics.d2_tweedie_score\n metrics.mean_pinball_loss\n+ metrics.d2_pinball_score\n+ metrics.d2_absolute_error_score\n \n Multilabel ranking metrics\n --------------------------\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex a1fce2d3454dc..8468dce3f93c5 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -101,6 +101,9 @@ Scoring Function\n 'neg_mean_poisson_deviance' :func:`metrics.mean_poisson_deviance`\n 'neg_mean_gamma_deviance' :func:`metrics.mean_gamma_deviance`\n 'neg_mean_absolute_percentage_error' :func:`metrics.mean_absolute_percentage_error`\n+'d2_absolute_error_score' :func:`metrics.d2_absolute_error_score`\n+'d2_pinball_score' :func:`metrics.d2_pinball_score`\n+'d2_tweedie_score' :func:`metrics.d2_tweedie_score`\n ==================================== ============================================== ==================================\n \n \n@@ -1968,7 +1971,8 @@ The :mod:`sklearn.metrics` module implements several loss, score, and utility\n functions to measure regression performance. Some of those have been enhanced\n to handle the multioutput case: :func:`mean_squared_error`,\n :func:`mean_absolute_error`, :func:`r2_score`,\n-:func:`explained_variance_score` and :func:`mean_pinball_loss`.\n+:func:`explained_variance_score`, :func:`mean_pinball_loss`, :func:`d2_pinball_score`\n+and :func:`d2_absolute_error_score`.\n \n \n These functions have an ``multioutput`` keyword argument which specifies the\n@@ -2370,8 +2374,8 @@ is defined as\n \\sum_{i=0}^{n_\\text{samples} - 1}\n \\begin{cases}\n (y_i-\\hat{y}_i)^2, & \\text{for }p=0\\text{ (Normal)}\\\\\n- 2(y_i \\log(y/\\hat{y}_i) + \\hat{y}_i - y_i), & \\text{for}p=1\\text{ (Poisson)}\\\\\n- 2(\\log(\\hat{y}_i/y_i) + y_i/\\hat{y}_i - 1), & \\text{for}p=2\\text{ (Gamma)}\\\\\n+ 2(y_i \\log(y/\\hat{y}_i) + \\hat{y}_i - y_i), & \\text{for }p=1\\text{ (Poisson)}\\\\\n+ 2(\\log(\\hat{y}_i/y_i) + y_i/\\hat{y}_i - 1), & \\text{for }p=2\\text{ (Gamma)}\\\\\n 2\\left(\\frac{\\max(y_i,0)^{2-p}}{(1-p)(2-p)}-\n \\frac{y\\,\\hat{y}^{1-p}_i}{1-p}+\\frac{\\hat{y}^{2-p}_i}{2-p}\\right),\n & \\text{otherwise}\n@@ -2414,34 +2418,6 @@ the difference in errors decreases. Finally, by setting, ``power=2``::\n we would get identical errors. The deviance when ``power=2`` is thus only\n sensitive to relative errors.\n \n-.. _d2_tweedie_score:\n-\n-D² score, the coefficient of determination\n--------------------------------------------\n-\n-The :func:`d2_tweedie_score` function computes the percentage of deviance\n-explained. It is a generalization of R², where the squared error is replaced by\n-the Tweedie deviance. D², also known as McFadden's likelihood ratio index, is\n-calculated as\n-\n-.. math::\n-\n- D^2(y, \\hat{y}) = 1 - \\frac{\\text{D}(y, \\hat{y})}{\\text{D}(y, \\bar{y})} \\,.\n-\n-The argument ``power`` defines the Tweedie power as for\n-:func:`mean_tweedie_deviance`. Note that for `power=0`,\n-:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).\n-\n-Like R², the best possible score is 1.0 and it can be negative (because the\n-model can be arbitrarily worse). A constant model that always predicts the\n-expected value of y, disregarding the input features, would get a D² score\n-of 0.0.\n-\n-A scorer object with a specific choice of ``power`` can be built by::\n-\n- >>> from sklearn.metrics import d2_tweedie_score, make_scorer\n- >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)\n-\n .. _pinball_loss:\n \n Pinball loss\n@@ -2506,6 +2482,93 @@ explained in the example linked below.\n hyper-parameters of quantile regression models on data with non-symmetric\n noise and outliers.\n \n+.. _d2_score:\n+\n+D² score\n+--------\n+\n+The D² score computes the fraction of deviance explained. \n+It is a generalization of R², where the squared error is generalized and replaced \n+by a deviance of choice :math:`\\text{dev}(y, \\hat{y})`\n+(e.g., Tweedie, pinball or mean absolute error). D² is a form of a *skill score*.\n+It is calculated as\n+\n+.. math::\n+\n+ D^2(y, \\hat{y}) = 1 - \\frac{\\text{dev}(y, \\hat{y})}{\\text{dev}(y, y_{\\text{null}})} \\,.\n+\n+Where :math:`y_{\\text{null}}` is the optimal prediction of an intercept-only model\n+(e.g., the mean of `y_true` for the Tweedie case, the median for absolute \n+error and the alpha-quantile for pinball loss).\n+\n+Like R², the best possible score is 1.0 and it can be negative (because the\n+model can be arbitrarily worse). A constant model that always predicts\n+:math:`y_{\\text{null}}`, disregarding the input features, would get a D² score\n+of 0.0.\n+\n+D² Tweedie score\n+^^^^^^^^^^^^^^^^\n+\n+The :func:`d2_tweedie_score` function implements the special case of D² \n+where :math:`\\text{dev}(y, \\hat{y})` is the Tweedie deviance, see :ref:`mean_tweedie_deviance`. \n+It is also known as D² Tweedie and is related to McFadden's likelihood ratio index.\n+\n+The argument ``power`` defines the Tweedie power as for\n+:func:`mean_tweedie_deviance`. Note that for `power=0`,\n+:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).\n+\n+A scorer object with a specific choice of ``power`` can be built by::\n+\n+ >>> from sklearn.metrics import d2_tweedie_score, make_scorer\n+ >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)\n+\n+D² pinball score\n+^^^^^^^^^^^^^^^^^^^^^\n+\n+The :func:`d2_pinball_score` function implements the special case\n+of D² with the pinball loss, see :ref:`pinball_loss`, i.e.:\n+\n+.. math::\n+\n+ \\text{dev}(y, \\hat{y}) = \\text{pinball}(y, \\hat{y}).\n+\n+The argument ``alpha`` defines the slope of the pinball loss as for\n+:func:`mean_pinball_loss` (:ref:`pinball_loss`). It determines the \n+quantile level ``alpha`` for which the pinball loss and also D²\n+are optimal. Note that for `alpha=0.5` (the default) :func:`d2_pinball_score`\n+equals :func:`d2_absolute_error_score`.\n+\n+A scorer object with a specific choice of ``alpha`` can be built by::\n+\n+ >>> from sklearn.metrics import d2_pinball_score, make_scorer\n+ >>> d2_pinball_score_08 = make_scorer(d2_pinball_score, alpha=0.8)\n+\n+D² absolute error score\n+^^^^^^^^^^^^^^^^^^^^^^^\n+\n+The :func:`d2_absolute_error_score` function implements the special case of\n+the :ref:`mean_absolute_error`:\n+\n+.. math::\n+\n+ \\text{dev}(y, \\hat{y}) = \\text{MAE}(y, \\hat{y}).\n+\n+Here are some usage examples of the :func:`d2_absolute_error_score` function::\n+\n+ >>> from sklearn.metrics import d2_absolute_error_score\n+ >>> y_true = [3, -0.5, 2, 7]\n+ >>> y_pred = [2.5, 0.0, 2, 8]\n+ >>> d2_absolute_error_score(y_true, y_pred)\n+ 0.764...\n+ >>> y_true = [1, 2, 3]\n+ >>> y_pred = [1, 2, 3]\n+ >>> d2_absolute_error_score(y_true, y_pred)\n+ 1.0\n+ >>> y_true = [1, 2, 3]\n+ >>> y_pred = [2, 2, 2]\n+ >>> d2_absolute_error_score(y_true, y_pred)\n+ 0.0\n+\n \n .. _clustering_metrics:\n \n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex b9ab45e1d344a..85053e5a68679 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -630,6 +630,14 @@ Changelog\n instead of the finite approximation (`1.0` and `0.0` respectively) currently\n returned by default. :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Feature| :func:`d2_pinball_score` and :func:`d2_absolute_error_score`\n+ calculate the :math:`D^2` regression score for the pinball loss and the\n+ absolute error respectively. :func:`d2_absolute_error_score` is a special case\n+ of :func:`d2_pinball_score` with a fixed quantile parameter `alpha=0.5`\n+ for ease of use and discovery. The :math:`D^2` scores are generalizations\n+ of the `r2_score` and can be interpeted as the fraction of deviance explained.\n+ :pr:`<PRID>` by :user:`<NAME>`\n+\n - |Enhancement| :func:`metrics.top_k_accuracy_score` raises an improved error\n message when `y_true` is binary and `y_score` is 2d. :pr:`<PRID>` by `<NAME>`_.\n \n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index b7000bcf7cbb2..c3e6c4f2f674b 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -996,6 +996,8 @@ details.
metrics.mean_tweedie_deviance
metrics.d2_tweedie_score
metrics.mean_pinball_loss
+ metrics.d2_pinball_score
+ metrics.d2_absolute_error_score
Multilabel ranking metrics
--------------------------
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index a1fce2d3454dc..8468dce3f93c5 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -101,6 +101,9 @@ Scoring Function
'neg_mean_poisson_deviance' :func:`metrics.mean_poisson_deviance`
'neg_mean_gamma_deviance' :func:`metrics.mean_gamma_deviance`
'neg_mean_absolute_percentage_error' :func:`metrics.mean_absolute_percentage_error`
+'d2_absolute_error_score' :func:`metrics.d2_absolute_error_score`
+'d2_pinball_score' :func:`metrics.d2_pinball_score`
+'d2_tweedie_score' :func:`metrics.d2_tweedie_score`
==================================== ============================================== ==================================
@@ -1968,7 +1971,8 @@ The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure regression performance. Some of those have been enhanced
to handle the multioutput case: :func:`mean_squared_error`,
:func:`mean_absolute_error`, :func:`r2_score`,
-:func:`explained_variance_score` and :func:`mean_pinball_loss`.
+:func:`explained_variance_score`, :func:`mean_pinball_loss`, :func:`d2_pinball_score`
+and :func:`d2_absolute_error_score`.
These functions have an ``multioutput`` keyword argument which specifies the
@@ -2370,8 +2374,8 @@ is defined as
\sum_{i=0}^{n_\text{samples} - 1}
\begin{cases}
(y_i-\hat{y}_i)^2, & \text{for }p=0\text{ (Normal)}\\
- 2(y_i \log(y/\hat{y}_i) + \hat{y}_i - y_i), & \text{for}p=1\text{ (Poisson)}\\
- 2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1), & \text{for}p=2\text{ (Gamma)}\\
+ 2(y_i \log(y/\hat{y}_i) + \hat{y}_i - y_i), & \text{for }p=1\text{ (Poisson)}\\
+ 2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1), & \text{for }p=2\text{ (Gamma)}\\
2\left(\frac{\max(y_i,0)^{2-p}}{(1-p)(2-p)}-
\frac{y\,\hat{y}^{1-p}_i}{1-p}+\frac{\hat{y}^{2-p}_i}{2-p}\right),
& \text{otherwise}
@@ -2414,34 +2418,6 @@ the difference in errors decreases. Finally, by setting, ``power=2``::
we would get identical errors. The deviance when ``power=2`` is thus only
sensitive to relative errors.
-.. _d2_tweedie_score:
-
-D² score, the coefficient of determination
--------------------------------------------
-
-The :func:`d2_tweedie_score` function computes the percentage of deviance
-explained. It is a generalization of R², where the squared error is replaced by
-the Tweedie deviance. D², also known as McFadden's likelihood ratio index, is
-calculated as
-
-.. math::
-
- D^2(y, \hat{y}) = 1 - \frac{\text{D}(y, \hat{y})}{\text{D}(y, \bar{y})} \,.
-
-The argument ``power`` defines the Tweedie power as for
-:func:`mean_tweedie_deviance`. Note that for `power=0`,
-:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).
-
-Like R², the best possible score is 1.0 and it can be negative (because the
-model can be arbitrarily worse). A constant model that always predicts the
-expected value of y, disregarding the input features, would get a D² score
-of 0.0.
-
-A scorer object with a specific choice of ``power`` can be built by::
-
- >>> from sklearn.metrics import d2_tweedie_score, make_scorer
- >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)
-
.. _pinball_loss:
Pinball loss
@@ -2506,6 +2482,93 @@ explained in the example linked below.
hyper-parameters of quantile regression models on data with non-symmetric
noise and outliers.
+.. _d2_score:
+
+D² score
+--------
+
+The D² score computes the fraction of deviance explained.
+It is a generalization of R², where the squared error is generalized and replaced
+by a deviance of choice :math:`\text{dev}(y, \hat{y})`
+(e.g., Tweedie, pinball or mean absolute error). D² is a form of a *skill score*.
+It is calculated as
+
+.. math::
+
+ D^2(y, \hat{y}) = 1 - \frac{\text{dev}(y, \hat{y})}{\text{dev}(y, y_{\text{null}})} \,.
+
+Where :math:`y_{\text{null}}` is the optimal prediction of an intercept-only model
+(e.g., the mean of `y_true` for the Tweedie case, the median for absolute
+error and the alpha-quantile for pinball loss).
+
+Like R², the best possible score is 1.0 and it can be negative (because the
+model can be arbitrarily worse). A constant model that always predicts
+:math:`y_{\text{null}}`, disregarding the input features, would get a D² score
+of 0.0.
+
+D² Tweedie score
+^^^^^^^^^^^^^^^^
+
+The :func:`d2_tweedie_score` function implements the special case of D²
+where :math:`\text{dev}(y, \hat{y})` is the Tweedie deviance, see :ref:`mean_tweedie_deviance`.
+It is also known as D² Tweedie and is related to McFadden's likelihood ratio index.
+
+The argument ``power`` defines the Tweedie power as for
+:func:`mean_tweedie_deviance`. Note that for `power=0`,
+:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).
+
+A scorer object with a specific choice of ``power`` can be built by::
+
+ >>> from sklearn.metrics import d2_tweedie_score, make_scorer
+ >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)
+
+D² pinball score
+^^^^^^^^^^^^^^^^^^^^^
+
+The :func:`d2_pinball_score` function implements the special case
+of D² with the pinball loss, see :ref:`pinball_loss`, i.e.:
+
+.. math::
+
+ \text{dev}(y, \hat{y}) = \text{pinball}(y, \hat{y}).
+
+The argument ``alpha`` defines the slope of the pinball loss as for
+:func:`mean_pinball_loss` (:ref:`pinball_loss`). It determines the
+quantile level ``alpha`` for which the pinball loss and also D²
+are optimal. Note that for `alpha=0.5` (the default) :func:`d2_pinball_score`
+equals :func:`d2_absolute_error_score`.
+
+A scorer object with a specific choice of ``alpha`` can be built by::
+
+ >>> from sklearn.metrics import d2_pinball_score, make_scorer
+ >>> d2_pinball_score_08 = make_scorer(d2_pinball_score, alpha=0.8)
+
+D² absolute error score
+^^^^^^^^^^^^^^^^^^^^^^^
+
+The :func:`d2_absolute_error_score` function implements the special case of
+the :ref:`mean_absolute_error`:
+
+.. math::
+
+ \text{dev}(y, \hat{y}) = \text{MAE}(y, \hat{y}).
+
+Here are some usage examples of the :func:`d2_absolute_error_score` function::
+
+ >>> from sklearn.metrics import d2_absolute_error_score
+ >>> y_true = [3, -0.5, 2, 7]
+ >>> y_pred = [2.5, 0.0, 2, 8]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ 0.764...
+ >>> y_true = [1, 2, 3]
+ >>> y_pred = [1, 2, 3]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ 1.0
+ >>> y_true = [1, 2, 3]
+ >>> y_pred = [2, 2, 2]
+ >>> d2_absolute_error_score(y_true, y_pred)
+ 0.0
+
.. _clustering_metrics:
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index b9ab45e1d344a..85053e5a68679 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -630,6 +630,14 @@ Changelog
instead of the finite approximation (`1.0` and `0.0` respectively) currently
returned by default. :pr:`<PRID>` by :user:`<NAME>`.
+- |Feature| :func:`d2_pinball_score` and :func:`d2_absolute_error_score`
+ calculate the :math:`D^2` regression score for the pinball loss and the
+ absolute error respectively. :func:`d2_absolute_error_score` is a special case
+ of :func:`d2_pinball_score` with a fixed quantile parameter `alpha=0.5`
+ for ease of use and discovery. The :math:`D^2` scores are generalizations
+ of the `r2_score` and can be interpeted as the fraction of deviance explained.
+ :pr:`<PRID>` by :user:`<NAME>`
+
- |Enhancement| :func:`metrics.top_k_accuracy_score` raises an improved error
message when `y_true` is binary and `y_score` is 2d. :pr:`<PRID>` by `<NAME>`_.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22284
|
https://github.com/scikit-learn/scikit-learn/pull/22284
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index f0ccdc999c175..ec1d546da6712 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -592,6 +592,9 @@ Changelog
instead of the finite approximation (`1.0` and `0.0` respectively) currently
returned by default. :pr:`17266` by :user:`Sylvain Marié <smarie>`.
+- |Enhancement| :func:`metrics.top_k_accuracy_score` raises an improved error
+ message when `y_true` is binary and `y_score` is 2d. :pr:`22284` by `Thomas Fan`_.
+
- |API| :class:`metrics.DistanceMetric` has been moved from
:mod:`sklearn.neighbors` to :mod:`sklearn.metric`.
Using `neighbors.DistanceMetric` for imports is still valid for
diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py
index 7aa4ff4b8884c..ac14d219d28dd 100644
--- a/sklearn/metrics/_ranking.py
+++ b/sklearn/metrics/_ranking.py
@@ -1707,15 +1707,21 @@ def top_k_accuracy_score(
y_type = type_of_target(y_true, input_name="y_true")
if y_type == "binary" and labels is not None and len(labels) > 2:
y_type = "multiclass"
- y_score = check_array(y_score, ensure_2d=False)
- y_score = column_or_1d(y_score) if y_type == "binary" else y_score
- check_consistent_length(y_true, y_score, sample_weight)
-
if y_type not in {"binary", "multiclass"}:
raise ValueError(
f"y type must be 'binary' or 'multiclass', got '{y_type}' instead."
)
+ y_score = check_array(y_score, ensure_2d=False)
+ if y_type == "binary":
+ if y_score.ndim == 2 and y_score.shape[1] != 1:
+ raise ValueError(
+ "`y_true` is binary while y_score is 2d with"
+ f" {y_score.shape[1]} classes. If `y_true` does not contain all the"
+ " labels, `labels` must be provided."
+ )
+ y_score = column_or_1d(y_score)
+ check_consistent_length(y_true, y_score, sample_weight)
y_score_n_classes = y_score.shape[1] if y_score.ndim == 2 else 2
if labels is None:
|
diff --git a/sklearn/metrics/tests/test_ranking.py b/sklearn/metrics/tests/test_ranking.py
index 1b30afb174d28..bb000fddb55ef 100644
--- a/sklearn/metrics/tests/test_ranking.py
+++ b/sklearn/metrics/tests/test_ranking.py
@@ -1890,46 +1890,85 @@ def test_top_k_accuracy_score_warning(y_true, k):
@pytest.mark.parametrize(
- "y_true, labels, msg",
+ "y_true, y_score, labels, msg",
[
(
[0, 0.57, 1, 2],
+ [
+ [0.2, 0.1, 0.7],
+ [0.4, 0.3, 0.3],
+ [0.3, 0.4, 0.3],
+ [0.4, 0.5, 0.1],
+ ],
None,
"y type must be 'binary' or 'multiclass', got 'continuous'",
),
(
[0, 1, 2, 3],
+ [
+ [0.2, 0.1, 0.7],
+ [0.4, 0.3, 0.3],
+ [0.3, 0.4, 0.3],
+ [0.4, 0.5, 0.1],
+ ],
None,
r"Number of classes in 'y_true' \(4\) not equal to the number of "
r"classes in 'y_score' \(3\).",
),
(
["c", "c", "a", "b"],
+ [
+ [0.2, 0.1, 0.7],
+ [0.4, 0.3, 0.3],
+ [0.3, 0.4, 0.3],
+ [0.4, 0.5, 0.1],
+ ],
["a", "b", "c", "c"],
"Parameter 'labels' must be unique.",
),
- (["c", "c", "a", "b"], ["a", "c", "b"], "Parameter 'labels' must be ordered."),
+ (
+ ["c", "c", "a", "b"],
+ [
+ [0.2, 0.1, 0.7],
+ [0.4, 0.3, 0.3],
+ [0.3, 0.4, 0.3],
+ [0.4, 0.5, 0.1],
+ ],
+ ["a", "c", "b"],
+ "Parameter 'labels' must be ordered.",
+ ),
(
[0, 0, 1, 2],
+ [
+ [0.2, 0.1, 0.7],
+ [0.4, 0.3, 0.3],
+ [0.3, 0.4, 0.3],
+ [0.4, 0.5, 0.1],
+ ],
[0, 1, 2, 3],
r"Number of given labels \(4\) not equal to the number of classes in "
r"'y_score' \(3\).",
),
(
[0, 0, 1, 2],
+ [
+ [0.2, 0.1, 0.7],
+ [0.4, 0.3, 0.3],
+ [0.3, 0.4, 0.3],
+ [0.4, 0.5, 0.1],
+ ],
[0, 1, 3],
"'y_true' contains labels not in parameter 'labels'.",
),
+ (
+ [0, 1],
+ [[0.5, 0.2, 0.2], [0.3, 0.4, 0.2]],
+ None,
+ "`y_true` is binary while y_score is 2d with 3 classes. If"
+ " `y_true` does not contain all the labels, `labels` must be provided",
+ ),
],
)
-def test_top_k_accuracy_score_error(y_true, labels, msg):
- y_score = np.array(
- [
- [0.2, 0.1, 0.7],
- [0.4, 0.3, 0.3],
- [0.3, 0.4, 0.3],
- [0.4, 0.5, 0.1],
- ]
- )
+def test_top_k_accuracy_score_error(y_true, y_score, labels, msg):
with pytest.raises(ValueError, match=msg):
top_k_accuracy_score(y_true, y_score, k=2, labels=labels)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex f0ccdc999c175..ec1d546da6712 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -592,6 +592,9 @@ Changelog\n instead of the finite approximation (`1.0` and `0.0` respectively) currently\n returned by default. :pr:`17266` by :user:`Sylvain Marié <smarie>`.\n \n+- |Enhancement| :func:`metrics.top_k_accuracy_score` raises an improved error\n+ message when `y_true` is binary and `y_score` is 2d. :pr:`22284` by `Thomas Fan`_.\n+\n - |API| :class:`metrics.DistanceMetric` has been moved from\n :mod:`sklearn.neighbors` to :mod:`sklearn.metric`.\n Using `neighbors.DistanceMetric` for imports is still valid for\n"
}
] |
1.01
|
4aeb1adec376b92876b37548fff5fdd8f3ee6cf4
|
[
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-20]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-1]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score0-1-1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true0-y_pred0-inconsistent numbers of samples]",
"sklearn/metrics/tests/test_ranking.py::test_lrap_sample_weighting_zero_labels",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class='ovp' is not supported for multiclass ROC AUC, multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs4]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[True-y_true1-0.5-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[False-y_true3-0.75-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[False-y_true0-0.75-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true4-y_pred4-pos_label is not specified]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_tie_handling",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_ties[y_true0-1-0.25]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve",
"sklearn/metrics/tests/test_ranking.py::test_ranking_loss_ties_handling",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_sanity_check",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_ranking.py::test_ranking_appropriate_input_shape",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true10-y_score10-expected_fpr10-expected_fnr10]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[Partial AUC computation not available in multiclass setting, 'max_fpr' must be set to `None`, received `max_fpr=0.5` instead-kwargs3]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score4-1-0.5]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[True-y_true3-0.75-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[1]",
"sklearn/metrics/tests/test_ranking.py::test_auc",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[False]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_end_points",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score3-1-1]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-2]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_drop_intermediate",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_increasing",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true18-y_score18-expected_fpr18-expected_fnr18]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true19-y_score19-expected_fpr19-expected_fnr19]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_only_ties]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_zero_sample_weight[precision_recall_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_one_label",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true0-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_toydata",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true1]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-1]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_invariant",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[True-y_true0-0.75-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true13-y_score13-expected_fpr13-expected_fnr13]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score[y_true1-2-0.5]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true1-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_pos_label",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_zero_sample_weight[det_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_toydata",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true4-y_score4-labels4-Number of given labels \\\\(4\\\\) not equal to the number of classes in 'y_score' \\\\(3\\\\).]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-8]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true15-y_score15-expected_fpr15-expected_fnr15]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_ties[y_true1-2-0.5]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true3-None]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true0-None]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true11-y_score11-expected_fpr11-expected_fnr11]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-20]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true1-None]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_error",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score5-2-1]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_loss",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_ties[y_true2-3-1]",
"sklearn/metrics/tests/test_ranking.py::test_partial_roc_auc_score",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true14-y_score14-expected_fpr14-expected_fnr14]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[roc_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_confidence",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true5-y_score5-labels5-'y_true' contains labels not in parameter 'labels'.]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true3]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score1-1-0.5]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score[y_true2-3-0.75]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[False]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true17-y_score17-expected_fpr17-expected_fnr17]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.5]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[False-y_true2-0.5-labels2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_warning[y_true1-5]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true1-y_score1-None-Number of classes in 'y_true' \\\\(4\\\\) not equal to the number of classes in 'y_score' \\\\(3\\\\).]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true0]",
"sklearn/metrics/tests/test_ranking.py::test_dcg_score",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_score_pos_label_errors",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_only_ties]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-2]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-8]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true3-y_score3-labels3-Parameter 'labels' must be ordered.]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_multiclass_error[det_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true0-y_score0-None-y type must be 'binary' or 'multiclass', got 'continuous']",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_toy]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true0-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[sample_weight is not supported for multiclass one-vs-one ROC AUC, 'sample_weight' must be None in this case-kwargs2]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_ignore_ties_with_k",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_score",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true3-y_pred3-Only one class present in y_true]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted', None\\\\) for multiclass problems-kwargs0]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_multiclass_error[precision_recall_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted', None\\\\) for multiclass problems-kwargs1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true9-y_score9-expected_fpr9-expected_fnr9]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true3-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_multi",
"sklearn/metrics/tests/test_ranking.py::test_auc_score_non_binary_class",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-8]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[det_curve]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[True-y_true2-0.5-labels2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true2]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[precision_recall_curve]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_toy]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true4]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true12-y_score12-expected_fpr12-expected_fnr12]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true16-y_score16-expected_fpr16-expected_fnr16]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.75]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[True]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_ranking.py::test_score_scale_invariance",
"sklearn/metrics/tests/test_ranking.py::test_lrap_error_raised",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_zero_sample_weight[roc_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_returns_consistency",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[False-y_true1-0.5-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score2-2-1]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true8-y_score8-expected_fpr8-expected_fnr8]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true1-None]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score[y_true0-1-0.25]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-20]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true2-y_score2-labels2-Parameter 'labels' must be unique.]",
"sklearn/metrics/tests/test_ranking.py::test_auc_errors",
"sklearn/metrics/tests/test_ranking.py::test_dcg_ties",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_hard",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs5]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_multiclass_error[roc_curve]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.25]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_fpr_tpr_increasing",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true2-y_pred2-Only one class present in y_true]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true1-y_pred1-inconsistent numbers of samples]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[True]",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_constant_values",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_warning[y_true0-4]"
] |
[
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true6-y_score6-None-`y_true` is binary while y_score is 2d with 3 classes. If `y_true` does not contain all the labels, `labels` must be provided]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex f0ccdc999c175..ec1d546da6712 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -592,6 +592,9 @@ Changelog\n instead of the finite approximation (`1.0` and `0.0` respectively) currently\n returned by default. :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| :func:`metrics.top_k_accuracy_score` raises an improved error\n+ message when `y_true` is binary and `y_score` is 2d. :pr:`<PRID>` by `<NAME>`_.\n+\n - |API| :class:`metrics.DistanceMetric` has been moved from\n :mod:`sklearn.neighbors` to :mod:`sklearn.metric`.\n Using `neighbors.DistanceMetric` for imports is still valid for\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index f0ccdc999c175..ec1d546da6712 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -592,6 +592,9 @@ Changelog
instead of the finite approximation (`1.0` and `0.0` respectively) currently
returned by default. :pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| :func:`metrics.top_k_accuracy_score` raises an improved error
+ message when `y_true` is binary and `y_score` is 2d. :pr:`<PRID>` by `<NAME>`_.
+
- |API| :class:`metrics.DistanceMetric` has been moved from
:mod:`sklearn.neighbors` to :mod:`sklearn.metric`.
Using `neighbors.DistanceMetric` for imports is still valid for
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19158
|
https://github.com/scikit-learn/scikit-learn/pull/19158
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 1b83354e5c0c2..38d7709e8ea24 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -422,6 +422,10 @@ Changelog
- |Fix| :func:`metrics.silhouette_score` now supports integer input for precomputed
distances. :pr:`22108` by `Thomas Fan`_.
+- |Enhancement| :func:`metrics.roc_auc_score` now supports ``average=None``
+ in the multiclass case when ``multiclass='ovr'`` which will return the score
+ per class. :pr:`19158` by :user:`Nicki Skafte <SkafteNicki>`.
+
:mod:`sklearn.manifold`
.......................
diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py
index 6e625169dd2cd..22975c672101a 100644
--- a/sklearn/metrics/_ranking.py
+++ b/sklearn/metrics/_ranking.py
@@ -414,10 +414,11 @@ class scores must correspond to the order of ``labels``,
average : {'micro', 'macro', 'samples', 'weighted'} or None, \
default='macro'
- If ``None``, the scores for each class are returned. Otherwise,
- this determines the type of averaging performed on the data:
+ If ``None``, the scores for each class are returned.
+ Otherwise, this determines the type of averaging performed on the data.
Note: multiclass ROC AUC currently only handles the 'macro' and
- 'weighted' averages.
+ 'weighted' averages. For multiclass targets, `average=None`
+ is only implemented for `multi_class='ovo'`.
``'micro'``:
Calculate metrics globally by considering each element of the label
@@ -631,7 +632,7 @@ def _multiclass_roc_auc_score(
)
# validation for multiclass parameter specifications
- average_options = ("macro", "weighted")
+ average_options = ("macro", "weighted", None)
if average not in average_options:
raise ValueError(
"average must be one of {0} for multiclass problems".format(average_options)
@@ -645,6 +646,11 @@ def _multiclass_roc_auc_score(
"in {1}".format(multi_class, multiclass_options)
)
+ if average is None and multi_class == "ovo":
+ raise NotImplementedError(
+ "average=None is not implemented for multi_class='ovo'."
+ )
+
if labels is not None:
labels = column_or_1d(labels)
classes = _unique(labels)
|
diff --git a/sklearn/metrics/tests/test_ranking.py b/sklearn/metrics/tests/test_ranking.py
index 01de37b189733..1b30afb174d28 100644
--- a/sklearn/metrics/tests/test_ranking.py
+++ b/sklearn/metrics/tests/test_ranking.py
@@ -526,6 +526,11 @@ def test_multiclass_ovo_roc_auc_toydata(y_true, labels):
ovo_weighted_score,
)
+ # Check that average=None raises NotImplemented error
+ error_message = "average=None is not implemented for multi_class='ovo'."
+ with pytest.raises(NotImplementedError, match=error_message):
+ roc_auc_score(y_true, y_scores, labels=labels, multi_class="ovo", average=None)
+
@pytest.mark.parametrize(
"y_true, labels",
@@ -583,8 +588,13 @@ def test_multiclass_ovr_roc_auc_toydata(y_true, labels):
out_0 = roc_auc_score([1, 0, 0, 0], y_scores[:, 0])
out_1 = roc_auc_score([0, 1, 0, 0], y_scores[:, 1])
out_2 = roc_auc_score([0, 0, 1, 1], y_scores[:, 2])
- result_unweighted = (out_0 + out_1 + out_2) / 3.0
+ assert_almost_equal(
+ roc_auc_score(y_true, y_scores, multi_class="ovr", labels=labels, average=None),
+ [out_0, out_1, out_2],
+ )
+ # Compute unweighted results (default behaviour)
+ result_unweighted = (out_0 + out_1 + out_2) / 3.0
assert_almost_equal(
roc_auc_score(y_true, y_scores, multi_class="ovr", labels=labels),
result_unweighted,
@@ -677,14 +687,14 @@ def test_roc_auc_score_multiclass_labels_error(msg, y_true, labels, multi_class)
[
(
(
- r"average must be one of \('macro', 'weighted'\) for "
+ r"average must be one of \('macro', 'weighted', None\) for "
r"multiclass problems"
),
{"average": "samples", "multi_class": "ovo"},
),
(
(
- r"average must be one of \('macro', 'weighted'\) for "
+ r"average must be one of \('macro', 'weighted', None\) for "
r"multiclass problems"
),
{"average": "micro", "multi_class": "ovr"},
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 1b83354e5c0c2..38d7709e8ea24 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -422,6 +422,10 @@ Changelog\n - |Fix| :func:`metrics.silhouette_score` now supports integer input for precomputed\n distances. :pr:`22108` by `Thomas Fan`_.\n \n+- |Enhancement| :func:`metrics.roc_auc_score` now supports ``average=None``\n+ in the multiclass case when ``multiclass='ovr'`` which will return the score\n+ per class. :pr:`19158` by :user:`Nicki Skafte <SkafteNicki>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
1.01
|
b0067e0e7e0ae095592bc3a9a8cb7ba9e200c1be
|
[
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_multiclass_error[roc_curve]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score2-2-1]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-20]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[Partial AUC computation not available in multiclass setting, 'max_fpr' must be set to `None`, received `max_fpr=0.5` instead-kwargs3]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true1-None-Number of classes in 'y_true' \\\\(4\\\\) not equal to the number of classes in 'y_score' \\\\(3\\\\).]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score3-1-1]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[det_curve]",
"sklearn/metrics/tests/test_ranking.py::test_partial_roc_auc_score",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_only_ties]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-8]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_dcg_score",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_constant_values",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true14-y_score14-expected_fpr14-expected_fnr14]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true1]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true5-labels5-'y_true' contains labels not in parameter 'labels'.]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true1-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true13-y_score13-expected_fpr13-expected_fnr13]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-8]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-1]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_toydata",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_multi",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_hard",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score[y_true0-1-0.25]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_zero_sample_weight[precision_recall_curve]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true16-y_score16-expected_fpr16-expected_fnr16]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-20]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_toydata",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_ignore_ties_with_k",
"sklearn/metrics/tests/test_ranking.py::test_ranking_appropriate_input_shape",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true19-y_score19-expected_fpr19-expected_fnr19]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_sanity_check",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true4-labels4-Number of given labels \\\\(4\\\\) not equal to the number of classes in 'y_score' \\\\(3\\\\).]",
"sklearn/metrics/tests/test_ranking.py::test_score_scale_invariance",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[False-y_true0-0.75-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_confidence",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_score_pos_label_errors",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[False]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true15-y_score15-expected_fpr15-expected_fnr15]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[True-y_true3-0.75-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[1]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true17-y_score17-expected_fpr17-expected_fnr17]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score5-2-1]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_loss",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.25]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true0]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true2-labels2-Parameter 'labels' must be unique.]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[True]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[True]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_invariant",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true10-y_score10-expected_fpr10-expected_fnr10]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_ties[y_true1-2-0.5]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true3-labels3-Parameter 'labels' must be ordered.]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_warning[y_true0-4]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true4-y_pred4-pos_label is not specified]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_error",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_pos_label",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score4-1-0.5]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true2]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_ties[y_true2-3-1]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_drop_intermediate",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true8-y_score8-expected_fpr8-expected_fnr8]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_increasing",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[sample_weight is not supported for multiclass one-vs-one ROC AUC, 'sample_weight' must be None in this case-kwargs2]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_multiclass_error[precision_recall_curve]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_ranking.py::test_roc_returns_consistency",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score[y_true1-2-0.5]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[True-y_true0-0.75-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score[y_true2-3-0.75]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_multiclass_error[det_curve]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true0-y_pred0-inconsistent numbers of samples]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_toy]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score0-1-1]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_zero_sample_weight[det_curve]",
"sklearn/metrics/tests/test_ranking.py::test_auc",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[False]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[False-y_true3-0.75-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_ranking_loss_ties_handling",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-2]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score1-1-0.5]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[precision_recall_curve]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[True-y_true2-0.5-labels2]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_score",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-1]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_toy]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_ties[y_true0-1-0.25]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true0-None-y type must be 'binary' or 'multiclass', got 'continuous']",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true9-y_score9-expected_fpr9-expected_fnr9]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_one_label",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-8]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs5]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.75]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_warning[y_true1-5]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true1-y_pred1-inconsistent numbers of samples]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_only_ties]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-1]",
"sklearn/metrics/tests/test_ranking.py::test_dcg_ties",
"sklearn/metrics/tests/test_ranking.py::test_auc_errors",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[roc_curve]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.5]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[False-y_true2-0.5-labels2]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class='ovp' is not supported for multiclass ROC AUC, multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs4]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_zero_sample_weight[roc_curve]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true3]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[True-y_true1-0.5-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true18-y_score18-expected_fpr18-expected_fnr18]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_auc_score_non_binary_class",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_end_points",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true12-y_score12-expected_fpr12-expected_fnr12]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true2-y_pred2-Only one class present in y_true]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_multiclass_with_labels[False-y_true1-0.5-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_fpr_tpr_increasing",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_ranking.py::test_lrap_error_raised",
"sklearn/metrics/tests/test_ranking.py::test_lrap_sample_weighting_zero_labels",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true3-y_pred3-Only one class present in y_true]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true11-y_score11-expected_fpr11-expected_fnr11]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_tie_handling",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true0-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true4]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-20]"
] |
[
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted', None\\\\) for multiclass problems-kwargs0]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true0-None]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true3-None]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true1-None]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted', None\\\\) for multiclass problems-kwargs1]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true3-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true0-labels0]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true1-None]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 1b83354e5c0c2..38d7709e8ea24 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -422,6 +422,10 @@ Changelog\n - |Fix| :func:`metrics.silhouette_score` now supports integer input for precomputed\n distances. :pr:`<PRID>` by `<NAME>`_.\n \n+- |Enhancement| :func:`metrics.roc_auc_score` now supports ``average=None``\n+ in the multiclass case when ``multiclass='ovr'`` which will return the score\n+ per class. :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 1b83354e5c0c2..38d7709e8ea24 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -422,6 +422,10 @@ Changelog
- |Fix| :func:`metrics.silhouette_score` now supports integer input for precomputed
distances. :pr:`<PRID>` by `<NAME>`_.
+- |Enhancement| :func:`metrics.roc_auc_score` now supports ``average=None``
+ in the multiclass case when ``multiclass='ovr'`` which will return the score
+ per class. :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.manifold`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20753
|
https://github.com/scikit-learn/scikit-learn/pull/20753
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c9076838744ee..e215f03c9a089 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -607,6 +607,13 @@ Changelog
in the multiclass case when ``multiclass='ovr'`` which will return the score
per class. :pr:`19158` by :user:`Nicki Skafte <SkafteNicki>`.
+- |Enhancement| Adds `im_kw` parameter to
+ :func:`~metrics.ConfusionMatrixDisplay.from_estimator`
+ :func:`~metrics.ConfusionMatrixDisplay.from_predictions`, and
+ :func:`~metrics.ConfusionMatrixDisplay.plot`. The `im_kw` parameter is passed
+ to the `matplotlib.pyplot.imshow` call when plotting the confusion matrix.
+ :pr:`20753` by `Thomas Fan`_.
+
- |Fix| Fixed a bug in :func:`metrics.normalized_mutual_info_score` which could return
unbounded values. :pr:`22635` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
diff --git a/sklearn/metrics/_plot/confusion_matrix.py b/sklearn/metrics/_plot/confusion_matrix.py
index 081e0034b26a0..4c64e3e89f337 100644
--- a/sklearn/metrics/_plot/confusion_matrix.py
+++ b/sklearn/metrics/_plot/confusion_matrix.py
@@ -88,6 +88,7 @@ def plot(
values_format=None,
ax=None,
colorbar=True,
+ im_kw=None,
):
"""Plot visualization.
@@ -114,6 +115,9 @@ def plot(
colorbar : bool, default=True
Whether or not to add a colorbar to the plot.
+ im_kw : dict, default=None
+ Dict with keywords passed to `matplotlib.pyplot.imshow` call.
+
Returns
-------
display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`
@@ -128,7 +132,12 @@ def plot(
cm = self.confusion_matrix
n_classes = cm.shape[0]
- self.im_ = ax.imshow(cm, interpolation="nearest", cmap=cmap)
+
+ default_im_kw = dict(interpolation="nearest", cmap=cmap)
+ im_kw = im_kw or {}
+ im_kw = {**default_im_kw, **im_kw}
+
+ self.im_ = ax.imshow(cm, **im_kw)
self.text_ = None
cmap_min, cmap_max = self.im_.cmap(0), self.im_.cmap(1.0)
@@ -193,6 +202,7 @@ def from_estimator(
cmap="viridis",
ax=None,
colorbar=True,
+ im_kw=None,
):
"""Plot Confusion Matrix given an estimator and some data.
@@ -258,6 +268,9 @@ def from_estimator(
colorbar : bool, default=True
Whether or not to add a colorbar to the plot.
+ im_kw : dict, default=None
+ Dict with keywords passed to `matplotlib.pyplot.imshow` call.
+
Returns
-------
display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`
@@ -304,6 +317,7 @@ def from_estimator(
xticks_rotation=xticks_rotation,
values_format=values_format,
colorbar=colorbar,
+ im_kw=im_kw,
)
@classmethod
@@ -322,6 +336,7 @@ def from_predictions(
cmap="viridis",
ax=None,
colorbar=True,
+ im_kw=None,
):
"""Plot Confusion Matrix given true and predicted labels.
@@ -384,6 +399,9 @@ def from_predictions(
colorbar : bool, default=True
Whether or not to add a colorbar to the plot.
+ im_kw : dict, default=None
+ Dict with keywords passed to `matplotlib.pyplot.imshow` call.
+
Returns
-------
display : :class:`~sklearn.metrics.ConfusionMatrixDisplay`
@@ -437,6 +455,7 @@ def from_predictions(
xticks_rotation=xticks_rotation,
values_format=values_format,
colorbar=colorbar,
+ im_kw=im_kw,
)
|
diff --git a/sklearn/metrics/_plot/tests/test_confusion_matrix_display.py b/sklearn/metrics/_plot/tests/test_confusion_matrix_display.py
index 8db971fb26971..e826888b65f89 100644
--- a/sklearn/metrics/_plot/tests/test_confusion_matrix_display.py
+++ b/sklearn/metrics/_plot/tests/test_confusion_matrix_display.py
@@ -365,3 +365,15 @@ def test_colormap_max(pyplot):
color = disp.text_[1, 0].get_color()
assert_allclose(color, [1.0, 1.0, 1.0, 1.0])
+
+
+def test_im_kw_adjust_vmin_vmax(pyplot):
+ """Check that im_kw passes kwargs to imshow"""
+
+ confusion_matrix = np.array([[0.48, 0.04], [0.08, 0.4]])
+ disp = ConfusionMatrixDisplay(confusion_matrix)
+ disp.plot(im_kw=dict(vmin=0.0, vmax=0.8))
+
+ clim = disp.im_.get_clim()
+ assert clim[0] == pytest.approx(0.0)
+ assert clim[1] == pytest.approx(0.8)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c9076838744ee..e215f03c9a089 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -607,6 +607,13 @@ Changelog\n in the multiclass case when ``multiclass='ovr'`` which will return the score\n per class. :pr:`19158` by :user:`Nicki Skafte <SkafteNicki>`.\n \n+- |Enhancement| Adds `im_kw` parameter to\n+ :func:`~metrics.ConfusionMatrixDisplay.from_estimator`\n+ :func:`~metrics.ConfusionMatrixDisplay.from_predictions`, and\n+ :func:`~metrics.ConfusionMatrixDisplay.plot`. The `im_kw` parameter is passed\n+ to the `matplotlib.pyplot.imshow` call when plotting the confusion matrix.\n+ :pr:`20753` by `Thomas Fan`_.\n+\n - |Fix| Fixed a bug in :func:`metrics.normalized_mutual_info_score` which could return\n unbounded values. :pr:`22635` by :user:`Jérémie du Boisberranger <jeremiedbb>`.\n \n"
}
] |
1.01
|
3605c140af992b6ac52f04f1689c58509cc0b5b2
|
[
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[False-True-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-all-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-true-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-pred-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-pred-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_invalid_option[from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[False-False-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-None-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-clf]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[True-True-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display[from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[True-False-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-all-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[True-False-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-true-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[False-False-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[clf]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_with_unknown_labels[from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_invalid_option[from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-true-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[False-True-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display[from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_with_unknown_labels[from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-pred-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-true-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_validation",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-all-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_colormap_max",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-all-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-None-from_predictions]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-column_transformer-clf]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-None-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_contrast",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_custom_labels[True-True-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[False-pred-from_estimator]",
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_display_plotting[True-None-from_predictions]"
] |
[
"sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_im_kw_adjust_vmin_vmax"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c9076838744ee..e215f03c9a089 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -607,6 +607,13 @@ Changelog\n in the multiclass case when ``multiclass='ovr'`` which will return the score\n per class. :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| Adds `im_kw` parameter to\n+ :func:`~metrics.ConfusionMatrixDisplay.from_estimator`\n+ :func:`~metrics.ConfusionMatrixDisplay.from_predictions`, and\n+ :func:`~metrics.ConfusionMatrixDisplay.plot`. The `im_kw` parameter is passed\n+ to the `matplotlib.pyplot.imshow` call when plotting the confusion matrix.\n+ :pr:`<PRID>` by `<NAME>`_.\n+\n - |Fix| Fixed a bug in :func:`metrics.normalized_mutual_info_score` which could return\n unbounded values. :pr:`<PRID>` by :user:`<NAME>`.\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c9076838744ee..e215f03c9a089 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -607,6 +607,13 @@ Changelog
in the multiclass case when ``multiclass='ovr'`` which will return the score
per class. :pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| Adds `im_kw` parameter to
+ :func:`~metrics.ConfusionMatrixDisplay.from_estimator`
+ :func:`~metrics.ConfusionMatrixDisplay.from_predictions`, and
+ :func:`~metrics.ConfusionMatrixDisplay.plot`. The `im_kw` parameter is passed
+ to the `matplotlib.pyplot.imshow` call when plotting the confusion matrix.
+ :pr:`<PRID>` by `<NAME>`_.
+
- |Fix| Fixed a bug in :func:`metrics.normalized_mutual_info_score` which could return
unbounded values. :pr:`<PRID>` by :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22203
|
https://github.com/scikit-learn/scikit-learn/pull/22203
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index d14cd278f67a1..5339f4a399490 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -382,6 +382,11 @@ Changelog
splits failed. Similarly raise an error during grid-search when the fits for
all the models and all the splits failed. :pr:`21026` by :user:`Loïc Estève <lesteve>`.
+- |Enhancement| it is now possible to pass `scoring="matthews_corrcoef"` to all
+ model selection tools with a `scoring` argument to use the Matthews
+ correlation coefficient (MCC). :pr:`22203` by :user:`Olivier Grisel
+ <ogrisel>`.
+
- |Fix| :class:`model_selection.GridSearchCV`,
:class:`model_selection.HalvingGridSearchCV`
now validate input parameters in `fit` instead of `__init__`.
diff --git a/sklearn/metrics/_scorer.py b/sklearn/metrics/_scorer.py
index c5a725ad3a13b..7a20ffd32c954 100644
--- a/sklearn/metrics/_scorer.py
+++ b/sklearn/metrics/_scorer.py
@@ -46,6 +46,7 @@
brier_score_loss,
jaccard_score,
mean_absolute_percentage_error,
+ matthews_corrcoef,
)
from .cluster import adjusted_rand_score
@@ -705,6 +706,7 @@ def make_scorer(
# Standard Classification Scores
accuracy_scorer = make_scorer(accuracy_score)
balanced_accuracy_scorer = make_scorer(balanced_accuracy_score)
+matthews_corrcoef_scorer = make_scorer(matthews_corrcoef)
# Score functions that need decision values
top_k_accuracy_scorer = make_scorer(
@@ -749,6 +751,7 @@ def make_scorer(
explained_variance=explained_variance_scorer,
r2=r2_scorer,
max_error=max_error_scorer,
+ matthews_corrcoef=matthews_corrcoef_scorer,
neg_median_absolute_error=neg_median_absolute_error_scorer,
neg_mean_absolute_error=neg_mean_absolute_error_scorer,
neg_mean_absolute_percentage_error=neg_mean_absolute_percentage_error_scorer, # noqa
|
diff --git a/sklearn/metrics/tests/test_score_objects.py b/sklearn/metrics/tests/test_score_objects.py
index 65d8efebe775f..60ca7fdceee42 100644
--- a/sklearn/metrics/tests/test_score_objects.py
+++ b/sklearn/metrics/tests/test_score_objects.py
@@ -31,6 +31,7 @@
recall_score,
roc_auc_score,
top_k_accuracy_score,
+ matthews_corrcoef,
)
from sklearn.metrics import cluster as cluster_module
from sklearn.metrics import check_scoring
@@ -102,6 +103,7 @@
"roc_auc_ovo",
"roc_auc_ovr_weighted",
"roc_auc_ovo_weighted",
+ "matthews_corrcoef",
]
# All supervised cluster scorers (They behave like classification metric)
@@ -393,6 +395,7 @@ def test_make_scorer():
("jaccard_macro", partial(jaccard_score, average="macro")),
("jaccard_micro", partial(jaccard_score, average="micro")),
("top_k_accuracy", top_k_accuracy_score),
+ ("matthews_corrcoef", matthews_corrcoef),
],
)
def test_classification_binary_scores(scorer_name, metric):
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex d14cd278f67a1..5339f4a399490 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -382,6 +382,11 @@ Changelog\n splits failed. Similarly raise an error during grid-search when the fits for\n all the models and all the splits failed. :pr:`21026` by :user:`Loïc Estève <lesteve>`.\n \n+- |Enhancement| it is now possible to pass `scoring=\"matthews_corrcoef\"` to all\n+ model selection tools with a `scoring` argument to use the Matthews\n+ correlation coefficient (MCC). :pr:`22203` by :user:`Olivier Grisel\n+ <ogrisel>`.\n+\n - |Fix| :class:`model_selection.GridSearchCV`,\n :class:`model_selection.HalvingGridSearchCV`\n now validate input parameters in `fit` instead of `__init__`.\n"
}
] |
1.01
|
be89eb75f250dc5a769281939ba01e570fb12ae1
|
[
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1-f1_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[completeness_score]",
"sklearn/metrics/tests/test_score_objects.py::test_regression_scorer_sample_weight",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_tuple]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[average_precision]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_tuple]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[explained_variance]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_brier_score]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_macro-metric9]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_micro-metric13]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo-metric1]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[empty dict]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[max_error]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[tuple of callables]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_micro-metric3]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_weighted-metric5]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[jaccard_score]",
"sklearn/metrics/tests/test_score_objects.py::test_all_scorers_repr",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[mutual_info_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_str]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_select_proba_error[ProbaScorer]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_mutual_info_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_micro-metric4]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_macro-metric14]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[non-string key dict]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_macro-metric12]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[fowlkes_mallows_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[f1_score]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision-precision_score]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_macro-metric2]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_weighted-metric5]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_macro-metric10]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_callable]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_micro-metric7]",
"sklearn/metrics/tests/test_score_objects.py::test_brier_score_loss_pos_label",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr]",
"sklearn/metrics/tests/test_score_objects.py::test_supervised_cluster_scorers",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo_weighted-metric3]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[empty tuple]",
"sklearn/metrics/tests/test_score_objects.py::test_regression_scorers",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_macro-metric6]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_micro-metric11]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_list]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_weighted-metric1]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr-metric0]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[homogeneity_score]",
"sklearn/metrics/tests/test_score_objects.py::test_custom_scorer_pickling",
"sklearn/metrics/tests/test_score_objects.py::test_make_scorer",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers1-1-0-1]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[top_k_accuracy]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[precision_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_list]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[v_measure_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers0-1-1-1]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers2-1-1-0]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_select_proba_error[ThresholdScorer]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_no_op_multiclass_select_proba",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[top_k_accuracy-top_k_accuracy_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_gamma_deviance]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard-jaccard_score]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr_weighted-metric2]",
"sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[recall_score]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_weighted-metric11]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_micro-metric10]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[balanced_accuracy-balanced_accuracy_score]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_log_loss]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_error]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_poisson_deviance]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer_label",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[r2]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_average_precision_pos_label",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_root_mean_squared_error]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[accuracy]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_micro-metric7]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_weighted-metric2]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_gridsearchcv",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_weighted-metric9]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[non-unique str]",
"sklearn/metrics/tests/test_score_objects.py::test_scoring_is_not_metric",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[balanced_accuracy]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[tuple of one callable]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_macro-metric6]",
"sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_weighted-metric13]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[rand_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_select_proba_error[PredictScorer]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_macro-metric3]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_regressor_threshold",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall-recall_score]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_weighted-metric8]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_micro-metric15]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_log_error]",
"sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data",
"sklearn/metrics/tests/test_score_objects.py::test_raises_on_score_list",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_median_absolute_error]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_rand_score]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[accuracy-accuracy_score]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[list of int]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_error]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[normalized_mutual_info_score]"
] |
[
"sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[matthews_corrcoef-matthews_corrcoef]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[matthews_corrcoef]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex d14cd278f67a1..5339f4a399490 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -382,6 +382,11 @@ Changelog\n splits failed. Similarly raise an error during grid-search when the fits for\n all the models and all the splits failed. :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| it is now possible to pass `scoring=\"matthews_corrcoef\"` to all\n+ model selection tools with a `scoring` argument to use the Matthews\n+ correlation coefficient (MCC). :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Fix| :class:`model_selection.GridSearchCV`,\n :class:`model_selection.HalvingGridSearchCV`\n now validate input parameters in `fit` instead of `__init__`.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index d14cd278f67a1..5339f4a399490 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -382,6 +382,11 @@ Changelog
splits failed. Similarly raise an error during grid-search when the fits for
all the models and all the splits failed. :pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| it is now possible to pass `scoring="matthews_corrcoef"` to all
+ model selection tools with a `scoring` argument to use the Matthews
+ correlation coefficient (MCC). :pr:`<PRID>` by :user:`<NAME>`.
+
- |Fix| :class:`model_selection.GridSearchCV`,
:class:`model_selection.HalvingGridSearchCV`
now validate input parameters in `fit` instead of `__init__`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21445
|
https://github.com/scikit-learn/scikit-learn/pull/21445
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 542636b1642f7..7036139bfb10e 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -134,6 +134,11 @@ Changelog
:mod:`sklearn.preprocessing`
............................
+- |Enhancement| Adds a `subsample` parameter to :class:`preprocessing.KBinsDiscretizer`.
+ This allows specifying a maximum number of samples to be used while fitting
+ the model. The option is only available when `strategy` is set to `quantile`.
+ :pr:`21445` by :user:`Felipe Bidu <fbidu>` and :user:`Amanda Dsouza <amy12xx>`.
+
- |Fix| :class:`preprocessing.LabelBinarizer` now validates input parameters in `fit`
instead of `__init__`.
:pr:`21434` by :user:`Krum Arnaudov <krumeto>`.
diff --git a/sklearn/preprocessing/_discretization.py b/sklearn/preprocessing/_discretization.py
index 79a667911d354..9fd9ff9409092 100644
--- a/sklearn/preprocessing/_discretization.py
+++ b/sklearn/preprocessing/_discretization.py
@@ -15,7 +15,10 @@
from ..base import BaseEstimator, TransformerMixin
from ..utils.validation import check_array
from ..utils.validation import check_is_fitted
+from ..utils.validation import check_random_state
from ..utils.validation import _check_feature_names_in
+from ..utils.validation import check_scalar
+from ..utils import _safe_indexing
class KBinsDiscretizer(TransformerMixin, BaseEstimator):
@@ -63,6 +66,27 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):
.. versionadded:: 0.24
+ subsample : int or None (default='warn')
+ Maximum number of samples, used to fit the model, for computational
+ efficiency. Used when `strategy="quantile"`.
+ `subsample=None` means that all the training samples are used when
+ computing the quantiles that determine the binning thresholds.
+ Since quantile computation relies on sorting each column of `X` and
+ that sorting has an `n log(n)` time complexity,
+ it is recommended to use subsampling on datasets with a
+ very large number of samples.
+
+ .. deprecated:: 1.1
+ In version 1.3 and onwards, `subsample=2e5` will be the default.
+
+ random_state : int, RandomState instance or None, default=None
+ Determines random number generation for subsampling.
+ Pass an int for reproducible results across multiple function calls.
+ See the `subsample` parameter for more details.
+ See :term:`Glossary <random_state>`.
+
+ .. versionadded:: 1.1
+
Attributes
----------
bin_edges_ : ndarray of ndarray of shape (n_features,)
@@ -136,11 +160,22 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):
[ 0.5, 3.5, -1.5, 1.5]])
"""
- def __init__(self, n_bins=5, *, encode="onehot", strategy="quantile", dtype=None):
+ def __init__(
+ self,
+ n_bins=5,
+ *,
+ encode="onehot",
+ strategy="quantile",
+ dtype=None,
+ subsample="warn",
+ random_state=None,
+ ):
self.n_bins = n_bins
self.encode = encode
self.strategy = strategy
self.dtype = dtype
+ self.subsample = subsample
+ self.random_state = random_state
def fit(self, X, y=None):
"""
@@ -174,6 +209,36 @@ def fit(self, X, y=None):
" instead."
)
+ n_samples, n_features = X.shape
+
+ if self.strategy == "quantile" and self.subsample is not None:
+ if self.subsample == "warn":
+ if n_samples > 2e5:
+ warnings.warn(
+ "In version 1.3 onwards, subsample=2e5 "
+ "will be used by default. Set subsample explicitly to "
+ "silence this warning in the mean time. Set "
+ "subsample=None to disable subsampling explicitly.",
+ FutureWarning,
+ )
+ else:
+ self.subsample = check_scalar(
+ self.subsample, "subsample", numbers.Integral, min_val=1
+ )
+ rng = check_random_state(self.random_state)
+ if n_samples > self.subsample:
+ subsample_idx = rng.choice(
+ n_samples, size=self.subsample, replace=False
+ )
+ X = _safe_indexing(X, subsample_idx)
+ elif self.strategy != "quantile" and isinstance(
+ self.subsample, numbers.Integral
+ ):
+ raise ValueError(
+ f"Invalid parameter for `strategy`: {self.strategy}. "
+ '`subsample` must be used with `strategy="quantile"`.'
+ )
+
valid_encode = ("onehot", "onehot-dense", "ordinal")
if self.encode not in valid_encode:
raise ValueError(
|
diff --git a/sklearn/preprocessing/tests/test_discretization.py b/sklearn/preprocessing/tests/test_discretization.py
index a053332619e39..fa8240893f7c3 100644
--- a/sklearn/preprocessing/tests/test_discretization.py
+++ b/sklearn/preprocessing/tests/test_discretization.py
@@ -3,6 +3,7 @@
import scipy.sparse as sp
import warnings
+from sklearn import clone
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.preprocessing import OneHotEncoder
from sklearn.utils._testing import (
@@ -37,16 +38,16 @@ def test_valid_n_bins():
def test_invalid_n_bins():
est = KBinsDiscretizer(n_bins=1)
err_msg = (
- "KBinsDiscretizer received an invalid "
- "number of bins. Received 1, expected at least 2."
+ "KBinsDiscretizer received an invalid number of bins. Received 1, expected at"
+ " least 2."
)
with pytest.raises(ValueError, match=err_msg):
est.fit_transform(X)
est = KBinsDiscretizer(n_bins=1.1)
err_msg = (
- "KBinsDiscretizer received an invalid "
- "n_bins type. Received float, expected int."
+ "KBinsDiscretizer received an invalid n_bins type. Received float, expected"
+ " int."
)
with pytest.raises(ValueError, match=err_msg):
est.fit_transform(X)
@@ -357,3 +358,80 @@ def test_32_equal_64(input_dtype, encode):
Xt_64 = kbd_64.transform(X_input)
assert_allclose_dense_sparse(Xt_32, Xt_64)
+
+
+# FIXME: remove the `filterwarnings` in 1.3
[email protected]("ignore:In version 1.3 onwards, subsample=2e5")
[email protected]("subsample", [None, "warn"])
+def test_kbinsdiscretizer_subsample_default(subsample):
+ # Since the size of X is small (< 2e5), subsampling will not take place.
+ X = np.array([-2, 1.5, -4, -1]).reshape(-1, 1)
+ kbd_default = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
+ kbd_default.fit(X)
+
+ kbd_with_subsampling = clone(kbd_default)
+ kbd_with_subsampling.set_params(subsample=subsample)
+ kbd_with_subsampling.fit(X)
+
+ for bin_kbd_default, bin_kbd_with_subsampling in zip(
+ kbd_default.bin_edges_[0], kbd_with_subsampling.bin_edges_[0]
+ ):
+ np.testing.assert_allclose(bin_kbd_default, bin_kbd_with_subsampling)
+ assert kbd_default.bin_edges_.shape == kbd_with_subsampling.bin_edges_.shape
+
+
+def test_kbinsdiscretizer_subsample_invalid_strategy():
+ X = np.array([-2, 1.5, -4, -1]).reshape(-1, 1)
+ kbd = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="uniform", subsample=3)
+
+ err_msg = '`subsample` must be used with `strategy="quantile"`.'
+ with pytest.raises(ValueError, match=err_msg):
+ kbd.fit(X)
+
+
+def test_kbinsdiscretizer_subsample_invalid_type():
+ X = np.array([-2, 1.5, -4, -1]).reshape(-1, 1)
+ kbd = KBinsDiscretizer(
+ n_bins=10, encode="ordinal", strategy="quantile", subsample="full"
+ )
+
+ msg = (
+ "subsample must be an instance of <class 'numbers.Integral'>, not "
+ "<class 'str'>."
+ )
+ with pytest.raises(TypeError, match=msg):
+ kbd.fit(X)
+
+
+# TODO: Remove in 1.3
+def test_kbinsdiscretizer_subsample_warn():
+ X = np.random.rand(200001, 1).reshape(-1, 1)
+ kbd = KBinsDiscretizer(n_bins=100, encode="ordinal", strategy="quantile")
+
+ msg = "In version 1.3 onwards, subsample=2e5 will be used by default."
+ with pytest.warns(FutureWarning, match=msg):
+ kbd.fit(X)
+
+
[email protected]("subsample", [0, int(2e5)])
+def test_kbinsdiscretizer_subsample_values(subsample):
+ X = np.random.rand(220000, 1).reshape(-1, 1)
+ kbd_default = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
+
+ kbd_with_subsampling = clone(kbd_default)
+ kbd_with_subsampling.set_params(subsample=subsample)
+
+ if subsample == 0:
+ with pytest.raises(ValueError, match="subsample == 0, must be >= 1."):
+ kbd_with_subsampling.fit(X)
+ else:
+ # TODO: Remove in 1.3
+ msg = "In version 1.3 onwards, subsample=2e5 will be used by default."
+ with pytest.warns(FutureWarning, match=msg):
+ kbd_default.fit(X)
+
+ kbd_with_subsampling.fit(X)
+ assert not np.all(
+ kbd_default.bin_edges_[0] == kbd_with_subsampling.bin_edges_[0]
+ )
+ assert kbd_default.bin_edges_.shape == kbd_with_subsampling.bin_edges_.shape
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 542636b1642f7..7036139bfb10e 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -134,6 +134,11 @@ Changelog\n :mod:`sklearn.preprocessing`\n ............................\n \n+- |Enhancement| Adds a `subsample` parameter to :class:`preprocessing.KBinsDiscretizer`.\n+ This allows specifying a maximum number of samples to be used while fitting\n+ the model. The option is only available when `strategy` is set to `quantile`.\n+ :pr:`21445` by :user:`Felipe Bidu <fbidu>` and :user:`Amanda Dsouza <amy12xx>`.\n+\n - |Fix| :class:`preprocessing.LabelBinarizer` now validates input parameters in `fit`\n instead of `__init__`.\n :pr:`21434` by :user:`Krum Arnaudov <krumeto>`.\n"
}
] |
1.01
|
1f8825c8dd6238355191e3d1c98f4e4d54cfbf16
|
[
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-kmeans-expected_inv1]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float16-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected1]",
"sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[quantile]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[6]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[uniform-expected0]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected2]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-uniform-expected_inv0]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[8]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[4]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float16-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-quantile-expected_inv2]",
"sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[quantile-expected_2bins2-expected_3bins2-expected_5bins2]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float16-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[quantile-expected_bin_edges0]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float16-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[uniform-expected0]",
"sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[uniform-expected_2bins0-expected_3bins0-expected_5bins0]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[3]",
"sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[kmeans]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[quantile]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-kmeans-expected_inv1]",
"sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[uniform]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected1]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_invalid_encode_option",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-quantile-expected_inv2]",
"sklearn/preprocessing/tests/test_discretization.py::test_transform_1d_behavior",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[5]",
"sklearn/preprocessing/tests/test_discretization.py::test_encode_options",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-uniform-expected_inv0]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-quantile-expected_inv2]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected2]",
"sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[kmeans]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[1]",
"sklearn/preprocessing/tests/test_discretization.py::test_valid_n_bins",
"sklearn/preprocessing/tests/test_discretization.py::test_invalid_n_bins_array",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[kmeans-expected_bin_edges1]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-uniform-expected_inv0]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_invalid_n_bins",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_overwrite",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float16-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float16-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[7]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-kmeans-expected_inv1]",
"sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[uniform]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float16-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[2]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[kmeans-expected_2bins1-expected_3bins1-expected_5bins1]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float16-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_percentile_numeric_stability",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float16]",
"sklearn/preprocessing/tests/test_discretization.py::test_invalid_strategy_option",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float16-float32]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float16]"
] |
[
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_default[None]",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_values[200000]",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_default[warn]",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_warn",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_invalid_type",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_invalid_strategy",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_values[0]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 542636b1642f7..7036139bfb10e 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -134,6 +134,11 @@ Changelog\n :mod:`sklearn.preprocessing`\n ............................\n \n+- |Enhancement| Adds a `subsample` parameter to :class:`preprocessing.KBinsDiscretizer`.\n+ This allows specifying a maximum number of samples to be used while fitting\n+ the model. The option is only available when `strategy` is set to `quantile`.\n+ :pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.\n+\n - |Fix| :class:`preprocessing.LabelBinarizer` now validates input parameters in `fit`\n instead of `__init__`.\n :pr:`<PRID>` by :user:`<NAME>`.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 542636b1642f7..7036139bfb10e 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -134,6 +134,11 @@ Changelog
:mod:`sklearn.preprocessing`
............................
+- |Enhancement| Adds a `subsample` parameter to :class:`preprocessing.KBinsDiscretizer`.
+ This allows specifying a maximum number of samples to be used while fitting
+ the model. The option is only available when `strategy` is set to `quantile`.
+ :pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.
+
- |Fix| :class:`preprocessing.LabelBinarizer` now validates input parameters in `fit`
instead of `__init__`.
:pr:`<PRID>` by :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20408
|
https://github.com/scikit-learn/scikit-learn/pull/20408
|
diff --git a/doc/modules/mixture.rst b/doc/modules/mixture.rst
index fb8e897270f0b..114b5ea3e8eb3 100644
--- a/doc/modules/mixture.rst
+++ b/doc/modules/mixture.rst
@@ -135,6 +135,43 @@ parameters to maximize the likelihood of the data given those
assignments. Repeating this process is guaranteed to always converge
to a local optimum.
+Choice of the Initialization Method
+-----------------------------------
+
+There is a choice of four initialization methods (as well as inputting user defined
+initial means) to generate the initial centers for the model components:
+
+k-means (default)
+ This applies a traditional k-means clustering algorithm.
+ This can be computationally expensive compared to other initialization methods.
+
+k-means++
+ This uses the initialization method of k-means clustering: k-means++.
+ This will pick the first center at random from the data. Subsequent centers will be
+ chosen from a weighted distribution of the data favouring points further away from
+ existing centers. k-means++ is the default initialization for k-means so will be
+ quicker than running a full k-means but can still take a significant amount of
+ time for large data sets with many components.
+
+random_from_data
+ This will pick random data points from the input data as the initial
+ centers. This is a very fast method of initialization but can produce non-convergent
+ results if the chosen points are too close to each other.
+
+random
+ Centers are chosen as a small pertubation away from the mean of all data.
+ This method is simple but can lead to the model taking longer to converge.
+
+.. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_init_001.png
+ :target: ../auto_examples/mixture/plot_gmm_init.html
+ :align: center
+ :scale: 50%
+
+.. topic:: Examples:
+
+ * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_init.py` for an example of
+ using different initializations in Gaussian Mixture.
+
.. _bgmm:
Variational Bayesian Gaussian Mixture
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index ef106adf0807b..32e33752a49b9 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -766,6 +766,20 @@ Changelog
- |Fix| Fixes `precision_recall_curve` and `average_precision_score` when true labels
are all negative. :pr:`19085` by :user:`Varun Agrawal <varunagrawal>`.
+:mod:`sklearn.mixture`
+......................
+
+- |Enhancement| :class:`mixture.GaussianMixture` and
+ :class:`mixture.BayesianGaussianMixture` can now be initialized using
+ k-means++ and random data points. :pr:`20408` by
+ :user:`Gordon Walsh <g-walsh>`, :user:`Alberto Ceballos<alceballosa>`
+ and :user:`Andres Rios<ariosramirez>`.
+
+- |Fix| Fix a bug that correctly initialize `precisions_cholesky_` in
+ :class:`mixture.GaussianMixture` when providing `precisions_init` by taking
+ its square root.
+ :pr:`22058` by :user:`Guillaume Lemaitre <glemaitre>`.
+
:mod:`sklearn.model_selection`
..............................
@@ -783,14 +797,6 @@ Changelog
now validate input parameters in `fit` instead of `__init__`.
:pr:`21880` by :user:`Mrinal Tyagi <MrinalTyagi>`.
-:mod:`sklearn.mixture`
-......................
-
-- |Fix| Fix a bug that correctly initialize `precisions_cholesky_` in
- :class:`mixture.GaussianMixture` when providing `precisions_init` by taking
- its square root.
- :pr:`22058` by :user:`Guillaume Lemaitre <glemaitre>`.
-
:mod:`sklearn.multiclass`
.........................
diff --git a/examples/mixture/plot_gmm_init.py b/examples/mixture/plot_gmm_init.py
new file mode 100644
index 0000000000000..23a4788b799b4
--- /dev/null
+++ b/examples/mixture/plot_gmm_init.py
@@ -0,0 +1,109 @@
+"""
+==========================
+GMM Initialization Methods
+==========================
+
+Examples of the different methods of initialization in Gaussian Mixture Models
+
+See :ref:`gmm` for more information on the estimator.
+
+Here we generate some sample data with four easy to identify clusters. The
+purpose of this example is to show the four different methods for the
+initialization parameter *init_param*.
+
+The four initializations are *kmeans* (default), *random*, *random_from_data* and
+*k-means++*.
+
+Orange diamonds represent the initialization centers for the gmm generated by
+the *init_param*. The rest of the data is represented as crosses and the
+colouring represents the eventual associated classification after the GMM has
+finished.
+
+The numbers in the top right of each subplot represent the number of
+iterations taken for the GaussianMixture to converge and the relative time
+taken for the initialization part of the algorithm to run. The shorter
+initialization times tend to have a greater number of iterations to converge.
+
+The initialization time is the ratio of the time taken for that method versus
+the time taken for the default *kmeans* method. As you can see all three
+alternative methods take less time to initialize when compared to *kmeans*.
+
+In this example, when initialized with *random_from_data* or *random* the model takes
+more iterations to converge. Here *k-means++* does a good job of both low
+time to initialize and low number of GaussianMixture iterations to converge.
+"""
+
+
+# Author: Gordon Walsh <[email protected]>
+# Data generation code from Jake Vanderplas <[email protected]>
+
+import matplotlib.pyplot as plt
+import numpy as np
+from sklearn.mixture import GaussianMixture
+from sklearn.utils.extmath import row_norms
+from sklearn.datasets._samples_generator import make_blobs
+from timeit import default_timer as timer
+
+print(__doc__)
+
+# Generate some data
+
+X, y_true = make_blobs(n_samples=4000, centers=4, cluster_std=0.60, random_state=0)
+X = X[:, ::-1]
+
+n_samples = 4000
+n_components = 4
+x_squared_norms = row_norms(X, squared=True)
+
+
+def get_initial_means(X, init_params, r):
+ # Run a GaussianMixture with max_iter=0 to output the initalization means
+ gmm = GaussianMixture(
+ n_components=4, init_params=init_params, tol=1e-9, max_iter=0, random_state=r
+ ).fit(X)
+ return gmm.means_
+
+
+methods = ["kmeans", "random_from_data", "k-means++", "random"]
+colors = ["navy", "turquoise", "cornflowerblue", "darkorange"]
+times_init = {}
+relative_times = {}
+
+plt.figure(figsize=(4 * len(methods) // 2, 6))
+plt.subplots_adjust(
+ bottom=0.1, top=0.9, hspace=0.15, wspace=0.05, left=0.05, right=0.95
+)
+
+for n, method in enumerate(methods):
+ r = np.random.RandomState(seed=1234)
+ plt.subplot(2, len(methods) // 2, n + 1)
+
+ start = timer()
+ ini = get_initial_means(X, method, r)
+ end = timer()
+ init_time = end - start
+
+ gmm = GaussianMixture(
+ n_components=4, means_init=ini, tol=1e-9, max_iter=2000, random_state=r
+ ).fit(X)
+
+ times_init[method] = init_time
+ for i, color in enumerate(colors):
+ data = X[gmm.predict(X) == i]
+ plt.scatter(data[:, 0], data[:, 1], color=color, marker="x")
+
+ plt.scatter(
+ ini[:, 0], ini[:, 1], s=75, marker="D", c="orange", lw=1.5, edgecolors="black"
+ )
+ relative_times[method] = times_init[method] / times_init[methods[0]]
+
+ plt.xticks(())
+ plt.yticks(())
+ plt.title(method, loc="left", fontsize=12)
+ plt.title(
+ "Iter %i | Init Time %.2fx" % (gmm.n_iter_, relative_times[method]),
+ loc="right",
+ fontsize=10,
+ )
+plt.suptitle("GMM iterations and relative time taken to initialize")
+plt.show()
diff --git a/sklearn/mixture/_base.py b/sklearn/mixture/_base.py
index 978d16c966890..2edc3b57aa4d2 100644
--- a/sklearn/mixture/_base.py
+++ b/sklearn/mixture/_base.py
@@ -4,6 +4,7 @@
# Modified by Thierry Guillemot <[email protected]>
# License: BSD 3 clause
+import numbers
import warnings
from abc import ABCMeta, abstractmethod
from time import time
@@ -12,10 +13,11 @@
from scipy.special import logsumexp
from .. import cluster
+from ..cluster import kmeans_plusplus
from ..base import BaseEstimator
from ..base import DensityMixin
from ..exceptions import ConvergenceWarning
-from ..utils import check_random_state
+from ..utils import check_random_state, check_scalar
from ..utils.validation import check_is_fitted
@@ -76,40 +78,26 @@ def _check_initial_parameters(self, X):
----------
X : array-like of shape (n_samples, n_features)
"""
- if self.n_components < 1:
- raise ValueError(
- "Invalid value for 'n_components': %d "
- "Estimation requires at least one component"
- % self.n_components
- )
+ check_scalar(
+ self.n_components,
+ name="n_components",
+ target_type=numbers.Integral,
+ min_val=1,
+ )
- if self.tol < 0.0:
- raise ValueError(
- "Invalid value for 'tol': %.5f "
- "Tolerance used by the EM must be non-negative"
- % self.tol
- )
+ check_scalar(self.tol, name="tol", target_type=numbers.Real, min_val=0.0)
- if self.n_init < 1:
- raise ValueError(
- "Invalid value for 'n_init': %d Estimation requires at least one run"
- % self.n_init
- )
+ check_scalar(
+ self.n_init, name="n_init", target_type=numbers.Integral, min_val=1
+ )
- if self.max_iter < 1:
- raise ValueError(
- "Invalid value for 'max_iter': %d "
- "Estimation requires at least one iteration"
- % self.max_iter
- )
+ check_scalar(
+ self.max_iter, name="max_iter", target_type=numbers.Integral, min_val=0
+ )
- if self.reg_covar < 0.0:
- raise ValueError(
- "Invalid value for 'reg_covar': %.5f "
- "regularization on covariance must be "
- "non-negative"
- % self.reg_covar
- )
+ check_scalar(
+ self.reg_covar, name="reg_covar", target_type=numbers.Real, min_val=0.0
+ )
# Check all the parameters values of the derived class
self._check_parameters(X)
@@ -150,6 +138,20 @@ def _initialize_parameters(self, X, random_state):
elif self.init_params == "random":
resp = random_state.uniform(size=(n_samples, self.n_components))
resp /= resp.sum(axis=1)[:, np.newaxis]
+ elif self.init_params == "random_from_data":
+ resp = np.zeros((n_samples, self.n_components))
+ indices = random_state.choice(
+ n_samples, size=self.n_components, replace=False
+ )
+ resp[indices, np.arange(self.n_components)] = 1
+ elif self.init_params == "k-means++":
+ resp = np.zeros((n_samples, self.n_components))
+ _, indices = kmeans_plusplus(
+ X,
+ self.n_components,
+ random_state=random_state,
+ )
+ resp[indices, np.arange(self.n_components)] = 1
else:
raise ValueError(
"Unimplemented initialization method '%s'" % self.init_params
@@ -252,28 +254,35 @@ def fit_predict(self, X, y=None):
lower_bound = -np.inf if do_init else self.lower_bound_
- for n_iter in range(1, self.max_iter + 1):
- prev_lower_bound = lower_bound
+ if self.max_iter == 0:
+ best_params = self._get_parameters()
+ best_n_iter = 0
+ else:
+ for n_iter in range(1, self.max_iter + 1):
+ prev_lower_bound = lower_bound
- log_prob_norm, log_resp = self._e_step(X)
- self._m_step(X, log_resp)
- lower_bound = self._compute_lower_bound(log_resp, log_prob_norm)
+ log_prob_norm, log_resp = self._e_step(X)
+ self._m_step(X, log_resp)
+ lower_bound = self._compute_lower_bound(log_resp, log_prob_norm)
- change = lower_bound - prev_lower_bound
- self._print_verbose_msg_iter_end(n_iter, change)
+ change = lower_bound - prev_lower_bound
+ self._print_verbose_msg_iter_end(n_iter, change)
- if abs(change) < self.tol:
- self.converged_ = True
- break
+ if abs(change) < self.tol:
+ self.converged_ = True
+ break
- self._print_verbose_msg_init_end(lower_bound)
+ self._print_verbose_msg_init_end(lower_bound)
- if lower_bound > max_lower_bound or max_lower_bound == -np.inf:
- max_lower_bound = lower_bound
- best_params = self._get_parameters()
- best_n_iter = n_iter
+ if lower_bound > max_lower_bound or max_lower_bound == -np.inf:
+ max_lower_bound = lower_bound
+ best_params = self._get_parameters()
+ best_n_iter = n_iter
- if not self.converged_:
+ # Should only warn about convergence if max_iter > 0, otherwise
+ # the user is assumed to have used 0-iters initialization
+ # to get the initial means.
+ if not self.converged_ and self.max_iter > 0:
warnings.warn(
"Initialization %d did not converge. "
"Try different init parameters, "
diff --git a/sklearn/mixture/_bayesian_mixture.py b/sklearn/mixture/_bayesian_mixture.py
index cd98b1ed2433b..d1f0c5d0bab81 100644
--- a/sklearn/mixture/_bayesian_mixture.py
+++ b/sklearn/mixture/_bayesian_mixture.py
@@ -118,13 +118,20 @@ class BayesianGaussianMixture(BaseMixture):
The number of initializations to perform. The result with the highest
lower bound value on the likelihood is kept.
- init_params : {'kmeans', 'random'}, default='kmeans'
+ init_params : {'kmeans', 'k-means++', 'random', 'random_from_data'}, \
+ default='kmeans'
The method used to initialize the weights, the means and the
covariances.
- Must be one of::
+ String must be one of:
'kmeans' : responsibilities are initialized using kmeans.
+ 'k-means++' : use the k-means++ method to initialize.
'random' : responsibilities are initialized randomly.
+ 'random_from_data' : initial means are randomly selected data points.
+
+ .. versionchanged:: v1.1
+ `init_params` now accepts 'random_from_data' and 'k-means++' as
+ initialization methods.
weight_concentration_prior_type : str, default='dirichlet_process'
String describing the type of the weight concentration prior.
diff --git a/sklearn/mixture/_gaussian_mixture.py b/sklearn/mixture/_gaussian_mixture.py
index 75bd8f739990d..8fc0152359951 100644
--- a/sklearn/mixture/_gaussian_mixture.py
+++ b/sklearn/mixture/_gaussian_mixture.py
@@ -492,13 +492,20 @@ class GaussianMixture(BaseMixture):
n_init : int, default=1
The number of initializations to perform. The best results are kept.
- init_params : {'kmeans', 'random'}, default='kmeans'
+ init_params : {'kmeans', 'k-means++', 'random', 'random_from_data'}, \
+ default='kmeans'
The method used to initialize the weights, the means and the
precisions.
- Must be one of::
+ String must be one of:
- 'kmeans' : responsibilities are initialized using kmeans.
- 'random' : responsibilities are initialized randomly.
+ - 'kmeans' : responsibilities are initialized using kmeans.
+ - 'k-means++' : use the k-means++ method to initialize.
+ - 'random' : responsibilities are initialized randomly.
+ - 'random_from_data' : initial means are randomly selected data points.
+
+ .. versionchanged:: v1.1
+ `init_params` now accepts 'random_from_data' and 'k-means++' as
+ initialization methods.
weights_init : array-like of shape (n_components, ), default=None
The user-provided initial weights.
|
diff --git a/sklearn/mixture/tests/test_gaussian_mixture.py b/sklearn/mixture/tests/test_gaussian_mixture.py
index bbf9cd98b1413..f8531c7553202 100644
--- a/sklearn/mixture/tests/test_gaussian_mixture.py
+++ b/sklearn/mixture/tests/test_gaussian_mixture.py
@@ -2,6 +2,7 @@
# Thierry Guillemot <[email protected]>
# License: BSD 3 clause
+import itertools
import re
import sys
import copy
@@ -129,55 +130,41 @@ def test_gaussian_mixture_attributes():
n_components_bad = 0
gmm = GaussianMixture(n_components=n_components_bad)
- msg = (
- f"Invalid value for 'n_components': {n_components_bad} "
- "Estimation requires at least one component"
- )
+ msg = f"n_components == {n_components_bad}, must be >= 1."
with pytest.raises(ValueError, match=msg):
gmm.fit(X)
# covariance_type should be in [spherical, diag, tied, full]
covariance_type_bad = "bad_covariance_type"
gmm = GaussianMixture(covariance_type=covariance_type_bad)
- msg = (
- f"Invalid value for 'covariance_type': {covariance_type_bad} "
- "'covariance_type' should be in ['spherical', 'tied', 'diag', 'full']"
+ msg = re.escape(
+ f"Invalid value for 'covariance_type': {covariance_type_bad} 'covariance_type'"
+ + " should be in ['spherical', 'tied', 'diag', 'full']"
)
- with pytest.raises(ValueError):
+ with pytest.raises(ValueError, match=msg):
gmm.fit(X)
tol_bad = -1
gmm = GaussianMixture(tol=tol_bad)
- msg = (
- f"Invalid value for 'tol': {tol_bad:.5f} "
- "Tolerance used by the EM must be non-negative"
- )
+ msg = f"tol == {tol_bad}, must be >= 0."
with pytest.raises(ValueError, match=msg):
gmm.fit(X)
reg_covar_bad = -1
gmm = GaussianMixture(reg_covar=reg_covar_bad)
- msg = (
- f"Invalid value for 'reg_covar': {reg_covar_bad:.5f} "
- "regularization on covariance must be non-negative"
- )
+ msg = f"reg_covar == {reg_covar_bad}, must be >= 0."
with pytest.raises(ValueError, match=msg):
gmm.fit(X)
- max_iter_bad = 0
+ max_iter_bad = -1
gmm = GaussianMixture(max_iter=max_iter_bad)
- msg = (
- f"Invalid value for 'max_iter': {max_iter_bad} "
- "Estimation requires at least one iteration"
- )
+ msg = f"max_iter == {max_iter_bad}, must be >= 0."
with pytest.raises(ValueError, match=msg):
gmm.fit(X)
n_init_bad = 0
gmm = GaussianMixture(n_init=n_init_bad)
- msg = (
- f"Invalid value for 'n_init': {n_init_bad} Estimation requires at least one run"
- )
+ msg = f"n_init == {n_init_bad}, must be >= 1."
with pytest.raises(ValueError, match=msg):
gmm.fit(X)
@@ -1263,6 +1250,67 @@ def test_gaussian_mixture_setting_best_params():
assert hasattr(gmm, attr)
[email protected](
+ "init_params", ["random", "random_from_data", "k-means++", "kmeans"]
+)
+def test_init_means_not_duplicated(init_params, global_random_seed):
+ # Check that all initialisations provide not duplicated starting means
+ rng = np.random.RandomState(global_random_seed)
+ rand_data = RandomData(rng, scale=5)
+ n_components = rand_data.n_components
+ X = rand_data.X["full"]
+
+ gmm = GaussianMixture(
+ n_components=n_components, init_params=init_params, random_state=rng, max_iter=0
+ )
+ gmm.fit(X)
+
+ means = gmm.means_
+ for i_mean, j_mean in itertools.combinations(means, r=2):
+ assert not np.allclose(i_mean, j_mean)
+
+
[email protected](
+ "init_params", ["random", "random_from_data", "k-means++", "kmeans"]
+)
+def test_means_for_all_inits(init_params, global_random_seed):
+ # Check fitted means properties for all initializations
+ rng = np.random.RandomState(global_random_seed)
+ rand_data = RandomData(rng, scale=5)
+ n_components = rand_data.n_components
+ X = rand_data.X["full"]
+
+ gmm = GaussianMixture(
+ n_components=n_components, init_params=init_params, random_state=rng
+ )
+ gmm.fit(X)
+
+ assert gmm.means_.shape == (n_components, X.shape[1])
+ assert np.all(X.min(axis=0) <= gmm.means_)
+ assert np.all(gmm.means_ <= X.max(axis=0))
+ assert gmm.converged_
+
+
+def test_max_iter_zero():
+ # Check that max_iter=0 returns initialisation as expected
+ # Pick arbitrary initial means and check equal to max_iter=0
+ rng = np.random.RandomState(0)
+ rand_data = RandomData(rng, scale=5)
+ n_components = rand_data.n_components
+ X = rand_data.X["full"]
+ means_init = [[20, 30], [30, 25]]
+ gmm = GaussianMixture(
+ n_components=n_components,
+ random_state=rng,
+ means_init=means_init,
+ tol=1e-06,
+ max_iter=0,
+ )
+ gmm.fit(X)
+
+ assert_allclose(gmm.means_, means_init)
+
+
def test_gaussian_mixture_precisions_init_diag():
"""Check that we properly initialize `precision_cholesky_` when we manually
provide the precision matrix.
|
[
{
"path": "doc/modules/mixture.rst",
"old_path": "a/doc/modules/mixture.rst",
"new_path": "b/doc/modules/mixture.rst",
"metadata": "diff --git a/doc/modules/mixture.rst b/doc/modules/mixture.rst\nindex fb8e897270f0b..114b5ea3e8eb3 100644\n--- a/doc/modules/mixture.rst\n+++ b/doc/modules/mixture.rst\n@@ -135,6 +135,43 @@ parameters to maximize the likelihood of the data given those\n assignments. Repeating this process is guaranteed to always converge\n to a local optimum.\n \n+Choice of the Initialization Method\n+-----------------------------------\n+\n+There is a choice of four initialization methods (as well as inputting user defined\n+initial means) to generate the initial centers for the model components: \n+\n+k-means (default)\n+ This applies a traditional k-means clustering algorithm.\n+ This can be computationally expensive compared to other initialization methods.\n+\n+k-means++\n+ This uses the initialization method of k-means clustering: k-means++.\n+ This will pick the first center at random from the data. Subsequent centers will be\n+ chosen from a weighted distribution of the data favouring points further away from\n+ existing centers. k-means++ is the default initialization for k-means so will be\n+ quicker than running a full k-means but can still take a significant amount of\n+ time for large data sets with many components.\n+\n+random_from_data\n+ This will pick random data points from the input data as the initial\n+ centers. This is a very fast method of initialization but can produce non-convergent\n+ results if the chosen points are too close to each other.\n+\n+random\n+ Centers are chosen as a small pertubation away from the mean of all data.\n+ This method is simple but can lead to the model taking longer to converge.\n+\n+.. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_init_001.png\n+ :target: ../auto_examples/mixture/plot_gmm_init.html\n+ :align: center\n+ :scale: 50%\n+\n+.. topic:: Examples:\n+\n+ * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_init.py` for an example of\n+ using different initializations in Gaussian Mixture.\n+\n .. _bgmm:\n \n Variational Bayesian Gaussian Mixture\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex ef106adf0807b..32e33752a49b9 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -766,6 +766,20 @@ Changelog\n - |Fix| Fixes `precision_recall_curve` and `average_precision_score` when true labels\n are all negative. :pr:`19085` by :user:`Varun Agrawal <varunagrawal>`.\n \n+:mod:`sklearn.mixture`\n+......................\n+\n+- |Enhancement| :class:`mixture.GaussianMixture` and\n+ :class:`mixture.BayesianGaussianMixture` can now be initialized using\n+ k-means++ and random data points. :pr:`20408` by\n+ :user:`Gordon Walsh <g-walsh>`, :user:`Alberto Ceballos<alceballosa>`\n+ and :user:`Andres Rios<ariosramirez>`.\n+\n+- |Fix| Fix a bug that correctly initialize `precisions_cholesky_` in\n+ :class:`mixture.GaussianMixture` when providing `precisions_init` by taking\n+ its square root.\n+ :pr:`22058` by :user:`Guillaume Lemaitre <glemaitre>`.\n+\n :mod:`sklearn.model_selection`\n ..............................\n \n@@ -783,14 +797,6 @@ Changelog\n now validate input parameters in `fit` instead of `__init__`.\n :pr:`21880` by :user:`Mrinal Tyagi <MrinalTyagi>`.\n \n-:mod:`sklearn.mixture`\n-......................\n-\n-- |Fix| Fix a bug that correctly initialize `precisions_cholesky_` in\n- :class:`mixture.GaussianMixture` when providing `precisions_init` by taking\n- its square root.\n- :pr:`22058` by :user:`Guillaume Lemaitre <glemaitre>`.\n-\n :mod:`sklearn.multiclass`\n .........................\n \n"
}
] |
1.01
|
b99bd36830074ca6a82fcd50529a7365b01a23bf
|
[
"sklearn/mixture/tests/test_gaussian_mixture.py::test_regularisation",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_predict_predict_proba",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_best_params",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_suffstat_sk_spherical",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_warm_start[1]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_setting_best_params",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_precisions_init_diag",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_aic_bic",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_convergence_warning",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_verbose",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_check_weights",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_init",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_suffstat_sk_full",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_predict[1-2-0.1]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_convergence_detected_with_warm_start",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_multiple_init",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_sample",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_means_for_all_inits[42-kmeans]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_estimate_log_prob_resp",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_log_probabilities",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_n_parameters",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_monotonic_likelihood",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_predict_n_init",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_bic_1d_1component",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_means_for_all_inits[42-random]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_score_samples",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_compute_log_det_cholesky",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_suffstat_sk_diag",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_predict[0-2-1e-07]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_warm_start[2]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_predict[4-300-0.1]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_check_precisions",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_check_means",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_warm_start[0]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_predict[3-300-1e-07]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_score",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_suffstat_sk_tied",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_property"
] |
[
"sklearn/mixture/tests/test_gaussian_mixture.py::test_means_for_all_inits[42-k-means++]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_init_means_not_duplicated[42-random_from_data]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_max_iter_zero",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_init_means_not_duplicated[42-kmeans]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_attributes",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_means_for_all_inits[42-random_from_data]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_init_means_not_duplicated[42-random]",
"sklearn/mixture/tests/test_gaussian_mixture.py::test_init_means_not_duplicated[42-k-means++]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "examples/mixture/plot_gmm_init.py"
}
]
}
|
[
{
"path": "doc/modules/mixture.rst",
"old_path": "a/doc/modules/mixture.rst",
"new_path": "b/doc/modules/mixture.rst",
"metadata": "diff --git a/doc/modules/mixture.rst b/doc/modules/mixture.rst\nindex fb8e897270f0b..114b5ea3e8eb3 100644\n--- a/doc/modules/mixture.rst\n+++ b/doc/modules/mixture.rst\n@@ -135,6 +135,43 @@ parameters to maximize the likelihood of the data given those\n assignments. Repeating this process is guaranteed to always converge\n to a local optimum.\n \n+Choice of the Initialization Method\n+-----------------------------------\n+\n+There is a choice of four initialization methods (as well as inputting user defined\n+initial means) to generate the initial centers for the model components: \n+\n+k-means (default)\n+ This applies a traditional k-means clustering algorithm.\n+ This can be computationally expensive compared to other initialization methods.\n+\n+k-means++\n+ This uses the initialization method of k-means clustering: k-means++.\n+ This will pick the first center at random from the data. Subsequent centers will be\n+ chosen from a weighted distribution of the data favouring points further away from\n+ existing centers. k-means++ is the default initialization for k-means so will be\n+ quicker than running a full k-means but can still take a significant amount of\n+ time for large data sets with many components.\n+\n+random_from_data\n+ This will pick random data points from the input data as the initial\n+ centers. This is a very fast method of initialization but can produce non-convergent\n+ results if the chosen points are too close to each other.\n+\n+random\n+ Centers are chosen as a small pertubation away from the mean of all data.\n+ This method is simple but can lead to the model taking longer to converge.\n+\n+.. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_init_001.png\n+ :target: ../auto_examples/mixture/plot_gmm_init.html\n+ :align: center\n+ :scale: 50%\n+\n+.. topic:: Examples:\n+\n+ * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_init.py` for an example of\n+ using different initializations in Gaussian Mixture.\n+\n .. _bgmm:\n \n Variational Bayesian Gaussian Mixture\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex ef106adf0807b..32e33752a49b9 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -766,6 +766,20 @@ Changelog\n - |Fix| Fixes `precision_recall_curve` and `average_precision_score` when true labels\n are all negative. :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.mixture`\n+......................\n+\n+- |Enhancement| :class:`mixture.GaussianMixture` and\n+ :class:`mixture.BayesianGaussianMixture` can now be initialized using\n+ k-means++ and random data points. :pr:`<PRID>` by\n+ :user:`<NAME>`, :user:`<NAME>`\n+ and :user:`<NAME>`.\n+\n+- |Fix| Fix a bug that correctly initialize `precisions_cholesky_` in\n+ :class:`mixture.GaussianMixture` when providing `precisions_init` by taking\n+ its square root.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.model_selection`\n ..............................\n \n@@ -783,14 +797,6 @@ Changelog\n now validate input parameters in `fit` instead of `__init__`.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n-:mod:`sklearn.mixture`\n-......................\n-\n-- |Fix| Fix a bug that correctly initialize `precisions_cholesky_` in\n- :class:`mixture.GaussianMixture` when providing `precisions_init` by taking\n- its square root.\n- :pr:`<PRID>` by :user:`<NAME>`.\n-\n :mod:`sklearn.multiclass`\n .........................\n \n"
}
] |
diff --git a/doc/modules/mixture.rst b/doc/modules/mixture.rst
index fb8e897270f0b..114b5ea3e8eb3 100644
--- a/doc/modules/mixture.rst
+++ b/doc/modules/mixture.rst
@@ -135,6 +135,43 @@ parameters to maximize the likelihood of the data given those
assignments. Repeating this process is guaranteed to always converge
to a local optimum.
+Choice of the Initialization Method
+-----------------------------------
+
+There is a choice of four initialization methods (as well as inputting user defined
+initial means) to generate the initial centers for the model components:
+
+k-means (default)
+ This applies a traditional k-means clustering algorithm.
+ This can be computationally expensive compared to other initialization methods.
+
+k-means++
+ This uses the initialization method of k-means clustering: k-means++.
+ This will pick the first center at random from the data. Subsequent centers will be
+ chosen from a weighted distribution of the data favouring points further away from
+ existing centers. k-means++ is the default initialization for k-means so will be
+ quicker than running a full k-means but can still take a significant amount of
+ time for large data sets with many components.
+
+random_from_data
+ This will pick random data points from the input data as the initial
+ centers. This is a very fast method of initialization but can produce non-convergent
+ results if the chosen points are too close to each other.
+
+random
+ Centers are chosen as a small pertubation away from the mean of all data.
+ This method is simple but can lead to the model taking longer to converge.
+
+.. figure:: ../auto_examples/mixture/images/sphx_glr_plot_gmm_init_001.png
+ :target: ../auto_examples/mixture/plot_gmm_init.html
+ :align: center
+ :scale: 50%
+
+.. topic:: Examples:
+
+ * See :ref:`sphx_glr_auto_examples_mixture_plot_gmm_init.py` for an example of
+ using different initializations in Gaussian Mixture.
+
.. _bgmm:
Variational Bayesian Gaussian Mixture
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index ef106adf0807b..32e33752a49b9 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -766,6 +766,20 @@ Changelog
- |Fix| Fixes `precision_recall_curve` and `average_precision_score` when true labels
are all negative. :pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.mixture`
+......................
+
+- |Enhancement| :class:`mixture.GaussianMixture` and
+ :class:`mixture.BayesianGaussianMixture` can now be initialized using
+ k-means++ and random data points. :pr:`<PRID>` by
+ :user:`<NAME>`, :user:`<NAME>`
+ and :user:`<NAME>`.
+
+- |Fix| Fix a bug that correctly initialize `precisions_cholesky_` in
+ :class:`mixture.GaussianMixture` when providing `precisions_init` by taking
+ its square root.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.model_selection`
..............................
@@ -783,14 +797,6 @@ Changelog
now validate input parameters in `fit` instead of `__init__`.
:pr:`<PRID>` by :user:`<NAME>`.
-:mod:`sklearn.mixture`
-......................
-
-- |Fix| Fix a bug that correctly initialize `precisions_cholesky_` in
- :class:`mixture.GaussianMixture` when providing `precisions_init` by taking
- its square root.
- :pr:`<PRID>` by :user:`<NAME>`.
-
:mod:`sklearn.multiclass`
.........................
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'examples/mixture/plot_gmm_init.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-16018
|
https://github.com/scikit-learn/scikit-learn/pull/16018
|
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index 035f2b90203ca..997bccf66782d 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -594,17 +594,19 @@ dataset::
array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 0.]])
If there is a possibility that the training data might have missing categorical
-features, it can often be better to specify ``handle_unknown='ignore'`` instead
-of setting the ``categories`` manually as above. When
-``handle_unknown='ignore'`` is specified and unknown categories are encountered
-during transform, no error will be raised but the resulting one-hot encoded
-columns for this feature will be all zeros
-(``handle_unknown='ignore'`` is only supported for one-hot encoding)::
-
- >>> enc = preprocessing.OneHotEncoder(handle_unknown='ignore')
+features, it can often be better to specify
+`handle_unknown='infrequent_if_exist'` instead of setting the `categories`
+manually as above. When `handle_unknown='infrequent_if_exist'` is specified
+and unknown categories are encountered during transform, no error will be
+raised but the resulting one-hot encoded columns for this feature will be all
+zeros or considered as an infrequent category if enabled.
+(`handle_unknown='infrequent_if_exist'` is only supported for one-hot
+encoding)::
+
+ >>> enc = preprocessing.OneHotEncoder(handle_unknown='infrequent_if_exist')
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]
>>> enc.fit(X)
- OneHotEncoder(handle_unknown='ignore')
+ OneHotEncoder(handle_unknown='infrequent_if_exist')
>>> enc.transform([['female', 'from Asia', 'uses Chrome']]).toarray()
array([[1., 0., 0., 0., 0., 0.]])
@@ -621,7 +623,8 @@ since co-linearity would cause the covariance matrix to be non-invertible::
... ['female', 'from Europe', 'uses Firefox']]
>>> drop_enc = preprocessing.OneHotEncoder(drop='first').fit(X)
>>> drop_enc.categories_
- [array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object), array(['uses Firefox', 'uses Safari'], dtype=object)]
+ [array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object),
+ array(['uses Firefox', 'uses Safari'], dtype=object)]
>>> drop_enc.transform(X).toarray()
array([[1., 1., 1.],
[0., 0., 0.]])
@@ -634,7 +637,8 @@ categories. In this case, you can set the parameter `drop='if_binary'`.
... ['female', 'Asia', 'Chrome']]
>>> drop_enc = preprocessing.OneHotEncoder(drop='if_binary').fit(X)
>>> drop_enc.categories_
- [array(['female', 'male'], dtype=object), array(['Asia', 'Europe', 'US'], dtype=object), array(['Chrome', 'Firefox', 'Safari'], dtype=object)]
+ [array(['female', 'male'], dtype=object), array(['Asia', 'Europe', 'US'], dtype=object),
+ array(['Chrome', 'Firefox', 'Safari'], dtype=object)]
>>> drop_enc.transform(X).toarray()
array([[1., 0., 0., 1., 0., 0., 1.],
[0., 0., 1., 0., 0., 1., 0.],
@@ -699,6 +703,107 @@ separate categories::
See :ref:`dict_feature_extraction` for categorical features that are
represented as a dict, not as scalars.
+.. _one_hot_encoder_infrequent_categories:
+
+Infrequent categories
+---------------------
+
+:class:`OneHotEncoder` supports aggregating infrequent categories into a single
+output for each feature. The parameters to enable the gathering of infrequent
+categories are `min_frequency` and `max_categories`.
+
+1. `min_frequency` is either an integer greater or equal to 1, or a float in
+ the interval `(0.0, 1.0)`. If `min_frequency` is an integer, categories with
+ a cardinality smaller than `min_frequency` will be considered infrequent.
+ If `min_frequency` is a float, categories with a cardinality smaller than
+ this fraction of the total number of samples will be considered infrequent.
+ The default value is 1, which means every category is encoded separately.
+
+2. `max_categories` is either `None` or any integer greater than 1. This
+ parameter sets an upper limit to the number of output features for each
+ input feature. `max_categories` includes the feature that combines
+ infrequent categories.
+
+In the following example, the categories, `'dog', 'snake'` are considered
+infrequent::
+
+ >>> X = np.array([['dog'] * 5 + ['cat'] * 20 + ['rabbit'] * 10 +
+ ... ['snake'] * 3], dtype=object).T
+ >>> enc = preprocessing.OneHotEncoder(min_frequency=6, sparse=False).fit(X)
+ >>> enc.infrequent_categories_
+ [array(['dog', 'snake'], dtype=object)]
+ >>> enc.transform(np.array([['dog'], ['cat'], ['rabbit'], ['snake']]))
+ array([[0., 0., 1.],
+ [1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+By setting handle_unknown to `'infrequent_if_exist'`, unknown categories will
+be considered infrequent::
+
+ >>> enc = preprocessing.OneHotEncoder(
+ ... handle_unknown='infrequent_if_exist', sparse=False, min_frequency=6)
+ >>> enc = enc.fit(X)
+ >>> enc.transform(np.array([['dragon']]))
+ array([[0., 0., 1.]])
+
+:meth:`OneHotEncoder.get_feature_names_out` uses 'infrequent' as the infrequent
+feature name::
+
+ >>> enc.get_feature_names_out()
+ array(['x0_cat', 'x0_rabbit', 'x0_infrequent_sklearn'], dtype=object)
+
+When `'handle_unknown'` is set to `'infrequent_if_exist'` and an unknown
+category is encountered in transform:
+
+1. If infrequent category support was not configured or there was no
+ infrequent category during training, the resulting one-hot encoded columns
+ for this feature will be all zeros. In the inverse transform, an unknown
+ category will be denoted as `None`.
+
+2. If there is an infrequent category during training, the unknown category
+ will be considered infrequent. In the inverse transform, 'infrequent_sklearn'
+ will be used to represent the infrequent category.
+
+Infrequent categories can also be configured using `max_categories`. In the
+following example, we set `max_categories=2` to limit the number of features in
+the output. This will result in all but the `'cat'` category to be considered
+infrequent, leading to two features, one for `'cat'` and one for infrequent
+categories - which are all the others::
+
+ >>> enc = preprocessing.OneHotEncoder(max_categories=2, sparse=False)
+ >>> enc = enc.fit(X)
+ >>> enc.transform([['dog'], ['cat'], ['rabbit'], ['snake']])
+ array([[0., 1.],
+ [1., 0.],
+ [0., 1.],
+ [0., 1.]])
+
+If both `max_categories` and `min_frequency` are non-default values, then
+categories are selected based on `min_frequency` first and `max_categories`
+categories are kept. In the following example, `min_frequency=4` considers
+only `snake` to be infrequent, but `max_categories=3`, forces `dog` to also be
+infrequent::
+
+ >>> enc = preprocessing.OneHotEncoder(min_frequency=4, max_categories=3, sparse=False)
+ >>> enc = enc.fit(X)
+ >>> enc.transform([['dog'], ['cat'], ['rabbit'], ['snake']])
+ array([[0., 0., 1.],
+ [1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+If there are infrequent categories with the same cardinality at the cutoff of
+`max_categories`, then then the first `max_categories` are taken based on lexicon
+ordering. In the following example, "b", "c", and "d", have the same cardinality
+and with `max_categories=2`, "b" and "c" are infrequent because they have a higher
+lexicon order.
+
+ >>> X = np.asarray([["a"] * 20 + ["b"] * 10 + ["c"] * 10 + ["d"] * 10], dtype=object).T
+ >>> enc = preprocessing.OneHotEncoder(max_categories=3).fit(X)
+ >>> enc.infrequent_categories_
+ [array(['b', 'c'], dtype=object)]
+
.. _preprocessing_discretization:
Discretization
@@ -981,7 +1086,7 @@ Interestingly, a :class:`SplineTransformer` of ``degree=0`` is the same as
Penalties <10.1214/ss/1038425655>`. Statist. Sci. 11 (1996), no. 2, 89--121.
* Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. :doi:`A review of
- spline function procedures in R <10.1186/s12874-019-0666-3>`.
+ spline function procedures in R <10.1186/s12874-019-0666-3>`.
BMC Med Res Methodol 19, 46 (2019).
.. _function_transformer:
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 584dd796b5789..a0272f183bf81 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -688,6 +688,11 @@ Changelog
:mod:`sklearn.preprocessing`
............................
+- |Feature| :class:`preprocessing.OneHotEncoder` now supports grouping
+ infrequent categories into a single feature. Grouping infrequent categories
+ is enabled by specifying how to select infrequent categories with
+ `min_frequency` or `max_categories`. :pr:`16018` by `Thomas Fan`_.
+
- |Enhancement| Adds a `subsample` parameter to :class:`preprocessing.KBinsDiscretizer`.
This allows specifying a maximum number of samples to be used while fitting
the model. The option is only available when `strategy` is set to `quantile`.
diff --git a/sklearn/preprocessing/_encoders.py b/sklearn/preprocessing/_encoders.py
index 33d87a09a7b39..740378645d774 100644
--- a/sklearn/preprocessing/_encoders.py
+++ b/sklearn/preprocessing/_encoders.py
@@ -2,10 +2,11 @@
# Joris Van den Bossche <[email protected]>
# License: BSD 3 clause
+import numbers
import warnings
+
import numpy as np
from scipy import sparse
-import numbers
from ..base import BaseEstimator, TransformerMixin, _OneToOneFeatureMixin
from ..utils import check_array, is_scalar_nan
@@ -14,7 +15,7 @@
from ..utils.validation import _check_feature_names_in
from ..utils._mask import _get_mask
-from ..utils._encode import _encode, _check_unknown, _unique
+from ..utils._encode import _encode, _check_unknown, _unique, _get_counts
__all__ = ["OneHotEncoder", "OrdinalEncoder"]
@@ -71,7 +72,9 @@ def _get_feature(self, X, feature_idx):
# numpy arrays, sparse arrays
return X[:, feature_idx]
- def _fit(self, X, handle_unknown="error", force_all_finite=True):
+ def _fit(
+ self, X, handle_unknown="error", force_all_finite=True, return_counts=False
+ ):
self._check_n_features(X, reset=True)
self._check_feature_names(X, reset=True)
X_list, n_samples, n_features = self._check_X(
@@ -87,11 +90,18 @@ def _fit(self, X, handle_unknown="error", force_all_finite=True):
)
self.categories_ = []
+ category_counts = []
for i in range(n_features):
Xi = X_list[i]
+
if self.categories == "auto":
- cats = _unique(Xi)
+ result = _unique(Xi, return_counts=return_counts)
+ if return_counts:
+ cats, counts = result
+ category_counts.append(counts)
+ else:
+ cats = result
else:
cats = np.array(self.categories[i], dtype=Xi.dtype)
if Xi.dtype.kind not in "OUS":
@@ -114,8 +124,16 @@ def _fit(self, X, handle_unknown="error", force_all_finite=True):
" during fit".format(diff, i)
)
raise ValueError(msg)
+ if return_counts:
+ category_counts.append(_get_counts(Xi, cats))
+
self.categories_.append(cats)
+ output = {"n_samples": n_samples}
+ if return_counts:
+ output["category_counts"] = category_counts
+ return output
+
def _transform(
self, X, handle_unknown="error", force_all_finite=True, warn_on_unknown=False
):
@@ -244,19 +262,62 @@ class OneHotEncoder(_BaseEncoder):
.. versionchanged:: 0.23
The option `drop='if_binary'` was added in 0.23.
+ .. versionchanged:: 1.1
+ Support for dropping infrequent categories.
+
sparse : bool, default=True
Will return sparse matrix if set True else will return an array.
dtype : number type, default=float
Desired dtype of output.
- handle_unknown : {'error', 'ignore'}, default='error'
- Whether to raise an error or ignore if an unknown categorical feature
- is present during transform (default is to raise). When this parameter
- is set to 'ignore' and an unknown category is encountered during
- transform, the resulting one-hot encoded columns for this feature
- will be all zeros. In the inverse transform, an unknown category
- will be denoted as None.
+ handle_unknown : {'error', 'ignore', 'infrequent_if_exist'}, \
+ default='error'
+ Specifies the way unknown categories are handled during :meth:`transform`.
+
+ - 'error' : Raise an error if an unknown category is present during transform.
+ - 'ignore' : When an unknown category is encountered during
+ transform, the resulting one-hot encoded columns for this feature
+ will be all zeros. In the inverse transform, an unknown category
+ will be denoted as None.
+ - 'infrequent_if_exist' : When an unknown category is encountered
+ during transform, the resulting one-hot encoded columns for this
+ feature will map to the infrequent category if it exists. The
+ infrequent category will be mapped to the last position in the
+ encoding. During inverse transform, an unknown category will be
+ mapped to the category denoted `'infrequent'` if it exists. If the
+ `'infrequent'` category does not exist, then :meth:`transform` and
+ :meth:`inverse_transform` will handle an unknown category as with
+ `handle_unknown='ignore'`. Infrequent categories exist based on
+ `min_frequency` and `max_categories`. Read more in the
+ :ref:`User Guide <one_hot_encoder_infrequent_categories>`.
+
+ .. versionchanged:: 1.1
+ `'infrequent_if_exist'` was added to automatically handle unknown
+ categories and infrequent categories.
+
+ min_frequency : int or float, default=None
+ Specifies the minimum frequency below which a category will be
+ considered infrequent.
+
+ - If `int`, categories with a smaller cardinality will be considered
+ infrequent.
+
+ - If `float`, categories with a smaller cardinality than
+ `min_frequency * n_samples` will be considered infrequent.
+
+ .. versionadded:: 1.1
+ Read more in the :ref:`User Guide <one_hot_encoder_infrequent_categories>`.
+
+ max_categories : int, default=None
+ Specifies an upper limit to the number of output features for each input
+ feature when considering infrequent categories. If there are infrequent
+ categories, `max_categories` includes the category representing the
+ infrequent categories along with the frequent categories. If `None`,
+ there is no limit to the number of output features.
+
+ .. versionadded:: 1.1
+ Read more in the :ref:`User Guide <one_hot_encoder_infrequent_categories>`.
Attributes
----------
@@ -275,9 +336,23 @@ class OneHotEncoder(_BaseEncoder):
- ``drop_idx_ = None`` if all the transformed features will be
retained.
+ If infrequent categories are enabled by setting `min_frequency` or
+ `max_categories` to a non-default value and `drop_idx[i]` corresponds
+ to a infrequent category, then the entire infrequent category is
+ dropped.
+
.. versionchanged:: 0.23
Added the possibility to contain `None` values.
+ infrequent_categories_ : list of ndarray
+ Defined only if infrequent categories are enabled by setting
+ `min_frequency` or `max_categories` to a non-default value.
+ `infrequent_categories_[i]` are the infrequent categories for feature
+ `i`. If the feature `i` has no infrequent categories
+ `infrequent_categories_[i]` is None.
+
+ .. versionadded:: 1.1
+
n_features_in_ : int
Number of features seen during :term:`fit`.
@@ -342,6 +417,17 @@ class OneHotEncoder(_BaseEncoder):
>>> drop_binary_enc.transform([['Female', 1], ['Male', 2]]).toarray()
array([[0., 1., 0., 0.],
[1., 0., 1., 0.]])
+
+ Infrequent categories are enabled by setting `max_categories` or `min_frequency`.
+
+ >>> import numpy as np
+ >>> X = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object).T
+ >>> ohe = OneHotEncoder(max_categories=3, sparse=False).fit(X)
+ >>> ohe.infrequent_categories_
+ [array(['a', 'd'], dtype=object)]
+ >>> ohe.transform([["a"], ["b"]])
+ array([[0., 0., 1.],
+ [1., 0., 0.]])
"""
def __init__(
@@ -352,31 +438,113 @@ def __init__(
sparse=True,
dtype=np.float64,
handle_unknown="error",
+ min_frequency=None,
+ max_categories=None,
):
self.categories = categories
self.sparse = sparse
self.dtype = dtype
self.handle_unknown = handle_unknown
self.drop = drop
+ self.min_frequency = min_frequency
+ self.max_categories = max_categories
+
+ @property
+ def infrequent_categories_(self):
+ """Infrequent categories for each feature."""
+ # raises an AttributeError if `_infrequent_indices` is not defined
+ infrequent_indices = self._infrequent_indices
+ return [
+ None if indices is None else category[indices]
+ for category, indices in zip(self.categories_, infrequent_indices)
+ ]
def _validate_keywords(self):
- if self.handle_unknown not in ("error", "ignore"):
+
+ if self.handle_unknown not in {"error", "ignore", "infrequent_if_exist"}:
msg = (
- "handle_unknown should be either 'error' or 'ignore', got {0}.".format(
- self.handle_unknown
- )
+ "handle_unknown should be one of 'error', 'ignore', "
+ f"'infrequent_if_exist' got {self.handle_unknown}."
)
raise ValueError(msg)
+ if self.max_categories is not None and self.max_categories < 1:
+ raise ValueError("max_categories must be greater than 1")
+
+ if isinstance(self.min_frequency, numbers.Integral):
+ if not self.min_frequency >= 1:
+ raise ValueError(
+ "min_frequency must be an integer at least "
+ "1 or a float in (0.0, 1.0); got the "
+ f"integer {self.min_frequency}"
+ )
+ elif isinstance(self.min_frequency, numbers.Real):
+ if not (0.0 < self.min_frequency < 1.0):
+ raise ValueError(
+ "min_frequency must be an integer at least "
+ "1 or a float in (0.0, 1.0); got the "
+ f"float {self.min_frequency}"
+ )
+
+ self._infrequent_enabled = (
+ self.max_categories is not None and self.max_categories >= 1
+ ) or self.min_frequency is not None
+
+ def _map_drop_idx_to_infrequent(self, feature_idx, drop_idx):
+ """Convert `drop_idx` into the index for infrequent categories.
+
+ If there are no infrequent categories, then `drop_idx` is
+ returned. This method is called in `_compute_drop_idx` when the `drop`
+ parameter is an array-like.
+ """
+ if not self._infrequent_enabled:
+ return drop_idx
+
+ default_to_infrequent = self._default_to_infrequent_mappings[feature_idx]
+ if default_to_infrequent is None:
+ return drop_idx
+
+ # Raise error when explicitly dropping a category that is infrequent
+ infrequent_indices = self._infrequent_indices[feature_idx]
+ if infrequent_indices is not None and drop_idx in infrequent_indices:
+ categories = self.categories_[feature_idx]
+ raise ValueError(
+ f"Unable to drop category {categories[drop_idx]!r} from feature"
+ f" {feature_idx} because it is infrequent"
+ )
+ return default_to_infrequent[drop_idx]
+
def _compute_drop_idx(self):
+ """Compute the drop indices associated with `self.categories_`.
+
+ If `self.drop` is:
+ - `None`, returns `None`.
+ - `'first'`, returns all zeros to drop the first category.
+ - `'if_binary'`, returns zero if the category is binary and `None`
+ otherwise.
+ - array-like, returns the indices of the categories that match the
+ categories in `self.drop`. If the dropped category is an infrequent
+ category, then the index for the infrequent category is used. This
+ means that the entire infrequent category is dropped.
+ """
if self.drop is None:
return None
elif isinstance(self.drop, str):
if self.drop == "first":
return np.zeros(len(self.categories_), dtype=object)
elif self.drop == "if_binary":
+ n_features_out_no_drop = [len(cat) for cat in self.categories_]
+ if self._infrequent_enabled:
+ for i, infreq_idx in enumerate(self._infrequent_indices):
+ if infreq_idx is None:
+ continue
+ n_features_out_no_drop[i] -= infreq_idx.size - 1
+
return np.array(
- [0 if len(cats) == 2 else None for cats in self.categories_],
+ [
+ 0 if n_features_out == 2 else None
+ for n_features_out in n_features_out_no_drop
+ ],
dtype=object,
)
else:
@@ -404,24 +572,28 @@ def _compute_drop_idx(self):
raise ValueError(msg.format(len(self.categories_), droplen))
missing_drops = []
drop_indices = []
- for col_idx, (val, cat_list) in enumerate(
+ for feature_idx, (drop_val, cat_list) in enumerate(
zip(drop_array, self.categories_)
):
- if not is_scalar_nan(val):
- drop_idx = np.where(cat_list == val)[0]
+ if not is_scalar_nan(drop_val):
+ drop_idx = np.where(cat_list == drop_val)[0]
if drop_idx.size: # found drop idx
- drop_indices.append(drop_idx[0])
+ drop_indices.append(
+ self._map_drop_idx_to_infrequent(feature_idx, drop_idx[0])
+ )
else:
- missing_drops.append((col_idx, val))
+ missing_drops.append((feature_idx, drop_val))
continue
- # val is nan, find nan in categories manually
+ # drop_val is nan, find nan in categories manually
for cat_idx, cat in enumerate(cat_list):
if is_scalar_nan(cat):
- drop_indices.append(cat_idx)
+ drop_indices.append(
+ self._map_drop_idx_to_infrequent(feature_idx, cat_idx)
+ )
break
else: # loop did not break thus drop is missing
- missing_drops.append((col_idx, val))
+ missing_drops.append((feature_idx, drop_val))
if any(missing_drops):
msg = (
@@ -439,6 +611,191 @@ def _compute_drop_idx(self):
raise ValueError(msg)
return np.array(drop_indices, dtype=object)
+ def _identify_infrequent(self, category_count, n_samples, col_idx):
+ """Compute the infrequent indices.
+
+ Parameters
+ ----------
+ category_count : ndarray of shape (n_cardinality,)
+ Category counts.
+
+ n_samples : int
+ Number of samples.
+
+ col_idx : int
+ Index of the current category. Only used for the error message.
+
+ Returns
+ -------
+ output : ndarray of shape (n_infrequent_categories,) or None
+ If there are infrequent categories, indices of infrequent
+ categories. Otherwise None.
+ """
+ if isinstance(self.min_frequency, numbers.Integral):
+ infrequent_mask = category_count < self.min_frequency
+ elif isinstance(self.min_frequency, numbers.Real):
+ min_frequency_abs = n_samples * self.min_frequency
+ infrequent_mask = category_count < min_frequency_abs
+ else:
+ infrequent_mask = np.zeros(category_count.shape[0], dtype=bool)
+
+ n_current_features = category_count.size - infrequent_mask.sum() + 1
+ if self.max_categories is not None and self.max_categories < n_current_features:
+ # stable sort to preserve original count order
+ smallest_levels = np.argsort(category_count, kind="mergesort")[
+ : -self.max_categories + 1
+ ]
+ infrequent_mask[smallest_levels] = True
+
+ output = np.flatnonzero(infrequent_mask)
+ return output if output.size > 0 else None
+
+ def _fit_infrequent_category_mapping(self, n_samples, category_counts):
+ """Fit infrequent categories.
+
+ Defines the private attribute: `_default_to_infrequent_mappings`. For
+ feature `i`, `_default_to_infrequent_mappings[i]` defines the mapping
+ from the integer encoding returned by `super().transform()` into
+ infrequent categories. If `_default_to_infrequent_mappings[i]` is None,
+ there were no infrequent categories in the training set.
+
+ For example if categories 0, 2 and 4 were frequent, while categories
+ 1, 3, 5 were infrequent for feature 7, then these categories are mapped
+ to a single output:
+ `_default_to_infrequent_mappings[7] = array([0, 3, 1, 3, 2, 3])`
+
+ Defines private attrite: `_infrequent_indices`. `_infrequent_indices[i]`
+ is an array of indices such that
+ `categories_[i][_infrequent_indices[i]]` are all the infrequent category
+ labels. If the feature `i` has no infrequent categories
+ `_infrequent_indices[i]` is None.
+
+ .. versionadded:: 1.1
+
+ Parameters
+ ----------
+ n_samples : int
+ Number of samples in training set.
+ category_counts: list of ndarray
+ `category_counts[i]` is the category counts corresponding to
+ `self.categories_[i]`.
+ """
+ self._infrequent_indices = [
+ self._identify_infrequent(category_count, n_samples, col_idx)
+ for col_idx, category_count in enumerate(category_counts)
+ ]
+
+ # compute mapping from default mapping to infrequent mapping
+ self._default_to_infrequent_mappings = []
+
+ for cats, infreq_idx in zip(self.categories_, self._infrequent_indices):
+ # no infrequent categories
+ if infreq_idx is None:
+ self._default_to_infrequent_mappings.append(None)
+ continue
+
+ n_cats = len(cats)
+ # infrequent indices exist
+ mapping = np.empty(n_cats, dtype=np.int64)
+ n_infrequent_cats = infreq_idx.size
+
+ # infrequent categories are mapped to the last element.
+ n_frequent_cats = n_cats - n_infrequent_cats
+ mapping[infreq_idx] = n_frequent_cats
+
+ frequent_indices = np.setdiff1d(np.arange(n_cats), infreq_idx)
+ mapping[frequent_indices] = np.arange(n_frequent_cats)
+
+ self._default_to_infrequent_mappings.append(mapping)
+
+ def _map_infrequent_categories(self, X_int, X_mask):
+ """Map infrequent categories to integer representing the infrequent category.
+
+ This modifies X_int in-place. Values that were invalid based on `X_mask`
+ are mapped to the infrequent category if there was an infrequent
+ category for that feature.
+
+ Parameters
+ ----------
+ X_int: ndarray of shape (n_samples, n_features)
+ Integer encoded categories.
+
+ X_mask: ndarray of shape (n_samples, n_features)
+ Bool mask for valid values in `X_int`.
+ """
+ if not self._infrequent_enabled:
+ return
+
+ for col_idx in range(X_int.shape[1]):
+ infrequent_idx = self._infrequent_indices[col_idx]
+ if infrequent_idx is None:
+ continue
+
+ X_int[~X_mask[:, col_idx], col_idx] = infrequent_idx[0]
+ if self.handle_unknown == "infrequent_if_exist":
+ # All the unknown values are now mapped to the
+ # infrequent_idx[0], which makes the unknown values valid
+ # This is needed in `transform` when the encoding is formed
+ # using `X_mask`.
+ X_mask[:, col_idx] = True
+
+ # Remaps encoding in `X_int` where the infrequent categories are
+ # grouped together.
+ for i, mapping in enumerate(self._default_to_infrequent_mappings):
+ if mapping is None:
+ continue
+ X_int[:, i] = np.take(mapping, X_int[:, i])
+
+ def _compute_transformed_categories(self, i, remove_dropped=True):
+ """Compute the transformed categories used for column `i`.
+
+ 1. If there are infrequent categories, the category is named
+ 'infrequent_sklearn'.
+ 2. Dropped columns are removed when remove_dropped=True.
+ """
+ cats = self.categories_[i]
+
+ if self._infrequent_enabled:
+ infreq_map = self._default_to_infrequent_mappings[i]
+ if infreq_map is not None:
+ frequent_mask = infreq_map < infreq_map.max()
+ infrequent_cat = "infrequent_sklearn"
+ # infrequent category is always at the end
+ cats = np.concatenate(
+ (cats[frequent_mask], np.array([infrequent_cat], dtype=object))
+ )
+
+ if remove_dropped:
+ cats = self._remove_dropped_categories(cats, i)
+ return cats
+
+ def _remove_dropped_categories(self, categories, i):
+ """Remove dropped categories."""
+ if self.drop_idx_ is not None and self.drop_idx_[i] is not None:
+ return np.delete(categories, self.drop_idx_[i])
+ return categories
+
+ def _compute_n_features_outs(self):
+ """Compute the n_features_out for each input feature."""
+ output = [len(cats) for cats in self.categories_]
+
+ if self.drop_idx_ is not None:
+ for i, drop_idx in enumerate(self.drop_idx_):
+ if drop_idx is not None:
+ output[i] -= 1
+
+ if not self._infrequent_enabled:
+ return output
+
+ # infrequent is enabled, the number of features out are reduced
+ # because the infrequent categories are grouped together
+ for i, infreq_idx in enumerate(self._infrequent_indices):
+ if infreq_idx is None:
+ continue
+ output[i] -= infreq_idx.size - 1
+
+ return output
+
def fit(self, X, y=None):
"""
Fit OneHotEncoder to X.
@@ -458,8 +815,18 @@ def fit(self, X, y=None):
Fitted encoder.
"""
self._validate_keywords()
- self._fit(X, handle_unknown=self.handle_unknown, force_all_finite="allow-nan")
+ fit_results = self._fit(
+ X,
+ handle_unknown=self.handle_unknown,
+ force_all_finite="allow-nan",
+ return_counts=self._infrequent_enabled,
+ )
+ if self._infrequent_enabled:
+ self._fit_infrequent_category_mapping(
+ fit_results["n_samples"], fit_results["category_counts"]
+ )
self.drop_idx_ = self._compute_drop_idx()
+ self._n_features_outs = self._compute_n_features_outs()
return self
def fit_transform(self, X, y=None):
@@ -491,6 +858,9 @@ def transform(self, X):
"""
Transform X using one-hot encoding.
+ If there are infrequent categories for a feature, the infrequent
+ categories will be grouped into a single category.
+
Parameters
----------
X : array-like of shape (n_samples, n_features)
@@ -505,13 +875,17 @@ def transform(self, X):
"""
check_is_fitted(self)
# validation of X happens in _check_X called by _transform
- warn_on_unknown = self.handle_unknown == "ignore" and self.drop is not None
+ warn_on_unknown = self.drop is not None and self.handle_unknown in {
+ "ignore",
+ "infrequent_if_exist",
+ }
X_int, X_mask = self._transform(
X,
handle_unknown=self.handle_unknown,
force_all_finite="allow-nan",
warn_on_unknown=warn_on_unknown,
)
+ self._map_infrequent_categories(X_int, X_mask)
n_samples, n_features = X_int.shape
@@ -520,26 +894,18 @@ def transform(self, X):
# We remove all the dropped categories from mask, and decrement all
# categories that occur after them to avoid an empty column.
keep_cells = X_int != to_drop
- n_values = []
for i, cats in enumerate(self.categories_):
- n_cats = len(cats)
-
# drop='if_binary' but feature isn't binary
if to_drop[i] is None:
# set to cardinality to not drop from X_int
- to_drop[i] = n_cats
- n_values.append(n_cats)
- else: # dropped
- n_values.append(n_cats - 1)
+ to_drop[i] = len(cats)
to_drop = to_drop.reshape(1, -1)
X_int[X_int > to_drop] -= 1
X_mask &= keep_cells
- else:
- n_values = [len(cats) for cats in self.categories_]
mask = X_mask.ravel()
- feature_indices = np.cumsum([0] + n_values)
+ feature_indices = np.cumsum([0] + self._n_features_outs)
indices = (X_int + feature_indices[:-1]).ravel()[mask]
indptr = np.empty(n_samples + 1, dtype=int)
@@ -567,6 +933,9 @@ def inverse_transform(self, X):
feature with the unknown category has a dropped category, the dropped
category will be its inverse.
+ For a given input feature, if there is an infrequent category,
+ 'infrequent_sklearn' will be used to represent the infrequent category.
+
Parameters
----------
X : {array-like, sparse matrix} of shape \
@@ -583,34 +952,38 @@ def inverse_transform(self, X):
n_samples, _ = X.shape
n_features = len(self.categories_)
- if self.drop_idx_ is None:
- n_transformed_features = sum(len(cats) for cats in self.categories_)
- else:
- n_transformed_features = sum(
- len(cats) - 1 if to_drop is not None else len(cats)
- for cats, to_drop in zip(self.categories_, self.drop_idx_)
- )
+
+ n_features_out = np.sum(self._n_features_outs)
# validate shape of passed X
msg = (
"Shape of the passed X data is not correct. Expected {0} columns, got {1}."
)
- if X.shape[1] != n_transformed_features:
- raise ValueError(msg.format(n_transformed_features, X.shape[1]))
+ if X.shape[1] != n_features_out:
+ raise ValueError(msg.format(n_features_out, X.shape[1]))
+
+ transformed_features = [
+ self._compute_transformed_categories(i, remove_dropped=False)
+ for i, _ in enumerate(self.categories_)
+ ]
# create resulting array of appropriate dtype
- dt = np.find_common_type([cat.dtype for cat in self.categories_], [])
+ dt = np.find_common_type([cat.dtype for cat in transformed_features], [])
X_tr = np.empty((n_samples, n_features), dtype=dt)
j = 0
found_unknown = {}
+ if self._infrequent_enabled:
+ infrequent_indices = self._infrequent_indices
+ else:
+ infrequent_indices = [None] * n_features
+
for i in range(n_features):
- if self.drop_idx_ is None or self.drop_idx_[i] is None:
- cats = self.categories_[i]
- else:
- cats = np.delete(self.categories_[i], self.drop_idx_[i])
- n_categories = len(cats)
+ cats_wo_dropped = self._remove_dropped_categories(
+ transformed_features[i], i
+ )
+ n_categories = cats_wo_dropped.shape[0]
# Only happens if there was a column with a unique
# category. In this case we just fill the column with this
@@ -622,8 +995,12 @@ def inverse_transform(self, X):
sub = X[:, j : j + n_categories]
# for sparse X argmax returns 2D matrix, ensure 1D array
labels = np.asarray(sub.argmax(axis=1)).flatten()
- X_tr[:, i] = cats[labels]
- if self.handle_unknown == "ignore":
+ X_tr[:, i] = cats_wo_dropped[labels]
+
+ if self.handle_unknown == "ignore" or (
+ self.handle_unknown == "infrequent_if_exist"
+ and infrequent_indices[i] is None
+ ):
unknown = np.asarray(sub.sum(axis=1) == 0).flatten()
# ignored unknown categories: we have a row of all zero
if unknown.any():
@@ -645,7 +1022,8 @@ def inverse_transform(self, X):
)
# we can safely assume that all of the nulls in each column
# are the dropped value
- X_tr[dropped, i] = self.categories_[i][self.drop_idx_[i]]
+ drop_idx = self.drop_idx_[i]
+ X_tr[dropped, i] = transformed_features[i][drop_idx]
j += n_categories
@@ -667,6 +1045,9 @@ def inverse_transform(self, X):
def get_feature_names(self, input_features=None):
"""Return feature names for output features.
+ For a given input feature, if there is an infrequent category, the most
+ 'infrequent_sklearn' will be used as a feature name.
+
Parameters
----------
input_features : list of str of shape (n_features,)
@@ -679,22 +1060,21 @@ def get_feature_names(self, input_features=None):
Array of feature names.
"""
check_is_fitted(self)
- cats = self.categories_
+ cats = [
+ self._compute_transformed_categories(i)
+ for i, _ in enumerate(self.categories_)
+ ]
if input_features is None:
input_features = ["x%d" % i for i in range(len(cats))]
- elif len(input_features) != len(self.categories_):
+ elif len(input_features) != len(cats):
raise ValueError(
"input_features should have length equal to number of "
- "features ({}), got {}".format(
- len(self.categories_), len(input_features)
- )
+ "features ({}), got {}".format(len(cats), len(input_features))
)
feature_names = []
for i in range(len(cats)):
names = [input_features[i] + "_" + str(t) for t in cats[i]]
- if self.drop_idx_ is not None and self.drop_idx_[i] is not None:
- names.pop(self.drop_idx_[i])
feature_names.extend(names)
return np.array(feature_names, dtype=object)
@@ -719,16 +1099,18 @@ def get_feature_names_out(self, input_features=None):
Transformed feature names.
"""
check_is_fitted(self)
- cats = self.categories_
input_features = _check_feature_names_in(self, input_features)
+ cats = [
+ self._compute_transformed_categories(i)
+ for i, _ in enumerate(self.categories_)
+ ]
feature_names = []
for i in range(len(cats)):
names = [input_features[i] + "_" + str(t) for t in cats[i]]
- if self.drop_idx_ is not None and self.drop_idx_[i] is not None:
- names.pop(self.drop_idx_[i])
feature_names.extend(names)
- return np.asarray(feature_names, dtype=object)
+
+ return np.array(feature_names, dtype=object)
class OrdinalEncoder(_OneToOneFeatureMixin, _BaseEncoder):
diff --git a/sklearn/utils/_encode.py b/sklearn/utils/_encode.py
index ab907cd781a32..8224cb87a4c75 100644
--- a/sklearn/utils/_encode.py
+++ b/sklearn/utils/_encode.py
@@ -1,10 +1,12 @@
+from contextlib import suppress
+from collections import Counter
from typing import NamedTuple
import numpy as np
from . import is_scalar_nan
-def _unique(values, *, return_inverse=False):
+def _unique(values, *, return_inverse=False, return_counts=False):
"""Helper function to find unique values with support for python objects.
Uses pure python method for object dtype, and numpy method for
@@ -18,6 +20,10 @@ def _unique(values, *, return_inverse=False):
return_inverse : bool, default=False
If True, also return the indices of the unique values.
+ return_counts : bool, default=False
+ If True, also return the number of times each unique item appears in
+ values.
+
Returns
-------
unique : ndarray
@@ -26,16 +32,38 @@ def _unique(values, *, return_inverse=False):
unique_inverse : ndarray
The indices to reconstruct the original array from the unique array.
Only provided if `return_inverse` is True.
+
+ unique_counts : ndarray
+ The number of times each of the unique values comes up in the original
+ array. Only provided if `return_counts` is True.
"""
if values.dtype == object:
- return _unique_python(values, return_inverse=return_inverse)
+ return _unique_python(
+ values, return_inverse=return_inverse, return_counts=return_counts
+ )
# numerical
- out = np.unique(values, return_inverse=return_inverse)
+ return _unique_np(
+ values, return_inverse=return_inverse, return_counts=return_counts
+ )
+
+
+def _unique_np(values, return_inverse=False, return_counts=False):
+ """Helper function to find unique values for numpy arrays that correctly
+ accounts for nans. See `_unique` documentation for details."""
+ uniques = np.unique(
+ values, return_inverse=return_inverse, return_counts=return_counts
+ )
+
+ inverse, counts = None, None
+
+ if return_counts:
+ *uniques, counts = uniques
if return_inverse:
- uniques, inverse = out
- else:
- uniques = out
+ *uniques, inverse = uniques
+
+ if return_counts or return_inverse:
+ uniques = uniques[0]
# np.unique will have duplicate missing values at the end of `uniques`
# here we clip the nans and remove it from uniques
@@ -45,9 +73,19 @@ def _unique(values, *, return_inverse=False):
if return_inverse:
inverse[inverse > nan_idx] = nan_idx
+ if return_counts:
+ counts[nan_idx] = np.sum(counts[nan_idx:])
+ counts = counts[: nan_idx + 1]
+
+ ret = (uniques,)
+
if return_inverse:
- return uniques, inverse
- return uniques
+ ret += (inverse,)
+
+ if return_counts:
+ ret += (counts,)
+
+ return ret[0] if len(ret) == 1 else ret
class MissingValues(NamedTuple):
@@ -126,7 +164,7 @@ def _map_to_integer(values, uniques):
return np.array([table[v] for v in values])
-def _unique_python(values, *, return_inverse):
+def _unique_python(values, *, return_inverse, return_counts):
# Only used in `_uniques`, see docstring there for details
try:
uniques_set = set(values)
@@ -141,11 +179,15 @@ def _unique_python(values, *, return_inverse):
"Encoders require their input to be uniformly "
f"strings or numbers. Got {types}"
)
+ ret = (uniques,)
if return_inverse:
- return uniques, _map_to_integer(values, uniques)
+ ret += (_map_to_integer(values, uniques),)
+
+ if return_counts:
+ ret += (_get_counts(values, uniques),)
- return uniques
+ return ret[0] if len(ret) == 1 else ret
def _encode(values, *, uniques, check_unknown=True):
@@ -273,3 +315,52 @@ def is_valid(value):
if return_mask:
return diff, valid_mask
return diff
+
+
+class _NaNCounter(Counter):
+ """Counter with support for nan values."""
+
+ def __init__(self, items):
+ super().__init__(self._generate_items(items))
+
+ def _generate_items(self, items):
+ """Generate items without nans. Stores the nan counts seperately."""
+ for item in items:
+ if not is_scalar_nan(item):
+ yield item
+ continue
+ if not hasattr(self, "nan_count"):
+ self.nan_count = 0
+ self.nan_count += 1
+
+ def __missing__(self, key):
+ if hasattr(self, "nan_count") and is_scalar_nan(key):
+ return self.nan_count
+ raise KeyError(key)
+
+
+def _get_counts(values, uniques):
+ """Get the count of each of the `uniques` in `values`.
+
+ The counts will use the order passed in by `uniques`. For non-object dtypes,
+ `uniques` is assumed to be sorted and `np.nan` is at the end.
+ """
+ if values.dtype.kind in "OU":
+ counter = _NaNCounter(values)
+ output = np.zeros(len(uniques), dtype=np.int64)
+ for i, item in enumerate(uniques):
+ with suppress(KeyError):
+ output[i] = counter[item]
+ return output
+
+ unique_values, counts = _unique_np(values, return_counts=True)
+
+ # Recorder unique_values based on input: `uniques`
+ uniques_in_values = np.isin(uniques, unique_values, assume_unique=True)
+ if np.isnan(unique_values[-1]) and np.isnan(uniques[-1]):
+ uniques_in_values[-1] = True
+
+ unique_valid_indices = np.searchsorted(unique_values, uniques[uniques_in_values])
+ output = np.zeros_like(uniques, dtype=np.int64)
+ output[uniques_in_values] = counts[unique_valid_indices]
+ return output
|
diff --git a/sklearn/preprocessing/tests/test_encoders.py b/sklearn/preprocessing/tests/test_encoders.py
index 54ed48fa115c8..96bd9c2c5b9ff 100644
--- a/sklearn/preprocessing/tests/test_encoders.py
+++ b/sklearn/preprocessing/tests/test_encoders.py
@@ -39,7 +39,8 @@ def test_one_hot_encoder_sparse_dense():
assert_array_equal(X_trans_sparse.toarray(), X_trans_dense)
-def test_one_hot_encoder_handle_unknown():
[email protected]("handle_unknown", ["ignore", "infrequent_if_exist"])
+def test_one_hot_encoder_handle_unknown(handle_unknown):
X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]])
X2 = np.array([[4, 1, 1]])
@@ -51,7 +52,7 @@ def test_one_hot_encoder_handle_unknown():
oh.transform(X2)
# Test the ignore option, ignores unknown features (giving all 0's)
- oh = OneHotEncoder(handle_unknown="ignore")
+ oh = OneHotEncoder(handle_unknown=handle_unknown)
oh.fit(X)
X2_passed = X2.copy()
assert_array_equal(
@@ -63,7 +64,7 @@ def test_one_hot_encoder_handle_unknown():
# Raise error if handle_unknown is neither ignore or error.
oh = OneHotEncoder(handle_unknown="42")
- with pytest.raises(ValueError, match="handle_unknown should be either"):
+ with pytest.raises(ValueError, match="handle_unknown should be one of"):
oh.fit(X)
@@ -79,14 +80,15 @@ def test_one_hot_encoder_not_fitted():
enc.transform(X)
-def test_one_hot_encoder_handle_unknown_strings():
[email protected]("handle_unknown", ["ignore", "infrequent_if_exist"])
+def test_one_hot_encoder_handle_unknown_strings(handle_unknown):
X = np.array(["11111111", "22", "333", "4444"]).reshape((-1, 1))
X2 = np.array(["55555", "22"]).reshape((-1, 1))
# Non Regression test for the issue #12470
# Test the ignore option, when categories are numpy string dtype
# particularly when the known category strings are larger
# than the unknown category strings
- oh = OneHotEncoder(handle_unknown="ignore")
+ oh = OneHotEncoder(handle_unknown=handle_unknown)
oh.fit(X)
X2_passed = X2.copy()
assert_array_equal(
@@ -267,9 +269,10 @@ def test_one_hot_encoder(X):
assert_allclose(Xtr.toarray(), [[0, 1, 1, 0, 1], [1, 0, 0, 1, 1]])
[email protected]("handle_unknown", ["ignore", "infrequent_if_exist"])
@pytest.mark.parametrize("sparse_", [False, True])
@pytest.mark.parametrize("drop", [None, "first"])
-def test_one_hot_encoder_inverse(sparse_, drop):
+def test_one_hot_encoder_inverse(handle_unknown, sparse_, drop):
X = [["abc", 2, 55], ["def", 1, 55], ["abc", 3, 55]]
enc = OneHotEncoder(sparse=sparse_, drop=drop)
X_tr = enc.fit_transform(X)
@@ -288,7 +291,7 @@ def test_one_hot_encoder_inverse(sparse_, drop):
X = [["abc", 2, 55], ["def", 1, 55], ["abc", 3, 55]]
enc = OneHotEncoder(
sparse=sparse_,
- handle_unknown="ignore",
+ handle_unknown=handle_unknown,
categories=[["abc", "def"], [1, 2], [54, 55, 56]],
)
X_tr = enc.fit_transform(X)
@@ -299,7 +302,7 @@ def test_one_hot_encoder_inverse(sparse_, drop):
# with an otherwise numerical output, still object if unknown
X = [[2, 55], [1, 55], [3, 55]]
enc = OneHotEncoder(
- sparse=sparse_, categories=[[1, 2], [54, 56]], handle_unknown="ignore"
+ sparse=sparse_, categories=[[1, 2], [54, 56]], handle_unknown=handle_unknown
)
X_tr = enc.fit_transform(X)
exp = np.array(X, dtype=object)
@@ -442,6 +445,7 @@ def test_one_hot_encoder_categories(X, cat_exp, cat_dtype):
assert np.issubdtype(res.dtype, cat_dtype)
[email protected]("handle_unknown", ["ignore", "infrequent_if_exist"])
@pytest.mark.parametrize(
"X, X2, cats, cat_dtype",
[
@@ -498,7 +502,7 @@ def test_one_hot_encoder_categories(X, cat_exp, cat_dtype):
"object-nan-and-None",
],
)
-def test_one_hot_encoder_specified_categories(X, X2, cats, cat_dtype):
+def test_one_hot_encoder_specified_categories(X, X2, cats, cat_dtype, handle_unknown):
enc = OneHotEncoder(categories=cats)
exp = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
assert_array_equal(enc.fit_transform(X).toarray(), exp)
@@ -513,7 +517,7 @@ def test_one_hot_encoder_specified_categories(X, X2, cats, cat_dtype):
enc = OneHotEncoder(categories=cats)
with pytest.raises(ValueError, match="Found unknown categories"):
enc.fit(X2)
- enc = OneHotEncoder(categories=cats, handle_unknown="ignore")
+ enc = OneHotEncoder(categories=cats, handle_unknown=handle_unknown)
exp = np.array([[1.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
assert_array_equal(enc.fit(X2).transform(X2).toarray(), exp)
@@ -943,6 +947,510 @@ def test_encoders_has_categorical_tags(Encoder):
assert "categorical" in Encoder()._get_tags()["X_types"]
+# TODO(1.2): Remove filterwarning when get_feature_names is removed.
[email protected]("ignore::FutureWarning:sklearn")
[email protected](
+ "kwargs",
+ [
+ {"max_categories": 2},
+ {"min_frequency": 11},
+ {"min_frequency": 0.29},
+ {"max_categories": 2, "min_frequency": 6},
+ {"max_categories": 4, "min_frequency": 12},
+ ],
+)
[email protected]("categories", ["auto", [["a", "b", "c", "d"]]])
+def test_ohe_infrequent_two_levels(kwargs, categories):
+ """Test that different parameters for combine 'a', 'c', and 'd' into
+ the infrequent category works as expected."""
+
+ X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T
+ ohe = OneHotEncoder(
+ categories=categories,
+ handle_unknown="infrequent_if_exist",
+ sparse=False,
+ **kwargs,
+ ).fit(X_train)
+ assert_array_equal(ohe.infrequent_categories_, [["a", "c", "d"]])
+
+ X_test = [["b"], ["a"], ["c"], ["d"], ["e"]]
+ expected = np.array([[1, 0], [0, 1], [0, 1], [0, 1], [0, 1]])
+
+ X_trans = ohe.transform(X_test)
+ assert_allclose(expected, X_trans)
+
+ expected_inv = [[col] for col in ["b"] + ["infrequent_sklearn"] * 4]
+ X_inv = ohe.inverse_transform(X_trans)
+ assert_array_equal(expected_inv, X_inv)
+
+ # TODO(1.2) Remove when get_feature_names is removed
+ feature_names = ohe.get_feature_names()
+ assert_array_equal(["x0_b", "x0_infrequent_sklearn"], feature_names)
+
+ feature_names = ohe.get_feature_names_out()
+ assert_array_equal(["x0_b", "x0_infrequent_sklearn"], feature_names)
+
+
+# TODO(1.2): Remove filterwarning when get_feature_names is removed.
[email protected]("ignore::FutureWarning:sklearn")
[email protected]("drop", ["if_binary", "first", ["b"]])
+def test_ohe_infrequent_two_levels_drop_frequent(drop):
+ """Test two levels and dropping the frequent category."""
+
+ X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T
+ ohe = OneHotEncoder(
+ handle_unknown="infrequent_if_exist", sparse=False, max_categories=2, drop=drop
+ ).fit(X_train)
+ assert_array_equal(ohe.drop_idx_, [0])
+
+ X_test = np.array([["b"], ["c"]])
+ X_trans = ohe.transform(X_test)
+ assert_allclose([[0], [1]], X_trans)
+
+ # TODO(1.2) Remove when get_feature_names is removed
+ feature_names = ohe.get_feature_names()
+ assert_array_equal(["x0_infrequent_sklearn"], feature_names)
+
+ feature_names = ohe.get_feature_names_out()
+ assert_array_equal(["x0_infrequent_sklearn"], feature_names)
+
+ X_inverse = ohe.inverse_transform(X_trans)
+ assert_array_equal([["b"], ["infrequent_sklearn"]], X_inverse)
+
+
[email protected]("drop", [["a"], ["d"]])
+def test_ohe_infrequent_two_levels_drop_infrequent_errors(drop):
+ """Test two levels and dropping any infrequent category removes the
+ whole infrequent category."""
+
+ X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T
+ ohe = OneHotEncoder(
+ handle_unknown="infrequent_if_exist", sparse=False, max_categories=2, drop=drop
+ )
+
+ msg = f"Unable to drop category {drop[0]!r} from feature 0 because it is infrequent"
+ with pytest.raises(ValueError, match=msg):
+ ohe.fit(X_train)
+
+
+# TODO(1.2): Remove filterwarning when get_feature_names is removed.
[email protected]("ignore::FutureWarning:sklearn")
[email protected](
+ "kwargs",
+ [
+ {"max_categories": 3},
+ {"min_frequency": 6},
+ {"min_frequency": 9},
+ {"min_frequency": 0.24},
+ {"min_frequency": 0.16},
+ {"max_categories": 3, "min_frequency": 8},
+ {"max_categories": 4, "min_frequency": 6},
+ ],
+)
+def test_ohe_infrequent_three_levels(kwargs):
+ """Test that different parameters for combing 'a', and 'd' into
+ the infrequent category works as expected."""
+
+ X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T
+ ohe = OneHotEncoder(
+ handle_unknown="infrequent_if_exist", sparse=False, **kwargs
+ ).fit(X_train)
+ assert_array_equal(ohe.infrequent_categories_, [["a", "d"]])
+
+ X_test = [["b"], ["a"], ["c"], ["d"], ["e"]]
+ expected = np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 0, 1]])
+
+ X_trans = ohe.transform(X_test)
+ assert_allclose(expected, X_trans)
+
+ expected_inv = [
+ ["b"],
+ ["infrequent_sklearn"],
+ ["c"],
+ ["infrequent_sklearn"],
+ ["infrequent_sklearn"],
+ ]
+ X_inv = ohe.inverse_transform(X_trans)
+ assert_array_equal(expected_inv, X_inv)
+
+ # TODO(1.2): Remove get_feature_names is removed.
+ feature_names = ohe.get_feature_names()
+ assert_array_equal(["x0_b", "x0_c", "x0_infrequent_sklearn"], feature_names)
+
+ feature_names = ohe.get_feature_names_out()
+ assert_array_equal(["x0_b", "x0_c", "x0_infrequent_sklearn"], feature_names)
+
+
[email protected]("drop", ["first", ["b"]])
+def test_ohe_infrequent_three_levels_drop_frequent(drop):
+ """Test three levels and dropping the frequent category."""
+
+ X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T
+ ohe = OneHotEncoder(
+ handle_unknown="infrequent_if_exist", sparse=False, max_categories=3, drop=drop
+ ).fit(X_train)
+
+ X_test = np.array([["b"], ["c"], ["d"]])
+ assert_allclose([[0, 0], [1, 0], [0, 1]], ohe.transform(X_test))
+
+ # Check handle_unknown="ignore"
+ ohe.set_params(handle_unknown="ignore").fit(X_train)
+ msg = "Found unknown categories"
+ with pytest.warns(UserWarning, match=msg):
+ X_trans = ohe.transform([["b"], ["e"]])
+
+ assert_allclose([[0, 0], [0, 0]], X_trans)
+
+
[email protected]("drop", [["a"], ["d"]])
+def test_ohe_infrequent_three_levels_drop_infrequent_errors(drop):
+ """Test three levels and dropping the infrequent category."""
+ X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T
+ ohe = OneHotEncoder(
+ handle_unknown="infrequent_if_exist", sparse=False, max_categories=3, drop=drop
+ )
+
+ msg = f"Unable to drop category {drop[0]!r} from feature 0 because it is infrequent"
+ with pytest.raises(ValueError, match=msg):
+ ohe.fit(X_train)
+
+
+def test_ohe_infrequent_handle_unknown_error():
+ """Test that different parameters for combining 'a', and 'd' into
+ the infrequent category works as expected."""
+
+ X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3]).T
+ ohe = OneHotEncoder(handle_unknown="error", sparse=False, max_categories=3).fit(
+ X_train
+ )
+ assert_array_equal(ohe.infrequent_categories_, [["a", "d"]])
+
+ # all categories are known
+ X_test = [["b"], ["a"], ["c"], ["d"]]
+ expected = np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]])
+
+ X_trans = ohe.transform(X_test)
+ assert_allclose(expected, X_trans)
+
+ # 'bad' is not known and will error
+ X_test = [["bad"]]
+ msg = r"Found unknown categories \['bad'\] in column 0"
+ with pytest.raises(ValueError, match=msg):
+ ohe.transform(X_test)
+
+
[email protected](
+ "kwargs", [{"max_categories": 3, "min_frequency": 1}, {"min_frequency": 4}]
+)
+def test_ohe_infrequent_two_levels_user_cats_one_frequent(kwargs):
+ """'a' is the only frequent category, all other categories are infrequent."""
+
+ X_train = np.array([["a"] * 5 + ["e"] * 30], dtype=object).T
+ ohe = OneHotEncoder(
+ categories=[["c", "d", "a", "b"]],
+ sparse=False,
+ handle_unknown="infrequent_if_exist",
+ **kwargs,
+ ).fit(X_train)
+
+ X_test = [["a"], ["b"], ["c"], ["d"], ["e"]]
+ expected = np.array([[1, 0], [0, 1], [0, 1], [0, 1], [0, 1]])
+
+ X_trans = ohe.transform(X_test)
+ assert_allclose(expected, X_trans)
+
+ # 'a' is dropped
+ drops = ["first", "if_binary", ["a"]]
+ X_test = [["a"], ["c"]]
+ for drop in drops:
+ ohe.set_params(drop=drop).fit(X_train)
+ assert_allclose([[0], [1]], ohe.transform(X_test))
+
+
+def test_ohe_infrequent_two_levels_user_cats():
+ """Test that the order of the categories provided by a user is respected."""
+ X_train = np.array(
+ [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object
+ ).T
+ ohe = OneHotEncoder(
+ categories=[["c", "d", "a", "b"]],
+ sparse=False,
+ handle_unknown="infrequent_if_exist",
+ max_categories=2,
+ ).fit(X_train)
+
+ assert_array_equal(ohe.infrequent_categories_, [["c", "d", "a"]])
+
+ X_test = [["b"], ["a"], ["c"], ["d"], ["e"]]
+ expected = np.array([[1, 0], [0, 1], [0, 1], [0, 1], [0, 1]])
+
+ X_trans = ohe.transform(X_test)
+ assert_allclose(expected, X_trans)
+
+ # 'infrequent' is used to denote the infrequent categories for
+ # `inverse_transform`
+ expected_inv = [[col] for col in ["b"] + ["infrequent_sklearn"] * 4]
+ X_inv = ohe.inverse_transform(X_trans)
+ assert_array_equal(expected_inv, X_inv)
+
+
+def test_ohe_infrequent_three_levels_user_cats():
+ """Test that the order of the categories provided by a user is respected.
+ In this case 'c' is encoded as the first category and 'b' is encoded
+ as the second one."""
+
+ X_train = np.array(
+ [["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object
+ ).T
+ ohe = OneHotEncoder(
+ categories=[["c", "d", "b", "a"]],
+ sparse=False,
+ handle_unknown="infrequent_if_exist",
+ max_categories=3,
+ ).fit(X_train)
+
+ assert_array_equal(ohe.infrequent_categories_, [["d", "a"]])
+
+ X_test = [["b"], ["a"], ["c"], ["d"], ["e"]]
+ expected = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [0, 0, 1]])
+
+ X_trans = ohe.transform(X_test)
+ assert_allclose(expected, X_trans)
+
+ # 'infrequent' is used to denote the infrequent categories for
+ # `inverse_transform`
+ expected_inv = [
+ ["b"],
+ ["infrequent_sklearn"],
+ ["c"],
+ ["infrequent_sklearn"],
+ ["infrequent_sklearn"],
+ ]
+ X_inv = ohe.inverse_transform(X_trans)
+ assert_array_equal(expected_inv, X_inv)
+
+
+def test_ohe_infrequent_mixed():
+ """Test infrequent categories where feature 0 has infrequent categories,
+ and feature 1 does not."""
+
+ # X[:, 0] 1 and 2 are infrequent
+ # X[:, 1] nothing is infrequent
+ X = np.c_[[0, 1, 3, 3, 3, 3, 2, 0, 3], [0, 0, 0, 0, 1, 1, 1, 1, 1]]
+
+ ohe = OneHotEncoder(max_categories=3, drop="if_binary", sparse=False)
+ ohe.fit(X)
+
+ X_test = [[3, 0], [1, 1]]
+ X_trans = ohe.transform(X_test)
+
+ # feature 1 is binary so it drops a category 0
+ assert_allclose(X_trans, [[0, 1, 0, 0], [0, 0, 1, 1]])
+
+
+# TODO(1.2): Remove filterwarning when get_feature_names is removed.
[email protected]("ignore::FutureWarning:sklearn")
+def test_ohe_infrequent_multiple_categories():
+ """Test infrequent categories with feature matrix with 3 features."""
+
+ X = np.c_[
+ [0, 1, 3, 3, 3, 3, 2, 0, 3],
+ [0, 0, 5, 1, 1, 10, 5, 5, 0],
+ [1, 0, 1, 0, 1, 0, 1, 0, 1],
+ ]
+
+ ohe = OneHotEncoder(
+ categories="auto", max_categories=3, handle_unknown="infrequent_if_exist"
+ )
+ # X[:, 0] 1 and 2 are infrequent
+ # X[:, 1] 1 and 10 are infrequent
+ # X[:, 2] nothing is infrequent
+
+ X_trans = ohe.fit_transform(X).toarray()
+ assert_array_equal(ohe.infrequent_categories_[0], [1, 2])
+ assert_array_equal(ohe.infrequent_categories_[1], [1, 10])
+ assert_array_equal(ohe.infrequent_categories_[2], None)
+
+ # 'infrequent' is used to denote the infrequent categories
+ # For the first column, 1 and 2 have the same frequency. In this case,
+ # 1 will be chosen to be the feature name because is smaller lexiconically
+ for get_names in ["get_feature_names", "get_feature_names_out"]:
+ feature_names = getattr(ohe, get_names)()
+ assert_array_equal(
+ [
+ "x0_0",
+ "x0_3",
+ "x0_infrequent_sklearn",
+ "x1_0",
+ "x1_5",
+ "x1_infrequent_sklearn",
+ "x2_0",
+ "x2_1",
+ ],
+ feature_names,
+ )
+
+ expected = [
+ [1, 0, 0, 1, 0, 0, 0, 1],
+ [0, 0, 1, 1, 0, 0, 1, 0],
+ [0, 1, 0, 0, 1, 0, 0, 1],
+ [0, 1, 0, 0, 0, 1, 1, 0],
+ [0, 1, 0, 0, 0, 1, 0, 1],
+ [0, 1, 0, 0, 0, 1, 1, 0],
+ [0, 0, 1, 0, 1, 0, 0, 1],
+ [1, 0, 0, 0, 1, 0, 1, 0],
+ [0, 1, 0, 1, 0, 0, 0, 1],
+ ]
+
+ assert_allclose(expected, X_trans)
+
+ X_test = [[3, 1, 2], [4, 0, 3]]
+
+ X_test_trans = ohe.transform(X_test)
+
+ # X[:, 2] does not have an infrequent category, thus it is encoded as all
+ # zeros
+ expected = [[0, 1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0]]
+ assert_allclose(expected, X_test_trans.toarray())
+
+ X_inv = ohe.inverse_transform(X_test_trans)
+ expected_inv = np.array(
+ [[3, "infrequent_sklearn", None], ["infrequent_sklearn", 0, None]], dtype=object
+ )
+ assert_array_equal(expected_inv, X_inv)
+
+ # error for unknown categories
+ ohe = OneHotEncoder(
+ categories="auto", max_categories=3, handle_unknown="error"
+ ).fit(X)
+ with pytest.raises(ValueError, match="Found unknown categories"):
+ ohe.transform(X_test)
+
+ # only infrequent or known categories
+ X_test = [[1, 1, 1], [3, 10, 0]]
+ X_test_trans = ohe.transform(X_test)
+
+ expected = [[0, 0, 1, 0, 0, 1, 0, 1], [0, 1, 0, 0, 0, 1, 1, 0]]
+ assert_allclose(expected, X_test_trans.toarray())
+
+ X_inv = ohe.inverse_transform(X_test_trans)
+
+ expected_inv = np.array(
+ [["infrequent_sklearn", "infrequent_sklearn", 1], [3, "infrequent_sklearn", 0]],
+ dtype=object,
+ )
+ assert_array_equal(expected_inv, X_inv)
+
+
+def test_ohe_infrequent_multiple_categories_dtypes():
+ """Test infrequent categories with a pandas dataframe with multiple dtypes."""
+
+ pd = pytest.importorskip("pandas")
+ X = pd.DataFrame(
+ {
+ "str": ["a", "f", "c", "f", "f", "a", "c", "b", "b"],
+ "int": [5, 3, 0, 10, 10, 12, 0, 3, 5],
+ },
+ columns=["str", "int"],
+ )
+
+ ohe = OneHotEncoder(
+ categories="auto", max_categories=3, handle_unknown="infrequent_if_exist"
+ )
+ # X[:, 0] 'a', 'b', 'c' have the same frequency. 'a' and 'b' will be
+ # considered infrequent because they are greater
+
+ # X[:, 1] 0, 3, 5, 10 has frequency 2 and 12 has frequency 1.
+ # 0, 3, 12 will be considered infrequent
+
+ X_trans = ohe.fit_transform(X).toarray()
+ assert_array_equal(ohe.infrequent_categories_[0], ["a", "b"])
+ assert_array_equal(ohe.infrequent_categories_[1], [0, 3, 12])
+
+ expected = [
+ [0, 0, 1, 1, 0, 0],
+ [0, 1, 0, 0, 0, 1],
+ [1, 0, 0, 0, 0, 1],
+ [0, 1, 0, 0, 1, 0],
+ [0, 1, 0, 0, 1, 0],
+ [0, 0, 1, 0, 0, 1],
+ [1, 0, 0, 0, 0, 1],
+ [0, 0, 1, 0, 0, 1],
+ [0, 0, 1, 1, 0, 0],
+ ]
+
+ assert_allclose(expected, X_trans)
+
+ X_test = pd.DataFrame({"str": ["b", "f"], "int": [14, 12]}, columns=["str", "int"])
+
+ expected = [[0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 1]]
+ X_test_trans = ohe.transform(X_test)
+ assert_allclose(expected, X_test_trans.toarray())
+
+ X_inv = ohe.inverse_transform(X_test_trans)
+ expected_inv = np.array(
+ [["infrequent_sklearn", "infrequent_sklearn"], ["f", "infrequent_sklearn"]],
+ dtype=object,
+ )
+ assert_array_equal(expected_inv, X_inv)
+
+ # only infrequent or known categories
+ X_test = pd.DataFrame({"str": ["c", "b"], "int": [12, 5]}, columns=["str", "int"])
+ X_test_trans = ohe.transform(X_test).toarray()
+ expected = [[1, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0]]
+ assert_allclose(expected, X_test_trans)
+
+ X_inv = ohe.inverse_transform(X_test_trans)
+ expected_inv = np.array(
+ [["c", "infrequent_sklearn"], ["infrequent_sklearn", 5]], dtype=object
+ )
+ assert_array_equal(expected_inv, X_inv)
+
+
[email protected]("kwargs", [{"min_frequency": 21, "max_categories": 1}])
+def test_ohe_infrequent_one_level_errors(kwargs):
+ """All user provided categories are infrequent."""
+ X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 2]).T
+
+ ohe = OneHotEncoder(handle_unknown="infrequent_if_exist", sparse=False, **kwargs)
+ ohe.fit(X_train)
+
+ X_trans = ohe.transform([["a"]])
+ assert_allclose(X_trans, [[1]])
+
+
[email protected]("kwargs", [{"min_frequency": 2, "max_categories": 3}])
+def test_ohe_infrequent_user_cats_unknown_training_errors(kwargs):
+ """All user provided categories are infrequent."""
+
+ X_train = np.array([["e"] * 3], dtype=object).T
+ ohe = OneHotEncoder(
+ categories=[["c", "d", "a", "b"]],
+ sparse=False,
+ handle_unknown="infrequent_if_exist",
+ **kwargs,
+ ).fit(X_train)
+
+ X_trans = ohe.transform([["a"], ["e"]])
+ assert_allclose(X_trans, [[1], [1]])
+
+
[email protected](
+ "kwargs, error_msg",
+ [
+ ({"max_categories": -2}, "max_categories must be greater than 1"),
+ ({"min_frequency": -1}, "min_frequency must be an integer at least"),
+ ({"min_frequency": 1.1}, "min_frequency must be an integer at least"),
+ ],
+)
+def test_ohe_infrequent_invalid_parameters_error(kwargs, error_msg):
+ X_train = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 2]).T
+
+ ohe = OneHotEncoder(handle_unknown="infrequent_if_exist", **kwargs)
+ with pytest.raises(ValueError, match=error_msg):
+ ohe.fit(X_train)
+
+
# TODO: Remove in 1.2 when get_feature_names is removed
def test_one_hot_encoder_get_feature_names_deprecated():
X = np.array([["cat", "dog"]], dtype=object).T
@@ -1020,8 +1528,9 @@ def test_ohe_missing_value_support_pandas():
assert_allclose(Xtr, expected_df_trans)
[email protected]("handle_unknown", ["infrequent_if_exist", "ignore"])
@pytest.mark.parametrize("pd_nan_type", ["pd.NA", "np.nan"])
-def test_ohe_missing_value_support_pandas_categorical(pd_nan_type):
+def test_ohe_missing_value_support_pandas_categorical(pd_nan_type, handle_unknown):
# checks pandas dataframe with categorical features
pd = pytest.importorskip("pandas")
@@ -1042,7 +1551,7 @@ def test_ohe_missing_value_support_pandas_categorical(pd_nan_type):
]
)
- ohe = OneHotEncoder(sparse=False, handle_unknown="ignore")
+ ohe = OneHotEncoder(sparse=False, handle_unknown=handle_unknown)
df_trans = ohe.fit_transform(df)
assert_allclose(expected_df_trans, df_trans)
@@ -1051,11 +1560,13 @@ def test_ohe_missing_value_support_pandas_categorical(pd_nan_type):
assert np.isnan(ohe.categories_[0][-1])
-def test_ohe_drop_first_handle_unknown_ignore_warns():
- """Check drop='first' and handle_unknown='ignore' during transform."""
[email protected]("handle_unknown", ["ignore", "infrequent_if_exist"])
+def test_ohe_drop_first_handle_unknown_ignore_warns(handle_unknown):
+ """Check drop='first' and handle_unknown='ignore'/'infrequent_if_exist'
+ during transform."""
X = [["a", 0], ["b", 2], ["b", 1]]
- ohe = OneHotEncoder(drop="first", sparse=False, handle_unknown="ignore")
+ ohe = OneHotEncoder(drop="first", sparse=False, handle_unknown=handle_unknown)
X_trans = ohe.fit_transform(X)
X_expected = np.array(
@@ -1085,11 +1596,12 @@ def test_ohe_drop_first_handle_unknown_ignore_warns():
assert_array_equal(X_inv, np.array([["a", 0]], dtype=object))
-def test_ohe_drop_if_binary_handle_unknown_ignore_warns():
[email protected]("handle_unknown", ["ignore", "infrequent_if_exist"])
+def test_ohe_drop_if_binary_handle_unknown_ignore_warns(handle_unknown):
"""Check drop='if_binary' and handle_unknown='ignore' during transform."""
X = [["a", 0], ["b", 2], ["b", 1]]
- ohe = OneHotEncoder(drop="if_binary", sparse=False, handle_unknown="ignore")
+ ohe = OneHotEncoder(drop="if_binary", sparse=False, handle_unknown=handle_unknown)
X_trans = ohe.fit_transform(X)
X_expected = np.array(
@@ -1119,16 +1631,17 @@ def test_ohe_drop_if_binary_handle_unknown_ignore_warns():
assert_array_equal(X_inv, np.array([["a", None]], dtype=object))
-def test_ohe_drop_first_explicit_categories():
- """Check drop='first' and handle_unknown='ignore' during fit with
- categories passed in."""
[email protected]("handle_unknown", ["ignore", "infrequent_if_exist"])
+def test_ohe_drop_first_explicit_categories(handle_unknown):
+ """Check drop='first' and handle_unknown='ignore'/'infrequent_if_exist'
+ during fit with categories passed in."""
X = [["a", 0], ["b", 2], ["b", 1]]
ohe = OneHotEncoder(
drop="first",
sparse=False,
- handle_unknown="ignore",
+ handle_unknown=handle_unknown,
categories=[["b", "a"], [1, 2]],
)
ohe.fit(X)
diff --git a/sklearn/utils/tests/test_encode.py b/sklearn/utils/tests/test_encode.py
index a430db37d6ad9..083db25b7ca80 100644
--- a/sklearn/utils/tests/test_encode.py
+++ b/sklearn/utils/tests/test_encode.py
@@ -7,26 +7,49 @@
from sklearn.utils._encode import _unique
from sklearn.utils._encode import _encode
from sklearn.utils._encode import _check_unknown
+from sklearn.utils._encode import _get_counts
@pytest.mark.parametrize(
"values, expected",
[
(np.array([2, 1, 3, 1, 3], dtype="int64"), np.array([1, 2, 3], dtype="int64")),
+ (
+ np.array([2, 1, np.nan, 1, np.nan], dtype="float32"),
+ np.array([1, 2, np.nan], dtype="float32"),
+ ),
(
np.array(["b", "a", "c", "a", "c"], dtype=object),
np.array(["a", "b", "c"], dtype=object),
),
+ (
+ np.array(["b", "a", None, "a", None], dtype=object),
+ np.array(["a", "b", None], dtype=object),
+ ),
(np.array(["b", "a", "c", "a", "c"]), np.array(["a", "b", "c"])),
],
- ids=["int64", "object", "str"],
+ ids=["int64", "float32-nan", "object", "object-None", "str"],
)
def test_encode_util(values, expected):
uniques = _unique(values)
assert_array_equal(uniques, expected)
+
+ result, encoded = _unique(values, return_inverse=True)
+ assert_array_equal(result, expected)
+ assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))
+
encoded = _encode(values, uniques=uniques)
assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))
+ result, counts = _unique(values, return_counts=True)
+ assert_array_equal(result, expected)
+ assert_array_equal(counts, np.array([2, 1, 2]))
+
+ result, encoded, counts = _unique(values, return_inverse=True, return_counts=True)
+ assert_array_equal(result, expected)
+ assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))
+ assert_array_equal(counts, np.array([2, 1, 2]))
+
def test_encode_with_check_unknown():
# test for the check_unknown parameter of _encode()
@@ -211,3 +234,44 @@ def test_check_unknown_with_both_missing_values():
assert diff[0] is None
assert np.isnan(diff[1])
assert_array_equal(valid_mask, [False, True, True, True, False, False, False])
+
+
[email protected](
+ "values, uniques, expected_counts",
+ [
+ (np.array([1] * 10 + [2] * 4 + [3] * 15), np.array([1, 2, 3]), [10, 4, 15]),
+ (
+ np.array([1] * 10 + [2] * 4 + [3] * 15),
+ np.array([1, 2, 3, 5]),
+ [10, 4, 15, 0],
+ ),
+ (
+ np.array([np.nan] * 10 + [2] * 4 + [3] * 15),
+ np.array([2, 3, np.nan]),
+ [4, 15, 10],
+ ),
+ (
+ np.array(["b"] * 4 + ["a"] * 16 + ["c"] * 20, dtype=object),
+ ["a", "b", "c"],
+ [16, 4, 20],
+ ),
+ (
+ np.array(["b"] * 4 + ["a"] * 16 + ["c"] * 20, dtype=object),
+ ["c", "b", "a"],
+ [20, 4, 16],
+ ),
+ (
+ np.array([np.nan] * 4 + ["a"] * 16 + ["c"] * 20, dtype=object),
+ ["c", np.nan, "a"],
+ [20, 4, 16],
+ ),
+ (
+ np.array(["b"] * 4 + ["a"] * 16 + ["c"] * 20, dtype=object),
+ ["a", "b", "c", "e"],
+ [16, 4, 20, 0],
+ ),
+ ],
+)
+def test_get_counts(values, uniques, expected_counts):
+ counts = _get_counts(values, uniques)
+ assert_array_equal(counts, expected_counts)
|
[
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex 035f2b90203ca..997bccf66782d 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -594,17 +594,19 @@ dataset::\n array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 0.]])\n \n If there is a possibility that the training data might have missing categorical\n-features, it can often be better to specify ``handle_unknown='ignore'`` instead\n-of setting the ``categories`` manually as above. When\n-``handle_unknown='ignore'`` is specified and unknown categories are encountered\n-during transform, no error will be raised but the resulting one-hot encoded\n-columns for this feature will be all zeros\n-(``handle_unknown='ignore'`` is only supported for one-hot encoding)::\n-\n- >>> enc = preprocessing.OneHotEncoder(handle_unknown='ignore')\n+features, it can often be better to specify\n+`handle_unknown='infrequent_if_exist'` instead of setting the `categories`\n+manually as above. When `handle_unknown='infrequent_if_exist'` is specified\n+and unknown categories are encountered during transform, no error will be\n+raised but the resulting one-hot encoded columns for this feature will be all\n+zeros or considered as an infrequent category if enabled.\n+(`handle_unknown='infrequent_if_exist'` is only supported for one-hot\n+encoding)::\n+\n+ >>> enc = preprocessing.OneHotEncoder(handle_unknown='infrequent_if_exist')\n >>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]\n >>> enc.fit(X)\n- OneHotEncoder(handle_unknown='ignore')\n+ OneHotEncoder(handle_unknown='infrequent_if_exist')\n >>> enc.transform([['female', 'from Asia', 'uses Chrome']]).toarray()\n array([[1., 0., 0., 0., 0., 0.]])\n \n@@ -621,7 +623,8 @@ since co-linearity would cause the covariance matrix to be non-invertible::\n ... ['female', 'from Europe', 'uses Firefox']]\n >>> drop_enc = preprocessing.OneHotEncoder(drop='first').fit(X)\n >>> drop_enc.categories_\n- [array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object), array(['uses Firefox', 'uses Safari'], dtype=object)]\n+ [array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object),\n+ array(['uses Firefox', 'uses Safari'], dtype=object)]\n >>> drop_enc.transform(X).toarray()\n array([[1., 1., 1.],\n [0., 0., 0.]])\n@@ -634,7 +637,8 @@ categories. In this case, you can set the parameter `drop='if_binary'`.\n ... ['female', 'Asia', 'Chrome']]\n >>> drop_enc = preprocessing.OneHotEncoder(drop='if_binary').fit(X)\n >>> drop_enc.categories_\n- [array(['female', 'male'], dtype=object), array(['Asia', 'Europe', 'US'], dtype=object), array(['Chrome', 'Firefox', 'Safari'], dtype=object)]\n+ [array(['female', 'male'], dtype=object), array(['Asia', 'Europe', 'US'], dtype=object),\n+ array(['Chrome', 'Firefox', 'Safari'], dtype=object)]\n >>> drop_enc.transform(X).toarray()\n array([[1., 0., 0., 1., 0., 0., 1.],\n [0., 0., 1., 0., 0., 1., 0.],\n@@ -699,6 +703,107 @@ separate categories::\n See :ref:`dict_feature_extraction` for categorical features that are\n represented as a dict, not as scalars.\n \n+.. _one_hot_encoder_infrequent_categories:\n+\n+Infrequent categories\n+---------------------\n+\n+:class:`OneHotEncoder` supports aggregating infrequent categories into a single\n+output for each feature. The parameters to enable the gathering of infrequent\n+categories are `min_frequency` and `max_categories`.\n+\n+1. `min_frequency` is either an integer greater or equal to 1, or a float in\n+ the interval `(0.0, 1.0)`. If `min_frequency` is an integer, categories with\n+ a cardinality smaller than `min_frequency` will be considered infrequent.\n+ If `min_frequency` is a float, categories with a cardinality smaller than\n+ this fraction of the total number of samples will be considered infrequent.\n+ The default value is 1, which means every category is encoded separately.\n+\n+2. `max_categories` is either `None` or any integer greater than 1. This\n+ parameter sets an upper limit to the number of output features for each\n+ input feature. `max_categories` includes the feature that combines\n+ infrequent categories.\n+\n+In the following example, the categories, `'dog', 'snake'` are considered\n+infrequent::\n+\n+ >>> X = np.array([['dog'] * 5 + ['cat'] * 20 + ['rabbit'] * 10 +\n+ ... ['snake'] * 3], dtype=object).T\n+ >>> enc = preprocessing.OneHotEncoder(min_frequency=6, sparse=False).fit(X)\n+ >>> enc.infrequent_categories_\n+ [array(['dog', 'snake'], dtype=object)]\n+ >>> enc.transform(np.array([['dog'], ['cat'], ['rabbit'], ['snake']]))\n+ array([[0., 0., 1.],\n+ [1., 0., 0.],\n+ [0., 1., 0.],\n+ [0., 0., 1.]])\n+\n+By setting handle_unknown to `'infrequent_if_exist'`, unknown categories will\n+be considered infrequent::\n+\n+ >>> enc = preprocessing.OneHotEncoder(\n+ ... handle_unknown='infrequent_if_exist', sparse=False, min_frequency=6)\n+ >>> enc = enc.fit(X)\n+ >>> enc.transform(np.array([['dragon']]))\n+ array([[0., 0., 1.]])\n+\n+:meth:`OneHotEncoder.get_feature_names_out` uses 'infrequent' as the infrequent\n+feature name::\n+\n+ >>> enc.get_feature_names_out()\n+ array(['x0_cat', 'x0_rabbit', 'x0_infrequent_sklearn'], dtype=object)\n+\n+When `'handle_unknown'` is set to `'infrequent_if_exist'` and an unknown\n+category is encountered in transform:\n+\n+1. If infrequent category support was not configured or there was no\n+ infrequent category during training, the resulting one-hot encoded columns\n+ for this feature will be all zeros. In the inverse transform, an unknown\n+ category will be denoted as `None`.\n+\n+2. If there is an infrequent category during training, the unknown category\n+ will be considered infrequent. In the inverse transform, 'infrequent_sklearn'\n+ will be used to represent the infrequent category.\n+\n+Infrequent categories can also be configured using `max_categories`. In the\n+following example, we set `max_categories=2` to limit the number of features in\n+the output. This will result in all but the `'cat'` category to be considered\n+infrequent, leading to two features, one for `'cat'` and one for infrequent\n+categories - which are all the others::\n+\n+ >>> enc = preprocessing.OneHotEncoder(max_categories=2, sparse=False)\n+ >>> enc = enc.fit(X)\n+ >>> enc.transform([['dog'], ['cat'], ['rabbit'], ['snake']])\n+ array([[0., 1.],\n+ [1., 0.],\n+ [0., 1.],\n+ [0., 1.]])\n+\n+If both `max_categories` and `min_frequency` are non-default values, then\n+categories are selected based on `min_frequency` first and `max_categories`\n+categories are kept. In the following example, `min_frequency=4` considers\n+only `snake` to be infrequent, but `max_categories=3`, forces `dog` to also be\n+infrequent::\n+\n+ >>> enc = preprocessing.OneHotEncoder(min_frequency=4, max_categories=3, sparse=False)\n+ >>> enc = enc.fit(X)\n+ >>> enc.transform([['dog'], ['cat'], ['rabbit'], ['snake']])\n+ array([[0., 0., 1.],\n+ [1., 0., 0.],\n+ [0., 1., 0.],\n+ [0., 0., 1.]])\n+\n+If there are infrequent categories with the same cardinality at the cutoff of\n+`max_categories`, then then the first `max_categories` are taken based on lexicon\n+ordering. In the following example, \"b\", \"c\", and \"d\", have the same cardinality\n+and with `max_categories=2`, \"b\" and \"c\" are infrequent because they have a higher\n+lexicon order.\n+\n+ >>> X = np.asarray([[\"a\"] * 20 + [\"b\"] * 10 + [\"c\"] * 10 + [\"d\"] * 10], dtype=object).T\n+ >>> enc = preprocessing.OneHotEncoder(max_categories=3).fit(X)\n+ >>> enc.infrequent_categories_\n+ [array(['b', 'c'], dtype=object)]\n+\n .. _preprocessing_discretization:\n \n Discretization\n@@ -981,7 +1086,7 @@ Interestingly, a :class:`SplineTransformer` of ``degree=0`` is the same as\n Penalties <10.1214/ss/1038425655>`. Statist. Sci. 11 (1996), no. 2, 89--121.\n \n * Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. :doi:`A review of\n- spline function procedures in R <10.1186/s12874-019-0666-3>`. \n+ spline function procedures in R <10.1186/s12874-019-0666-3>`.\n BMC Med Res Methodol 19, 46 (2019).\n \n .. _function_transformer:\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 584dd796b5789..a0272f183bf81 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -688,6 +688,11 @@ Changelog\n :mod:`sklearn.preprocessing`\n ............................\n \n+- |Feature| :class:`preprocessing.OneHotEncoder` now supports grouping\n+ infrequent categories into a single feature. Grouping infrequent categories\n+ is enabled by specifying how to select infrequent categories with\n+ `min_frequency` or `max_categories`. :pr:`16018` by `Thomas Fan`_.\n+\n - |Enhancement| Adds a `subsample` parameter to :class:`preprocessing.KBinsDiscretizer`.\n This allows specifying a maximum number of samples to be used while fitting\n the model. The option is only available when `strategy` is set to `quantile`.\n"
}
] |
1.01
|
269bdb94898b9944b10de2db6b17fffe7b69a432
|
[
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_if_binary",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test2-X_train1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[np.nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test1-X_train1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-None-missing-value]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test1-X_train2]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_params",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[numeric-missing-value]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names[get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_not_fitted",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[None]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_inverse",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_features_names_out_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names[get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-nan-missing_value]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float-nan-object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_raise_categories_shape",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_get_feature_names_deprecated",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_unsorted_categories",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories_mixed_columns",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan_non_float_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test1-X_train0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X3-expected_X_trans3-X_test3]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test0-X_train1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-sparse]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[float]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[int]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OrdinalEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_equals_if_binary",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float_errors_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test2-X_train0]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_warning",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test2-X_train2]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_fit_with_unseen_category",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-dense]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode[get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit0-params0-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit2-params2-The following categories were supposed]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test0-X_train2]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params4-ValueError-handle_unknown should be either 'error' or 'use_encoded_value', got ignore.]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_sparse",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params0-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got None.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params1-TypeError-unknown_value should only be set when handle_unknown is 'use_encoded_value', got -2.]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test0-X_train0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object-string-cat]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit1-params1-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-dense]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X1-expected_X_trans1-X_test1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params3-ValueError-The used value for unknown_value (1) is one of the values already used for encoding the seen categories.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode[get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_sparse_dense",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-sparse]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OneHotEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X0-expected_X_trans0-X_test0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-nan-and-None-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[string]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_python_integer",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params2-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got bla.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[pd.NA]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_string",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-np.nan-object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X2-expected_X_trans2-X_test2]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False-ignore]"
] |
[
"sklearn/utils/tests/test_encode.py::test_get_counts[values5-uniques5-expected_counts5]",
"sklearn/utils/tests/test_encode.py::test_encode_util[float32-nan]",
"sklearn/utils/tests/test_encode.py::test_check_unknown_missing_values[False-nan0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_infrequent_errors[drop0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs1]",
"sklearn/utils/tests/test_encode.py::test_get_counts[values6-uniques6-expected_counts6]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs6]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs2]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns[infrequent_if_exist]",
"sklearn/utils/tests/test_encode.py::test_encode_util[str]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[first]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_user_cats",
"sklearn/utils/tests/test_encode.py::test_get_counts[values4-uniques4-expected_counts4]",
"sklearn/utils/tests/test_encode.py::test_get_counts[values2-uniques2-expected_counts2]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs4]",
"sklearn/utils/tests/test_encode.py::test_unique_util_missing_values_objects[False-nan0]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values6-uniques6-expected_diff6-expected_mask6]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown[infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True-infrequent_if_exist]",
"sklearn/utils/tests/test_encode.py::test_unique_util_missing_values_objects[False-None]",
"sklearn/utils/tests/test_encode.py::test_encode_util[int64]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_infrequent_errors[drop1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs2]",
"sklearn/utils/tests/test_encode.py::test_check_unknown_missing_values[True-nan1]",
"sklearn/utils/tests/test_encode.py::test_unique_util_missing_values_objects[False-nan1]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values7-uniques7-expected_diff7-expected_mask7]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[if_binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns[infrequent_if_exist]",
"sklearn/utils/tests/test_encode.py::test_check_unknown_with_both_missing_values",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_frequent[drop1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings[infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_one_level_errors[kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_invalid_parameters_error[kwargs0-max_categories must be greater than 1]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values8-uniques8-expected_diff8-expected_mask8]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_infrequent_errors[drop0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories[infrequent_if_exist]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values5-uniques5-expected_diff5-expected_mask5]",
"sklearn/utils/tests/test_encode.py::test_unique_util_missing_values_numeric",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-infrequent_if_exist]",
"sklearn/utils/tests/test_encode.py::test_unique_util_missing_values_objects[True-nan1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_invalid_parameters_error[kwargs2-min_frequency must be an integer at least]",
"sklearn/utils/tests/test_encode.py::test_check_unknown_missing_values[False-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_mixed",
"sklearn/utils/tests/test_encode.py::test_unique_util_with_all_missing_values",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs3]",
"sklearn/utils/tests/test_encode.py::test_check_unknown_missing_values[True-nan0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_invalid_parameters_error[kwargs1-min_frequency must be an integer at least]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs3]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs5]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs0]",
"sklearn/utils/tests/test_encode.py::test_check_unknown_missing_values[True-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats_one_frequent[kwargs0]",
"sklearn/utils/tests/test_encode.py::test_unique_util_missing_values_objects[True-nan0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_user_cats_unknown_training_errors[kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs4]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_multiple_categories_dtypes",
"sklearn/utils/tests/test_encode.py::test_encode_util[object-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_frequent[first]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs3]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs4]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values3-uniques3-expected_diff3-expected_mask3]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA-infrequent_if_exist]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values0-uniques0-expected_diff0-expected_mask0]",
"sklearn/utils/tests/test_encode.py::test_unique_util_missing_values_objects[True-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-nan-and-None-infrequent_if_exist]",
"sklearn/utils/tests/test_encode.py::test_get_counts[values0-uniques0-expected_counts0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[drop2]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values2-uniques2-expected_diff2-expected_mask2]",
"sklearn/utils/tests/test_encode.py::test_check_unknown_missing_values[False-nan1]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values9-uniques9-expected_diff9-expected_mask9]",
"sklearn/utils/tests/test_encode.py::test_encode_with_check_unknown",
"sklearn/utils/tests/test_encode.py::test_get_counts[values3-uniques3-expected_counts3]",
"sklearn/utils/tests/test_encode.py::test_encode_util[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs2]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_multiple_categories",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats_one_frequent[kwargs1]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values4-uniques4-expected_diff4-expected_mask4]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_infrequent_errors[drop1]",
"sklearn/utils/tests/test_encode.py::test_get_counts[values1-uniques1-expected_counts1]",
"sklearn/utils/tests/test_encode.py::test_check_unknown[values1-uniques1-expected_diff1-expected_mask1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_handle_unknown_error"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex 035f2b90203ca..997bccf66782d 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -594,17 +594,19 @@ dataset::\n array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 0.]])\n \n If there is a possibility that the training data might have missing categorical\n-features, it can often be better to specify ``handle_unknown='ignore'`` instead\n-of setting the ``categories`` manually as above. When\n-``handle_unknown='ignore'`` is specified and unknown categories are encountered\n-during transform, no error will be raised but the resulting one-hot encoded\n-columns for this feature will be all zeros\n-(``handle_unknown='ignore'`` is only supported for one-hot encoding)::\n-\n- >>> enc = preprocessing.OneHotEncoder(handle_unknown='ignore')\n+features, it can often be better to specify\n+`handle_unknown='infrequent_if_exist'` instead of setting the `categories`\n+manually as above. When `handle_unknown='infrequent_if_exist'` is specified\n+and unknown categories are encountered during transform, no error will be\n+raised but the resulting one-hot encoded columns for this feature will be all\n+zeros or considered as an infrequent category if enabled.\n+(`handle_unknown='infrequent_if_exist'` is only supported for one-hot\n+encoding)::\n+\n+ >>> enc = preprocessing.OneHotEncoder(handle_unknown='infrequent_if_exist')\n >>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]\n >>> enc.fit(X)\n- OneHotEncoder(handle_unknown='ignore')\n+ OneHotEncoder(handle_unknown='infrequent_if_exist')\n >>> enc.transform([['female', 'from Asia', 'uses Chrome']]).toarray()\n array([[1., 0., 0., 0., 0., 0.]])\n \n@@ -621,7 +623,8 @@ since co-linearity would cause the covariance matrix to be non-invertible::\n ... ['female', 'from Europe', 'uses Firefox']]\n >>> drop_enc = preprocessing.OneHotEncoder(drop='first').fit(X)\n >>> drop_enc.categories_\n- [array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object), array(['uses Firefox', 'uses Safari'], dtype=object)]\n+ [array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object),\n+ array(['uses Firefox', 'uses Safari'], dtype=object)]\n >>> drop_enc.transform(X).toarray()\n array([[1., 1., 1.],\n [0., 0., 0.]])\n@@ -634,7 +637,8 @@ categories. In this case, you can set the parameter `drop='if_binary'`.\n ... ['female', 'Asia', 'Chrome']]\n >>> drop_enc = preprocessing.OneHotEncoder(drop='if_binary').fit(X)\n >>> drop_enc.categories_\n- [array(['female', 'male'], dtype=object), array(['Asia', 'Europe', 'US'], dtype=object), array(['Chrome', 'Firefox', 'Safari'], dtype=object)]\n+ [array(['female', 'male'], dtype=object), array(['Asia', 'Europe', 'US'], dtype=object),\n+ array(['Chrome', 'Firefox', 'Safari'], dtype=object)]\n >>> drop_enc.transform(X).toarray()\n array([[1., 0., 0., 1., 0., 0., 1.],\n [0., 0., 1., 0., 0., 1., 0.],\n@@ -699,6 +703,107 @@ separate categories::\n See :ref:`dict_feature_extraction` for categorical features that are\n represented as a dict, not as scalars.\n \n+.. _one_hot_encoder_infrequent_categories:\n+\n+Infrequent categories\n+---------------------\n+\n+:class:`OneHotEncoder` supports aggregating infrequent categories into a single\n+output for each feature. The parameters to enable the gathering of infrequent\n+categories are `min_frequency` and `max_categories`.\n+\n+1. `min_frequency` is either an integer greater or equal to 1, or a float in\n+ the interval `(0.0, 1.0)`. If `min_frequency` is an integer, categories with\n+ a cardinality smaller than `min_frequency` will be considered infrequent.\n+ If `min_frequency` is a float, categories with a cardinality smaller than\n+ this fraction of the total number of samples will be considered infrequent.\n+ The default value is 1, which means every category is encoded separately.\n+\n+2. `max_categories` is either `None` or any integer greater than 1. This\n+ parameter sets an upper limit to the number of output features for each\n+ input feature. `max_categories` includes the feature that combines\n+ infrequent categories.\n+\n+In the following example, the categories, `'dog', 'snake'` are considered\n+infrequent::\n+\n+ >>> X = np.array([['dog'] * 5 + ['cat'] * 20 + ['rabbit'] * 10 +\n+ ... ['snake'] * 3], dtype=object).T\n+ >>> enc = preprocessing.OneHotEncoder(min_frequency=6, sparse=False).fit(X)\n+ >>> enc.infrequent_categories_\n+ [array(['dog', 'snake'], dtype=object)]\n+ >>> enc.transform(np.array([['dog'], ['cat'], ['rabbit'], ['snake']]))\n+ array([[0., 0., 1.],\n+ [1., 0., 0.],\n+ [0., 1., 0.],\n+ [0., 0., 1.]])\n+\n+By setting handle_unknown to `'infrequent_if_exist'`, unknown categories will\n+be considered infrequent::\n+\n+ >>> enc = preprocessing.OneHotEncoder(\n+ ... handle_unknown='infrequent_if_exist', sparse=False, min_frequency=6)\n+ >>> enc = enc.fit(X)\n+ >>> enc.transform(np.array([['dragon']]))\n+ array([[0., 0., 1.]])\n+\n+:meth:`OneHotEncoder.get_feature_names_out` uses 'infrequent' as the infrequent\n+feature name::\n+\n+ >>> enc.get_feature_names_out()\n+ array(['x0_cat', 'x0_rabbit', 'x0_infrequent_sklearn'], dtype=object)\n+\n+When `'handle_unknown'` is set to `'infrequent_if_exist'` and an unknown\n+category is encountered in transform:\n+\n+1. If infrequent category support was not configured or there was no\n+ infrequent category during training, the resulting one-hot encoded columns\n+ for this feature will be all zeros. In the inverse transform, an unknown\n+ category will be denoted as `None`.\n+\n+2. If there is an infrequent category during training, the unknown category\n+ will be considered infrequent. In the inverse transform, 'infrequent_sklearn'\n+ will be used to represent the infrequent category.\n+\n+Infrequent categories can also be configured using `max_categories`. In the\n+following example, we set `max_categories=2` to limit the number of features in\n+the output. This will result in all but the `'cat'` category to be considered\n+infrequent, leading to two features, one for `'cat'` and one for infrequent\n+categories - which are all the others::\n+\n+ >>> enc = preprocessing.OneHotEncoder(max_categories=2, sparse=False)\n+ >>> enc = enc.fit(X)\n+ >>> enc.transform([['dog'], ['cat'], ['rabbit'], ['snake']])\n+ array([[0., 1.],\n+ [1., 0.],\n+ [0., 1.],\n+ [0., 1.]])\n+\n+If both `max_categories` and `min_frequency` are non-default values, then\n+categories are selected based on `min_frequency` first and `max_categories`\n+categories are kept. In the following example, `min_frequency=4` considers\n+only `snake` to be infrequent, but `max_categories=3`, forces `dog` to also be\n+infrequent::\n+\n+ >>> enc = preprocessing.OneHotEncoder(min_frequency=4, max_categories=3, sparse=False)\n+ >>> enc = enc.fit(X)\n+ >>> enc.transform([['dog'], ['cat'], ['rabbit'], ['snake']])\n+ array([[0., 0., 1.],\n+ [1., 0., 0.],\n+ [0., 1., 0.],\n+ [0., 0., 1.]])\n+\n+If there are infrequent categories with the same cardinality at the cutoff of\n+`max_categories`, then then the first `max_categories` are taken based on lexicon\n+ordering. In the following example, \"b\", \"c\", and \"d\", have the same cardinality\n+and with `max_categories=2`, \"b\" and \"c\" are infrequent because they have a higher\n+lexicon order.\n+\n+ >>> X = np.asarray([[\"a\"] * 20 + [\"b\"] * 10 + [\"c\"] * 10 + [\"d\"] * 10], dtype=object).T\n+ >>> enc = preprocessing.OneHotEncoder(max_categories=3).fit(X)\n+ >>> enc.infrequent_categories_\n+ [array(['b', 'c'], dtype=object)]\n+\n .. _preprocessing_discretization:\n \n Discretization\n@@ -981,7 +1086,7 @@ Interestingly, a :class:`SplineTransformer` of ``degree=0`` is the same as\n Penalties <10.1214/ss/1038425655>`. Statist. Sci. 11 (1996), no. 2, 89--121.\n \n * Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. :doi:`A review of\n- spline function procedures in R <10.1186/s12874-019-0666-3>`. \n+ spline function procedures in R <10.1186/s12874-019-0666-3>`.\n BMC Med Res Methodol 19, 46 (2019).\n \n .. _function_transformer:\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 584dd796b5789..a0272f183bf81 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -688,6 +688,11 @@ Changelog\n :mod:`sklearn.preprocessing`\n ............................\n \n+- |Feature| :class:`preprocessing.OneHotEncoder` now supports grouping\n+ infrequent categories into a single feature. Grouping infrequent categories\n+ is enabled by specifying how to select infrequent categories with\n+ `min_frequency` or `max_categories`. :pr:`<PRID>` by `<NAME>`_.\n+\n - |Enhancement| Adds a `subsample` parameter to :class:`preprocessing.KBinsDiscretizer`.\n This allows specifying a maximum number of samples to be used while fitting\n the model. The option is only available when `strategy` is set to `quantile`.\n"
}
] |
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index 035f2b90203ca..997bccf66782d 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -594,17 +594,19 @@ dataset::
array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 0.]])
If there is a possibility that the training data might have missing categorical
-features, it can often be better to specify ``handle_unknown='ignore'`` instead
-of setting the ``categories`` manually as above. When
-``handle_unknown='ignore'`` is specified and unknown categories are encountered
-during transform, no error will be raised but the resulting one-hot encoded
-columns for this feature will be all zeros
-(``handle_unknown='ignore'`` is only supported for one-hot encoding)::
-
- >>> enc = preprocessing.OneHotEncoder(handle_unknown='ignore')
+features, it can often be better to specify
+`handle_unknown='infrequent_if_exist'` instead of setting the `categories`
+manually as above. When `handle_unknown='infrequent_if_exist'` is specified
+and unknown categories are encountered during transform, no error will be
+raised but the resulting one-hot encoded columns for this feature will be all
+zeros or considered as an infrequent category if enabled.
+(`handle_unknown='infrequent_if_exist'` is only supported for one-hot
+encoding)::
+
+ >>> enc = preprocessing.OneHotEncoder(handle_unknown='infrequent_if_exist')
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]
>>> enc.fit(X)
- OneHotEncoder(handle_unknown='ignore')
+ OneHotEncoder(handle_unknown='infrequent_if_exist')
>>> enc.transform([['female', 'from Asia', 'uses Chrome']]).toarray()
array([[1., 0., 0., 0., 0., 0.]])
@@ -621,7 +623,8 @@ since co-linearity would cause the covariance matrix to be non-invertible::
... ['female', 'from Europe', 'uses Firefox']]
>>> drop_enc = preprocessing.OneHotEncoder(drop='first').fit(X)
>>> drop_enc.categories_
- [array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object), array(['uses Firefox', 'uses Safari'], dtype=object)]
+ [array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object),
+ array(['uses Firefox', 'uses Safari'], dtype=object)]
>>> drop_enc.transform(X).toarray()
array([[1., 1., 1.],
[0., 0., 0.]])
@@ -634,7 +637,8 @@ categories. In this case, you can set the parameter `drop='if_binary'`.
... ['female', 'Asia', 'Chrome']]
>>> drop_enc = preprocessing.OneHotEncoder(drop='if_binary').fit(X)
>>> drop_enc.categories_
- [array(['female', 'male'], dtype=object), array(['Asia', 'Europe', 'US'], dtype=object), array(['Chrome', 'Firefox', 'Safari'], dtype=object)]
+ [array(['female', 'male'], dtype=object), array(['Asia', 'Europe', 'US'], dtype=object),
+ array(['Chrome', 'Firefox', 'Safari'], dtype=object)]
>>> drop_enc.transform(X).toarray()
array([[1., 0., 0., 1., 0., 0., 1.],
[0., 0., 1., 0., 0., 1., 0.],
@@ -699,6 +703,107 @@ separate categories::
See :ref:`dict_feature_extraction` for categorical features that are
represented as a dict, not as scalars.
+.. _one_hot_encoder_infrequent_categories:
+
+Infrequent categories
+---------------------
+
+:class:`OneHotEncoder` supports aggregating infrequent categories into a single
+output for each feature. The parameters to enable the gathering of infrequent
+categories are `min_frequency` and `max_categories`.
+
+1. `min_frequency` is either an integer greater or equal to 1, or a float in
+ the interval `(0.0, 1.0)`. If `min_frequency` is an integer, categories with
+ a cardinality smaller than `min_frequency` will be considered infrequent.
+ If `min_frequency` is a float, categories with a cardinality smaller than
+ this fraction of the total number of samples will be considered infrequent.
+ The default value is 1, which means every category is encoded separately.
+
+2. `max_categories` is either `None` or any integer greater than 1. This
+ parameter sets an upper limit to the number of output features for each
+ input feature. `max_categories` includes the feature that combines
+ infrequent categories.
+
+In the following example, the categories, `'dog', 'snake'` are considered
+infrequent::
+
+ >>> X = np.array([['dog'] * 5 + ['cat'] * 20 + ['rabbit'] * 10 +
+ ... ['snake'] * 3], dtype=object).T
+ >>> enc = preprocessing.OneHotEncoder(min_frequency=6, sparse=False).fit(X)
+ >>> enc.infrequent_categories_
+ [array(['dog', 'snake'], dtype=object)]
+ >>> enc.transform(np.array([['dog'], ['cat'], ['rabbit'], ['snake']]))
+ array([[0., 0., 1.],
+ [1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+By setting handle_unknown to `'infrequent_if_exist'`, unknown categories will
+be considered infrequent::
+
+ >>> enc = preprocessing.OneHotEncoder(
+ ... handle_unknown='infrequent_if_exist', sparse=False, min_frequency=6)
+ >>> enc = enc.fit(X)
+ >>> enc.transform(np.array([['dragon']]))
+ array([[0., 0., 1.]])
+
+:meth:`OneHotEncoder.get_feature_names_out` uses 'infrequent' as the infrequent
+feature name::
+
+ >>> enc.get_feature_names_out()
+ array(['x0_cat', 'x0_rabbit', 'x0_infrequent_sklearn'], dtype=object)
+
+When `'handle_unknown'` is set to `'infrequent_if_exist'` and an unknown
+category is encountered in transform:
+
+1. If infrequent category support was not configured or there was no
+ infrequent category during training, the resulting one-hot encoded columns
+ for this feature will be all zeros. In the inverse transform, an unknown
+ category will be denoted as `None`.
+
+2. If there is an infrequent category during training, the unknown category
+ will be considered infrequent. In the inverse transform, 'infrequent_sklearn'
+ will be used to represent the infrequent category.
+
+Infrequent categories can also be configured using `max_categories`. In the
+following example, we set `max_categories=2` to limit the number of features in
+the output. This will result in all but the `'cat'` category to be considered
+infrequent, leading to two features, one for `'cat'` and one for infrequent
+categories - which are all the others::
+
+ >>> enc = preprocessing.OneHotEncoder(max_categories=2, sparse=False)
+ >>> enc = enc.fit(X)
+ >>> enc.transform([['dog'], ['cat'], ['rabbit'], ['snake']])
+ array([[0., 1.],
+ [1., 0.],
+ [0., 1.],
+ [0., 1.]])
+
+If both `max_categories` and `min_frequency` are non-default values, then
+categories are selected based on `min_frequency` first and `max_categories`
+categories are kept. In the following example, `min_frequency=4` considers
+only `snake` to be infrequent, but `max_categories=3`, forces `dog` to also be
+infrequent::
+
+ >>> enc = preprocessing.OneHotEncoder(min_frequency=4, max_categories=3, sparse=False)
+ >>> enc = enc.fit(X)
+ >>> enc.transform([['dog'], ['cat'], ['rabbit'], ['snake']])
+ array([[0., 0., 1.],
+ [1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+If there are infrequent categories with the same cardinality at the cutoff of
+`max_categories`, then then the first `max_categories` are taken based on lexicon
+ordering. In the following example, "b", "c", and "d", have the same cardinality
+and with `max_categories=2`, "b" and "c" are infrequent because they have a higher
+lexicon order.
+
+ >>> X = np.asarray([["a"] * 20 + ["b"] * 10 + ["c"] * 10 + ["d"] * 10], dtype=object).T
+ >>> enc = preprocessing.OneHotEncoder(max_categories=3).fit(X)
+ >>> enc.infrequent_categories_
+ [array(['b', 'c'], dtype=object)]
+
.. _preprocessing_discretization:
Discretization
@@ -981,7 +1086,7 @@ Interestingly, a :class:`SplineTransformer` of ``degree=0`` is the same as
Penalties <10.1214/ss/1038425655>`. Statist. Sci. 11 (1996), no. 2, 89--121.
* Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. :doi:`A review of
- spline function procedures in R <10.1186/s12874-019-0666-3>`.
+ spline function procedures in R <10.1186/s12874-019-0666-3>`.
BMC Med Res Methodol 19, 46 (2019).
.. _function_transformer:
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 584dd796b5789..a0272f183bf81 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -688,6 +688,11 @@ Changelog
:mod:`sklearn.preprocessing`
............................
+- |Feature| :class:`preprocessing.OneHotEncoder` now supports grouping
+ infrequent categories into a single feature. Grouping infrequent categories
+ is enabled by specifying how to select infrequent categories with
+ `min_frequency` or `max_categories`. :pr:`<PRID>` by `<NAME>`_.
+
- |Enhancement| Adds a `subsample` parameter to :class:`preprocessing.KBinsDiscretizer`.
This allows specifying a maximum number of samples to be used while fitting
the model. The option is only available when `strategy` is set to `quantile`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22150
|
https://github.com/scikit-learn/scikit-learn/pull/22150
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 61d5c64255f71..a30d6711812a3 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -393,6 +393,14 @@ Changelog
instead of `__init__`. :pr:`21430` by :user:`Desislava Vasileva <DessyVV>` and
:user:`Lucy Jimenez <LucyJimenez>`.
+:mod:`sklearn.neural_network`
+.............................
+
+- |Enhancement| :func:`neural_network.MLPClassifier` and
+ :func:`neural_network.MLPRegressor` show error
+ messages when optimizers produce non-finite parameter weights. :pr:`22150`
+ by :user:`Christian Ritter <chritter>` and :user:`Norbert Preining <norbusan>`.
+
:mod:`sklearn.pipeline`
.......................
diff --git a/sklearn/neural_network/_multilayer_perceptron.py b/sklearn/neural_network/_multilayer_perceptron.py
index 8c4dcdafbec83..8b60d86105cf3 100644
--- a/sklearn/neural_network/_multilayer_perceptron.py
+++ b/sklearn/neural_network/_multilayer_perceptron.py
@@ -10,6 +10,7 @@
from abc import ABCMeta, abstractmethod
import warnings
+from itertools import chain
import scipy.optimize
@@ -440,6 +441,15 @@ def _fit(self, X, y, incremental=False):
self._fit_lbfgs(
X, y, activations, deltas, coef_grads, intercept_grads, layer_units
)
+
+ # validate parameter weights
+ weights = chain(self.coefs_, self.intercepts_)
+ if not all(np.isfinite(w).all() for w in weights):
+ raise ValueError(
+ "Solver produced non-finite parameter weights. The input data may"
+ " contain large values and need to be preprocessed."
+ )
+
return self
def _validate_hyperparameters(self):
|
diff --git a/sklearn/neural_network/tests/test_mlp.py b/sklearn/neural_network/tests/test_mlp.py
index 3948a4eccc760..999983d751cc1 100644
--- a/sklearn/neural_network/tests/test_mlp.py
+++ b/sklearn/neural_network/tests/test_mlp.py
@@ -506,6 +506,24 @@ def test_partial_fit_errors():
assert not hasattr(MLPClassifier(solver="lbfgs"), "partial_fit")
+def test_nonfinite_params():
+ # Check that MLPRegressor throws ValueError when dealing with non-finite
+ # parameter values
+ rng = np.random.RandomState(0)
+ n_samples = 10
+ fmax = np.finfo(np.float64).max
+ X = fmax * rng.uniform(size=(n_samples, 2))
+ y = rng.standard_normal(size=n_samples)
+
+ clf = MLPRegressor()
+ msg = (
+ "Solver produced non-finite parameter weights. The input data may contain large"
+ " values and need to be preprocessed."
+ )
+ with pytest.raises(ValueError, match=msg):
+ clf.fit(X, y)
+
+
@pytest.mark.parametrize(
"args",
[
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 61d5c64255f71..a30d6711812a3 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -393,6 +393,14 @@ Changelog\n instead of `__init__`. :pr:`21430` by :user:`Desislava Vasileva <DessyVV>` and\n :user:`Lucy Jimenez <LucyJimenez>`.\n \n+:mod:`sklearn.neural_network`\n+.............................\n+\n+- |Enhancement| :func:`neural_network.MLPClassifier` and \n+ :func:`neural_network.MLPRegressor` show error\n+ messages when optimizers produce non-finite parameter weights. :pr:`22150`\n+ by :user:`Christian Ritter <chritter>` and :user:`Norbert Preining <norbusan>`.\n+\n :mod:`sklearn.pipeline`\n .......................\n \n"
}
] |
1.01
|
8d6217107f02d6f52d2f8c8908958fe82778c7cc
|
[
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args11]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args7]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args17]",
"sklearn/neural_network/tests/test_mlp.py::test_mlp_regressor_dtypes_casting",
"sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPClassifier-float64]",
"sklearn/neural_network/tests/test_mlp.py::test_n_iter_no_change",
"sklearn/neural_network/tests/test_mlp.py::test_early_stopping",
"sklearn/neural_network/tests/test_mlp.py::test_n_iter_no_change_inf",
"sklearn/neural_network/tests/test_mlp.py::test_tolerance",
"sklearn/neural_network/tests/test_mlp.py::test_multilabel_classification",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args10]",
"sklearn/neural_network/tests/test_mlp.py::test_warm_start_full_iteration[MLPClassifier]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args0]",
"sklearn/neural_network/tests/test_mlp.py::test_mlp_classifier_dtypes_casting",
"sklearn/neural_network/tests/test_mlp.py::test_fit",
"sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X0-y0]",
"sklearn/neural_network/tests/test_mlp.py::test_predict_proba_binary",
"sklearn/neural_network/tests/test_mlp.py::test_shuffle",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args1]",
"sklearn/neural_network/tests/test_mlp.py::test_verbose_sgd",
"sklearn/neural_network/tests/test_mlp.py::test_lbfgs_regression_maxfun[X0-y0]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args16]",
"sklearn/neural_network/tests/test_mlp.py::test_predict_proba_multilabel",
"sklearn/neural_network/tests/test_mlp.py::test_partial_fit_unseen_classes",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args4]",
"sklearn/neural_network/tests/test_mlp.py::test_partial_fit_regression",
"sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X1-y1]",
"sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classification",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args9]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args3]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args14]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args19]",
"sklearn/neural_network/tests/test_mlp.py::test_mlp_loading_from_joblib_partial_fit",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args12]",
"sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification_maxfun[X0-y0]",
"sklearn/neural_network/tests/test_mlp.py::test_predict_proba_multiclass",
"sklearn/neural_network/tests/test_mlp.py::test_lbfgs_regression[X0-y0]",
"sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPClassifier-float32]",
"sklearn/neural_network/tests/test_mlp.py::test_warm_start",
"sklearn/neural_network/tests/test_mlp.py::test_sparse_matrices",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args8]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args13]",
"sklearn/neural_network/tests/test_mlp.py::test_partial_fit_errors",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args5]",
"sklearn/neural_network/tests/test_mlp.py::test_alpha",
"sklearn/neural_network/tests/test_mlp.py::test_warm_start_full_iteration[MLPRegressor]",
"sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classes_error",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args18]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args15]",
"sklearn/neural_network/tests/test_mlp.py::test_early_stopping_stratified",
"sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification_maxfun[X1-y1]",
"sklearn/neural_network/tests/test_mlp.py::test_multioutput_regression",
"sklearn/neural_network/tests/test_mlp.py::test_adaptive_learning_rate",
"sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPRegressor-float32]",
"sklearn/neural_network/tests/test_mlp.py::test_learning_rate_warmstart",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args2]",
"sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPRegressor-float64]",
"sklearn/neural_network/tests/test_mlp.py::test_params_errors[args6]",
"sklearn/neural_network/tests/test_mlp.py::test_gradient"
] |
[
"sklearn/neural_network/tests/test_mlp.py::test_nonfinite_params"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 61d5c64255f71..a30d6711812a3 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -393,6 +393,14 @@ Changelog\n instead of `__init__`. :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n \n+:mod:`sklearn.neural_network`\n+.............................\n+\n+- |Enhancement| :func:`neural_network.MLPClassifier` and \n+ :func:`neural_network.MLPRegressor` show error\n+ messages when optimizers produce non-finite parameter weights. :pr:`<PRID>`\n+ by :user:`<NAME>` and :user:`<NAME>`.\n+\n :mod:`sklearn.pipeline`\n .......................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 61d5c64255f71..a30d6711812a3 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -393,6 +393,14 @@ Changelog
instead of `__init__`. :pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
+:mod:`sklearn.neural_network`
+.............................
+
+- |Enhancement| :func:`neural_network.MLPClassifier` and
+ :func:`neural_network.MLPRegressor` show error
+ messages when optimizers produce non-finite parameter weights. :pr:`<PRID>`
+ by :user:`<NAME>` and :user:`<NAME>`.
+
:mod:`sklearn.pipeline`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21569
|
https://github.com/scikit-learn/scikit-learn/pull/21569
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 6a5b2d226cabe..5e67916888511 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -237,6 +237,15 @@ Changelog
instead of `__init__`.
:pr:`21434` by :user:`Krum Arnaudov <krumeto>`.
+- |Enhancement| Added the `get_feature_names_out` method and a new parameter
+ `feature_names_out` to :class:`preprocessing.FunctionTransformer`. You can set
+ `feature_names_out` to 'one-to-one' to use the input features names as the
+ output feature names, or you can set it to a callable that returns the output
+ feature names. This is especially useful when the transformer changes the
+ number of features. If `feature_names_out` is None (which is the default),
+ then `get_output_feature_names` is not defined.
+ :pr:`21569` by :user:`Aurélien Geron <ageron>`.
+
:mod:`sklearn.svm`
..................
diff --git a/sklearn/preprocessing/_function_transformer.py b/sklearn/preprocessing/_function_transformer.py
index 595ca0e0bbc1b..cea720aeb6a67 100644
--- a/sklearn/preprocessing/_function_transformer.py
+++ b/sklearn/preprocessing/_function_transformer.py
@@ -1,7 +1,14 @@
import warnings
+import numpy as np
+
from ..base import BaseEstimator, TransformerMixin
-from ..utils.validation import _allclose_dense_sparse, check_array
+from ..utils.metaestimators import available_if
+from ..utils.validation import (
+ _allclose_dense_sparse,
+ _check_feature_names_in,
+ check_array,
+)
def _identity(X):
@@ -61,6 +68,20 @@ class FunctionTransformer(TransformerMixin, BaseEstimator):
.. versionadded:: 0.20
+ feature_names_out : callable, 'one-to-one' or None, default=None
+ Determines the list of feature names that will be returned by the
+ `get_feature_names_out` method. If it is 'one-to-one', then the output
+ feature names will be equal to the input feature names. If it is a
+ callable, then it must take two positional arguments: this
+ `FunctionTransformer` (`self`) and an array-like of input feature names
+ (`input_features`). It must return an array-like of output feature
+ names. The `get_feature_names_out` method is only defined if
+ `feature_names_out` is not None.
+
+ See ``get_feature_names_out`` for more details.
+
+ .. versionadded:: 1.1
+
kw_args : dict, default=None
Dictionary of additional keyword arguments to pass to func.
@@ -113,6 +134,7 @@ def __init__(
validate=False,
accept_sparse=False,
check_inverse=True,
+ feature_names_out=None,
kw_args=None,
inv_kw_args=None,
):
@@ -121,6 +143,7 @@ def __init__(
self.validate = validate
self.accept_sparse = accept_sparse
self.check_inverse = check_inverse
+ self.feature_names_out = feature_names_out
self.kw_args = kw_args
self.inv_kw_args = inv_kw_args
@@ -198,6 +221,63 @@ def inverse_transform(self, X):
X = check_array(X, accept_sparse=self.accept_sparse)
return self._transform(X, func=self.inverse_func, kw_args=self.inv_kw_args)
+ @available_if(lambda self: self.feature_names_out is not None)
+ def get_feature_names_out(self, input_features=None):
+ """Get output feature names for transformation.
+
+ This method is only defined if `feature_names_out` is not None.
+
+ Parameters
+ ----------
+ input_features : array-like of str or None, default=None
+ Input feature names.
+
+ - If `input_features` is None, then `feature_names_in_` is
+ used as the input feature names. If `feature_names_in_` is not
+ defined, then names are generated:
+ `[x0, x1, ..., x(n_features_in_)]`.
+ - If `input_features` is array-like, then `input_features` must
+ match `feature_names_in_` if `feature_names_in_` is defined.
+
+ Returns
+ -------
+ feature_names_out : ndarray of str objects
+ Transformed feature names.
+
+ - If `feature_names_out` is 'one-to-one', the input feature names
+ are returned (see `input_features` above). This requires
+ `feature_names_in_` and/or `n_features_in_` to be defined, which
+ is done automatically if `validate=True`. Alternatively, you can
+ set them in `func`.
+ - If `feature_names_out` is a callable, then it is called with two
+ arguments, `self` and `input_features`, and its return value is
+ returned by this method.
+ """
+ if hasattr(self, "n_features_in_") or input_features is not None:
+ input_features = _check_feature_names_in(self, input_features)
+ if self.feature_names_out == "one-to-one":
+ if input_features is None:
+ raise ValueError(
+ "When 'feature_names_out' is 'one-to-one', either "
+ "'input_features' must be passed, or 'feature_names_in_' "
+ "and/or 'n_features_in_' must be defined. If you set "
+ "'validate' to 'True', then they will be defined "
+ "automatically when 'fit' is called. Alternatively, you "
+ "can set them in 'func'."
+ )
+ names_out = input_features
+ elif callable(self.feature_names_out):
+ names_out = self.feature_names_out(self, input_features)
+ else:
+ raise ValueError(
+ f"feature_names_out={self.feature_names_out!r} is invalid. "
+ 'It must either be "one-to-one" or a callable with two '
+ "arguments: the function transformer and an array-like of "
+ "input feature names. The callable must return an array-like "
+ "of output feature names."
+ )
+ return np.asarray(names_out, dtype=object)
+
def _transform(self, X, func=None, kw_args=None):
if func is None:
func = _identity
|
diff --git a/sklearn/preprocessing/tests/test_function_transformer.py b/sklearn/preprocessing/tests/test_function_transformer.py
index b1ba9ebe6b762..525accf4568de 100644
--- a/sklearn/preprocessing/tests/test_function_transformer.py
+++ b/sklearn/preprocessing/tests/test_function_transformer.py
@@ -176,6 +176,158 @@ def test_function_transformer_frame():
assert hasattr(X_df_trans, "loc")
[email protected](
+ "X, feature_names_out, input_features, expected",
+ [
+ (
+ # NumPy inputs, default behavior: generate names
+ np.random.rand(100, 3),
+ "one-to-one",
+ None,
+ ("x0", "x1", "x2"),
+ ),
+ (
+ # Pandas input, default behavior: use input feature names
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
+ "one-to-one",
+ None,
+ ("a", "b"),
+ ),
+ (
+ # NumPy input, feature_names_out=callable
+ np.random.rand(100, 3),
+ lambda transformer, input_features: ("a", "b"),
+ None,
+ ("a", "b"),
+ ),
+ (
+ # Pandas input, feature_names_out=callable
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
+ lambda transformer, input_features: ("c", "d", "e"),
+ None,
+ ("c", "d", "e"),
+ ),
+ (
+ # NumPy input, feature_names_out=callable – default input_features
+ np.random.rand(100, 3),
+ lambda transformer, input_features: tuple(input_features) + ("a",),
+ None,
+ ("x0", "x1", "x2", "a"),
+ ),
+ (
+ # Pandas input, feature_names_out=callable – default input_features
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
+ lambda transformer, input_features: tuple(input_features) + ("c",),
+ None,
+ ("a", "b", "c"),
+ ),
+ (
+ # NumPy input, input_features=list of names
+ np.random.rand(100, 3),
+ "one-to-one",
+ ("a", "b", "c"),
+ ("a", "b", "c"),
+ ),
+ (
+ # Pandas input, input_features=list of names
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
+ "one-to-one",
+ ("a", "b"), # must match feature_names_in_
+ ("a", "b"),
+ ),
+ (
+ # NumPy input, feature_names_out=callable, input_features=list
+ np.random.rand(100, 3),
+ lambda transformer, input_features: tuple(input_features) + ("d",),
+ ("a", "b", "c"),
+ ("a", "b", "c", "d"),
+ ),
+ (
+ # Pandas input, feature_names_out=callable, input_features=list
+ {"a": np.random.rand(100), "b": np.random.rand(100)},
+ lambda transformer, input_features: tuple(input_features) + ("c",),
+ ("a", "b"), # must match feature_names_in_
+ ("a", "b", "c"),
+ ),
+ ],
+)
+def test_function_transformer_get_feature_names_out(
+ X, feature_names_out, input_features, expected
+):
+ if isinstance(X, dict):
+ pd = pytest.importorskip("pandas")
+ X = pd.DataFrame(X)
+
+ transformer = FunctionTransformer(
+ feature_names_out=feature_names_out, validate=True
+ )
+ transformer.fit_transform(X)
+ names = transformer.get_feature_names_out(input_features)
+ assert isinstance(names, np.ndarray)
+ assert names.dtype == object
+ assert_array_equal(names, expected)
+
+
+def test_function_transformer_get_feature_names_out_without_validation():
+ transformer = FunctionTransformer(feature_names_out="one-to-one", validate=False)
+ X = np.random.rand(100, 2)
+ transformer.fit_transform(X)
+
+ msg = "When 'feature_names_out' is 'one-to-one', either"
+ with pytest.raises(ValueError, match=msg):
+ transformer.get_feature_names_out()
+
+ names = transformer.get_feature_names_out(("a", "b"))
+ assert isinstance(names, np.ndarray)
+ assert names.dtype == object
+ assert_array_equal(names, ("a", "b"))
+
+
[email protected]("feature_names_out", ["x0", ["x0"], ("x0",)])
+def test_function_transformer_feature_names_out_string(feature_names_out):
+ transformer = FunctionTransformer(feature_names_out=feature_names_out)
+ X = np.random.rand(100, 2)
+ transformer.fit_transform(X)
+
+ msg = """must either be "one-to-one" or a callable"""
+ with pytest.raises(ValueError, match=msg):
+ transformer.get_feature_names_out()
+
+
+def test_function_transformer_feature_names_out_is_None():
+ transformer = FunctionTransformer()
+ X = np.random.rand(100, 2)
+ transformer.fit_transform(X)
+
+ msg = "This 'FunctionTransformer' has no attribute 'get_feature_names_out'"
+ with pytest.raises(AttributeError, match=msg):
+ transformer.get_feature_names_out()
+
+
+def test_function_transformer_feature_names_out_uses_estimator():
+ def add_n_random_features(X, n):
+ return np.concatenate([X, np.random.rand(len(X), n)], axis=1)
+
+ def feature_names_out(transformer, input_features):
+ n = transformer.kw_args["n"]
+ return list(input_features) + [f"rnd{i}" for i in range(n)]
+
+ transformer = FunctionTransformer(
+ func=add_n_random_features,
+ feature_names_out=feature_names_out,
+ kw_args=dict(n=3),
+ validate=True,
+ )
+ pd = pytest.importorskip("pandas")
+ df = pd.DataFrame({"a": np.random.rand(100), "b": np.random.rand(100)})
+ transformer.fit_transform(df)
+ names = transformer.get_feature_names_out()
+
+ assert isinstance(names, np.ndarray)
+ assert names.dtype == object
+ assert_array_equal(names, ("a", "b", "rnd0", "rnd1", "rnd2"))
+
+
def test_function_transformer_validate_inverse():
"""Test that function transformer does not reset estimator in
`inverse_transform`."""
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 6a5b2d226cabe..5e67916888511 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -237,6 +237,15 @@ Changelog\n instead of `__init__`.\n :pr:`21434` by :user:`Krum Arnaudov <krumeto>`.\n \n+- |Enhancement| Added the `get_feature_names_out` method and a new parameter\n+ `feature_names_out` to :class:`preprocessing.FunctionTransformer`. You can set\n+ `feature_names_out` to 'one-to-one' to use the input features names as the\n+ output feature names, or you can set it to a callable that returns the output\n+ feature names. This is especially useful when the transformer changes the\n+ number of features. If `feature_names_out` is None (which is the default),\n+ then `get_output_feature_names` is not defined.\n+ :pr:`21569` by :user:`Aurélien Geron <ageron>`.\n+\n :mod:`sklearn.svm`\n ..................\n \n"
}
] |
1.01
|
bacc91cf1d4531bcc91aa60893fdf7df319485ec
|
[
"sklearn/preprocessing/tests/test_function_transformer.py::test_kw_arg_reset",
"sklearn/preprocessing/tests/test_function_transformer.py::test_kw_arg",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_frame",
"sklearn/preprocessing/tests/test_function_transformer.py::test_delegate_to_func",
"sklearn/preprocessing/tests/test_function_transformer.py::test_kw_arg_update",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_validate_inverse",
"sklearn/preprocessing/tests/test_function_transformer.py::test_np_log",
"sklearn/preprocessing/tests/test_function_transformer.py::test_inverse_transform"
] |
[
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X6-one-to-one-input_features6-expected6]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X5-<lambda>-None-expected5]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X1-one-to-one-None-expected1]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X8-<lambda>-input_features8-expected8]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X0-one-to-one-None-expected0]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X2-<lambda>-None-expected2]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X3-<lambda>-None-expected3]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X7-one-to-one-input_features7-expected7]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_feature_names_out_string[x0]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_feature_names_out_is_None",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_feature_names_out_string[feature_names_out1]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_feature_names_out_uses_estimator",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_feature_names_out_string[feature_names_out2]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out_without_validation",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X4-<lambda>-None-expected4]",
"sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out[X9-<lambda>-input_features9-expected9]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 6a5b2d226cabe..5e67916888511 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -237,6 +237,15 @@ Changelog\n instead of `__init__`.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| Added the `get_feature_names_out` method and a new parameter\n+ `feature_names_out` to :class:`preprocessing.FunctionTransformer`. You can set\n+ `feature_names_out` to 'one-to-one' to use the input features names as the\n+ output feature names, or you can set it to a callable that returns the output\n+ feature names. This is especially useful when the transformer changes the\n+ number of features. If `feature_names_out` is None (which is the default),\n+ then `get_output_feature_names` is not defined.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.svm`\n ..................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 6a5b2d226cabe..5e67916888511 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -237,6 +237,15 @@ Changelog
instead of `__init__`.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| Added the `get_feature_names_out` method and a new parameter
+ `feature_names_out` to :class:`preprocessing.FunctionTransformer`. You can set
+ `feature_names_out` to 'one-to-one' to use the input features names as the
+ output feature names, or you can set it to a callable that returns the output
+ feature names. This is especially useful when the transformer changes the
+ number of features. If `feature_names_out` is None (which is the default),
+ then `get_output_feature_names` is not defined.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.svm`
..................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21988
|
https://github.com/scikit-learn/scikit-learn/pull/21988
|
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index 997bccf66782d..beb91d8780de8 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -537,8 +537,8 @@ scikit-learn estimators, as these expect continuous input, and would interpret
the categories as being ordered, which is often not desired (i.e. the set of
browsers was ordered arbitrarily).
-:class:`OrdinalEncoder` will also passthrough missing values that are
-indicated by `np.nan`.
+By default, :class:`OrdinalEncoder` will also passthrough missing values that
+are indicated by `np.nan`.
>>> enc = preprocessing.OrdinalEncoder()
>>> X = [['male'], ['female'], [np.nan], ['female']]
@@ -548,6 +548,32 @@ indicated by `np.nan`.
[nan],
[ 0.]])
+:class:`OrdinalEncoder` provides a parameter `encoded_missing_value` to encode
+the missing values without the need to create a pipeline and using
+:class:`~sklearn.impute.SimpleImputer`.
+
+ >>> enc = preprocessing.OrdinalEncoder(encoded_missing_value=-1)
+ >>> X = [['male'], ['female'], [np.nan], ['female']]
+ >>> enc.fit_transform(X)
+ array([[ 1.],
+ [ 0.],
+ [-1.],
+ [ 0.]])
+
+The above processing is equivalent to the following pipeline::
+
+ >>> from sklearn.pipeline import Pipeline
+ >>> from sklearn.impute import SimpleImputer
+ >>> enc = Pipeline(steps=[
+ ... ("encoder", preprocessing.OrdinalEncoder()),
+ ... ("imputer", SimpleImputer(strategy="constant", fill_value=-1)),
+ ... ])
+ >>> enc.fit_transform(X)
+ array([[ 1.],
+ [ 0.],
+ [-1.],
+ [ 0.]])
+
Another possibility to convert categorical features to features that can be used
with scikit-learn estimators is to use a one-of-K, also known as one-hot or
dummy encoding.
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index b62ad01cdacc4..b432673704d71 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -803,6 +803,9 @@ Changelog
the model. The option is only available when `strategy` is set to `quantile`.
:pr:`21445` by :user:`Felipe Bidu <fbidu>` and :user:`Amanda Dsouza <amy12xx>`.
+- |Enhancement| Adds `encoded_missing_value` to :class:`preprocessing.OrdinalEncoder`
+ to configure the encoded value for missing data. :pr:`21988` by `Thomas Fan`_.
+
- |Enhancement| Added the `get_feature_names_out` method and a new parameter
`feature_names_out` to :class:`preprocessing.FunctionTransformer`. You can set
`feature_names_out` to 'one-to-one' to use the input features names as the
diff --git a/sklearn/preprocessing/_encoders.py b/sklearn/preprocessing/_encoders.py
index ada054811f41c..d4cc642a18562 100644
--- a/sklearn/preprocessing/_encoders.py
+++ b/sklearn/preprocessing/_encoders.py
@@ -1160,6 +1160,12 @@ class OrdinalEncoder(_OneToOneFeatureMixin, _BaseEncoder):
.. versionadded:: 0.24
+ encoded_missing_value : int or np.nan, default=np.nan
+ Encoded value of missing categories. If set to `np.nan`, then the `dtype`
+ parameter must be a float dtype.
+
+ .. versionadded:: 1.1
+
Attributes
----------
categories_ : list of arrays
@@ -1203,6 +1209,23 @@ class OrdinalEncoder(_OneToOneFeatureMixin, _BaseEncoder):
>>> enc.inverse_transform([[1, 0], [0, 1]])
array([['Male', 1],
['Female', 2]], dtype=object)
+
+ By default, :class:`OrdinalEncoder` is lenient towards missing values by
+ propagating them.
+
+ >>> import numpy as np
+ >>> X = [['Male', 1], ['Female', 3], ['Female', np.nan]]
+ >>> enc.fit_transform(X)
+ array([[ 1., 0.],
+ [ 0., 1.],
+ [ 0., nan]])
+
+ You can use the parameter `encoded_missing_value` to encode missing values.
+
+ >>> enc.set_params(encoded_missing_value=-1).fit_transform(X)
+ array([[ 1., 0.],
+ [ 0., 1.],
+ [ 0., -1.]])
"""
def __init__(
@@ -1212,11 +1235,13 @@ def __init__(
dtype=np.float64,
handle_unknown="error",
unknown_value=None,
+ encoded_missing_value=np.nan,
):
self.categories = categories
self.dtype = dtype
self.handle_unknown = handle_unknown
self.unknown_value = unknown_value
+ self.encoded_missing_value = encoded_missing_value
def fit(self, X, y=None):
"""
@@ -1286,13 +1311,38 @@ def fit(self, X, y=None):
self._missing_indices[cat_idx] = i
continue
- if np.dtype(self.dtype).kind != "f" and self._missing_indices:
- raise ValueError(
- "There are missing values in features "
- f"{list(self._missing_indices)}. For OrdinalEncoder to "
- "passthrough missing values, the dtype parameter must be a "
- "float"
- )
+ if self._missing_indices:
+ if np.dtype(self.dtype).kind != "f" and is_scalar_nan(
+ self.encoded_missing_value
+ ):
+ raise ValueError(
+ "There are missing values in features "
+ f"{list(self._missing_indices)}. For OrdinalEncoder to "
+ f"encode missing values with dtype: {self.dtype}, set "
+ "encoded_missing_value to a non-nan value, or "
+ "set dtype to a float"
+ )
+
+ if not is_scalar_nan(self.encoded_missing_value):
+ # Features are invalid when they contain a missing category
+ # and encoded_missing_value was already used to encode a
+ # known category
+ invalid_features = [
+ cat_idx
+ for cat_idx, categories_for_idx in enumerate(self.categories_)
+ if cat_idx in self._missing_indices
+ and 0 <= self.encoded_missing_value < len(categories_for_idx)
+ ]
+
+ if invalid_features:
+ # Use feature names if they are avaliable
+ if hasattr(self, "feature_names_in_"):
+ invalid_features = self.feature_names_in_[invalid_features]
+ raise ValueError(
+ f"encoded_missing_value ({self.encoded_missing_value}) "
+ "is already used to encode a known category in features: "
+ f"{invalid_features}"
+ )
return self
@@ -1317,7 +1367,7 @@ def transform(self, X):
for cat_idx, missing_idx in self._missing_indices.items():
X_missing_mask = X_int[:, cat_idx] == missing_idx
- X_trans[X_missing_mask, cat_idx] = np.nan
+ X_trans[X_missing_mask, cat_idx] = self.encoded_missing_value
# create separate category for unknown values
if self.handle_unknown == "use_encoded_value":
@@ -1362,7 +1412,7 @@ def inverse_transform(self, X):
# replace values of X[:, i] that were nan with actual indices
if i in self._missing_indices:
- X_i_mask = _get_mask(X[:, i], np.nan)
+ X_i_mask = _get_mask(X[:, i], self.encoded_missing_value)
labels[X_i_mask] = self._missing_indices[i]
if self.handle_unknown == "use_encoded_value":
|
diff --git a/sklearn/preprocessing/tests/test_encoders.py b/sklearn/preprocessing/tests/test_encoders.py
index a96786419816d..ea32de22cd2f0 100644
--- a/sklearn/preprocessing/tests/test_encoders.py
+++ b/sklearn/preprocessing/tests/test_encoders.py
@@ -1664,31 +1664,35 @@ def test_ordinal_encoder_passthrough_missing_values_float_errors_dtype():
msg = (
r"There are missing values in features \[0\]. For OrdinalEncoder "
- "to passthrough missing values, the dtype parameter must be a "
- "float"
+ f"to encode missing values with dtype: {np.int32}"
)
with pytest.raises(ValueError, match=msg):
oe.fit(X)
-def test_ordinal_encoder_passthrough_missing_values_float():
[email protected]("encoded_missing_value", [np.nan, -2])
+def test_ordinal_encoder_passthrough_missing_values_float(encoded_missing_value):
"""Test ordinal encoder with nan on float dtypes."""
X = np.array([[np.nan, 3.0, 1.0, 3.0]], dtype=np.float64).T
- oe = OrdinalEncoder().fit(X)
+ oe = OrdinalEncoder(encoded_missing_value=encoded_missing_value).fit(X)
assert len(oe.categories_) == 1
+
assert_allclose(oe.categories_[0], [1.0, 3.0, np.nan])
X_trans = oe.transform(X)
- assert_allclose(X_trans, [[np.nan], [1.0], [0.0], [1.0]])
+ assert_allclose(X_trans, [[encoded_missing_value], [1.0], [0.0], [1.0]])
X_inverse = oe.inverse_transform(X_trans)
assert_allclose(X_inverse, X)
@pytest.mark.parametrize("pd_nan_type", ["pd.NA", "np.nan"])
-def test_ordinal_encoder_missing_value_support_pandas_categorical(pd_nan_type):
[email protected]("encoded_missing_value", [np.nan, -2])
+def test_ordinal_encoder_missing_value_support_pandas_categorical(
+ pd_nan_type, encoded_missing_value
+):
"""Check ordinal encoder is compatible with pandas."""
# checks pandas dataframe with categorical features
pd = pytest.importorskip("pandas")
@@ -1701,14 +1705,14 @@ def test_ordinal_encoder_missing_value_support_pandas_categorical(pd_nan_type):
}
)
- oe = OrdinalEncoder().fit(df)
+ oe = OrdinalEncoder(encoded_missing_value=encoded_missing_value).fit(df)
assert len(oe.categories_) == 1
assert_array_equal(oe.categories_[0][:3], ["a", "b", "c"])
assert np.isnan(oe.categories_[0][-1])
df_trans = oe.transform(df)
- assert_allclose(df_trans, [[2.0], [0.0], [np.nan], [1.0], [0.0]])
+ assert_allclose(df_trans, [[2.0], [0.0], [encoded_missing_value], [1.0], [0.0]])
X_inverse = oe.inverse_transform(df_trans)
assert X_inverse.shape == (5, 1)
@@ -1902,3 +1906,50 @@ def test_ordinal_encoder_features_names_out_pandas():
feature_names_out = enc.get_feature_names_out()
assert_array_equal(names, feature_names_out)
+
+
+def test_ordinal_encoder_unknown_missing_interaction():
+ """Check interactions between encode_unknown and missing value encoding."""
+
+ X = np.array([["a"], ["b"], [np.nan]], dtype=object)
+
+ oe = OrdinalEncoder(
+ handle_unknown="use_encoded_value",
+ unknown_value=np.nan,
+ encoded_missing_value=-3,
+ ).fit(X)
+
+ X_trans = oe.transform(X)
+ assert_allclose(X_trans, [[0], [1], [-3]])
+
+ # "c" is unknown and is mapped to np.nan
+ # "None" is a missing value and is set to -3
+ X_test = np.array([["c"], [np.nan]], dtype=object)
+ X_test_trans = oe.transform(X_test)
+ assert_allclose(X_test_trans, [[np.nan], [-3]])
+
+
[email protected]("with_pandas", [True, False])
+def test_ordinal_encoder_encoded_missing_value_error(with_pandas):
+ """Check OrdinalEncoder errors when encoded_missing_value is used by
+ an known category."""
+ X = np.array([["a", "dog"], ["b", "cat"], ["c", np.nan]], dtype=object)
+
+ # The 0-th feature has no missing values so it is not included in the list of
+ # features
+ error_msg = (
+ r"encoded_missing_value \(1\) is already used to encode a known category "
+ r"in features: "
+ )
+
+ if with_pandas:
+ pd = pytest.importorskip("pandas")
+ X = pd.DataFrame(X, columns=["letter", "pet"])
+ error_msg = error_msg + r"\['pet'\]"
+ else:
+ error_msg = error_msg + r"\[1\]"
+
+ oe = OrdinalEncoder(encoded_missing_value=1)
+
+ with pytest.raises(ValueError, match=error_msg):
+ oe.fit(X)
|
[
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex 997bccf66782d..beb91d8780de8 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -537,8 +537,8 @@ scikit-learn estimators, as these expect continuous input, and would interpret\n the categories as being ordered, which is often not desired (i.e. the set of\n browsers was ordered arbitrarily).\n \n-:class:`OrdinalEncoder` will also passthrough missing values that are\n-indicated by `np.nan`.\n+By default, :class:`OrdinalEncoder` will also passthrough missing values that\n+are indicated by `np.nan`.\n \n >>> enc = preprocessing.OrdinalEncoder()\n >>> X = [['male'], ['female'], [np.nan], ['female']]\n@@ -548,6 +548,32 @@ indicated by `np.nan`.\n [nan],\n [ 0.]])\n \n+:class:`OrdinalEncoder` provides a parameter `encoded_missing_value` to encode\n+the missing values without the need to create a pipeline and using\n+:class:`~sklearn.impute.SimpleImputer`.\n+\n+ >>> enc = preprocessing.OrdinalEncoder(encoded_missing_value=-1)\n+ >>> X = [['male'], ['female'], [np.nan], ['female']]\n+ >>> enc.fit_transform(X)\n+ array([[ 1.],\n+ [ 0.],\n+ [-1.],\n+ [ 0.]])\n+\n+The above processing is equivalent to the following pipeline::\n+\n+ >>> from sklearn.pipeline import Pipeline\n+ >>> from sklearn.impute import SimpleImputer\n+ >>> enc = Pipeline(steps=[\n+ ... (\"encoder\", preprocessing.OrdinalEncoder()),\n+ ... (\"imputer\", SimpleImputer(strategy=\"constant\", fill_value=-1)),\n+ ... ])\n+ >>> enc.fit_transform(X)\n+ array([[ 1.],\n+ [ 0.],\n+ [-1.],\n+ [ 0.]])\n+\n Another possibility to convert categorical features to features that can be used\n with scikit-learn estimators is to use a one-of-K, also known as one-hot or\n dummy encoding.\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex b62ad01cdacc4..b432673704d71 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -803,6 +803,9 @@ Changelog\n the model. The option is only available when `strategy` is set to `quantile`.\n :pr:`21445` by :user:`Felipe Bidu <fbidu>` and :user:`Amanda Dsouza <amy12xx>`.\n \n+- |Enhancement| Adds `encoded_missing_value` to :class:`preprocessing.OrdinalEncoder`\n+ to configure the encoded value for missing data. :pr:`21988` by `Thomas Fan`_.\n+\n - |Enhancement| Added the `get_feature_names_out` method and a new parameter\n `feature_names_out` to :class:`preprocessing.FunctionTransformer`. You can set\n `feature_names_out` to 'one-to-one' to use the input features names as the\n"
}
] |
1.01
|
26eedbd1f453435b7d8f62d151ba23c22a567d88
|
[
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_if_binary",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test2-X_train1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test1-X_train1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_infrequent_errors[drop0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-None-missing-value]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs1]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs6]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs2]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns[infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[first]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_user_cats",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs4]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test1-X_train2]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown[infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_params",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[numeric-missing-value]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names[get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_not_fitted",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_infrequent_errors[drop1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs2]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[if_binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns[infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_frequent[drop1]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_inverse",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_features_names_out_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings[infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names[get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_one_level_errors[kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_invalid_parameters_error[kwargs0-max_categories must be greater than 1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-nan-missing_value]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float-nan-object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_infrequent_errors[drop0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories[infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_raise_categories_shape",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_invalid_parameters_error[kwargs2-min_frequency must be an integer at least]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_get_feature_names_deprecated",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_mixed",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs3]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_unsorted_categories",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_invalid_parameters_error[kwargs1-min_frequency must be an integer at least]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs3]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories_mixed_columns",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan_non_float_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs5]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test1-X_train0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X3-expected_X_trans3-X_test3]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats_one_frequent[kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test0-X_train1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-sparse]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[float]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[int]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OrdinalEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_user_cats_unknown_training_errors[kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs4]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_equals_if_binary",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs0]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test2-X_train0]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_warning",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_multiple_categories_dtypes",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test2-X_train2]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_fit_with_unseen_category",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-dense]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_frequent[first]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode[get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit0-params0-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit2-params2-The following categories were supposed]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[auto-kwargs3]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test0-X_train2]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params4-ValueError-handle_unknown should be either 'error' or 'use_encoded_value', got ignore.]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels[categories1-kwargs4]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_sparse",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params0-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got None.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params1-TypeError-unknown_value should only be set when handle_unknown is 'use_encoded_value', got -2.]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test0-X_train0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object-string-cat]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-nan-and-None-infrequent_if_exist]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit1-params1-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-dense]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X1-expected_X_trans1-X_test1]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params3-ValueError-The used value for unknown_value (1) is one of the values already used for encoding the seen categories.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode[get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_sparse_dense",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_drop_frequent[drop2]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-sparse]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OneHotEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X0-expected_X_trans0-X_test0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels[kwargs2]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-nan-and-None-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[string]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_python_integer",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_multiple_categories",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params2-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got bla.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_two_levels_user_cats_one_frequent[kwargs1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan-ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns[ignore]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_string",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-np.nan-object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_three_levels_drop_infrequent_errors[drop1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X2-expected_X_trans2-X_test2]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_infrequent_handle_unknown_error",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False-ignore]"
] |
[
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_encoded_missing_value_error[False]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float[-2]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_unknown_missing_interaction",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[nan-np.nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[-2-np.nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[nan-pd.NA]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float_errors_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_encoded_missing_value_error[True]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[-2-pd.NA]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float[nan]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex 997bccf66782d..beb91d8780de8 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -537,8 +537,8 @@ scikit-learn estimators, as these expect continuous input, and would interpret\n the categories as being ordered, which is often not desired (i.e. the set of\n browsers was ordered arbitrarily).\n \n-:class:`OrdinalEncoder` will also passthrough missing values that are\n-indicated by `np.nan`.\n+By default, :class:`OrdinalEncoder` will also passthrough missing values that\n+are indicated by `np.nan`.\n \n >>> enc = preprocessing.OrdinalEncoder()\n >>> X = [['male'], ['female'], [np.nan], ['female']]\n@@ -548,6 +548,32 @@ indicated by `np.nan`.\n [nan],\n [ 0.]])\n \n+:class:`OrdinalEncoder` provides a parameter `encoded_missing_value` to encode\n+the missing values without the need to create a pipeline and using\n+:class:`~sklearn.impute.SimpleImputer`.\n+\n+ >>> enc = preprocessing.OrdinalEncoder(encoded_missing_value=-1)\n+ >>> X = [['male'], ['female'], [np.nan], ['female']]\n+ >>> enc.fit_transform(X)\n+ array([[ 1.],\n+ [ 0.],\n+ [-1.],\n+ [ 0.]])\n+\n+The above processing is equivalent to the following pipeline::\n+\n+ >>> from sklearn.pipeline import Pipeline\n+ >>> from sklearn.impute import SimpleImputer\n+ >>> enc = Pipeline(steps=[\n+ ... (\"encoder\", preprocessing.OrdinalEncoder()),\n+ ... (\"imputer\", SimpleImputer(strategy=\"constant\", fill_value=-1)),\n+ ... ])\n+ >>> enc.fit_transform(X)\n+ array([[ 1.],\n+ [ 0.],\n+ [-1.],\n+ [ 0.]])\n+\n Another possibility to convert categorical features to features that can be used\n with scikit-learn estimators is to use a one-of-K, also known as one-hot or\n dummy encoding.\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex b62ad01cdacc4..b432673704d71 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -803,6 +803,9 @@ Changelog\n the model. The option is only available when `strategy` is set to `quantile`.\n :pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.\n \n+- |Enhancement| Adds `encoded_missing_value` to :class:`preprocessing.OrdinalEncoder`\n+ to configure the encoded value for missing data. :pr:`<PRID>` by `<NAME>`_.\n+\n - |Enhancement| Added the `get_feature_names_out` method and a new parameter\n `feature_names_out` to :class:`preprocessing.FunctionTransformer`. You can set\n `feature_names_out` to 'one-to-one' to use the input features names as the\n"
}
] |
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index 997bccf66782d..beb91d8780de8 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -537,8 +537,8 @@ scikit-learn estimators, as these expect continuous input, and would interpret
the categories as being ordered, which is often not desired (i.e. the set of
browsers was ordered arbitrarily).
-:class:`OrdinalEncoder` will also passthrough missing values that are
-indicated by `np.nan`.
+By default, :class:`OrdinalEncoder` will also passthrough missing values that
+are indicated by `np.nan`.
>>> enc = preprocessing.OrdinalEncoder()
>>> X = [['male'], ['female'], [np.nan], ['female']]
@@ -548,6 +548,32 @@ indicated by `np.nan`.
[nan],
[ 0.]])
+:class:`OrdinalEncoder` provides a parameter `encoded_missing_value` to encode
+the missing values without the need to create a pipeline and using
+:class:`~sklearn.impute.SimpleImputer`.
+
+ >>> enc = preprocessing.OrdinalEncoder(encoded_missing_value=-1)
+ >>> X = [['male'], ['female'], [np.nan], ['female']]
+ >>> enc.fit_transform(X)
+ array([[ 1.],
+ [ 0.],
+ [-1.],
+ [ 0.]])
+
+The above processing is equivalent to the following pipeline::
+
+ >>> from sklearn.pipeline import Pipeline
+ >>> from sklearn.impute import SimpleImputer
+ >>> enc = Pipeline(steps=[
+ ... ("encoder", preprocessing.OrdinalEncoder()),
+ ... ("imputer", SimpleImputer(strategy="constant", fill_value=-1)),
+ ... ])
+ >>> enc.fit_transform(X)
+ array([[ 1.],
+ [ 0.],
+ [-1.],
+ [ 0.]])
+
Another possibility to convert categorical features to features that can be used
with scikit-learn estimators is to use a one-of-K, also known as one-hot or
dummy encoding.
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index b62ad01cdacc4..b432673704d71 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -803,6 +803,9 @@ Changelog
the model. The option is only available when `strategy` is set to `quantile`.
:pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.
+- |Enhancement| Adds `encoded_missing_value` to :class:`preprocessing.OrdinalEncoder`
+ to configure the encoded value for missing data. :pr:`<PRID>` by `<NAME>`_.
+
- |Enhancement| Added the `get_feature_names_out` method and a new parameter
`feature_names_out` to :class:`preprocessing.FunctionTransformer`. You can set
`feature_names_out` to 'one-to-one' to use the input features names as the
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21701
|
https://github.com/scikit-learn/scikit-learn/pull/21701
|
diff --git a/doc/modules/random_projection.rst b/doc/modules/random_projection.rst
index adb2d53bd14d6..7d3341f0244bb 100644
--- a/doc/modules/random_projection.rst
+++ b/doc/modules/random_projection.rst
@@ -160,3 +160,42 @@ projection transformer::
In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD '06). ACM, New York, NY, USA,
287-296.
+
+
+.. _random_projection_inverse_transform:
+
+Inverse Transform
+=================
+The random projection transformers have ``compute_inverse_components`` parameter. When
+set to True, after creating the random ``components_`` matrix during fitting,
+the transformer computes the pseudo-inverse of this matrix and stores it as
+``inverse_components_``. The ``inverse_components_`` matrix has shape
+:math:`n_{features} \times n_{components}`, and it is always a dense matrix,
+regardless of whether the components matrix is sparse or dense. So depending on
+the number of features and components, it may use a lot of memory.
+
+When the ``inverse_transform`` method is called, it computes the product of the
+input ``X`` and the transpose of the inverse components. If the inverse components have
+been computed during fit, they are reused at each call to ``inverse_transform``.
+Otherwise they are recomputed each time, which can be costly. The result is always
+dense, even if ``X`` is sparse.
+
+Here a small code example which illustrates how to use the inverse transform
+feature::
+
+ >>> import numpy as np
+ >>> from sklearn.random_projection import SparseRandomProjection
+ >>> X = np.random.rand(100, 10000)
+ >>> transformer = SparseRandomProjection(
+ ... compute_inverse_components=True
+ ... )
+ ...
+ >>> X_new = transformer.fit_transform(X)
+ >>> X_new.shape
+ (100, 3947)
+ >>> X_new_inversed = transformer.inverse_transform(X_new)
+ >>> X_new_inversed.shape
+ (100, 10000)
+ >>> X_new_again = transformer.transform(X_new_inversed)
+ >>> np.allclose(X_new, X_new_again)
+ True
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 5030ed8faa4a1..e66640cfd2d21 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -791,6 +791,14 @@ Changelog
:class:`random_projection.GaussianRandomProjection` preserves dtype for
`numpy.float32`. :pr:`22114` by :user:`Takeshi Oura <takoika>`.
+- |Enhancement| Adds an :meth:`inverse_transform` method and a
+ `compute_inverse_transform` parameter to all transformers in the
+ :mod:`~sklearn.random_projection` module:
+ :class:`~sklearn.random_projection.GaussianRandomProjection` and
+ :class:`~sklearn.random_projection.SparseRandomProjection`. When the parameter is set
+ to True, the pseudo-inverse of the components is computed during `fit` and stored as
+ `inverse_components_`. :pr:`21701` by `Aurélien Geron <ageron>`.
+
- |API| Adds :term:`get_feature_names_out` to all transformers in the
:mod:`~sklearn.random_projection` module:
:class:`~sklearn.random_projection.GaussianRandomProjection` and
diff --git a/sklearn/random_projection.py b/sklearn/random_projection.py
index 31ebfdddd8928..000eca478553e 100644
--- a/sklearn/random_projection.py
+++ b/sklearn/random_projection.py
@@ -31,6 +31,7 @@
from abc import ABCMeta, abstractmethod
import numpy as np
+from scipy import linalg
import scipy.sparse as sp
from .base import BaseEstimator, TransformerMixin
@@ -39,10 +40,9 @@
from .utils import check_random_state
from .utils.extmath import safe_sparse_dot
from .utils.random import sample_without_replacement
-from .utils.validation import check_is_fitted
+from .utils.validation import check_array, check_is_fitted
from .exceptions import DataDimensionalityWarning
-
__all__ = [
"SparseRandomProjection",
"GaussianRandomProjection",
@@ -302,11 +302,18 @@ class BaseRandomProjection(
@abstractmethod
def __init__(
- self, n_components="auto", *, eps=0.1, dense_output=False, random_state=None
+ self,
+ n_components="auto",
+ *,
+ eps=0.1,
+ dense_output=False,
+ compute_inverse_components=False,
+ random_state=None,
):
self.n_components = n_components
self.eps = eps
self.dense_output = dense_output
+ self.compute_inverse_components = compute_inverse_components
self.random_state = random_state
@abstractmethod
@@ -323,12 +330,18 @@ def _make_random_matrix(self, n_components, n_features):
Returns
-------
- components : {ndarray, sparse matrix} of shape \
- (n_components, n_features)
+ components : {ndarray, sparse matrix} of shape (n_components, n_features)
The generated random matrix. Sparse matrix will be of CSR format.
"""
+ def _compute_inverse_components(self):
+ """Compute the pseudo-inverse of the (densified) components."""
+ components = self.components_
+ if sp.issparse(components):
+ components = components.toarray()
+ return linalg.pinv(components, check_finite=False)
+
def fit(self, X, y=None):
"""Generate a sparse random projection matrix.
@@ -399,6 +412,9 @@ def fit(self, X, y=None):
" not the proper shape."
)
+ if self.compute_inverse_components:
+ self.inverse_components_ = self._compute_inverse_components()
+
return self
def transform(self, X):
@@ -437,6 +453,35 @@ def _n_features_out(self):
"""
return self.n_components
+ def inverse_transform(self, X):
+ """Project data back to its original space.
+
+ Returns an array X_original whose transform would be X. Note that even
+ if X is sparse, X_original is dense: this may use a lot of RAM.
+
+ If `compute_inverse_components` is False, the inverse of the components is
+ computed during each call to `inverse_transform` which can be costly.
+
+ Parameters
+ ----------
+ X : {array-like, sparse matrix} of shape (n_samples, n_components)
+ Data to be transformed back.
+
+ Returns
+ -------
+ X_original : ndarray of shape (n_samples, n_features)
+ Reconstructed data.
+ """
+ check_is_fitted(self)
+
+ X = check_array(X, dtype=[np.float64, np.float32], accept_sparse=("csr", "csc"))
+
+ if self.compute_inverse_components:
+ return X @ self.inverse_components_.T
+
+ inverse_components = self._compute_inverse_components()
+ return X @ inverse_components.T
+
def _more_tags(self):
return {
"preserves_dtype": [np.float64, np.float32],
@@ -474,6 +519,11 @@ class GaussianRandomProjection(BaseRandomProjection):
Smaller values lead to better embedding and higher number of
dimensions (n_components) in the target projection space.
+ compute_inverse_components : bool, default=False
+ Learn the inverse transform by computing the pseudo-inverse of the
+ components during fit. Note that computing the pseudo-inverse does not
+ scale well to large matrices.
+
random_state : int, RandomState instance or None, default=None
Controls the pseudo random number generator used to generate the
projection matrix at fit time.
@@ -488,6 +538,12 @@ class GaussianRandomProjection(BaseRandomProjection):
components_ : ndarray of shape (n_components, n_features)
Random matrix used for the projection.
+ inverse_components_ : ndarray of shape (n_features, n_components)
+ Pseudo-inverse of the components, only computed if
+ `compute_inverse_components` is True.
+
+ .. versionadded:: 1.1
+
n_features_in_ : int
Number of features seen during :term:`fit`.
@@ -516,11 +572,19 @@ class GaussianRandomProjection(BaseRandomProjection):
(25, 2759)
"""
- def __init__(self, n_components="auto", *, eps=0.1, random_state=None):
+ def __init__(
+ self,
+ n_components="auto",
+ *,
+ eps=0.1,
+ compute_inverse_components=False,
+ random_state=None,
+ ):
super().__init__(
n_components=n_components,
eps=eps,
dense_output=True,
+ compute_inverse_components=compute_inverse_components,
random_state=random_state,
)
@@ -610,6 +674,14 @@ class SparseRandomProjection(BaseRandomProjection):
If False, the projected data uses a sparse representation if
the input is sparse.
+ compute_inverse_components : bool, default=False
+ Learn the inverse transform by computing the pseudo-inverse of the
+ components during fit. Note that the pseudo-inverse is always a dense
+ array, even if the training data was sparse. This means that it might be
+ necessary to call `inverse_transform` on a small batch of samples at a
+ time to avoid exhausting the available memory on the host. Moreover,
+ computing the pseudo-inverse does not scale well to large matrices.
+
random_state : int, RandomState instance or None, default=None
Controls the pseudo random number generator used to generate the
projection matrix at fit time.
@@ -625,6 +697,12 @@ class SparseRandomProjection(BaseRandomProjection):
Random matrix used for the projection. Sparse matrix will be of CSR
format.
+ inverse_components_ : ndarray of shape (n_features, n_components)
+ Pseudo-inverse of the components, only computed if
+ `compute_inverse_components` is True.
+
+ .. versionadded:: 1.1
+
density_ : float in range 0.0 - 1.0
Concrete density computed from when density = "auto".
@@ -676,12 +754,14 @@ def __init__(
density="auto",
eps=0.1,
dense_output=False,
+ compute_inverse_components=False,
random_state=None,
):
super().__init__(
n_components=n_components,
eps=eps,
dense_output=dense_output,
+ compute_inverse_components=compute_inverse_components,
random_state=random_state,
)
|
diff --git a/sklearn/tests/test_random_projection.py b/sklearn/tests/test_random_projection.py
index a3a6b1ae2a49f..4d21090a3e6fb 100644
--- a/sklearn/tests/test_random_projection.py
+++ b/sklearn/tests/test_random_projection.py
@@ -1,5 +1,6 @@
import functools
from typing import List, Any
+import warnings
import numpy as np
import scipy.sparse as sp
@@ -31,8 +32,8 @@
# Make some random data with uniformly located non zero entries with
# Gaussian distributed values
-def make_sparse_random_data(n_samples, n_features, n_nonzeros):
- rng = np.random.RandomState(0)
+def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=0):
+ rng = np.random.RandomState(random_state)
data_coo = sp.coo_matrix(
(
rng.randn(n_nonzeros),
@@ -377,6 +378,57 @@ def test_random_projection_feature_names_out(random_projection_cls):
assert_array_equal(names_out, expected_names_out)
[email protected]("n_samples", (2, 9, 10, 11, 1000))
[email protected]("n_features", (2, 9, 10, 11, 1000))
[email protected]("random_projection_cls", all_RandomProjection)
[email protected]("compute_inverse_components", [True, False])
+def test_inverse_transform(
+ n_samples,
+ n_features,
+ random_projection_cls,
+ compute_inverse_components,
+ global_random_seed,
+):
+ n_components = 10
+
+ random_projection = random_projection_cls(
+ n_components=n_components,
+ compute_inverse_components=compute_inverse_components,
+ random_state=global_random_seed,
+ )
+
+ X_dense, X_csr = make_sparse_random_data(
+ n_samples,
+ n_features,
+ n_samples * n_features // 100 + 1,
+ random_state=global_random_seed,
+ )
+
+ for X in [X_dense, X_csr]:
+ with warnings.catch_warnings():
+ warnings.filterwarnings(
+ "ignore",
+ message=(
+ "The number of components is higher than the number of features"
+ ),
+ category=DataDimensionalityWarning,
+ )
+ projected = random_projection.fit_transform(X)
+
+ if compute_inverse_components:
+ assert hasattr(random_projection, "inverse_components_")
+ inv_components = random_projection.inverse_components_
+ assert inv_components.shape == (n_features, n_components)
+
+ projected_back = random_projection.inverse_transform(projected)
+ assert projected_back.shape == X.shape
+
+ projected_again = random_projection.transform(projected_back)
+ if hasattr(projected, "toarray"):
+ projected = projected.toarray()
+ assert_allclose(projected, projected_again, rtol=1e-7, atol=1e-10)
+
+
@pytest.mark.parametrize("random_projection_cls", all_RandomProjection)
@pytest.mark.parametrize(
"input_dtype, expected_dtype",
|
[
{
"path": "doc/modules/random_projection.rst",
"old_path": "a/doc/modules/random_projection.rst",
"new_path": "b/doc/modules/random_projection.rst",
"metadata": "diff --git a/doc/modules/random_projection.rst b/doc/modules/random_projection.rst\nindex adb2d53bd14d6..7d3341f0244bb 100644\n--- a/doc/modules/random_projection.rst\n+++ b/doc/modules/random_projection.rst\n@@ -160,3 +160,42 @@ projection transformer::\n In Proceedings of the 12th ACM SIGKDD international conference on\n Knowledge discovery and data mining (KDD '06). ACM, New York, NY, USA,\n 287-296.\n+\n+\n+.. _random_projection_inverse_transform:\n+\n+Inverse Transform\n+=================\n+The random projection transformers have ``compute_inverse_components`` parameter. When\n+set to True, after creating the random ``components_`` matrix during fitting,\n+the transformer computes the pseudo-inverse of this matrix and stores it as\n+``inverse_components_``. The ``inverse_components_`` matrix has shape\n+:math:`n_{features} \\times n_{components}`, and it is always a dense matrix,\n+regardless of whether the components matrix is sparse or dense. So depending on\n+the number of features and components, it may use a lot of memory.\n+\n+When the ``inverse_transform`` method is called, it computes the product of the\n+input ``X`` and the transpose of the inverse components. If the inverse components have\n+been computed during fit, they are reused at each call to ``inverse_transform``.\n+Otherwise they are recomputed each time, which can be costly. The result is always\n+dense, even if ``X`` is sparse.\n+\n+Here a small code example which illustrates how to use the inverse transform\n+feature::\n+\n+ >>> import numpy as np\n+ >>> from sklearn.random_projection import SparseRandomProjection\n+ >>> X = np.random.rand(100, 10000)\n+ >>> transformer = SparseRandomProjection(\n+ ... compute_inverse_components=True\n+ ... )\n+ ...\n+ >>> X_new = transformer.fit_transform(X)\n+ >>> X_new.shape\n+ (100, 3947)\n+ >>> X_new_inversed = transformer.inverse_transform(X_new)\n+ >>> X_new_inversed.shape\n+ (100, 10000)\n+ >>> X_new_again = transformer.transform(X_new_inversed)\n+ >>> np.allclose(X_new, X_new_again)\n+ True\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 5030ed8faa4a1..e66640cfd2d21 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -791,6 +791,14 @@ Changelog\n :class:`random_projection.GaussianRandomProjection` preserves dtype for\n `numpy.float32`. :pr:`22114` by :user:`Takeshi Oura <takoika>`.\n \n+- |Enhancement| Adds an :meth:`inverse_transform` method and a\n+ `compute_inverse_transform` parameter to all transformers in the\n+ :mod:`~sklearn.random_projection` module:\n+ :class:`~sklearn.random_projection.GaussianRandomProjection` and\n+ :class:`~sklearn.random_projection.SparseRandomProjection`. When the parameter is set\n+ to True, the pseudo-inverse of the components is computed during `fit` and stored as\n+ `inverse_components_`. :pr:`21701` by `Aurélien Geron <ageron>`.\n+\n - |API| Adds :term:`get_feature_names_out` to all transformers in the\n :mod:`~sklearn.random_projection` module:\n :class:`~sklearn.random_projection.GaussianRandomProjection` and\n"
}
] |
1.01
|
a794c58692a1f3e7a85a42d8c7f7ddd5fcf18baa
|
[
"sklearn/tests/test_random_projection.py::test_sparse_random_projection_transformer_invalid_density[0]",
"sklearn/tests/test_random_projection.py::test_random_projection_feature_names_out[GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_try_to_transform_before_fit",
"sklearn/tests/test_random_projection.py::test_warning_n_components_greater_than_n_features",
"sklearn/tests/test_random_projection.py::test_random_projection_numerical_consistency[SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[float32-float32-SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_too_many_samples_to_find_a_safe_embedding",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[int32-float64-SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_sparse_random_projection_transformer_invalid_density[1.1]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[0-0.5]",
"sklearn/tests/test_random_projection.py::test_basic_property_of_random_matrix[_gaussian_random_matrix]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[100--0.1]",
"sklearn/tests/test_random_projection.py::test_random_projection_numerical_consistency[GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[float64-float64-SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[float32-float32-GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[int32-float64-GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_johnson_lindenstrauss_min_dim",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[int64-float64-GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[100-1.1]",
"sklearn/tests/test_random_projection.py::test_basic_property_of_sparse_random_matrix[_sparse_random_matrix]",
"sklearn/tests/test_random_projection.py::test_input_size_jl_min_dim",
"sklearn/tests/test_random_projection.py::test_random_projection_transformer_invalid_input[auto-fit_data0]",
"sklearn/tests/test_random_projection.py::test_sparse_random_matrix",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[int64-float64-SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[100-0.0]",
"sklearn/tests/test_random_projection.py::test_random_projection_transformer_invalid_input[-10-fit_data1]",
"sklearn/tests/test_random_projection.py::test_correct_RandomProjection_dimensions_embedding",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[float64-float64-GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_random_projection_feature_names_out[SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_works_with_sparse_data",
"sklearn/tests/test_random_projection.py::test_random_projection_embedding_quality",
"sklearn/tests/test_random_projection.py::test_SparseRandomProj_output_representation",
"sklearn/tests/test_random_projection.py::test_sparse_random_projection_transformer_invalid_density[-0.1]",
"sklearn/tests/test_random_projection.py::test_gaussian_random_matrix",
"sklearn/tests/test_random_projection.py::test_basic_property_of_random_matrix[_sparse_random_matrix]"
] |
[
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-1000-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-9-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-9-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-2-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-10-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-1000-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-9-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-1000-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-10-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-9-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-1000-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-2-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-11-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-2-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-2-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-11-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-1000-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-11-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-2-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-10-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-10-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-1000-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-2-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-9-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-2-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-10-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-2-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-2-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-11-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-1000-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-1000-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-10-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-9-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-9-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-9-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-10-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-1000-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-10-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-9-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-10-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-1000-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-2-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-11-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-10-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-11-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-2-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-9-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-10-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-10-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-11-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-1000-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-1000-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-11-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-10-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-9-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-11-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-10-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-2-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-2-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-10-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-2-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-2-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-2-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-9-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-9-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-11-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-11-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-10-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-11-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-2-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-10-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-11-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-1000-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-9-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-9-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-1000-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-10-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-11-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-9-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-1000-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-2-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-1000-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-11-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-1000-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-11-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-9-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-1000-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-11-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-11-10]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-GaussianRandomProjection-11-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-10-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-2-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-11-9]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-1000-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-True-SparseRandomProjection-9-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-9-2]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-10-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-2-11]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-GaussianRandomProjection-1000-1000]",
"sklearn/tests/test_random_projection.py::test_inverse_transform[42-False-SparseRandomProjection-9-1000]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/random_projection.rst",
"old_path": "a/doc/modules/random_projection.rst",
"new_path": "b/doc/modules/random_projection.rst",
"metadata": "diff --git a/doc/modules/random_projection.rst b/doc/modules/random_projection.rst\nindex adb2d53bd14d6..7d3341f0244bb 100644\n--- a/doc/modules/random_projection.rst\n+++ b/doc/modules/random_projection.rst\n@@ -160,3 +160,42 @@ projection transformer::\n In Proceedings of the 12th ACM SIGKDD international conference on\n Knowledge discovery and data mining (KDD '06). ACM, New York, NY, USA,\n 287-296.\n+\n+\n+.. _random_projection_inverse_transform:\n+\n+Inverse Transform\n+=================\n+The random projection transformers have ``compute_inverse_components`` parameter. When\n+set to True, after creating the random ``components_`` matrix during fitting,\n+the transformer computes the pseudo-inverse of this matrix and stores it as\n+``inverse_components_``. The ``inverse_components_`` matrix has shape\n+:math:`n_{features} \\times n_{components}`, and it is always a dense matrix,\n+regardless of whether the components matrix is sparse or dense. So depending on\n+the number of features and components, it may use a lot of memory.\n+\n+When the ``inverse_transform`` method is called, it computes the product of the\n+input ``X`` and the transpose of the inverse components. If the inverse components have\n+been computed during fit, they are reused at each call to ``inverse_transform``.\n+Otherwise they are recomputed each time, which can be costly. The result is always\n+dense, even if ``X`` is sparse.\n+\n+Here a small code example which illustrates how to use the inverse transform\n+feature::\n+\n+ >>> import numpy as np\n+ >>> from sklearn.random_projection import SparseRandomProjection\n+ >>> X = np.random.rand(100, 10000)\n+ >>> transformer = SparseRandomProjection(\n+ ... compute_inverse_components=True\n+ ... )\n+ ...\n+ >>> X_new = transformer.fit_transform(X)\n+ >>> X_new.shape\n+ (100, 3947)\n+ >>> X_new_inversed = transformer.inverse_transform(X_new)\n+ >>> X_new_inversed.shape\n+ (100, 10000)\n+ >>> X_new_again = transformer.transform(X_new_inversed)\n+ >>> np.allclose(X_new, X_new_again)\n+ True\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 5030ed8faa4a1..e66640cfd2d21 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -791,6 +791,14 @@ Changelog\n :class:`random_projection.GaussianRandomProjection` preserves dtype for\n `numpy.float32`. :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| Adds an :meth:`inverse_transform` method and a\n+ `compute_inverse_transform` parameter to all transformers in the\n+ :mod:`~sklearn.random_projection` module:\n+ :class:`~sklearn.random_projection.GaussianRandomProjection` and\n+ :class:`~sklearn.random_projection.SparseRandomProjection`. When the parameter is set\n+ to True, the pseudo-inverse of the components is computed during `fit` and stored as\n+ `inverse_components_`. :pr:`<PRID>` by `Aurélien Geron <ageron>`.\n+\n - |API| Adds :term:`get_feature_names_out` to all transformers in the\n :mod:`~sklearn.random_projection` module:\n :class:`~sklearn.random_projection.GaussianRandomProjection` and\n"
}
] |
diff --git a/doc/modules/random_projection.rst b/doc/modules/random_projection.rst
index adb2d53bd14d6..7d3341f0244bb 100644
--- a/doc/modules/random_projection.rst
+++ b/doc/modules/random_projection.rst
@@ -160,3 +160,42 @@ projection transformer::
In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD '06). ACM, New York, NY, USA,
287-296.
+
+
+.. _random_projection_inverse_transform:
+
+Inverse Transform
+=================
+The random projection transformers have ``compute_inverse_components`` parameter. When
+set to True, after creating the random ``components_`` matrix during fitting,
+the transformer computes the pseudo-inverse of this matrix and stores it as
+``inverse_components_``. The ``inverse_components_`` matrix has shape
+:math:`n_{features} \times n_{components}`, and it is always a dense matrix,
+regardless of whether the components matrix is sparse or dense. So depending on
+the number of features and components, it may use a lot of memory.
+
+When the ``inverse_transform`` method is called, it computes the product of the
+input ``X`` and the transpose of the inverse components. If the inverse components have
+been computed during fit, they are reused at each call to ``inverse_transform``.
+Otherwise they are recomputed each time, which can be costly. The result is always
+dense, even if ``X`` is sparse.
+
+Here a small code example which illustrates how to use the inverse transform
+feature::
+
+ >>> import numpy as np
+ >>> from sklearn.random_projection import SparseRandomProjection
+ >>> X = np.random.rand(100, 10000)
+ >>> transformer = SparseRandomProjection(
+ ... compute_inverse_components=True
+ ... )
+ ...
+ >>> X_new = transformer.fit_transform(X)
+ >>> X_new.shape
+ (100, 3947)
+ >>> X_new_inversed = transformer.inverse_transform(X_new)
+ >>> X_new_inversed.shape
+ (100, 10000)
+ >>> X_new_again = transformer.transform(X_new_inversed)
+ >>> np.allclose(X_new, X_new_again)
+ True
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 5030ed8faa4a1..e66640cfd2d21 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -791,6 +791,14 @@ Changelog
:class:`random_projection.GaussianRandomProjection` preserves dtype for
`numpy.float32`. :pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| Adds an :meth:`inverse_transform` method and a
+ `compute_inverse_transform` parameter to all transformers in the
+ :mod:`~sklearn.random_projection` module:
+ :class:`~sklearn.random_projection.GaussianRandomProjection` and
+ :class:`~sklearn.random_projection.SparseRandomProjection`. When the parameter is set
+ to True, the pseudo-inverse of the components is computed during `fit` and stored as
+ `inverse_components_`. :pr:`<PRID>` by `Aurélien Geron <ageron>`.
+
- |API| Adds :term:`get_feature_names_out` to all transformers in the
:mod:`~sklearn.random_projection` module:
:class:`~sklearn.random_projection.GaussianRandomProjection` and
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21026
|
https://github.com/scikit-learn/scikit-learn/pull/21026
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 9d9cf3c95b450..87ffc36d342fa 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -53,6 +53,19 @@ Changelog
message when the solver does not support sparse matrices with int64 indices.
:pr:`21093` by `Tom Dupre la Tour`_.
+:mod:`sklearn.model_selection`
+..............................
+
+- |Enhancement| raise an error during cross-validation when the fits for all the
+ splits failed. Similarly raise an error during grid-search when the fits for
+ all the models and all the splits failed. :pr:`21026` by :user:`Loïc Estève <lesteve>`.
+
+:mod:`sklearn.pipeline`
+.......................
+
+- |Enhancement| Added support for "passthrough" in :class:`FeatureUnion`.
+ Setting a transformer to "passthrough" will pass the features unchanged.
+ :pr:`20860` by :user:`Shubhraneel Pal <shubhraneel>`.
:mod:`sklearn.utils`
....................
@@ -69,13 +82,6 @@ Changelog
:pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`
and :user:`András Simon <simonandras>`.
-:mod:`sklearn.pipeline`
-.......................
-
-- |Enhancement| Added support for "passthrough" in :class:`FeatureUnion`.
- Setting a transformer to "passthrough" will pass the features unchanged.
- :pr:`20860` by :user:`Shubhraneel Pal <shubhraneel>`.
-
Code and Documentation Contributors
-----------------------------------
diff --git a/sklearn/model_selection/_search.py b/sklearn/model_selection/_search.py
index c13e5b6643ce1..b5e0a52e238fc 100644
--- a/sklearn/model_selection/_search.py
+++ b/sklearn/model_selection/_search.py
@@ -31,7 +31,7 @@
from ._validation import _aggregate_score_dicts
from ._validation import _insert_error_scores
from ._validation import _normalize_score_results
-from ._validation import _warn_about_fit_failures
+from ._validation import _warn_or_raise_about_fit_failures
from ..exceptions import NotFittedError
from joblib import Parallel
from ..utils import check_random_state
@@ -865,7 +865,7 @@ def evaluate_candidates(candidate_params, cv=None, more_results=None):
"splits, got {}".format(n_splits, len(out) // n_candidates)
)
- _warn_about_fit_failures(out, self.error_score)
+ _warn_or_raise_about_fit_failures(out, self.error_score)
# For callable self.scoring, the return type is only know after
# calling. If the return type is a dictionary, the error scores
diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py
index 760418b7d8f54..2f8566d80533e 100644
--- a/sklearn/model_selection/_validation.py
+++ b/sklearn/model_selection/_validation.py
@@ -30,7 +30,7 @@
from ..utils.metaestimators import _safe_split
from ..metrics import check_scoring
from ..metrics._scorer import _check_multimetric_scoring, _MultimetricScorer
-from ..exceptions import FitFailedWarning, NotFittedError
+from ..exceptions import FitFailedWarning
from ._split import check_cv
from ..preprocessing import LabelEncoder
@@ -283,7 +283,7 @@ def cross_validate(
for train, test in cv.split(X, y, groups)
)
- _warn_about_fit_failures(results, error_score)
+ _warn_or_raise_about_fit_failures(results, error_score)
# For callabe scoring, the return type is only know after calling. If the
# return type is a dictionary, the error scores can now be inserted with
@@ -327,9 +327,6 @@ def _insert_error_scores(results, error_score):
elif successful_score is None:
successful_score = result["test_scores"]
- if successful_score is None:
- raise NotFittedError("All estimators failed to fit")
-
if isinstance(successful_score, dict):
formatted_error = {name: error_score for name in successful_score}
for i in failed_indices:
@@ -347,7 +344,7 @@ def _normalize_score_results(scores, scaler_score_key="score"):
return {scaler_score_key: scores}
-def _warn_about_fit_failures(results, error_score):
+def _warn_or_raise_about_fit_failures(results, error_score):
fit_errors = [
result["fit_error"] for result in results if result["fit_error"] is not None
]
@@ -361,15 +358,25 @@ def _warn_about_fit_failures(results, error_score):
for error, n in fit_errors_counter.items()
)
- some_fits_failed_message = (
- f"\n{num_failed_fits} fits failed out of a total of {num_fits}.\n"
- "The score on these train-test partitions for these parameters"
- f" will be set to {error_score}.\n"
- "If these failures are not expected, you can try to debug them "
- "by setting error_score='raise'.\n\n"
- f"Below are more details about the failures:\n{fit_errors_summary}"
- )
- warnings.warn(some_fits_failed_message, FitFailedWarning)
+ if num_failed_fits == num_fits:
+ all_fits_failed_message = (
+ f"\nAll the {num_fits} fits failed.\n"
+ "It is is very likely that your model is misconfigured.\n"
+ "You can try to debug the error by setting error_score='raise'.\n\n"
+ f"Below are more details about the failures:\n{fit_errors_summary}"
+ )
+ raise ValueError(all_fits_failed_message)
+
+ else:
+ some_fits_failed_message = (
+ f"\n{num_failed_fits} fits failed out of a total of {num_fits}.\n"
+ "The score on these train-test partitions for these parameters"
+ f" will be set to {error_score}.\n"
+ "If these failures are not expected, you can try to debug them "
+ "by setting error_score='raise'.\n\n"
+ f"Below are more details about the failures:\n{fit_errors_summary}"
+ )
+ warnings.warn(some_fits_failed_message, FitFailedWarning)
def cross_val_score(
|
diff --git a/sklearn/model_selection/tests/test_search.py b/sklearn/model_selection/tests/test_search.py
index 6960a17fb629b..df54c5a51afb4 100644
--- a/sklearn/model_selection/tests/test_search.py
+++ b/sklearn/model_selection/tests/test_search.py
@@ -29,7 +29,6 @@
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.base import is_classifier
-from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
@@ -1628,6 +1627,27 @@ def get_cand_scores(i):
assert gs.best_index_ != clf.FAILING_PARAMETER
+def test_grid_search_classifier_all_fits_fail():
+ X, y = make_classification(n_samples=20, n_features=10, random_state=0)
+
+ clf = FailingClassifier()
+
+ gs = GridSearchCV(
+ clf,
+ [{"parameter": [FailingClassifier.FAILING_PARAMETER] * 3}],
+ error_score=0.0,
+ )
+
+ warning_message = re.compile(
+ "All the 15 fits failed.+"
+ "15 fits failed with the following error.+ValueError.+Failing classifier failed"
+ " as required",
+ flags=re.DOTALL,
+ )
+ with pytest.raises(ValueError, match=warning_message):
+ gs.fit(X, y)
+
+
def test_grid_search_failing_classifier_raise():
# GridSearchCV with on_error == 'raise' raises the error
@@ -2130,7 +2150,7 @@ def custom_scorer(est, X, y):
assert_allclose(gs.cv_results_["mean_test_acc"], [1, 1, 0.1])
-def test_callable_multimetric_clf_all_fails():
+def test_callable_multimetric_clf_all_fits_fail():
# Warns and raises when all estimator fails to fit.
def custom_scorer(est, X, y):
return {"acc": 1}
@@ -2141,16 +2161,20 @@ def custom_scorer(est, X, y):
gs = GridSearchCV(
clf,
- [{"parameter": [2, 2, 2]}],
+ [{"parameter": [FailingClassifier.FAILING_PARAMETER] * 3}],
scoring=custom_scorer,
refit=False,
error_score=0.1,
)
- with pytest.warns(
- FitFailedWarning,
- match="15 fits failed.+total of 15",
- ), pytest.raises(NotFittedError, match="All estimators failed to fit"):
+ individual_fit_error_message = "ValueError: Failing classifier failed as required"
+ error_message = re.compile(
+ "All the 15 fits failed.+your model is misconfigured.+"
+ f"{individual_fit_error_message}",
+ flags=re.DOTALL,
+ )
+
+ with pytest.raises(ValueError, match=error_message):
gs.fit(X, y)
diff --git a/sklearn/model_selection/tests/test_split.py b/sklearn/model_selection/tests/test_split.py
index af8338792ad73..765cf4eefa7de 100644
--- a/sklearn/model_selection/tests/test_split.py
+++ b/sklearn/model_selection/tests/test_split.py
@@ -1774,7 +1774,7 @@ def test_nested_cv():
LeaveOneOut(),
GroupKFold(n_splits=3),
StratifiedKFold(),
- StratifiedGroupKFold(),
+ StratifiedGroupKFold(n_splits=3),
StratifiedShuffleSplit(n_splits=3, random_state=0),
]
diff --git a/sklearn/model_selection/tests/test_validation.py b/sklearn/model_selection/tests/test_validation.py
index 215ceb5877669..a66c6ae653a6f 100644
--- a/sklearn/model_selection/tests/test_validation.py
+++ b/sklearn/model_selection/tests/test_validation.py
@@ -2130,38 +2130,66 @@ def test_fit_and_score_working():
assert result["parameters"] == fit_and_score_kwargs["parameters"]
+class DataDependentFailingClassifier(BaseEstimator):
+ def __init__(self, max_x_value=None):
+ self.max_x_value = max_x_value
+
+ def fit(self, X, y=None):
+ num_values_too_high = (X > self.max_x_value).sum()
+ if num_values_too_high:
+ raise ValueError(
+ f"Classifier fit failed with {num_values_too_high} values too high"
+ )
+
+ def score(self, X=None, Y=None):
+ return 0.0
+
+
@pytest.mark.parametrize("error_score", [np.nan, 0])
-def test_cross_validate_failing_fits_warnings(error_score):
+def test_cross_validate_some_failing_fits_warning(error_score):
# Create a failing classifier to deliberately fail
- failing_clf = FailingClassifier(FailingClassifier.FAILING_PARAMETER)
+ failing_clf = DataDependentFailingClassifier(max_x_value=8)
# dummy X data
X = np.arange(1, 10)
y = np.ones(9)
- # fit_and_score_args = [failing_clf, X, None, dict(), None, None, 0, None, None]
# passing error score to trigger the warning message
cross_validate_args = [failing_clf, X, y]
- cross_validate_kwargs = {"cv": 7, "error_score": error_score}
+ cross_validate_kwargs = {"cv": 3, "error_score": error_score}
# check if the warning message type is as expected
+
+ individual_fit_error_message = (
+ "ValueError: Classifier fit failed with 1 values too high"
+ )
warning_message = re.compile(
- "7 fits failed.+total of 7.+The score on these"
+ "2 fits failed.+total of 3.+The score on these"
" train-test partitions for these parameters will be set to"
- f" {cross_validate_kwargs['error_score']}.",
+ f" {cross_validate_kwargs['error_score']}.+{individual_fit_error_message}",
flags=re.DOTALL,
)
with pytest.warns(FitFailedWarning, match=warning_message):
cross_validate(*cross_validate_args, **cross_validate_kwargs)
- # since we're using FailingClassfier, our error will be the following
- error_message = "ValueError: Failing classifier failed as required"
- # check traceback is included
- warning_message = re.compile(
- "The score on these train-test partitions for these parameters will be set"
- f" to {cross_validate_kwargs['error_score']}.+{error_message}",
- re.DOTALL,
[email protected]("error_score", [np.nan, 0])
+def test_cross_validate_all_failing_fits_error(error_score):
+ # Create a failing classifier to deliberately fail
+ failing_clf = FailingClassifier(FailingClassifier.FAILING_PARAMETER)
+ # dummy X data
+ X = np.arange(1, 10)
+ y = np.ones(9)
+
+ cross_validate_args = [failing_clf, X, y]
+ cross_validate_kwargs = {"cv": 7, "error_score": error_score}
+
+ individual_fit_error_message = "ValueError: Failing classifier failed as required"
+ error_message = re.compile(
+ "All the 7 fits failed.+your model is misconfigured.+"
+ f"{individual_fit_error_message}",
+ flags=re.DOTALL,
)
- with pytest.warns(FitFailedWarning, match=warning_message):
+
+ with pytest.raises(ValueError, match=error_message):
cross_validate(*cross_validate_args, **cross_validate_kwargs)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 9d9cf3c95b450..87ffc36d342fa 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -53,6 +53,19 @@ Changelog\n message when the solver does not support sparse matrices with int64 indices.\n :pr:`21093` by `Tom Dupre la Tour`_.\n \n+:mod:`sklearn.model_selection`\n+..............................\n+\n+- |Enhancement| raise an error during cross-validation when the fits for all the\n+ splits failed. Similarly raise an error during grid-search when the fits for\n+ all the models and all the splits failed. :pr:`21026` by :user:`Loïc Estève <lesteve>`.\n+\n+:mod:`sklearn.pipeline`\n+.......................\n+\n+- |Enhancement| Added support for \"passthrough\" in :class:`FeatureUnion`.\n+ Setting a transformer to \"passthrough\" will pass the features unchanged.\n+ :pr:`20860` by :user:`Shubhraneel Pal <shubhraneel>`.\n \n :mod:`sklearn.utils`\n ....................\n@@ -69,13 +82,6 @@ Changelog\n :pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`\n and :user:`András Simon <simonandras>`.\n \n-:mod:`sklearn.pipeline`\n-.......................\n-\n-- |Enhancement| Added support for \"passthrough\" in :class:`FeatureUnion`.\n- Setting a transformer to \"passthrough\" will pass the features unchanged.\n- :pr:`20860` by :user:`Shubhraneel Pal <shubhraneel>`.\n-\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
1.01
|
d152b1e6e2a02e5bf725b41ecd63884d7d957cee
|
[
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-6-True]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_proba_shape",
"sklearn/model_selection/tests/test_search.py::test_search_default_iid[GridSearchCV-specialized_params0]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_delegated_to_base_estimator[True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[5-cls_distr2]",
"sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv20-False]",
"sklearn/model_selection/tests/test_search.py::test_X_as_list",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[70-cls_distr2]",
"sklearn/model_selection/tests/test_split.py::test_kfold_no_shuffle",
"sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-GridSearchCV]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-0]",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_value_errors",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv21-False]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-nan]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[0.8-8-2]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8--0.2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-4-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[-10-0.8]",
"sklearn/model_selection/tests/test_search.py::test_callable_single_metric_same_as_single_string",
"sklearn/model_selection/tests/test_search.py::test_pickle",
"sklearn/model_selection/tests/test_split.py::test_check_cv",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[0.1-0.95]",
"sklearn/model_selection/tests/test_split.py::test_2d_y",
"sklearn/model_selection/tests/test_split.py::test_stratifiedshufflesplit_list_input",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_invalid_scoring_param",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_allow_nans",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-6-True]",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[True-scorer1-3-split_prg1-cdt_prg1-\\\\[CV 2/3\\\\] END sc1: \\\\(train=3.421, test=3.421\\\\) sc2: \\\\(train=3.421, test=3.421\\\\) total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_split.py::test_time_series_gap",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv0-True]",
"sklearn/model_selection/tests/test_search.py::test_no_refit",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_allow_nans",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-6-False]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate",
"sklearn/model_selection/tests/test_search.py::test_param_sampler",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-4-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[70-cls_distr3]",
"sklearn/model_selection/tests/test_split.py::test_cross_validator_with_default_params",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[5-cls_distr3]",
"sklearn/model_selection/tests/test_validation.py::test_callable_multimetric_confusion_matrix_cross_validate",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_homogeneous_groups[y1-groups1-expected1]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_reproducible",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_unsupervised",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv23-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv13-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-5-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-7-False]",
"sklearn/model_selection/tests/test_split.py::test_predefinedsplit_with_kfold_split",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[1.0-0.8]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-7-False]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_classification",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-4-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv26-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-6-False]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-RandomizedSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratifiedkfold_balance[StratifiedGroupKFold]",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-three_params_scorer-2-split_prg0-cdt_prg0-\\\\[CV\\\\] END .................................................... total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_split.py::test_kfold_can_detect_dependent_samples_on_digits",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[30-cls_distr1]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-8-True]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_fit_params",
"sklearn/model_selection/tests/test_search.py::test_grid_search_no_score",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[None-9-1-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_errors",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split",
"sklearn/model_selection/tests/test_search.py::test_grid_search_pipeline_steps",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_not_possible",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_32bit_overflow",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv19-False]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_unbalanced",
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[StratifiedKFold]",
"sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv22-False]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv1]",
"sklearn/model_selection/tests/test_search.py::test_empty_cv_iterator_error",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold",
"sklearn/model_selection/tests/test_split.py::test_repeated_stratified_kfold_determinstic_split",
"sklearn/model_selection/tests/test_search.py::test_y_as_list",
"sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[RandomizedSearchCV-param_search1]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_no_shuffle",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-4-False]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[None-8-2]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv2-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-6-False]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold_stratifiedkfold_reproducibility[StratifiedGroupKFold]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_cv_splits_consistency",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-7-True]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[10-None]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv6-True]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-raise]",
"sklearn/model_selection/tests/test_search.py::test_refit_callable",
"sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_class_subset",
"sklearn/model_selection/tests/test_search.py::test_transform_inverse_transform_round_trip",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8--10]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold_stratifiedkfold_reproducibility[KFold]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_predict_groups",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-9-False]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-nan]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv29-False]",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_multi_metric",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_list_input",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_many_jobs",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_fit_params",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv5-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-4-True]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_sparse",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_errors",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_regression",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_nested_estimator",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split",
"sklearn/model_selection/tests/test_search.py::test_search_default_iid[RandomizedSearchCV-specialized_params1]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv3-True]",
"sklearn/model_selection/tests/test_search.py::test_gridsearch_no_predict",
"sklearn/model_selection/tests/test_search.py::test_grid_search_groups",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[-0.2-0.8]",
"sklearn/model_selection/tests/test_search.py::test_gridsearch_nd",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-5-True]",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV--1]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_pandas",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_iter",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-raise]",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[input2-TypeError-Parameter.* value is not iterable .*\\\\(key='foo', value=0\\\\)-klass1]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_equivalence_of_precomputed",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[5-cls_distr1]",
"sklearn/model_selection/tests/test_split.py::test_kfold_indices",
"sklearn/model_selection/tests/test_split.py::test_time_series_cv",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_shuffle",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-10-True]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_precomputed",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[11-0.8]",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_fit_params",
"sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[GridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv15-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_trivial",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV--1]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_pandas",
"sklearn/model_selection/tests/test_search.py::test_random_search_cv_results",
"sklearn/model_selection/tests/test_search.py::test_search_train_scores_set_to_false",
"sklearn/model_selection/tests/test_search.py::test_custom_run_search",
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_error_failing_clf",
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[StratifiedGroupKFold]",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV-2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-7-True]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_mock_pandas",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-1.2]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv9-True]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results_multimetric",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[8-3]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_allows_nans",
"sklearn/model_selection/tests/test_split.py::test_leave_one_p_group_out_error_on_fewer_number_of_groups",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-6-False]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_boolean_indices",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv8-True]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_delegated_to_base_estimator[False]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_some_failing_fits_warning[nan]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-0]",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_repr[RepeatedKFold]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-GridSearchCV]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_remove_duplicate_sample_sizes",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[nan]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_correct_score_results",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-raise]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_stratifiedkfold",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-nan]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-7-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv14-True]",
"sklearn/model_selection/tests/test_search.py::test_pandas_input",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8-11]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv1]",
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_same_as_list_of_strings",
"sklearn/model_selection/tests/test_split.py::test_stratifiedkfold_balance[StratifiedKFold]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-4-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-9-True]",
"sklearn/model_selection/tests/test_search.py::test_scalar_fit_param[GridSearchCV-param_search0]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-8-True]",
"sklearn/model_selection/tests/test_split.py::test_kfold_balance",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-9-True]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_some_failing_fits_warning[0]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_respects_test_size",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_clone_estimator",
"sklearn/model_selection/tests/test_search.py::test_grid_search_error",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-8-False]",
"sklearn/model_selection/tests/test_split.py::test_get_n_splits_for_repeated_stratified_kfold",
"sklearn/model_selection/tests/test_split.py::test_time_series_test_size",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_pandas",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[30-cls_distr3]",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-scorer2-10-split_prg2-cdt_prg2-\\\\[CV 2/3; 1/1\\\\] END ....... sc1: \\\\(test=3.421\\\\) sc2: \\\\(test=3.421\\\\) total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[input2-TypeError-Parameter.* value is not iterable .*\\\\(key='foo', value=0\\\\)-ParameterGrid]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_sparse_fit_params",
"sklearn/model_selection/tests/test_search.py::test_n_features_in",
"sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv0]",
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_error_on_invalid_key",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_batch_and_incremental_learning_are_equal",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_score_func",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[raise]",
"sklearn/model_selection/tests/test_split.py::test_nested_cv",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-4-True]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict",
"sklearn/model_selection/tests/test_split.py::test_get_n_splits_for_repeated_kfold",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV-2]",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_failing",
"sklearn/model_selection/tests/test_search.py::test_trivial_cv_results_attr",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[11-None]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[0.8-8-2-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_one_grid_point",
"sklearn/model_selection/tests/test_search.py::test_search_cv__pairwise_property_delegated_to_base_estimator",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[8-8-2]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_empty_trainset",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv18-False]",
"sklearn/model_selection/tests/test_validation.py::test_gridsearchcv_cross_val_predict_with_method",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-7-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-0.0]",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_repr[RepeatedStratifiedKFold]",
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_confusion_matrix",
"sklearn/model_selection/tests/test_validation.py::test_score",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv7-True]",
"sklearn/model_selection/tests/test_search.py::test_scalar_fit_param[RandomizedSearchCV-param_search1]",
"sklearn/model_selection/tests/test_search.py::test_refit",
"sklearn/model_selection/tests/test_search.py::test_grid_search_with_multioutput_data",
"sklearn/model_selection/tests/test_split.py::test_leave_group_out_changing_groups",
"sklearn/model_selection/tests/test_split.py::test_build_repr",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_homogeneous_groups[y0-groups0-expected0]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[5-cls_distr0]",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[0-TypeError-Parameter .* is not a dict or a list \\\\(0\\\\)-ParameterGrid]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-0]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_fit_params",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf",
"sklearn/model_selection/tests/test_split.py::test_time_series_max_train_size",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-8-False]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_when_param_grid_includes_range",
"sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv12-True]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_unsupervised",
"sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier_raise",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-6-True]",
"sklearn/model_selection/tests/test_search.py::test_stochastic_gradient_loss_param",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_init",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-7-True]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_mask",
"sklearn/model_selection/tests/test_split.py::test_leave_one_out_empty_trainset",
"sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[False]",
"sklearn/model_selection/tests/test_search.py::test_parameter_grid",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv25-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-10-True]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv30-False]",
"sklearn/model_selection/tests/test_search.py::test_grid_search",
"sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-True]",
"sklearn/model_selection/tests/test_split.py::test_group_kfold[GroupKFold]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-1.0]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[7-7-3]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_sparse",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[70-cls_distr0]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_results_rank_tie_breaking",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[None-7-3]",
"sklearn/model_selection/tests/test_search.py::test_random_search_cv_results_multimetric",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-7-False]",
"sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[RandomizedSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_overlap_train_test_bug",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[30-cls_distr2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[70-cls_distr1]",
"sklearn/model_selection/tests/test_split.py::test_leave_one_p_group_out",
"sklearn/model_selection/tests/test_validation.py::test_score_memmap",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-4-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[1.2-0.8]",
"sklearn/model_selection/tests/test_search.py::test_random_search_bad_cv",
"sklearn/model_selection/tests/test_split.py::test_repeated_kfold_determinstic_split",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv27-False]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-RandomizedSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[GroupShuffleSplit]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_precomputed_kernel_error_nonsquare",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[0.8-8-2-ShuffleSplit]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_results_none_param",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv4-True]",
"sklearn/model_selection/tests/test_search.py::test__custom_fit_no_run_search",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[2.0-None]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[8-8-2-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_search.py::test_predict_proba_disabled",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_cv_splits_consistency",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_verbose",
"sklearn/model_selection/tests/test_search.py::test_grid_search_bad_param_grid",
"sklearn/model_selection/tests/test_search.py::test_search_cv_timing",
"sklearn/model_selection/tests/test_split.py::test_cv_iterable_wrapper",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_y_none",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_pandas",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv1-True]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[8-8-2-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-6-True]",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_working",
"sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[True]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold_stratifiedkfold_reproducibility[StratifiedKFold]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_even",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[30-cls_distr0]",
"sklearn/model_selection/tests/test_validation.py::test_permutation_score",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[input1-TypeError-Parameter .* is not a dict \\\\(0\\\\)-klass1]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_n_sample_range_out_of_bounds",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_rare_class",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[None-9-1-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-5-True]",
"sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-True]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv17-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel_many_labels",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv10-True]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv24-False]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[0.7-7-3]",
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[KFold]",
"sklearn/model_selection/tests/test_search.py::test_unsupervised_grid_search",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0-0.8]",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_fit_params",
"sklearn/model_selection/tests/test_search.py::test_grid_search_precomputed_kernel",
"sklearn/model_selection/tests/test_split.py::test_leave_p_out_empty_trainset",
"sklearn/model_selection/tests/test_validation.py::test_check_is_permutation",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[input1-TypeError-Parameter .* is not a dict \\\\(0\\\\)-ParameterGrid]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-10-False]",
"sklearn/model_selection/tests/test_split.py::test_kfold_valueerrors",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv28-False]",
"sklearn/model_selection/tests/test_search.py::test_classes__property",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_multilabel",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[None-1j]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-5-False]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_log_proba_shape",
"sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[GridSearchCV-param_search0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf_rare_class",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv11-True]",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_invalid_type",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_approximate",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8-0]",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[0-TypeError-Parameter .* is not a dict or a list \\\\(0\\\\)-klass1]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_allow_nans",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-nan]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv16-True]",
"sklearn/model_selection/tests/test_split.py::test_group_kfold[StratifiedGroupKFold]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_method_checking",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-raise]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-9-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.0-0.8]",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[1.0-None]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_score_method",
"sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv0]",
"sklearn/model_selection/tests/test_search.py::test_parameters_sampler_replacement",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-10-False]"
] |
[
"sklearn/model_selection/tests/test_search.py::test_grid_search_classifier_all_fits_fail",
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_clf_all_fits_fail",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_all_failing_fits_error[0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_all_failing_fits_error[nan]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 9d9cf3c95b450..87ffc36d342fa 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -53,6 +53,19 @@ Changelog\n message when the solver does not support sparse matrices with int64 indices.\n :pr:`<PRID>` by `<NAME>`_.\n \n+:mod:`sklearn.model_selection`\n+..............................\n+\n+- |Enhancement| raise an error during cross-validation when the fits for all the\n+ splits failed. Similarly raise an error during grid-search when the fits for\n+ all the models and all the splits failed. :pr:`<PRID>` by :user:`<NAME>`.\n+\n+:mod:`sklearn.pipeline`\n+.......................\n+\n+- |Enhancement| Added support for \"passthrough\" in :class:`FeatureUnion`.\n+ Setting a transformer to \"passthrough\" will pass the features unchanged.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n \n :mod:`sklearn.utils`\n ....................\n@@ -69,13 +82,6 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`\n and :user:`<NAME>`.\n \n-:mod:`sklearn.pipeline`\n-.......................\n-\n-- |Enhancement| Added support for \"passthrough\" in :class:`FeatureUnion`.\n- Setting a transformer to \"passthrough\" will pass the features unchanged.\n- :pr:`<PRID>` by :user:`<NAME>`.\n-\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 9d9cf3c95b450..87ffc36d342fa 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -53,6 +53,19 @@ Changelog
message when the solver does not support sparse matrices with int64 indices.
:pr:`<PRID>` by `<NAME>`_.
+:mod:`sklearn.model_selection`
+..............................
+
+- |Enhancement| raise an error during cross-validation when the fits for all the
+ splits failed. Similarly raise an error during grid-search when the fits for
+ all the models and all the splits failed. :pr:`<PRID>` by :user:`<NAME>`.
+
+:mod:`sklearn.pipeline`
+.......................
+
+- |Enhancement| Added support for "passthrough" in :class:`FeatureUnion`.
+ Setting a transformer to "passthrough" will pass the features unchanged.
+ :pr:`<PRID>` by :user:`<NAME>`.
:mod:`sklearn.utils`
....................
@@ -69,13 +82,6 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`
and :user:`<NAME>`.
-:mod:`sklearn.pipeline`
-.......................
-
-- |Enhancement| Added support for "passthrough" in :class:`FeatureUnion`.
- Setting a transformer to "passthrough" will pass the features unchanged.
- :pr:`<PRID>` by :user:`<NAME>`.
-
Code and Documentation Contributors
-----------------------------------
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22114
|
https://github.com/scikit-learn/scikit-learn/pull/22114
|
diff --git a/doc/tutorial/basic/tutorial.rst b/doc/tutorial/basic/tutorial.rst
index 5199ad226243f..4375e4fb83e61 100644
--- a/doc/tutorial/basic/tutorial.rst
+++ b/doc/tutorial/basic/tutorial.rst
@@ -183,7 +183,7 @@ the last item from ``digits.data``::
SVC(C=100.0, gamma=0.001)
Now you can *predict* new values. In this case, you'll predict using the last
-image from ``digits.data``. By predicting, you'll determine the image from the
+image from ``digits.data``. By predicting, you'll determine the image from the
training set that best matches the last image.
@@ -216,7 +216,7 @@ Type casting
Unless otherwise specified, input will be cast to ``float64``::
>>> import numpy as np
- >>> from sklearn import random_projection
+ >>> from sklearn import kernel_approximation
>>> rng = np.random.RandomState(0)
>>> X = rng.rand(10, 2000)
@@ -224,7 +224,7 @@ Unless otherwise specified, input will be cast to ``float64``::
>>> X.dtype
dtype('float32')
- >>> transformer = random_projection.GaussianRandomProjection()
+ >>> transformer = kernel_approximation.RBFSampler()
>>> X_new = transformer.fit_transform(X)
>>> X_new.dtype
dtype('float64')
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 5d49a6fd281c7..bab7b3e33f850 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -385,6 +385,10 @@ Changelog
:mod:`sklearn.random_projection`
................................
+- |Enhancement| :class:`random_projection.SparseRandomProjection` and
+ :class:`random_projection.GaussianRandomProjection` preserves dtype for
+ `numpy.float32`. :pr:`22114` by :user:`Takeshi Oura <takoika>`.
+
- |API| Adds :term:`get_feature_names_out` to all transformers in the
:mod:`~sklearn.random_projection` module:
:class:`~sklearn.random_projection.GaussianRandomProjection` and
diff --git a/sklearn/random_projection.py b/sklearn/random_projection.py
index 79ebe46042379..f346cdc4630b3 100644
--- a/sklearn/random_projection.py
+++ b/sklearn/random_projection.py
@@ -347,7 +347,9 @@ def fit(self, X, y=None):
self : object
BaseRandomProjection class instance.
"""
- X = self._validate_data(X, accept_sparse=["csr", "csc"])
+ X = self._validate_data(
+ X, accept_sparse=["csr", "csc"], dtype=[np.float64, np.float32]
+ )
n_samples, n_features = X.shape
@@ -387,7 +389,9 @@ def fit(self, X, y=None):
self.n_components_ = self.n_components
# Generate a projection matrix of size [n_components, n_features]
- self.components_ = self._make_random_matrix(self.n_components_, n_features)
+ self.components_ = self._make_random_matrix(
+ self.n_components_, n_features
+ ).astype(X.dtype, copy=False)
# Check contract
assert self.components_.shape == (self.n_components_, n_features), (
@@ -411,7 +415,9 @@ def transform(self, X):
Projected array.
"""
check_is_fitted(self)
- X = self._validate_data(X, accept_sparse=["csr", "csc"], reset=False)
+ X = self._validate_data(
+ X, accept_sparse=["csr", "csc"], reset=False, dtype=[np.float64, np.float32]
+ )
if X.shape[1] != self.components_.shape[1]:
raise ValueError(
@@ -431,6 +437,11 @@ def _n_features_out(self):
"""
return self.n_components
+ def _more_tags(self):
+ return {
+ "preserves_dtype": [np.float64, np.float32],
+ }
+
class GaussianRandomProjection(BaseRandomProjection):
"""Reduce dimensionality through Gaussian random projection.
|
diff --git a/sklearn/tests/test_random_projection.py b/sklearn/tests/test_random_projection.py
index 1e894d906a3ad..a3a6b1ae2a49f 100644
--- a/sklearn/tests/test_random_projection.py
+++ b/sklearn/tests/test_random_projection.py
@@ -13,6 +13,8 @@
from sklearn.random_projection import SparseRandomProjection
from sklearn.random_projection import GaussianRandomProjection
+from sklearn.utils._testing import assert_allclose
+from sklearn.utils._testing import assert_allclose_dense_sparse
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
@@ -373,3 +375,43 @@ def test_random_projection_feature_names_out(random_projection_cls):
)
assert_array_equal(names_out, expected_names_out)
+
+
[email protected]("random_projection_cls", all_RandomProjection)
[email protected](
+ "input_dtype, expected_dtype",
+ (
+ (np.float32, np.float32),
+ (np.float64, np.float64),
+ (np.int32, np.float64),
+ (np.int64, np.float64),
+ ),
+)
+def test_random_projection_dtype_match(
+ random_projection_cls, input_dtype, expected_dtype
+):
+ # Verify output matrix dtype
+ rng = np.random.RandomState(42)
+ X = rng.rand(25, 3000)
+ rp = random_projection_cls(random_state=0)
+ transformed = rp.fit_transform(X.astype(input_dtype))
+
+ assert rp.components_.dtype == expected_dtype
+ assert transformed.dtype == expected_dtype
+
+
[email protected]("random_projection_cls", all_RandomProjection)
+def test_random_projection_numerical_consistency(random_projection_cls):
+ # Verify numerical consistency among np.float32 and np.float64
+ atol = 1e-5
+ rng = np.random.RandomState(42)
+ X = rng.rand(25, 3000)
+ rp_32 = random_projection_cls(random_state=0)
+ rp_64 = random_projection_cls(random_state=0)
+
+ projection_32 = rp_32.fit_transform(X.astype(np.float32))
+ projection_64 = rp_64.fit_transform(X.astype(np.float64))
+
+ assert_allclose(projection_64, projection_32, atol=atol)
+
+ assert_allclose_dense_sparse(rp_32.components_, rp_64.components_)
|
[
{
"path": "doc/tutorial/basic/tutorial.rst",
"old_path": "a/doc/tutorial/basic/tutorial.rst",
"new_path": "b/doc/tutorial/basic/tutorial.rst",
"metadata": "diff --git a/doc/tutorial/basic/tutorial.rst b/doc/tutorial/basic/tutorial.rst\nindex 5199ad226243f..4375e4fb83e61 100644\n--- a/doc/tutorial/basic/tutorial.rst\n+++ b/doc/tutorial/basic/tutorial.rst\n@@ -183,7 +183,7 @@ the last item from ``digits.data``::\n SVC(C=100.0, gamma=0.001)\n \n Now you can *predict* new values. In this case, you'll predict using the last\n-image from ``digits.data``. By predicting, you'll determine the image from the \n+image from ``digits.data``. By predicting, you'll determine the image from the\n training set that best matches the last image.\n \n \n@@ -216,7 +216,7 @@ Type casting\n Unless otherwise specified, input will be cast to ``float64``::\n \n >>> import numpy as np\n- >>> from sklearn import random_projection\n+ >>> from sklearn import kernel_approximation\n \n >>> rng = np.random.RandomState(0)\n >>> X = rng.rand(10, 2000)\n@@ -224,7 +224,7 @@ Unless otherwise specified, input will be cast to ``float64``::\n >>> X.dtype\n dtype('float32')\n \n- >>> transformer = random_projection.GaussianRandomProjection()\n+ >>> transformer = kernel_approximation.RBFSampler()\n >>> X_new = transformer.fit_transform(X)\n >>> X_new.dtype\n dtype('float64')\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 5d49a6fd281c7..bab7b3e33f850 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -385,6 +385,10 @@ Changelog\n :mod:`sklearn.random_projection`\n ................................\n \n+- |Enhancement| :class:`random_projection.SparseRandomProjection` and\n+ :class:`random_projection.GaussianRandomProjection` preserves dtype for\n+ `numpy.float32`. :pr:`22114` by :user:`Takeshi Oura <takoika>`.\n+\n - |API| Adds :term:`get_feature_names_out` to all transformers in the\n :mod:`~sklearn.random_projection` module:\n :class:`~sklearn.random_projection.GaussianRandomProjection` and\n"
}
] |
1.01
|
b242b9dd200cbb3f60247e523adae43a303d8122
|
[
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[float64-float64-GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_johnson_lindenstrauss_min_dim",
"sklearn/tests/test_random_projection.py::test_sparse_random_projection_transformer_invalid_density[0]",
"sklearn/tests/test_random_projection.py::test_random_projection_feature_names_out[GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_sparse_random_projection_transformer_invalid_density[1.1]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[0-0.5]",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[int64-float64-GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_basic_property_of_random_matrix[_gaussian_random_matrix]",
"sklearn/tests/test_random_projection.py::test_try_to_transform_before_fit",
"sklearn/tests/test_random_projection.py::test_random_projection_transformer_invalid_input[-10-fit_data1]",
"sklearn/tests/test_random_projection.py::test_warning_n_components_greater_than_n_features",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[100-1.1]",
"sklearn/tests/test_random_projection.py::test_random_projection_feature_names_out[SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[100--0.1]",
"sklearn/tests/test_random_projection.py::test_basic_property_of_sparse_random_matrix[_sparse_random_matrix]",
"sklearn/tests/test_random_projection.py::test_input_size_jl_min_dim",
"sklearn/tests/test_random_projection.py::test_random_projection_numerical_consistency[GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_works_with_sparse_data",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[int32-float64-SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_random_projection_embedding_quality",
"sklearn/tests/test_random_projection.py::test_random_projection_transformer_invalid_input[auto-fit_data0]",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[float64-float64-SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[int32-float64-GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_sparse_random_matrix",
"sklearn/tests/test_random_projection.py::test_random_projection_numerical_consistency[SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_SparseRandomProj_output_representation",
"sklearn/tests/test_random_projection.py::test_sparse_random_projection_transformer_invalid_density[-0.1]",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[int64-float64-SparseRandomProjection]",
"sklearn/tests/test_random_projection.py::test_gaussian_random_matrix",
"sklearn/tests/test_random_projection.py::test_basic_property_of_random_matrix[_sparse_random_matrix]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[100-0.0]",
"sklearn/tests/test_random_projection.py::test_too_many_samples_to_find_a_safe_embedding",
"sklearn/tests/test_random_projection.py::test_correct_RandomProjection_dimensions_embedding"
] |
[
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[float32-float32-GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_random_projection_dtype_match[float32-float32-SparseRandomProjection]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/tutorial/basic/tutorial.rst",
"old_path": "a/doc/tutorial/basic/tutorial.rst",
"new_path": "b/doc/tutorial/basic/tutorial.rst",
"metadata": "diff --git a/doc/tutorial/basic/tutorial.rst b/doc/tutorial/basic/tutorial.rst\nindex 5199ad226243f..4375e4fb83e61 100644\n--- a/doc/tutorial/basic/tutorial.rst\n+++ b/doc/tutorial/basic/tutorial.rst\n@@ -183,7 +183,7 @@ the last item from ``digits.data``::\n SVC(C=100.0, gamma=0.001)\n \n Now you can *predict* new values. In this case, you'll predict using the last\n-image from ``digits.data``. By predicting, you'll determine the image from the \n+image from ``digits.data``. By predicting, you'll determine the image from the\n training set that best matches the last image.\n \n \n@@ -216,7 +216,7 @@ Type casting\n Unless otherwise specified, input will be cast to ``float64``::\n \n >>> import numpy as np\n- >>> from sklearn import random_projection\n+ >>> from sklearn import kernel_approximation\n \n >>> rng = np.random.RandomState(0)\n >>> X = rng.rand(10, 2000)\n@@ -224,7 +224,7 @@ Unless otherwise specified, input will be cast to ``float64``::\n >>> X.dtype\n dtype('float32')\n \n- >>> transformer = random_projection.GaussianRandomProjection()\n+ >>> transformer = kernel_approximation.RBFSampler()\n >>> X_new = transformer.fit_transform(X)\n >>> X_new.dtype\n dtype('float64')\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 5d49a6fd281c7..bab7b3e33f850 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -385,6 +385,10 @@ Changelog\n :mod:`sklearn.random_projection`\n ................................\n \n+- |Enhancement| :class:`random_projection.SparseRandomProjection` and\n+ :class:`random_projection.GaussianRandomProjection` preserves dtype for\n+ `numpy.float32`. :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |API| Adds :term:`get_feature_names_out` to all transformers in the\n :mod:`~sklearn.random_projection` module:\n :class:`~sklearn.random_projection.GaussianRandomProjection` and\n"
}
] |
diff --git a/doc/tutorial/basic/tutorial.rst b/doc/tutorial/basic/tutorial.rst
index 5199ad226243f..4375e4fb83e61 100644
--- a/doc/tutorial/basic/tutorial.rst
+++ b/doc/tutorial/basic/tutorial.rst
@@ -183,7 +183,7 @@ the last item from ``digits.data``::
SVC(C=100.0, gamma=0.001)
Now you can *predict* new values. In this case, you'll predict using the last
-image from ``digits.data``. By predicting, you'll determine the image from the
+image from ``digits.data``. By predicting, you'll determine the image from the
training set that best matches the last image.
@@ -216,7 +216,7 @@ Type casting
Unless otherwise specified, input will be cast to ``float64``::
>>> import numpy as np
- >>> from sklearn import random_projection
+ >>> from sklearn import kernel_approximation
>>> rng = np.random.RandomState(0)
>>> X = rng.rand(10, 2000)
@@ -224,7 +224,7 @@ Unless otherwise specified, input will be cast to ``float64``::
>>> X.dtype
dtype('float32')
- >>> transformer = random_projection.GaussianRandomProjection()
+ >>> transformer = kernel_approximation.RBFSampler()
>>> X_new = transformer.fit_transform(X)
>>> X_new.dtype
dtype('float64')
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 5d49a6fd281c7..bab7b3e33f850 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -385,6 +385,10 @@ Changelog
:mod:`sklearn.random_projection`
................................
+- |Enhancement| :class:`random_projection.SparseRandomProjection` and
+ :class:`random_projection.GaussianRandomProjection` preserves dtype for
+ `numpy.float32`. :pr:`<PRID>` by :user:`<NAME>`.
+
- |API| Adds :term:`get_feature_names_out` to all transformers in the
:mod:`~sklearn.random_projection` module:
:class:`~sklearn.random_projection.GaussianRandomProjection` and
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21408
|
https://github.com/scikit-learn/scikit-learn/pull/21408
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 37dc4c56dc860..1438b96a8295a 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -266,6 +266,13 @@ Changelog
Setting a transformer to "passthrough" will pass the features unchanged.
:pr:`20860` by :user:`Shubhraneel Pal <shubhraneel>`.
+:mod:`sklearn.svm`
+...................
+
+- |Enhancement| :class:`svm.OneClassSVM`, :class:`svm.NuSVC`,
+ :class:`svm.NuSVR`, :class:`svm.SVC` and :class:`svm.SVR` now expose
+ `n_iter_`, the number of iterations of the libsvm optimization routine.
+ :pr:`21408` by :user:`Juan Martín Loyola <jmloyola>`.
- |Fix| :class: `pipeline.Pipeline` now does not validate hyper-parameters in
`__init__` but in `.fit()`.
:pr:`21888` by :user:`iofall <iofall>` and :user: `Arisa Y. <arisayosh>`.
diff --git a/sklearn/svm/_base.py b/sklearn/svm/_base.py
index 259b1b28c29be..2c74ae153543b 100644
--- a/sklearn/svm/_base.py
+++ b/sklearn/svm/_base.py
@@ -274,6 +274,17 @@ def fit(self, X, y, sample_weight=None):
self.intercept_ *= -1
self.dual_coef_ = -self.dual_coef_
+ # Since, in the case of SVC and NuSVC, the number of models optimized by
+ # libSVM could be greater than one (depending on the input), `n_iter_`
+ # stores an ndarray.
+ # For the other sub-classes (SVR, NuSVR, and OneClassSVM), the number of
+ # models optimized by libSVM is always one, so `n_iter_` stores an
+ # integer.
+ if self._impl in ["c_svc", "nu_svc"]:
+ self.n_iter_ = self._num_iter
+ else:
+ self.n_iter_ = self._num_iter.item()
+
return self
def _validate_targets(self, y):
@@ -320,6 +331,7 @@ def _dense_fit(self, X, y, sample_weight, solver_type, kernel, random_seed):
self._probA,
self._probB,
self.fit_status_,
+ self._num_iter,
) = libsvm.fit(
X,
y,
@@ -360,6 +372,7 @@ def _sparse_fit(self, X, y, sample_weight, solver_type, kernel, random_seed):
self._probA,
self._probB,
self.fit_status_,
+ self._num_iter,
) = libsvm_sparse.libsvm_sparse_train(
X.shape[1],
X.data,
diff --git a/sklearn/svm/_classes.py b/sklearn/svm/_classes.py
index 719540cd725c0..cafaf9b2c2cf5 100644
--- a/sklearn/svm/_classes.py
+++ b/sklearn/svm/_classes.py
@@ -670,6 +670,13 @@ class SVC(BaseSVC):
.. versionadded:: 1.0
+ n_iter_ : ndarray of shape (n_classes * (n_classes - 1) // 2,)
+ Number of iterations run by the optimization routine to fit the model.
+ The shape of this attribute depends on the number of models optimized
+ which in turn depends on the number of classes.
+
+ .. versionadded:: 1.1
+
support_ : ndarray of shape (n_SV)
Indices of support vectors.
@@ -925,6 +932,13 @@ class NuSVC(BaseSVC):
.. versionadded:: 1.0
+ n_iter_ : ndarray of shape (n_classes * (n_classes - 1) // 2,)
+ Number of iterations run by the optimization routine to fit the model.
+ The shape of this attribute depends on the number of models optimized
+ which in turn depends on the number of classes.
+
+ .. versionadded:: 1.1
+
support_ : ndarray of shape (n_SV,)
Indices of support vectors.
@@ -1140,6 +1154,11 @@ class SVR(RegressorMixin, BaseLibSVM):
.. versionadded:: 1.0
+ n_iter_ : int
+ Number of iterations run by the optimization routine to fit the model.
+
+ .. versionadded:: 1.1
+
n_support_ : ndarray of shape (n_classes,), dtype=int32
Number of support vectors for each class.
@@ -1328,6 +1347,11 @@ class NuSVR(RegressorMixin, BaseLibSVM):
.. versionadded:: 1.0
+ n_iter_ : int
+ Number of iterations run by the optimization routine to fit the model.
+
+ .. versionadded:: 1.1
+
n_support_ : ndarray of shape (n_classes,), dtype=int32
Number of support vectors for each class.
@@ -1512,6 +1536,11 @@ class OneClassSVM(OutlierMixin, BaseLibSVM):
.. versionadded:: 1.0
+ n_iter_ : int
+ Number of iterations run by the optimization routine to fit the model.
+
+ .. versionadded:: 1.1
+
n_support_ : ndarray of shape (n_classes,), dtype=int32
Number of support vectors for each class.
diff --git a/sklearn/svm/_libsvm.pxi b/sklearn/svm/_libsvm.pxi
index ab7d212e3ba1a..75a6fb55bcf8e 100644
--- a/sklearn/svm/_libsvm.pxi
+++ b/sklearn/svm/_libsvm.pxi
@@ -56,6 +56,7 @@ cdef extern from "libsvm_helper.c":
char *, char *, char *, char *)
void copy_sv_coef (char *, svm_model *)
+ void copy_n_iter (char *, svm_model *)
void copy_intercept (char *, svm_model *, np.npy_intp *)
void copy_SV (char *, svm_model *, np.npy_intp *)
int copy_support (char *data, svm_model *model)
diff --git a/sklearn/svm/_libsvm.pyx b/sklearn/svm/_libsvm.pyx
index 9186f0fcf7e29..4df99724b790a 100644
--- a/sklearn/svm/_libsvm.pyx
+++ b/sklearn/svm/_libsvm.pyx
@@ -152,6 +152,9 @@ def fit(
probA, probB : array of shape (n_class*(n_class-1)/2,)
Probability estimates, empty array for probability=False.
+
+ n_iter : ndarray of shape (max(1, (n_class * (n_class - 1) // 2)),)
+ Number of iterations run by the optimization routine to fit the model.
"""
cdef svm_parameter param
@@ -199,6 +202,10 @@ def fit(
SV_len = get_l(model)
n_class = get_nr(model)
+ cdef np.ndarray[int, ndim=1, mode='c'] n_iter
+ n_iter = np.empty(max(1, n_class * (n_class - 1) // 2), dtype=np.intc)
+ copy_n_iter(n_iter.data, model)
+
cdef np.ndarray[np.float64_t, ndim=2, mode='c'] sv_coef
sv_coef = np.empty((n_class-1, SV_len), dtype=np.float64)
copy_sv_coef (sv_coef.data, model)
@@ -248,7 +255,7 @@ def fit(
free(problem.x)
return (support, support_vectors, n_class_SV, sv_coef, intercept,
- probA, probB, fit_status)
+ probA, probB, fit_status, n_iter)
cdef void set_predict_params(
diff --git a/sklearn/svm/_libsvm_sparse.pyx b/sklearn/svm/_libsvm_sparse.pyx
index 92d94b0c685a5..64fc69364b2ee 100644
--- a/sklearn/svm/_libsvm_sparse.pyx
+++ b/sklearn/svm/_libsvm_sparse.pyx
@@ -41,6 +41,7 @@ cdef extern from "libsvm_sparse_helper.c":
double, int, int, int, char *, char *, int,
int)
void copy_sv_coef (char *, svm_csr_model *)
+ void copy_n_iter (char *, svm_csr_model *)
void copy_support (char *, svm_csr_model *)
void copy_intercept (char *, svm_csr_model *, np.npy_intp *)
int copy_predict (char *, svm_csr_model *, np.npy_intp *, char *, BlasFunctions *)
@@ -159,6 +160,10 @@ def libsvm_sparse_train ( int n_features,
cdef np.npy_intp SV_len = get_l(model)
cdef np.npy_intp n_class = get_nr(model)
+ cdef np.ndarray[int, ndim=1, mode='c'] n_iter
+ n_iter = np.empty(max(1, n_class * (n_class - 1) // 2), dtype=np.intc)
+ copy_n_iter(n_iter.data, model)
+
# copy model.sv_coef
# we create a new array instead of resizing, otherwise
# it would not erase previous information
@@ -217,7 +222,7 @@ def libsvm_sparse_train ( int n_features,
free_param(param)
return (support, support_vectors_, sv_coef_data, intercept, n_class_SV,
- probA, probB, fit_status)
+ probA, probB, fit_status, n_iter)
def libsvm_sparse_predict (np.ndarray[np.float64_t, ndim=1, mode='c'] T_data,
diff --git a/sklearn/svm/src/libsvm/LIBSVM_CHANGES b/sklearn/svm/src/libsvm/LIBSVM_CHANGES
index bde6beaca2694..663550b8ddd6f 100644
--- a/sklearn/svm/src/libsvm/LIBSVM_CHANGES
+++ b/sklearn/svm/src/libsvm/LIBSVM_CHANGES
@@ -7,4 +7,5 @@ This is here mainly as checklist for incorporation of new versions of libsvm.
* Improved random number generator (fix on windows, enhancement on other
platforms). See <https://github.com/scikit-learn/scikit-learn/pull/13511#issuecomment-481729756>
* invoke scipy blas api for svm kernel function to improve performance with speedup rate of 1.5X to 2X for dense data only. See <https://github.com/scikit-learn/scikit-learn/pull/16530>
+ * Expose the number of iterations run in optimization. See <https://github.com/scikit-learn/scikit-learn/pull/21408>
The changes made with respect to upstream are detailed in the heading of svm.cpp
diff --git a/sklearn/svm/src/libsvm/libsvm_helper.c b/sklearn/svm/src/libsvm/libsvm_helper.c
index 17f328f9e7c4c..1adf6b1b35370 100644
--- a/sklearn/svm/src/libsvm/libsvm_helper.c
+++ b/sklearn/svm/src/libsvm/libsvm_helper.c
@@ -2,6 +2,13 @@
#include <numpy/arrayobject.h>
#include "svm.h"
#include "_svm_cython_blas_helpers.h"
+
+
+#ifndef MAX
+ #define MAX(x, y) (((x) > (y)) ? (x) : (y))
+#endif
+
+
/*
* Some helper methods for libsvm bindings.
*
@@ -128,6 +135,9 @@ struct svm_model *set_model(struct svm_parameter *param, int nr_class,
if ((model->rho = malloc( m * sizeof(double))) == NULL)
goto rho_error;
+ // This is only allocated in dynamic memory while training.
+ model->n_iter = NULL;
+
model->nr_class = nr_class;
model->param = *param;
model->l = (int) support_dims[0];
@@ -218,6 +228,15 @@ npy_intp get_nr(struct svm_model *model)
return (npy_intp) model->nr_class;
}
+/*
+ * Get the number of iterations run in optimization
+ */
+void copy_n_iter(char *data, struct svm_model *model)
+{
+ const int n_models = MAX(1, model->nr_class * (model->nr_class-1) / 2);
+ memcpy(data, model->n_iter, n_models * sizeof(int));
+}
+
/*
* Some helpers to convert from libsvm sparse data structures
* model->sv_coef is a double **, whereas data is just a double *,
@@ -363,9 +382,11 @@ int free_model(struct svm_model *model)
if (model == NULL) return -1;
free(model->SV);
- /* We don't free sv_ind, since we did not create them in
+ /* We don't free sv_ind and n_iter, since we did not create them in
set_model */
- /* free(model->sv_ind); */
+ /* free(model->sv_ind);
+ * free(model->n_iter);
+ */
free(model->sv_coef);
free(model->rho);
free(model->label);
diff --git a/sklearn/svm/src/libsvm/libsvm_sparse_helper.c b/sklearn/svm/src/libsvm/libsvm_sparse_helper.c
index a85a532319d88..08556212bab5e 100644
--- a/sklearn/svm/src/libsvm/libsvm_sparse_helper.c
+++ b/sklearn/svm/src/libsvm/libsvm_sparse_helper.c
@@ -3,6 +3,12 @@
#include "svm.h"
#include "_svm_cython_blas_helpers.h"
+
+#ifndef MAX
+ #define MAX(x, y) (((x) > (y)) ? (x) : (y))
+#endif
+
+
/*
* Convert scipy.sparse.csr to libsvm's sparse data structure
*/
@@ -122,6 +128,9 @@ struct svm_csr_model *csr_set_model(struct svm_parameter *param, int nr_class,
if ((model->rho = malloc( m * sizeof(double))) == NULL)
goto rho_error;
+ // This is only allocated in dynamic memory while training.
+ model->n_iter = NULL;
+
/* in the case of precomputed kernels we do not use
dense_to_precomputed because we don't want the leading 0. As
indices start at 1 (not at 0) this will work */
@@ -348,6 +357,15 @@ void copy_sv_coef(char *data, struct svm_csr_model *model)
}
}
+/*
+ * Get the number of iterations run in optimization
+ */
+void copy_n_iter(char *data, struct svm_csr_model *model)
+{
+ const int n_models = MAX(1, model->nr_class * (model->nr_class-1) / 2);
+ memcpy(data, model->n_iter, n_models * sizeof(int));
+}
+
/*
* Get the number of support vectors in a model.
*/
@@ -402,6 +420,7 @@ int free_problem(struct svm_csr_problem *problem)
int free_model(struct svm_csr_model *model)
{
/* like svm_free_and_destroy_model, but does not free sv_coef[i] */
+ /* We don't free n_iter, since we did not create them in set_model. */
if (model == NULL) return -1;
free(model->SV);
free(model->sv_coef);
diff --git a/sklearn/svm/src/libsvm/svm.cpp b/sklearn/svm/src/libsvm/svm.cpp
index d209e35fc0a35..de07fecdba2ac 100644
--- a/sklearn/svm/src/libsvm/svm.cpp
+++ b/sklearn/svm/src/libsvm/svm.cpp
@@ -55,6 +55,10 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Sylvain Marie, Schneider Electric
see <https://github.com/scikit-learn/scikit-learn/pull/13511#issuecomment-481729756>
+ Modified 2021:
+
+ - Exposed number of iterations run in optimization, Juan Martín Loyola.
+ See <https://github.com/scikit-learn/scikit-learn/pull/21408/>
*/
#include <math.h>
@@ -553,6 +557,7 @@ class Solver {
double *upper_bound;
double r; // for Solver_NU
bool solve_timed_out;
+ int n_iter;
};
void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
@@ -919,6 +924,9 @@ void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
for(int i=0;i<l;i++)
si->upper_bound[i] = C[i];
+ // store number of iterations
+ si->n_iter = iter;
+
info("\noptimization finished, #iter = %d\n",iter);
delete[] p;
@@ -1837,6 +1845,7 @@ struct decision_function
{
double *alpha;
double rho;
+ int n_iter;
};
static decision_function svm_train_one(
@@ -1902,6 +1911,7 @@ static decision_function svm_train_one(
decision_function f;
f.alpha = alpha;
f.rho = si.rho;
+ f.n_iter = si.n_iter;
return f;
}
@@ -2387,6 +2397,8 @@ PREFIX(model) *PREFIX(train)(const PREFIX(problem) *prob, const svm_parameter *p
NAMESPACE::decision_function f = NAMESPACE::svm_train_one(prob,param,0,0, status,blas_functions);
model->rho = Malloc(double,1);
model->rho[0] = f.rho;
+ model->n_iter = Malloc(int,1);
+ model->n_iter[0] = f.n_iter;
int nSV = 0;
int i;
@@ -2523,8 +2535,12 @@ PREFIX(model) *PREFIX(train)(const PREFIX(problem) *prob, const svm_parameter *p
model->label[i] = label[i];
model->rho = Malloc(double,nr_class*(nr_class-1)/2);
+ model->n_iter = Malloc(int,nr_class*(nr_class-1)/2);
for(i=0;i<nr_class*(nr_class-1)/2;i++)
+ {
model->rho[i] = f[i].rho;
+ model->n_iter[i] = f[i].n_iter;
+ }
if(param->probability)
{
@@ -2978,6 +2994,9 @@ void PREFIX(free_model_content)(PREFIX(model)* model_ptr)
free(model_ptr->nSV);
model_ptr->nSV = NULL;
+
+ free(model_ptr->n_iter);
+ model_ptr->n_iter = NULL;
}
void PREFIX(free_and_destroy_model)(PREFIX(model)** model_ptr_ptr)
diff --git a/sklearn/svm/src/libsvm/svm.h b/sklearn/svm/src/libsvm/svm.h
index a1634119858f1..518872c67bc5c 100644
--- a/sklearn/svm/src/libsvm/svm.h
+++ b/sklearn/svm/src/libsvm/svm.h
@@ -76,6 +76,7 @@ struct svm_model
int l; /* total #SV */
struct svm_node *SV; /* SVs (SV[l]) */
double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
+ int *n_iter; /* number of iterations run by the optimization routine to fit the model */
int *sv_ind; /* index of support vectors */
@@ -101,6 +102,7 @@ struct svm_csr_model
int l; /* total #SV */
struct svm_csr_node **SV; /* SVs (SV[l]) */
double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
+ int *n_iter; /* number of iterations run by the optimization routine to fit the model */
int *sv_ind; /* index of support vectors */
diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py
index e6cbc38adbcac..31f14110e80bb 100644
--- a/sklearn/utils/estimator_checks.py
+++ b/sklearn/utils/estimator_checks.py
@@ -278,6 +278,7 @@ def _yield_outliers_checks(estimator):
# test if NotFittedError is raised
if _safe_tags(estimator, key="requires_fit"):
yield check_estimators_unfitted
+ yield check_non_transformer_estimators_n_iter
def _yield_all_checks(estimator):
@@ -3261,11 +3262,7 @@ def check_non_transformer_estimators_n_iter(name, estimator_orig):
# labeled, hence n_iter_ = 0 is valid.
not_run_check_n_iter = [
"Ridge",
- "SVR",
- "NuSVR",
- "NuSVC",
"RidgeClassifier",
- "SVC",
"RandomizedLasso",
"LogisticRegressionCV",
"LinearSVC",
@@ -3290,9 +3287,11 @@ def check_non_transformer_estimators_n_iter(name, estimator_orig):
set_random_state(estimator, 0)
+ X = _pairwise_estimator_convert_X(X, estimator_orig)
+
estimator.fit(X, y_)
- assert estimator.n_iter_ >= 1
+ assert np.all(estimator.n_iter_ >= 1)
@ignore_warnings(category=FutureWarning)
|
diff --git a/sklearn/svm/tests/test_svm.py b/sklearn/svm/tests/test_svm.py
index 67eabf9fc8d2c..af4e7d4a0935b 100644
--- a/sklearn/svm/tests/test_svm.py
+++ b/sklearn/svm/tests/test_svm.py
@@ -66,12 +66,58 @@ def test_libsvm_iris():
assert_array_equal(clf.classes_, np.sort(clf.classes_))
# check also the low-level API
- model = _libsvm.fit(iris.data, iris.target.astype(np.float64))
- pred = _libsvm.predict(iris.data, *model)
+ # We unpack the values to create a dictionary with some of the return values
+ # from Libsvm's fit.
+ (
+ libsvm_support,
+ libsvm_support_vectors,
+ libsvm_n_class_SV,
+ libsvm_sv_coef,
+ libsvm_intercept,
+ libsvm_probA,
+ libsvm_probB,
+ # libsvm_fit_status and libsvm_n_iter won't be used below.
+ libsvm_fit_status,
+ libsvm_n_iter,
+ ) = _libsvm.fit(iris.data, iris.target.astype(np.float64))
+
+ model_params = {
+ "support": libsvm_support,
+ "SV": libsvm_support_vectors,
+ "nSV": libsvm_n_class_SV,
+ "sv_coef": libsvm_sv_coef,
+ "intercept": libsvm_intercept,
+ "probA": libsvm_probA,
+ "probB": libsvm_probB,
+ }
+ pred = _libsvm.predict(iris.data, **model_params)
assert np.mean(pred == iris.target) > 0.95
- model = _libsvm.fit(iris.data, iris.target.astype(np.float64), kernel="linear")
- pred = _libsvm.predict(iris.data, *model, kernel="linear")
+ # We unpack the values to create a dictionary with some of the return values
+ # from Libsvm's fit.
+ (
+ libsvm_support,
+ libsvm_support_vectors,
+ libsvm_n_class_SV,
+ libsvm_sv_coef,
+ libsvm_intercept,
+ libsvm_probA,
+ libsvm_probB,
+ # libsvm_fit_status and libsvm_n_iter won't be used below.
+ libsvm_fit_status,
+ libsvm_n_iter,
+ ) = _libsvm.fit(iris.data, iris.target.astype(np.float64), kernel="linear")
+
+ model_params = {
+ "support": libsvm_support,
+ "SV": libsvm_support_vectors,
+ "nSV": libsvm_n_class_SV,
+ "sv_coef": libsvm_sv_coef,
+ "intercept": libsvm_intercept,
+ "probA": libsvm_probA,
+ "probB": libsvm_probB,
+ }
+ pred = _libsvm.predict(iris.data, **model_params, kernel="linear")
assert np.mean(pred == iris.target) > 0.95
pred = _libsvm.cross_validation(
@@ -1059,16 +1105,17 @@ def test_svc_bad_kernel():
svc.fit(X, Y)
-def test_timeout():
+def test_libsvm_convergence_warnings():
a = svm.SVC(
- kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=1
+ kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=2
)
warning_msg = (
- r"Solver terminated early \(max_iter=1\). Consider pre-processing "
+ r"Solver terminated early \(max_iter=2\). Consider pre-processing "
r"your data with StandardScaler or MinMaxScaler."
)
with pytest.warns(ConvergenceWarning, match=warning_msg):
a.fit(np.array(X), Y)
+ assert np.all(a.n_iter_ == 2)
def test_unfitted():
@@ -1422,3 +1469,35 @@ def test_svc_raises_error_internal_representation():
msg = "The internal representation of SVC was altered"
with pytest.raises(ValueError, match=msg):
clf.predict(X)
+
+
[email protected](
+ "estimator, expected_n_iter_type",
+ [
+ (svm.SVC, np.ndarray),
+ (svm.NuSVC, np.ndarray),
+ (svm.SVR, int),
+ (svm.NuSVR, int),
+ (svm.OneClassSVM, int),
+ ],
+)
[email protected](
+ "dataset",
+ [
+ make_classification(n_classes=2, n_informative=2, random_state=0),
+ make_classification(n_classes=3, n_informative=3, random_state=0),
+ make_classification(n_classes=4, n_informative=4, random_state=0),
+ ],
+)
+def test_n_iter_libsvm(estimator, expected_n_iter_type, dataset):
+ # Check that the type of n_iter_ is correct for the classes that inherit
+ # from BaseSVC.
+ # Note that for SVC, and NuSVC this is an ndarray; while for SVR, NuSVR, and
+ # OneClassSVM, it is an int.
+ # For SVC and NuSVC also check the shape of n_iter_.
+ X, y = dataset
+ n_iter = estimator(kernel="linear").fit(X, y).n_iter_
+ assert type(n_iter) == expected_n_iter_type
+ if estimator in [svm.SVC, svm.NuSVC]:
+ n_classes = len(np.unique(y))
+ assert n_iter.shape == (n_classes * (n_classes - 1) // 2,)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 37dc4c56dc860..1438b96a8295a 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -266,6 +266,13 @@ Changelog\n Setting a transformer to \"passthrough\" will pass the features unchanged.\n :pr:`20860` by :user:`Shubhraneel Pal <shubhraneel>`.\n \n+:mod:`sklearn.svm`\n+...................\n+\n+- |Enhancement| :class:`svm.OneClassSVM`, :class:`svm.NuSVC`,\n+ :class:`svm.NuSVR`, :class:`svm.SVC` and :class:`svm.SVR` now expose\n+ `n_iter_`, the number of iterations of the libsvm optimization routine.\n+ :pr:`21408` by :user:`Juan Martín Loyola <jmloyola>`.\n - |Fix| :class: `pipeline.Pipeline` now does not validate hyper-parameters in\n `__init__` but in `.fit()`.\n :pr:`21888` by :user:`iofall <iofall>` and :user: `Arisa Y. <arisayosh>`.\n"
}
] |
1.01
|
39782b71b03d180bb2fe2ac321b6bab87a43746a
|
[
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params2]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-NuSVR]",
"sklearn/svm/tests/test_svm.py::test_auto_weight",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-2-NuSVR]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-SVR]",
"sklearn/svm/tests/test_svm.py::test_sparse_fit_support_vectors_empty",
"sklearn/svm/tests/test_svm.py::test_consistent_proba",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_dense_liblinear_intercept_handling",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-2-SVC]",
"sklearn/svm/tests/test_svm.py::test_libsvm_parameters",
"sklearn/svm/tests/test_svm.py::test_svm_classifier_sided_sample_weight[estimator1]",
"sklearn/svm/tests/test_svm.py::test_lsvc_intercept_scaling_zero",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVR-params5]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-NuSVR]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params0]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-2-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_oneclass_decision_function",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-OneClassSVM]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_just_one_label[mask-label-1-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_bad_input",
"sklearn/svm/tests/test_svm.py::test_svc_ovr_tie_breaking[SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_svc_clone_with_callable_kernel",
"sklearn/svm/tests/test_svm.py::test_svr_predict",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_fit_sampleweight",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-1-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_ovr_decision_function",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_svm_equivalence_sample_weight_C",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params3]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_parameters",
"sklearn/svm/tests/test_svm.py::test_tweak_params",
"sklearn/svm/tests/test_svm.py::test_sparse_precomputed",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-OneClassSVM]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_linearsvr_fit_sampleweight",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_crammer_singer_binary",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_just_one_label[mask-label-1-SVC]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_just_one_label[mask-label-2-SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params1]",
"sklearn/svm/tests/test_svm.py::test_svc_ovr_tie_breaking[NuSVC]",
"sklearn/svm/tests/test_svm.py::test_svr_errors",
"sklearn/svm/tests/test_svm.py::test_svc_bad_kernel",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-2-SVC]",
"sklearn/svm/tests/test_svm.py::test_liblinear_set_coef",
"sklearn/svm/tests/test_svm.py::test_immutable_coef_property",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_linear_svx_uppercase_loss_penality_raises_error",
"sklearn/svm/tests/test_svm.py::test_hasattr_predict_proba",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVR-params4]",
"sklearn/svm/tests/test_svm.py::test_svm_classifier_sided_sample_weight[estimator0]",
"sklearn/svm/tests/test_svm.py::test_svc_raises_error_internal_representation",
"sklearn/svm/tests/test_svm.py::test_decision_function",
"sklearn/svm/tests/test_svm.py::test_svm_regressor_sided_sample_weight[estimator0]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_verbose",
"sklearn/svm/tests/test_svm.py::test_decision_function_shape_two_class",
"sklearn/svm/tests/test_svm.py::test_oneclass",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-SVC]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_just_one_label[mask-label-2-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-2-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_custom_kernel_not_array_input[SVC]",
"sklearn/svm/tests/test_svm.py::test_precomputed",
"sklearn/svm/tests/test_svm.py::test_unicode_kernel",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVR-params6]",
"sklearn/svm/tests/test_svm.py::test_decision_function_shape[SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_linear_svc_intercept_scaling",
"sklearn/svm/tests/test_svm.py::test_linearsvr",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-1-SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_crammer_singer",
"sklearn/svm/tests/test_svm.py::test_oneclass_fit_params_is_deprecated",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_iris",
"sklearn/svm/tests/test_svm.py::test_unfitted",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_svm_regressor_sided_sample_weight[estimator1]",
"sklearn/svm/tests/test_svm.py::test_n_support_oneclass_svr",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-SVR]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_svr_coef_sign",
"sklearn/svm/tests/test_svm.py::test_svr",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-1-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_custom_kernel_not_array_input[SVR]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_weight",
"sklearn/svm/tests/test_svm.py::test_svc_invalid_break_ties_param[SVC]",
"sklearn/svm/tests/test_svm.py::test_probability",
"sklearn/svm/tests/test_svm.py::test_oneclass_score_samples",
"sklearn/svm/tests/test_svm.py::test_svc_invalid_break_ties_param[NuSVC]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-1-NuSVR]",
"sklearn/svm/tests/test_svm.py::test_decision_function_shape[NuSVC]",
"sklearn/svm/tests/test_svm.py::test_linearsvc",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_linear_svm_convergence_warnings",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-1-SVC]"
] |
[
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-NuSVR-int]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-SVR-int]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-NuSVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-OneClassSVM-int]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-SVR-int]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-NuSVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_libsvm_iris",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-NuSVR-int]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-NuSVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-SVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-NuSVR-int]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-SVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_libsvm_convergence_warnings",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-SVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-SVR-int]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-OneClassSVM-int]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-OneClassSVM-int]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 37dc4c56dc860..1438b96a8295a 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -266,6 +266,13 @@ Changelog\n Setting a transformer to \"passthrough\" will pass the features unchanged.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.svm`\n+...................\n+\n+- |Enhancement| :class:`svm.OneClassSVM`, :class:`svm.NuSVC`,\n+ :class:`svm.NuSVR`, :class:`svm.SVC` and :class:`svm.SVR` now expose\n+ `n_iter_`, the number of iterations of the libsvm optimization routine.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n - |Fix| :class: `pipeline.Pipeline` now does not validate hyper-parameters in\n `__init__` but in `.fit()`.\n :pr:`<PRID>` by :user:`<NAME>` and :user: `Arisa Y. <arisayosh>`.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 37dc4c56dc860..1438b96a8295a 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -266,6 +266,13 @@ Changelog
Setting a transformer to "passthrough" will pass the features unchanged.
:pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.svm`
+...................
+
+- |Enhancement| :class:`svm.OneClassSVM`, :class:`svm.NuSVC`,
+ :class:`svm.NuSVR`, :class:`svm.SVC` and :class:`svm.SVR` now expose
+ `n_iter_`, the number of iterations of the libsvm optimization routine.
+ :pr:`<PRID>` by :user:`<NAME>`.
- |Fix| :class: `pipeline.Pipeline` now does not validate hyper-parameters in
`__init__` but in `.fit()`.
:pr:`<PRID>` by :user:`<NAME>` and :user: `Arisa Y. <arisayosh>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22149
|
https://github.com/scikit-learn/scikit-learn/pull/22149
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 61d5c64255f71..d03ce62dae5b4 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -451,6 +451,12 @@ Changelog
parameters in `fit` instead of `__init__`.
:pr:`21436` by :user:`Haidar Almubarak <Haidar13 >`.
+- |Enhancement| :func:`svm.SVR`, :func:`svm.SVC`, :func:`svm.NuSVR`,
+ :func:`svm.OneClassSVM`, :func:`svm.NuSVC` now raise an error
+ when the dual-gap estimation produce non-finite parameter weights.
+ :pr:`22149` by :user:`Christian Ritter <chritter>` and
+ :user:`Norbert Preining <norbusan>`.
+
:mod:`sklearn.utils`
....................
diff --git a/sklearn/svm/_base.py b/sklearn/svm/_base.py
index 2c74ae153543b..f25669651f0e4 100644
--- a/sklearn/svm/_base.py
+++ b/sklearn/svm/_base.py
@@ -274,6 +274,16 @@ def fit(self, X, y, sample_weight=None):
self.intercept_ *= -1
self.dual_coef_ = -self.dual_coef_
+ dual_coef = self._dual_coef_.data if self._sparse else self._dual_coef_
+ intercept_finiteness = np.isfinite(self._intercept_).all()
+ dual_coef_finiteness = np.isfinite(dual_coef).all()
+ if not (intercept_finiteness and dual_coef_finiteness):
+ raise ValueError(
+ "The dual coefficients or intercepts are not finite. "
+ "The input data may contain large values and need to be"
+ "preprocessed."
+ )
+
# Since, in the case of SVC and NuSVC, the number of models optimized by
# libSVM could be greater than one (depending on the input), `n_iter_`
# stores an ndarray.
|
diff --git a/sklearn/svm/tests/test_svm.py b/sklearn/svm/tests/test_svm.py
index af4e7d4a0935b..a8e53a5d50cb0 100644
--- a/sklearn/svm/tests/test_svm.py
+++ b/sklearn/svm/tests/test_svm.py
@@ -731,6 +731,20 @@ def test_bad_input():
clf.predict(Xt)
+def test_svc_nonfinite_params():
+ # Check SVC throws ValueError when dealing with non-finite parameter values
+ rng = np.random.RandomState(0)
+ n_samples = 10
+ fmax = np.finfo(np.float64).max
+ X = fmax * rng.uniform(size=(n_samples, 2))
+ y = rng.randint(0, 2, size=n_samples)
+
+ clf = svm.SVC()
+ msg = "The dual coefficients or intercepts are not finite"
+ with pytest.raises(ValueError, match=msg):
+ clf.fit(X, y)
+
+
@pytest.mark.parametrize(
"Estimator, data",
[
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 61d5c64255f71..d03ce62dae5b4 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -451,6 +451,12 @@ Changelog\n parameters in `fit` instead of `__init__`.\n :pr:`21436` by :user:`Haidar Almubarak <Haidar13 >`.\n \n+- |Enhancement| :func:`svm.SVR`, :func:`svm.SVC`, :func:`svm.NuSVR`,\n+ :func:`svm.OneClassSVM`, :func:`svm.NuSVC` now raise an error\n+ when the dual-gap estimation produce non-finite parameter weights.\n+ :pr:`22149` by :user:`Christian Ritter <chritter>` and\n+ :user:`Norbert Preining <norbusan>`.\n+\n :mod:`sklearn.utils`\n ....................\n \n"
}
] |
1.01
|
8d6217107f02d6f52d2f8c8908958fe82778c7cc
|
[
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params2]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-NuSVR]",
"sklearn/svm/tests/test_svm.py::test_auto_weight",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-2-NuSVR]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-SVR]",
"sklearn/svm/tests/test_svm.py::test_sparse_fit_support_vectors_empty",
"sklearn/svm/tests/test_svm.py::test_consistent_proba",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_dense_liblinear_intercept_handling",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-NuSVR-int]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-2-SVC]",
"sklearn/svm/tests/test_svm.py::test_libsvm_parameters",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-SVR-int]",
"sklearn/svm/tests/test_svm.py::test_svm_classifier_sided_sample_weight[estimator1]",
"sklearn/svm/tests/test_svm.py::test_lsvc_intercept_scaling_zero",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVR-params5]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-NuSVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-NuSVR]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params0]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-2-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_oneclass_decision_function",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-OneClassSVM]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_just_one_label[mask-label-1-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_bad_input",
"sklearn/svm/tests/test_svm.py::test_svc_ovr_tie_breaking[SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_svc_clone_with_callable_kernel",
"sklearn/svm/tests/test_svm.py::test_svr_predict",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_fit_sampleweight",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-1-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-OneClassSVM-int]",
"sklearn/svm/tests/test_svm.py::test_ovr_decision_function",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-SVR-int]",
"sklearn/svm/tests/test_svm.py::test_svm_equivalence_sample_weight_C",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-NuSVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params3]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_parameters",
"sklearn/svm/tests/test_svm.py::test_libsvm_iris",
"sklearn/svm/tests/test_svm.py::test_tweak_params",
"sklearn/svm/tests/test_svm.py::test_sparse_precomputed",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-OneClassSVM]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-NuSVR-int]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-NuSVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_linearsvr_fit_sampleweight",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_crammer_singer_binary",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_just_one_label[mask-label-1-SVC]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_just_one_label[mask-label-2-SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params1]",
"sklearn/svm/tests/test_svm.py::test_svc_ovr_tie_breaking[NuSVC]",
"sklearn/svm/tests/test_svm.py::test_svr_errors",
"sklearn/svm/tests/test_svm.py::test_svc_bad_kernel",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-2-SVC]",
"sklearn/svm/tests/test_svm.py::test_liblinear_set_coef",
"sklearn/svm/tests/test_svm.py::test_immutable_coef_property",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-negative-SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_linear_svx_uppercase_loss_penality_raises_error",
"sklearn/svm/tests/test_svm.py::test_hasattr_predict_proba",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVR-params4]",
"sklearn/svm/tests/test_svm.py::test_svm_classifier_sided_sample_weight[estimator0]",
"sklearn/svm/tests/test_svm.py::test_svc_raises_error_internal_representation",
"sklearn/svm/tests/test_svm.py::test_decision_function",
"sklearn/svm/tests/test_svm.py::test_svm_regressor_sided_sample_weight[estimator0]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-SVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_verbose",
"sklearn/svm/tests/test_svm.py::test_decision_function_shape_two_class",
"sklearn/svm/tests/test_svm.py::test_oneclass",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-SVC]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_just_one_label[mask-label-2-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-2-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_custom_kernel_not_array_input[SVC]",
"sklearn/svm/tests/test_svm.py::test_precomputed",
"sklearn/svm/tests/test_svm.py::test_unicode_kernel",
"sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVR-params6]",
"sklearn/svm/tests/test_svm.py::test_decision_function_shape[SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma5-The gamma value should be set to 'scale', 'auto' or a positive float value. {} is not a valid option-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_linear_svc_intercept_scaling",
"sklearn/svm/tests/test_svm.py::test_linearsvr",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-NuSVR-int]",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-1-SVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset2-SVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_crammer_singer",
"sklearn/svm/tests/test_svm.py::test_oneclass_fit_params_is_deprecated",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[-1-gamma value must be > 0; -1 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_libsvm_convergence_warnings",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-SVC-ndarray]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-SVR-int]",
"sklearn/svm/tests/test_svm.py::test_linearsvc_iris",
"sklearn/svm/tests/test_svm.py::test_unfitted",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_svm_regressor_sided_sample_weight[estimator1]",
"sklearn/svm/tests/test_svm.py::test_n_support_oneclass_svr",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-SVR]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-SVC-data0]",
"sklearn/svm/tests/test_svm.py::test_svr_coef_sign",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset0-OneClassSVM-int]",
"sklearn/svm/tests/test_svm.py::test_svr",
"sklearn/svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-1-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-OneClassSVM-data4]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma3-The gamma value should be set to 'scale', 'auto' or a positive float value. array([1., 4.]) is not a valid option-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_custom_kernel_not_array_input[SVR]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[gamma4-The gamma value should be set to 'scale', 'auto' or a positive float value. [] is not a valid option-NuSVC-data1]",
"sklearn/svm/tests/test_svm.py::test_weight",
"sklearn/svm/tests/test_svm.py::test_svc_invalid_break_ties_param[SVC]",
"sklearn/svm/tests/test_svm.py::test_n_iter_libsvm[dataset1-OneClassSVM-int]",
"sklearn/svm/tests/test_svm.py::test_probability",
"sklearn/svm/tests/test_svm.py::test_oneclass_score_samples",
"sklearn/svm/tests/test_svm.py::test_svc_invalid_break_ties_param[NuSVC]",
"sklearn/svm/tests/test_svm.py::test_negative_sample_weights_mask_all_samples[weights-are-zero-NuSVC]",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-1-NuSVR]",
"sklearn/svm/tests/test_svm.py::test_decision_function_shape[NuSVC]",
"sklearn/svm/tests/test_svm.py::test_linearsvc",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[auto_deprecated-When 'gamma' is a string, it should be either 'scale' or 'auto'-NuSVR-data3]",
"sklearn/svm/tests/test_svm.py::test_svm_gamma_error[0.0-gamma value must be > 0; 0.0 is invalid. Use a positive number or use 'auto' to set gamma to a value of 1 / n_features.-SVR-data2]",
"sklearn/svm/tests/test_svm.py::test_linear_svm_convergence_warnings",
"sklearn/svm/tests/test_svm.py::test_negative_weight_equal_coeffs[partial-mask-label-1-SVC]"
] |
[
"sklearn/svm/tests/test_svm.py::test_svc_nonfinite_params"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 61d5c64255f71..d03ce62dae5b4 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -451,6 +451,12 @@ Changelog\n parameters in `fit` instead of `__init__`.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| :func:`svm.SVR`, :func:`svm.SVC`, :func:`svm.NuSVR`,\n+ :func:`svm.OneClassSVM`, :func:`svm.NuSVC` now raise an error\n+ when the dual-gap estimation produce non-finite parameter weights.\n+ :pr:`<PRID>` by :user:`<NAME>` and\n+ :user:`<NAME>`.\n+\n :mod:`sklearn.utils`\n ....................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 61d5c64255f71..d03ce62dae5b4 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -451,6 +451,12 @@ Changelog
parameters in `fit` instead of `__init__`.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| :func:`svm.SVR`, :func:`svm.SVC`, :func:`svm.NuSVR`,
+ :func:`svm.OneClassSVM`, :func:`svm.NuSVC` now raise an error
+ when the dual-gap estimation produce non-finite parameter weights.
+ :pr:`<PRID>` by :user:`<NAME>` and
+ :user:`<NAME>`.
+
:mod:`sklearn.utils`
....................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22254
|
https://github.com/scikit-learn/scikit-learn/pull/22254
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 38aea32e776aa..3ae1c260570b2 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -413,6 +413,9 @@ Changelog
preserve this dtype.
:pr:`21534` by :user:`Andrew Knyazev <lobpcg>`.
+- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`
+ and :class:`manifold.LocallyLinearEmbedding`. :pr:`22254` by `Thomas Fan`_.
+
- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of
the previous uniform on [0, 1] random initial approximations to eigenvectors
in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.
diff --git a/sklearn/manifold/_isomap.py b/sklearn/manifold/_isomap.py
index 312c1166522ea..98f0e719b7cdd 100644
--- a/sklearn/manifold/_isomap.py
+++ b/sklearn/manifold/_isomap.py
@@ -10,7 +10,7 @@
from scipy.sparse.csgraph import shortest_path
from scipy.sparse.csgraph import connected_components
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..neighbors import NearestNeighbors, kneighbors_graph
from ..utils.validation import check_is_fitted
from ..decomposition import KernelPCA
@@ -19,7 +19,7 @@
from ..externals._packaging.version import parse as parse_version
-class Isomap(TransformerMixin, BaseEstimator):
+class Isomap(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Isomap Embedding.
Non-linear dimensionality reduction through Isometric Mapping
@@ -257,6 +257,7 @@ def _fit_transform(self, X):
G *= -0.5
self.embedding_ = self.kernel_pca_.fit_transform(G)
+ self._n_features_out = self.embedding_.shape[1]
def reconstruction_error(self):
"""Compute the reconstruction error for the embedding.
diff --git a/sklearn/manifold/_locally_linear.py b/sklearn/manifold/_locally_linear.py
index 32fc3623f8cfb..a9c6ec350b912 100644
--- a/sklearn/manifold/_locally_linear.py
+++ b/sklearn/manifold/_locally_linear.py
@@ -9,7 +9,12 @@
from scipy.sparse import eye, csr_matrix
from scipy.sparse.linalg import eigsh
-from ..base import BaseEstimator, TransformerMixin, _UnstableArchMixin
+from ..base import (
+ BaseEstimator,
+ TransformerMixin,
+ _UnstableArchMixin,
+ _ClassNamePrefixFeaturesOutMixin,
+)
from ..utils import check_random_state, check_array
from ..utils._arpack import _init_arpack_v0
from ..utils.extmath import stable_cumsum
@@ -542,7 +547,12 @@ def locally_linear_embedding(
)
-class LocallyLinearEmbedding(TransformerMixin, _UnstableArchMixin, BaseEstimator):
+class LocallyLinearEmbedding(
+ _ClassNamePrefixFeaturesOutMixin,
+ TransformerMixin,
+ _UnstableArchMixin,
+ BaseEstimator,
+):
"""Locally Linear Embedding.
Read more in the :ref:`User Guide <locally_linear_embedding>`.
@@ -728,6 +738,7 @@ def _fit_transform(self, X):
reg=self.reg,
n_jobs=self.n_jobs,
)
+ self._n_features_out = self.embedding_.shape[1]
def fit(self, X, y=None):
"""Compute the embedding vectors for data X.
|
diff --git a/sklearn/manifold/tests/test_isomap.py b/sklearn/manifold/tests/test_isomap.py
index fa2f2188e3d6e..68ea433a58b93 100644
--- a/sklearn/manifold/tests/test_isomap.py
+++ b/sklearn/manifold/tests/test_isomap.py
@@ -1,6 +1,10 @@
from itertools import product
import numpy as np
-from numpy.testing import assert_almost_equal, assert_array_almost_equal
+from numpy.testing import (
+ assert_almost_equal,
+ assert_array_almost_equal,
+ assert_array_equal,
+)
import pytest
from sklearn import datasets
@@ -8,6 +12,7 @@
from sklearn import neighbors
from sklearn import pipeline
from sklearn import preprocessing
+from sklearn.datasets import make_blobs
from sklearn.metrics.pairwise import pairwise_distances
from scipy.sparse import rand as sparse_rand
@@ -220,3 +225,14 @@ def test_multiple_connected_components_metric_precomputed():
X_graph = neighbors.kneighbors_graph(X, n_neighbors=2, mode="distance")
with pytest.raises(RuntimeError, match="number of connected components"):
manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_graph)
+
+
+def test_get_feature_names_out():
+ """Check get_feature_names_out for Isomap."""
+ X, y = make_blobs(random_state=0, n_features=4)
+ n_components = 2
+
+ iso = manifold.Isomap(n_components=n_components)
+ iso.fit_transform(X)
+ names = iso.get_feature_names_out()
+ assert_array_equal([f"isomap{i}" for i in range(n_components)], names)
diff --git a/sklearn/manifold/tests/test_locally_linear.py b/sklearn/manifold/tests/test_locally_linear.py
index 520ba00df2e09..ff93a15c0704d 100644
--- a/sklearn/manifold/tests/test_locally_linear.py
+++ b/sklearn/manifold/tests/test_locally_linear.py
@@ -1,11 +1,16 @@
from itertools import product
import numpy as np
-from numpy.testing import assert_almost_equal, assert_array_almost_equal
+from numpy.testing import (
+ assert_almost_equal,
+ assert_array_almost_equal,
+ assert_array_equal,
+)
from scipy import linalg
import pytest
from sklearn import neighbors, manifold
+from sklearn.datasets import make_blobs
from sklearn.manifold._locally_linear import barycenter_kneighbors_graph
from sklearn.utils._testing import ignore_warnings
@@ -159,3 +164,16 @@ def test_integer_input():
for method in ["standard", "hessian", "modified", "ltsa"]:
clf = manifold.LocallyLinearEmbedding(method=method, n_neighbors=10)
clf.fit(X) # this previously raised a TypeError
+
+
+def test_get_feature_names_out():
+ """Check get_feature_names_out for LocallyLinearEmbedding."""
+ X, y = make_blobs(random_state=0, n_features=4)
+ n_components = 2
+
+ iso = manifold.LocallyLinearEmbedding(n_components=n_components)
+ iso.fit(X)
+ names = iso.get_feature_names_out()
+ assert_array_equal(
+ [f"locallylinearembedding{i}" for i in range(n_components)], names
+ )
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index de00fd713c5c7..de8818b53a477 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -385,7 +385,6 @@ def test_pandas_column_name_consistency(estimator):
"isotonic",
"kernel_approximation",
"preprocessing",
- "manifold",
"neural_network",
]
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 38aea32e776aa..3ae1c260570b2 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -413,6 +413,9 @@ Changelog\n preserve this dtype.\n :pr:`21534` by :user:`Andrew Knyazev <lobpcg>`.\n \n+- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`\n+ and :class:`manifold.LocallyLinearEmbedding`. :pr:`22254` by `Thomas Fan`_.\n+\n - |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of\n the previous uniform on [0, 1] random initial approximations to eigenvectors\n in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.\n"
}
] |
1.01
|
755d10a7fcfc44656bbed8d7f00f9e06e505732a
|
[
"sklearn/manifold/tests/test_isomap.py::test_pipeline",
"sklearn/manifold/tests/test_isomap.py::test_different_metric",
"sklearn/manifold/tests/test_locally_linear.py::test_integer_input",
"sklearn/manifold/tests/test_isomap.py::test_transform",
"sklearn/manifold/tests/test_isomap.py::test_isomap_clone_bug",
"sklearn/manifold/tests/test_locally_linear.py::test_lle_init_parameters",
"sklearn/manifold/tests/test_isomap.py::test_multiple_connected_components_metric_precomputed",
"sklearn/manifold/tests/test_isomap.py::test_pipeline_with_nearest_neighbors_transformer",
"sklearn/manifold/tests/test_locally_linear.py::test_barycenter_kneighbors_graph",
"sklearn/manifold/tests/test_locally_linear.py::test_singular_matrix",
"sklearn/manifold/tests/test_isomap.py::test_isomap_reconstruction_error",
"sklearn/manifold/tests/test_locally_linear.py::test_lle_manifold",
"sklearn/manifold/tests/test_locally_linear.py::test_lle_simple_grid",
"sklearn/manifold/tests/test_isomap.py::test_multiple_connected_components",
"sklearn/manifold/tests/test_locally_linear.py::test_pipeline",
"sklearn/manifold/tests/test_isomap.py::test_sparse_input",
"sklearn/manifold/tests/test_isomap.py::test_isomap_simple_grid"
] |
[
"sklearn/manifold/tests/test_isomap.py::test_get_feature_names_out",
"sklearn/manifold/tests/test_locally_linear.py::test_get_feature_names_out"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 38aea32e776aa..3ae1c260570b2 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -413,6 +413,9 @@ Changelog\n preserve this dtype.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`\n+ and :class:`manifold.LocallyLinearEmbedding`. :pr:`<PRID>` by `<NAME>`_.\n+\n - |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of\n the previous uniform on [0, 1] random initial approximations to eigenvectors\n in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 38aea32e776aa..3ae1c260570b2 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -413,6 +413,9 @@ Changelog
preserve this dtype.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| Adds `get_feature_names_out` to :class:`manifold.Isomap`
+ and :class:`manifold.LocallyLinearEmbedding`. :pr:`<PRID>` by `<NAME>`_.
+
- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of
the previous uniform on [0, 1] random initial approximations to eigenvectors
in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20860
|
https://github.com/scikit-learn/scikit-learn/pull/20860
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index fba40e25a9e7e..9c1084e393e8d 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -53,6 +53,12 @@ Changelog
:pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`
and :user:`András Simon <simonandras>`.
+:mod:`sklearn.pipeline`
+.......................
+
+- |Enhancement| Added support for "passthrough" in :class:`FeatureUnion`.
+ Setting a transformer to "passthrough" will pass the features unchanged.
+ :pr:`20860` by :user:`Shubhraneel Pal <shubhraneel>`.
Code and Documentation Contributors
-----------------------------------
diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py
index 9d4997686612b..e2f9b0f0950ec 100644
--- a/sklearn/pipeline.py
+++ b/sklearn/pipeline.py
@@ -17,6 +17,7 @@
from joblib import Parallel
from .base import clone, TransformerMixin
+from .preprocessing import FunctionTransformer
from .utils._estimator_html_repr import _VisualBlock
from .utils.metaestimators import available_if
from .utils import (
@@ -853,8 +854,9 @@ class FeatureUnion(TransformerMixin, _BaseComposition):
Parameters of the transformers may be set using its name and the parameter
name separated by a '__'. A transformer may be replaced entirely by
- setting the parameter with its name to another transformer,
- or removed by setting to 'drop'.
+ setting the parameter with its name to another transformer, removed by
+ setting to 'drop' or disabled by setting to 'passthrough' (features are
+ passed without transformation).
Read more in the :ref:`User Guide <feature_union>`.
@@ -862,12 +864,14 @@ class FeatureUnion(TransformerMixin, _BaseComposition):
Parameters
----------
- transformer_list : list of tuple
- List of tuple containing `(str, transformer)`. The first element
- of the tuple is name affected to the transformer while the
- second element is a scikit-learn transformer instance.
- The transformer instance can also be `"drop"` for it to be
- ignored.
+ transformer_list : list of (str, transformer) tuples
+ List of transformer objects to be applied to the data. The first
+ half of each tuple is the name of the transformer. The transformer can
+ be 'drop' for it to be ignored or can be 'passthrough' for features to
+ be passed unchanged.
+
+ .. versionadded:: 1.1
+ Added the option `"passthrough"`.
.. versionchanged:: 0.22
Deprecated `None` as a transformer in favor of 'drop'.
@@ -977,7 +981,7 @@ def _validate_transformers(self):
# validate estimators
for t in transformers:
- if t == "drop":
+ if t in ("drop", "passthrough"):
continue
if not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(
t, "transform"
@@ -1004,12 +1008,15 @@ def _iter(self):
Generate (name, trans, weight) tuples excluding None and
'drop' transformers.
"""
+
get_weight = (self.transformer_weights or {}).get
- return (
- (name, trans, get_weight(name))
- for name, trans in self.transformer_list
- if trans != "drop"
- )
+
+ for name, trans in self.transformer_list:
+ if trans == "drop":
+ continue
+ if trans == "passthrough":
+ trans = FunctionTransformer()
+ yield (name, trans, get_weight(name))
@deprecated(
"get_feature_names is deprecated in 1.0 and will be removed "
|
diff --git a/sklearn/tests/test_pipeline.py b/sklearn/tests/test_pipeline.py
index 445bd9064b959..fa01b6e834b11 100644
--- a/sklearn/tests/test_pipeline.py
+++ b/sklearn/tests/test_pipeline.py
@@ -1004,6 +1004,60 @@ def test_set_feature_union_step_drop(get_names):
assert not record
+def test_set_feature_union_passthrough():
+ """Check the behaviour of setting a transformer to `"passthrough"`."""
+ mult2 = Mult(2)
+ mult3 = Mult(3)
+ X = np.asarray([[1]])
+
+ ft = FeatureUnion([("m2", mult2), ("m3", mult3)])
+ assert_array_equal([[2, 3]], ft.fit(X).transform(X))
+ assert_array_equal([[2, 3]], ft.fit_transform(X))
+
+ ft.set_params(m2="passthrough")
+ assert_array_equal([[1, 3]], ft.fit(X).transform(X))
+ assert_array_equal([[1, 3]], ft.fit_transform(X))
+
+ ft.set_params(m3="passthrough")
+ assert_array_equal([[1, 1]], ft.fit(X).transform(X))
+ assert_array_equal([[1, 1]], ft.fit_transform(X))
+
+ # check we can change back
+ ft.set_params(m3=mult3)
+ assert_array_equal([[1, 3]], ft.fit(X).transform(X))
+ assert_array_equal([[1, 3]], ft.fit_transform(X))
+
+ # Check 'passthrough' step at construction time
+ ft = FeatureUnion([("m2", "passthrough"), ("m3", mult3)])
+ assert_array_equal([[1, 3]], ft.fit(X).transform(X))
+ assert_array_equal([[1, 3]], ft.fit_transform(X))
+
+ X = iris.data
+ columns = X.shape[1]
+ pca = PCA(n_components=2, svd_solver="randomized", random_state=0)
+
+ ft = FeatureUnion([("passthrough", "passthrough"), ("pca", pca)])
+ assert_array_equal(X, ft.fit(X).transform(X)[:, :columns])
+ assert_array_equal(X, ft.fit_transform(X)[:, :columns])
+
+ ft.set_params(pca="passthrough")
+ X_ft = ft.fit(X).transform(X)
+ assert_array_equal(X_ft, np.hstack([X, X]))
+ X_ft = ft.fit_transform(X)
+ assert_array_equal(X_ft, np.hstack([X, X]))
+
+ ft.set_params(passthrough=pca)
+ assert_array_equal(X, ft.fit(X).transform(X)[:, -columns:])
+ assert_array_equal(X, ft.fit_transform(X)[:, -columns:])
+
+ ft = FeatureUnion(
+ [("passthrough", "passthrough"), ("pca", pca)],
+ transformer_weights={"passthrough": 2},
+ )
+ assert_array_equal(X * 2, ft.fit(X).transform(X)[:, :columns])
+ assert_array_equal(X * 2, ft.fit_transform(X)[:, :columns])
+
+
def test_step_name_validation():
error_message_1 = r"Estimator names must not contain __: got \['a__q'\]"
error_message_2 = r"Names provided are not unique: \['a', 'a'\]"
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex fba40e25a9e7e..9c1084e393e8d 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -53,6 +53,12 @@ Changelog\n :pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`\n and :user:`András Simon <simonandras>`.\n \n+:mod:`sklearn.pipeline`\n+.......................\n+\n+- |Enhancement| Added support for \"passthrough\" in :class:`FeatureUnion`.\n+ Setting a transformer to \"passthrough\" will pass the features unchanged.\n+ :pr:`20860` by :user:`Shubhraneel Pal <shubhraneel>`.\n \n Code and Documentation Contributors\n -----------------------------------\n"
}
] |
1.01
|
40e1f895b172b9941fdcdefffd5a2aa8556ed227
|
[
"sklearn/tests/test_pipeline.py::test_fit_predict_with_intermediate_fit_params",
"sklearn/tests/test_pipeline.py::test_pipeline_feature_names_out_error_without_definition",
"sklearn/tests/test_pipeline.py::test_score_samples_on_pipeline_without_score_samples",
"sklearn/tests/test_pipeline.py::test_set_feature_union_steps[get_feature_names_out]",
"sklearn/tests/test_pipeline.py::test_pipeline_get_tags_none[None]",
"sklearn/tests/test_pipeline.py::test_pipeline_correctly_adjusts_steps[None]",
"sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor]",
"sklearn/tests/test_pipeline.py::test_feature_union_fit_params",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[1-None]",
"sklearn/tests/test_pipeline.py::test_verbose[est6-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_pipeline_sample_weight_unsupported",
"sklearn/tests/test_pipeline.py::test_step_name_validation",
"sklearn/tests/test_pipeline.py::test_verbose[est15-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 1\\\\) Processing mult2.* total=.*\\\\n$-fit_transform]",
"sklearn/tests/test_pipeline.py::test_pipeline_with_cache_attribute",
"sklearn/tests/test_pipeline.py::test_verbose[est11-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit_transform]",
"sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict]",
"sklearn/tests/test_pipeline.py::test_fit_predict_on_pipeline_without_fit_predict",
"sklearn/tests/test_pipeline.py::test_make_pipeline",
"sklearn/tests/test_pipeline.py::test_make_pipeline_memory",
"sklearn/tests/test_pipeline.py::test_pipeline_methods_anova",
"sklearn/tests/test_pipeline.py::test_n_features_in_pipeline",
"sklearn/tests/test_pipeline.py::test_pipeline_sample_weight_supported",
"sklearn/tests/test_pipeline.py::test_verbose[est13-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 2\\\\) Processing mult1.* total=.*\\\\n\\\\[FeatureUnion\\\\].*\\\\(step 2 of 2\\\\) Processing mult2.* total=.*\\\\n$-fit_transform]",
"sklearn/tests/test_pipeline.py::test_verbose[est9-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit_transform]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[1-2]",
"sklearn/tests/test_pipeline.py::test_pipeline_missing_values_leniency",
"sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict_log_proba]",
"sklearn/tests/test_pipeline.py::test_pipeline_fit_params",
"sklearn/tests/test_pipeline.py::test_verbose[est5-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit_predict]",
"sklearn/tests/test_pipeline.py::test_pipeline_score_samples_pca_lof",
"sklearn/tests/test_pipeline.py::test_verbose[est4-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_feature_union_warns_unknown_transformer_weight",
"sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm",
"sklearn/tests/test_pipeline.py::test_verbose[est14-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 1\\\\) Processing mult2.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_verbose[est3-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit_predict]",
"sklearn/tests/test_pipeline.py::test_pipeline_index",
"sklearn/tests/test_pipeline.py::test_pipeline_raise_set_params_error",
"sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict_proba]",
"sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]",
"sklearn/tests/test_pipeline.py::test_set_params_nested_pipeline",
"sklearn/tests/test_pipeline.py::test_set_pipeline_steps",
"sklearn/tests/test_pipeline.py::test_pipeline_init_tuple",
"sklearn/tests/test_pipeline.py::test_verbose[est0-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[1-3]",
"sklearn/tests/test_pipeline.py::test_verbose[est12-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 2\\\\) Processing mult1.* total=.*\\\\n\\\\[FeatureUnion\\\\].*\\\\(step 2 of 2\\\\) Processing mult2.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_pipeline_fit_transform",
"sklearn/tests/test_pipeline.py::test_make_union",
"sklearn/tests/test_pipeline.py::test_pipeline_get_tags_none[passthrough]",
"sklearn/tests/test_pipeline.py::test_make_union_kwargs",
"sklearn/tests/test_pipeline.py::test_feature_union_feature_names[get_feature_names]",
"sklearn/tests/test_pipeline.py::test_verbose[est2-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_feature_union_feature_names[get_feature_names_out]",
"sklearn/tests/test_pipeline.py::test_verbose[est7-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit_transform]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[0-2]",
"sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]",
"sklearn/tests/test_pipeline.py::test_verbose[est8-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_feature_union_get_feature_names_deprecated",
"sklearn/tests/test_pipeline.py::test_pipeline_ducktyping",
"sklearn/tests/test_pipeline.py::test_pipeline_wrong_memory",
"sklearn/tests/test_pipeline.py::test_fit_predict_on_pipeline",
"sklearn/tests/test_pipeline.py::test_classes_property",
"sklearn/tests/test_pipeline.py::test_features_names_passthrough",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[0-1]",
"sklearn/tests/test_pipeline.py::test_pipeline_param_error",
"sklearn/tests/test_pipeline.py::test_feature_union_weights",
"sklearn/tests/test_pipeline.py::test_pipeline_check_if_fitted",
"sklearn/tests/test_pipeline.py::test_feature_union_parallel",
"sklearn/tests/test_pipeline.py::test_set_feature_union_steps[get_feature_names]",
"sklearn/tests/test_pipeline.py::test_feature_names_count_vectorizer",
"sklearn/tests/test_pipeline.py::test_verbose[est10-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_pipeline_named_steps",
"sklearn/tests/test_pipeline.py::test_pipeline_correctly_adjusts_steps[passthrough]",
"sklearn/tests/test_pipeline.py::test_pipeline_memory",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[None-None]",
"sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[None-1]",
"sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm",
"sklearn/tests/test_pipeline.py::test_verbose[est1-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit_predict]",
"sklearn/tests/test_pipeline.py::test_pipeline_transform",
"sklearn/tests/test_pipeline.py::test_n_features_in_feature_union"
] |
[
"sklearn/tests/test_pipeline.py::test_set_feature_union_passthrough"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex fba40e25a9e7e..9c1084e393e8d 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -53,6 +53,12 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`\n and :user:`<NAME>`.\n \n+:mod:`sklearn.pipeline`\n+.......................\n+\n+- |Enhancement| Added support for \"passthrough\" in :class:`FeatureUnion`.\n+ Setting a transformer to \"passthrough\" will pass the features unchanged.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n \n Code and Documentation Contributors\n -----------------------------------\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index fba40e25a9e7e..9c1084e393e8d 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -53,6 +53,12 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`
and :user:`<NAME>`.
+:mod:`sklearn.pipeline`
+.......................
+
+- |Enhancement| Added support for "passthrough" in :class:`FeatureUnion`.
+ Setting a transformer to "passthrough" will pass the features unchanged.
+ :pr:`<PRID>` by :user:`<NAME>`.
Code and Documentation Contributors
-----------------------------------
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22548
|
https://github.com/scikit-learn/scikit-learn/pull/22548
|
diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst
index 6d176e8482537..24dfa901b1d42 100644
--- a/doc/modules/linear_model.rst
+++ b/doc/modules/linear_model.rst
@@ -1032,7 +1032,7 @@ reproductive exponential dispersion model (EDM) [11]_).
The minimization problem becomes:
-.. math:: \min_{w} \frac{1}{2 n_{\text{samples}}} \sum_i d(y_i, \hat{y}_i) + \frac{\alpha}{2} ||w||_2,
+.. math:: \min_{w} \frac{1}{2 n_{\text{samples}}} \sum_i d(y_i, \hat{y}_i) + \frac{\alpha}{2} ||w||_2^2,
where :math:`\alpha` is the L2 regularization penalty. When sample weights are
provided, the average becomes a weighted average.
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index f64a6bda6ea95..13b473fba11a9 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -557,6 +557,12 @@ Changelog
:pr:`21808`, :pr:`20567` and :pr:`21814` by
:user:`Christian Lorentzen <lorentzenchr>`.
+- |Enhancement| :class:`~linear_model.GammaRegressor`,
+ :class:`~linear_model.PoissonRegressor` and :class:`~linear_model.TweedieRegressor`
+ are faster for ``solvers="lbfgs"``.
+ :pr:`22548`, :pr:`21808` and :pr:`20567` by
+ :user:`Christian Lorentzen <lorentzenchr>`.
+
- |Enhancement| Rename parameter `base_estimator` to `estimator` in
:class:`linear_model.RANSACRegressor` to improve readability and consistency.
`base_estimator` is deprecated and will be removed in 1.3.
@@ -590,6 +596,12 @@ Changelog
sub-problem while now all of them are recorded. :pr:`21998` by
:user:`Olivier Grisel <ogrisel>`.
+- |Fix| The property `family` of :class:`linear_model.TweedieRegressor` is not
+ validated in `__init__` anymore. Instead, this (private) property is deprecated in
+ :class:`linear_model.GammaRegressor`, :class:`linear_model.PoissonRegressor` and
+ :class:`linear_model.TweedieRegressor`, and will be removed in 1.3.
+ :pr:`22548` by :user:`Christian Lorentzen <lorentzenchr>`.
+
- |Enhancement| :class:`linear_model.BayesianRidge` and
:class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`9087` by
:user:`Arthur Imbert <Henley13>` and :pr:`22525` by :user:`Meekail Zain <micky774>`.
diff --git a/sklearn/_loss/__init__.py b/sklearn/_loss/__init__.py
index 14548c62231a2..63ae3038df8ae 100644
--- a/sklearn/_loss/__init__.py
+++ b/sklearn/_loss/__init__.py
@@ -10,6 +10,7 @@
HalfPoissonLoss,
HalfGammaLoss,
HalfTweedieLoss,
+ HalfTweedieLossIdentity,
HalfBinomialLoss,
HalfMultinomialLoss,
)
@@ -22,6 +23,7 @@
"HalfPoissonLoss",
"HalfGammaLoss",
"HalfTweedieLoss",
+ "HalfTweedieLossIdentity",
"HalfBinomialLoss",
"HalfMultinomialLoss",
]
diff --git a/sklearn/_loss/_loss.pxd b/sklearn/_loss/_loss.pxd
index 7255243d331dc..36fc91586a1df 100644
--- a/sklearn/_loss/_loss.pxd
+++ b/sklearn/_loss/_loss.pxd
@@ -69,6 +69,13 @@ cdef class CyHalfTweedieLoss(CyLossFunction):
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
+cdef class CyHalfTweedieLossIdentity(CyLossFunction):
+ cdef readonly double power # readonly makes it accessible from Python
+ cdef double cy_loss(self, double y_true, double raw_prediction) nogil
+ cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
+ cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) nogil
+
+
cdef class CyHalfBinomialLoss(CyLossFunction):
cdef double cy_loss(self, double y_true, double raw_prediction) nogil
cdef double cy_gradient(self, double y_true, double raw_prediction) nogil
diff --git a/sklearn/_loss/_loss.pyx.tp b/sklearn/_loss/_loss.pyx.tp
index 5565cc108af07..af637d34eba16 100644
--- a/sklearn/_loss/_loss.pyx.tp
+++ b/sklearn/_loss/_loss.pyx.tp
@@ -1,7 +1,7 @@
{{py:
"""
-Template file for easily generate loops over samples using Tempita
+Template file to easily generate loops over samples using Tempita
(https://github.com/cython/cython/blob/master/Cython/Tempita/_tempita.py).
Generated file: _loss.pyx
@@ -117,6 +117,28 @@ doc_HalfTweedieLoss = (
"""
)
+doc_HalfTweedieLossIdentity = (
+ """Half Tweedie deviance loss with identity link.
+
+ Domain:
+ y_true in real numbers if p <= 0
+ y_true in non-negative real numbers if 0 < p < 2
+ y_true in positive real numbers if p >= 2
+ y_pred and power in positive real numbers, y_pred may be negative for p=0.
+
+ Link:
+ y_pred = raw_prediction
+
+ Half Tweedie deviance with identity link and p=power is
+ max(y_true, 0)**(2-p) / (1-p) / (2-p)
+ - y_true * y_pred**(1-p) / (1-p)
+ + y_pred**(2-p) / (2-p)
+
+ Notes:
+ - Here, we do not drop constant terms in contrast to the version with log-link.
+ """
+)
+
doc_HalfBinomialLoss = (
"""Half Binomial deviance loss with logit link.
@@ -151,6 +173,9 @@ class_list = [
("CyHalfTweedieLoss", doc_HalfTweedieLoss, "power",
"closs_half_tweedie", "closs_grad_half_tweedie",
"cgradient_half_tweedie", "cgrad_hess_half_tweedie"),
+ ("CyHalfTweedieLossIdentity", doc_HalfTweedieLossIdentity, "power",
+ "closs_half_tweedie_identity", "closs_grad_half_tweedie_identity",
+ "cgradient_half_tweedie_identity", "cgrad_hess_half_tweedie_identity"),
("CyHalfBinomialLoss", doc_HalfBinomialLoss, None,
"closs_half_binomial", "closs_grad_half_binomial",
"cgradient_half_binomial", "cgrad_hess_half_binomial"),
@@ -194,7 +219,7 @@ from cython.parallel import parallel, prange
import numpy as np
cimport numpy as np
-from libc.math cimport exp, fabs, log, log1p
+from libc.math cimport exp, fabs, log, log1p, pow
from libc.stdlib cimport malloc, free
np.import_array()
@@ -420,7 +445,7 @@ cdef inline double_pair cgrad_hess_half_gamma(
# Half Tweedie Deviance with Log-Link, dropping constant terms
-# Note that by dropping constants this is no longer smooth in parameter power.
+# Note that by dropping constants this is no longer continuous in parameter power.
cdef inline double closs_half_tweedie(
double y_true,
double raw_prediction,
@@ -501,6 +526,102 @@ cdef inline double_pair cgrad_hess_half_tweedie(
return gh
+# Half Tweedie Deviance with identity link, without dropping constant terms!
+# Therefore, best loss value is zero.
+cdef inline double closs_half_tweedie_identity(
+ double y_true,
+ double raw_prediction,
+ double power
+) nogil:
+ cdef double tmp
+ if power == 0.:
+ return closs_half_squared_error(y_true, raw_prediction)
+ elif power == 1.:
+ if y_true == 0:
+ return raw_prediction
+ else:
+ return y_true * log(y_true/raw_prediction) + raw_prediction - y_true
+ elif power == 2.:
+ return log(raw_prediction/y_true) + y_true/raw_prediction - 1.
+ else:
+ tmp = pow(raw_prediction, 1. - power)
+ tmp = raw_prediction * tmp / (2. - power) - y_true * tmp / (1. - power)
+ if y_true > 0:
+ tmp += pow(y_true, 2. - power) / ((1. - power) * (2. - power))
+ return tmp
+
+
+cdef inline double cgradient_half_tweedie_identity(
+ double y_true,
+ double raw_prediction,
+ double power
+) nogil:
+ if power == 0.:
+ return raw_prediction - y_true
+ elif power == 1.:
+ return 1. - y_true / raw_prediction
+ elif power == 2.:
+ return (raw_prediction - y_true) / (raw_prediction * raw_prediction)
+ else:
+ return pow(raw_prediction, -power) * (raw_prediction - y_true)
+
+
+cdef inline double_pair closs_grad_half_tweedie_identity(
+ double y_true,
+ double raw_prediction,
+ double power
+) nogil:
+ cdef double_pair lg
+ cdef double tmp
+ if power == 0.:
+ lg.val2 = raw_prediction - y_true # gradient
+ lg.val1 = 0.5 * lg.val2 * lg.val2 # loss
+ elif power == 1.:
+ if y_true == 0:
+ lg.val1 = raw_prediction
+ else:
+ lg.val1 = (y_true * log(y_true/raw_prediction) # loss
+ + raw_prediction - y_true)
+ lg.val2 = 1. - y_true / raw_prediction # gradient
+ elif power == 2.:
+ lg.val1 = log(raw_prediction/y_true) + y_true/raw_prediction - 1. # loss
+ tmp = raw_prediction * raw_prediction
+ lg.val2 = (raw_prediction - y_true) / tmp # gradient
+ else:
+ tmp = pow(raw_prediction, 1. - power)
+ lg.val1 = (raw_prediction * tmp / (2. - power) # loss
+ - y_true * tmp / (1. - power))
+ if y_true > 0:
+ lg.val1 += (pow(y_true, 2. - power)
+ / ((1. - power) * (2. - power)))
+ lg.val2 = tmp * (1. - y_true / raw_prediction) # gradient
+ return lg
+
+
+cdef inline double_pair cgrad_hess_half_tweedie_identity(
+ double y_true,
+ double raw_prediction,
+ double power
+) nogil:
+ cdef double_pair gh
+ cdef double tmp
+ if power == 0.:
+ gh.val1 = raw_prediction - y_true # gradient
+ gh.val2 = 1. # hessian
+ elif power == 1.:
+ gh.val1 = 1. - y_true / raw_prediction # gradient
+ gh.val2 = y_true / (raw_prediction * raw_prediction) # hessian
+ elif power == 2.:
+ tmp = raw_prediction * raw_prediction
+ gh.val1 = (raw_prediction - y_true) / tmp # gradient
+ gh.val2 = (-1. + 2. * y_true / raw_prediction) / tmp # hessian
+ else:
+ tmp = pow(raw_prediction, -power)
+ gh.val1 = tmp * (raw_prediction - y_true) # gradient
+ gh.val2 = tmp * ((1. - power) + power * y_true / raw_prediction) # hessian
+ return gh
+
+
# Half Binomial deviance with logit-link, aka log-loss or binary cross entropy
cdef inline double closs_half_binomial(
double y_true,
diff --git a/sklearn/_loss/glm_distribution.py b/sklearn/_loss/glm_distribution.py
index dfc512c8b10b7..6fbe675fef533 100644
--- a/sklearn/_loss/glm_distribution.py
+++ b/sklearn/_loss/glm_distribution.py
@@ -4,6 +4,10 @@
# Author: Christian Lorentzen <[email protected]>
# License: BSD 3 clause
+#
+# TODO(1.3): remove file
+# This is only used for backward compatibility in _GeneralizedLinearRegressor
+# for the deprecated family attribute.
from abc import ABCMeta, abstractmethod
from collections import namedtuple
diff --git a/sklearn/_loss/link.py b/sklearn/_loss/link.py
index 18ad5901d1f3c..68d1b89116b99 100644
--- a/sklearn/_loss/link.py
+++ b/sklearn/_loss/link.py
@@ -1,7 +1,7 @@
"""
Module contains classes for invertible (and differentiable) link functions.
"""
-# Author: Christian Lorentzen <[email protected]>
+# Author: Christian Lorentzen <[email protected]>
from abc import ABC, abstractmethod
from dataclasses import dataclass
@@ -23,7 +23,7 @@ def __post_init__(self):
"""Check that low <= high"""
if self.low > self.high:
raise ValueError(
- f"On must have low <= high; got low={self.low}, high={self.high}."
+ f"One must have low <= high; got low={self.low}, high={self.high}."
)
def includes(self, x):
diff --git a/sklearn/_loss/loss.py b/sklearn/_loss/loss.py
index d7dbdf44b8c3e..5eb58bb0c27f9 100644
--- a/sklearn/_loss/loss.py
+++ b/sklearn/_loss/loss.py
@@ -25,6 +25,7 @@
CyHalfPoissonLoss,
CyHalfGammaLoss,
CyHalfTweedieLoss,
+ CyHalfTweedieLossIdentity,
CyHalfBinomialLoss,
CyHalfMultinomialLoss,
)
@@ -770,6 +771,52 @@ def constant_to_optimal_zero(self, y_true, sample_weight=None):
return term
+class HalfTweedieLossIdentity(BaseLoss):
+ """Half Tweedie deviance loss with identity link, for regression.
+
+ Domain:
+ y_true in real numbers for power <= 0
+ y_true in non-negative real numbers for 0 < power < 2
+ y_true in positive real numbers for 2 <= power
+ y_pred in positive real numbers for power != 0
+ y_pred in real numbers for power = 0
+ power in real numbers
+
+ Link:
+ y_pred = raw_prediction
+
+ For a given sample x_i, half Tweedie deviance loss with p=power is defined
+ as::
+
+ loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
+ - y_true_i * raw_prediction_i**(1-p) / (1-p)
+ + raw_prediction_i**(2-p) / (2-p)
+
+ Note that the minimum value of this loss is 0.
+
+ Note furthermore that although no Tweedie distribution exists for
+ 0 < power < 1, it still gives a strictly consistent scoring function for
+ the expectation.
+ """
+
+ def __init__(self, sample_weight=None, power=1.5):
+ super().__init__(
+ closs=CyHalfTweedieLossIdentity(power=float(power)),
+ link=IdentityLink(),
+ )
+ if self.closs.power <= 0:
+ self.interval_y_true = Interval(-np.inf, np.inf, False, False)
+ elif self.closs.power < 2:
+ self.interval_y_true = Interval(0, np.inf, True, False)
+ else:
+ self.interval_y_true = Interval(0, np.inf, False, False)
+
+ if self.closs.power == 0:
+ self.interval_y_pred = Interval(-np.inf, np.inf, False, False)
+ else:
+ self.interval_y_pred = Interval(0, np.inf, False, False)
+
+
class HalfBinomialLoss(BaseLoss):
"""Half Binomial deviance loss with logit link, for binary classification.
diff --git a/sklearn/linear_model/_glm/__init__.py b/sklearn/linear_model/_glm/__init__.py
index e5d944fc225a4..fea9c4d4cf6ba 100644
--- a/sklearn/linear_model/_glm/__init__.py
+++ b/sklearn/linear_model/_glm/__init__.py
@@ -1,14 +1,14 @@
# License: BSD 3 clause
from .glm import (
- GeneralizedLinearRegressor,
+ _GeneralizedLinearRegressor,
PoissonRegressor,
GammaRegressor,
TweedieRegressor,
)
__all__ = [
- "GeneralizedLinearRegressor",
+ "_GeneralizedLinearRegressor",
"PoissonRegressor",
"GammaRegressor",
"TweedieRegressor",
diff --git a/sklearn/linear_model/_glm/glm.py b/sklearn/linear_model/_glm/glm.py
index d7af8ae60d8b6..68aa4ea0df22c 100644
--- a/sklearn/linear_model/_glm/glm.py
+++ b/sklearn/linear_model/_glm/glm.py
@@ -2,7 +2,7 @@
Generalized Linear Models with Exponential Dispersion Family
"""
-# Author: Christian Lorentzen <[email protected]>
+# Author: Christian Lorentzen <[email protected]>
# some parts and tricks stolen from other sklearn files.
# License: BSD 3 clause
@@ -11,57 +11,42 @@
import numpy as np
import scipy.optimize
+from ..._loss.glm_distribution import TweedieDistribution
+from ..._loss.loss import (
+ HalfGammaLoss,
+ HalfPoissonLoss,
+ HalfSquaredError,
+ HalfTweedieLoss,
+ HalfTweedieLossIdentity,
+)
from ...base import BaseEstimator, RegressorMixin
from ...utils.optimize import _check_optimize_result
-from ...utils import check_scalar
+from ...utils import check_scalar, check_array, deprecated
from ...utils.validation import check_is_fitted, _check_sample_weight
-from ..._loss.glm_distribution import (
- ExponentialDispersionModel,
- TweedieDistribution,
- EDM_DISTRIBUTIONS,
-)
-from .link import (
- BaseLink,
- IdentityLink,
- LogLink,
-)
-
-
-def _safe_lin_pred(X, coef):
- """Compute the linear predictor taking care if intercept is present."""
- if coef.size == X.shape[1] + 1:
- return X @ coef[1:] + coef[0]
- else:
- return X @ coef
+from ...utils._openmp_helpers import _openmp_effective_n_threads
+from .._linear_loss import LinearModelLoss
-def _y_pred_deviance_derivative(coef, X, y, weights, family, link):
- """Compute y_pred and the derivative of the deviance w.r.t coef."""
- lin_pred = _safe_lin_pred(X, coef)
- y_pred = link.inverse(lin_pred)
- d1 = link.inverse_derivative(lin_pred)
- temp = d1 * family.deviance_derivative(y, y_pred, weights)
- if coef.size == X.shape[1] + 1:
- devp = np.concatenate(([temp.sum()], temp @ X))
- else:
- devp = temp @ X # same as X.T @ temp
- return y_pred, devp
-
-
-class GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):
+class _GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):
"""Regression via a penalized Generalized Linear Model (GLM).
- GLMs based on a reproductive Exponential Dispersion Model (EDM) aim at
- fitting and predicting the mean of the target y as y_pred=h(X*w).
- Therefore, the fit minimizes the following objective function with L2
- priors as regularizer::
+ GLMs based on a reproductive Exponential Dispersion Model (EDM) aim at fitting and
+ predicting the mean of the target y as y_pred=h(X*w) with coefficients w.
+ Therefore, the fit minimizes the following objective function with L2 priors as
+ regularizer::
- 1/(2*sum(s)) * deviance(y, h(X*w); s)
- + 1/2 * alpha * |w|_2
+ 1/(2*sum(s_i)) * sum(s_i * deviance(y_i, h(x_i*w)) + 1/2 * alpha * ||w||_2^2
- with inverse link function h and s=sample_weight.
+ with inverse link function h, s=sample_weight and per observation (unit) deviance
+ deviance(y_i, h(x_i*w)). Note that for an EDM, 1/2 * deviance is the negative
+ log-likelihood up to a constant (in w) term.
The parameter ``alpha`` corresponds to the lambda parameter in glmnet.
+ Instead of implementing the EDM family and a link function seperately, we directly
+ use the loss functions `from sklearn._loss` which have the link functions included
+ in them for performance reasons. We pick the loss functions that implement
+ (1/2 times) EDM deviances.
+
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
.. versionadded:: 0.23
@@ -79,20 +64,6 @@ class GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
- family : {'normal', 'poisson', 'gamma', 'inverse-gaussian'} \
- or an ExponentialDispersionModel instance, default='normal'
- The distributional assumption of the GLM, i.e. which distribution from
- the EDM, specifies the loss function to be minimized.
-
- link : {'auto', 'identity', 'log'} or an instance of class BaseLink, \
- default='auto'
- The link function of the GLM, i.e. mapping from linear predictor
- `X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
- the link depending on the chosen family as follows:
-
- - 'identity' for Normal distribution
- - 'log' for Poisson, Gamma and Inverse Gaussian distributions
-
solver : 'lbfgs', default='lbfgs'
Algorithm to use in the optimization problem:
@@ -129,6 +100,26 @@ class GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):
n_iter_ : int
Actual number of iterations used in the solver.
+
+ _base_loss : BaseLoss, default=HalfSquaredError()
+ This is set during fit via `self._get_loss()`.
+ A `_base_loss` contains a specific loss function as well as the link
+ function. The loss to be minimized specifies the distributional assumption of
+ the GLM, i.e. the distribution from the EDM. Here are some examples:
+
+ ======================= ======== ==========================
+ _base_loss Link Target Domain
+ ======================= ======== ==========================
+ HalfSquaredError identity y any real number
+ HalfPoissonLoss log 0 <= y
+ HalfGammaLoss log 0 < y
+ HalfTweedieLoss log dependend on tweedie power
+ HalfTweedieLossIdentity identity dependend on tweedie power
+ ======================= ======== ==========================
+
+ The link function of the GLM, i.e. mapping from linear predictor
+ `X @ coeff + intercept` to prediction `y_pred`. For instance, with a log link,
+ we have `y_pred = exp(X @ coeff + intercept)`.
"""
def __init__(
@@ -136,8 +127,6 @@ def __init__(
*,
alpha=1.0,
fit_intercept=True,
- family="normal",
- link="auto",
solver="lbfgs",
max_iter=100,
tol=1e-4,
@@ -146,8 +135,6 @@ def __init__(
):
self.alpha = alpha
self.fit_intercept = fit_intercept
- self.family = family
- self.link = link
self.solver = solver
self.max_iter = max_iter
self.tol = tol
@@ -173,47 +160,6 @@ def fit(self, X, y, sample_weight=None):
self : object
Fitted model.
"""
- if isinstance(self.family, ExponentialDispersionModel):
- self._family_instance = self.family
- elif self.family in EDM_DISTRIBUTIONS:
- self._family_instance = EDM_DISTRIBUTIONS[self.family]()
- else:
- raise ValueError(
- "The family must be an instance of class"
- " ExponentialDispersionModel or an element of"
- " ['normal', 'poisson', 'gamma', 'inverse-gaussian']"
- "; got (family={0})".format(self.family)
- )
-
- # Guarantee that self._link_instance is set to an instance of
- # class BaseLink
- if isinstance(self.link, BaseLink):
- self._link_instance = self.link
- else:
- if self.link == "auto":
- if isinstance(self._family_instance, TweedieDistribution):
- if self._family_instance.power <= 0:
- self._link_instance = IdentityLink()
- if self._family_instance.power >= 1:
- self._link_instance = LogLink()
- else:
- raise ValueError(
- "No default link known for the "
- "specified distribution family. Please "
- "set link manually, i.e. not to 'auto'; "
- "got (link='auto', family={})".format(self.family)
- )
- elif self.link == "identity":
- self._link_instance = IdentityLink()
- elif self.link == "log":
- self._link_instance = LogLink()
- else:
- raise ValueError(
- "The link must be an instance of class Link or "
- "an element of ['auto', 'identity', 'log']; "
- "got (link={0})".format(self.link)
- )
-
check_scalar(
self.alpha,
name="alpha",
@@ -229,8 +175,8 @@ def fit(self, X, y, sample_weight=None):
)
if self.solver not in ["lbfgs"]:
raise ValueError(
- "GeneralizedLinearRegressor supports only solvers"
- "'lbfgs'; got {0}".format(self.solver)
+ f"{self.__class__.__name__} supports only solvers 'lbfgs'; "
+ f"got {self.solver}"
)
solver = self.solver
check_scalar(
@@ -257,9 +203,6 @@ def fit(self, X, y, sample_weight=None):
"The argument warm_start must be bool; got {0}".format(self.warm_start)
)
- family = self._family_instance
- link = self._link_instance
-
X, y = self._validate_data(
X,
y,
@@ -269,57 +212,71 @@ def fit(self, X, y, sample_weight=None):
multi_output=False,
)
- weights = _check_sample_weight(sample_weight, X)
+ # required by losses
+ if solver == "lbfgs":
+ # lbfgs will force coef and therefore raw_prediction to be float64. The
+ # base_loss needs y, X @ coef and sample_weight all of same dtype
+ # (and contiguous).
+ loss_dtype = np.float64
+ else:
+ loss_dtype = min(max(y.dtype, X.dtype), np.float64)
+ y = check_array(y, dtype=loss_dtype, order="C", ensure_2d=False)
+
+ # TODO: We could support samples_weight=None as the losses support it.
+ # Note that _check_sample_weight calls check_array(order="C") required by
+ # losses.
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=loss_dtype)
+
+ n_samples, n_features = X.shape
+ self._base_loss = self._get_loss()
- _, n_features = X.shape
+ self._linear_loss = LinearModelLoss(
+ base_loss=self._base_loss,
+ fit_intercept=self.fit_intercept,
+ )
- if not np.all(family.in_y_range(y)):
+ if not self._linear_loss.base_loss.in_y_true_range(y):
raise ValueError(
- "Some value(s) of y are out of the valid range for family {0}".format(
- family.__class__.__name__
- )
+ "Some value(s) of y are out of the valid range of the loss"
+ f" {self._base_loss.__class__.__name__!r}."
)
+
# TODO: if alpha=0 check that X is not rank deficient
- # rescaling of sample_weight
- #
- # IMPORTANT NOTE: Since we want to minimize
- # 1/(2*sum(sample_weight)) * deviance + L2,
- # deviance = sum(sample_weight * unit_deviance),
- # we rescale weights such that sum(weights) = 1 and this becomes
- # 1/2*deviance + L2 with deviance=sum(weights * unit_deviance)
- weights = weights / weights.sum()
+ # IMPORTANT NOTE: Rescaling of sample_weight:
+ # We want to minimize
+ # obj = 1/(2*sum(sample_weight)) * sum(sample_weight * deviance)
+ # + 1/2 * alpha * L2,
+ # with
+ # deviance = 2 * loss.
+ # The objective is invariant to multiplying sample_weight by a constant. We
+ # choose this constant such that sum(sample_weight) = 1. Thus, we end up with
+ # obj = sum(sample_weight * loss) + 1/2 * alpha * L2.
+ # Note that LinearModelLoss.loss() computes sum(sample_weight * loss).
+ sample_weight = sample_weight / sample_weight.sum()
if self.warm_start and hasattr(self, "coef_"):
if self.fit_intercept:
- coef = np.concatenate((np.array([self.intercept_]), self.coef_))
+ # LinearModelLoss needs intercept at the end of coefficient array.
+ coef = np.concatenate((self.coef_, np.array([self.intercept_])))
else:
coef = self.coef_
+ coef = coef.astype(loss_dtype, copy=False)
else:
if self.fit_intercept:
- coef = np.zeros(n_features + 1)
- coef[0] = link(np.average(y, weights=weights))
+ coef = np.zeros(n_features + 1, dtype=loss_dtype)
+ coef[-1] = self._linear_loss.base_loss.link.link(
+ np.average(y, weights=sample_weight)
+ )
else:
- coef = np.zeros(n_features)
-
- # algorithms for optimization
+ coef = np.zeros(n_features, dtype=loss_dtype)
+ # Algorithms for optimization:
+ # Note again that our losses implement 1/2 * deviance.
if solver == "lbfgs":
-
- def func(coef, X, y, weights, alpha, family, link):
- y_pred, devp = _y_pred_deviance_derivative(
- coef, X, y, weights, family, link
- )
- dev = family.deviance(y, y_pred, weights)
- # offset if coef[0] is intercept
- offset = 1 if self.fit_intercept else 0
- coef_scaled = alpha * coef[offset:]
- obj = 0.5 * dev + 0.5 * (coef[offset:] @ coef_scaled)
- objp = 0.5 * devp
- objp[offset:] += coef_scaled
- return obj, objp
-
- args = (X, y, weights, self.alpha, family, link)
+ func = self._linear_loss.loss_gradient
+ l2_reg_strength = self.alpha
+ n_threads = _openmp_effective_n_threads()
opt_res = scipy.optimize.minimize(
func,
@@ -332,14 +289,14 @@ def func(coef, X, y, weights, alpha, family, link):
"gtol": self.tol,
"ftol": 1e3 * np.finfo(float).eps,
},
- args=args,
+ args=(X, y, sample_weight, l2_reg_strength, n_threads),
)
self.n_iter_ = _check_optimize_result("lbfgs", opt_res)
coef = opt_res.x
if self.fit_intercept:
- self.intercept_ = coef[0]
- self.coef_ = coef[1:]
+ self.intercept_ = coef[-1]
+ self.coef_ = coef[:-1]
else:
# set intercept to zero as the other linear models do
self.intercept_ = 0.0
@@ -350,6 +307,8 @@ def func(coef, X, y, weights, alpha, family, link):
def _linear_predictor(self, X):
"""Compute the linear_predictor = `X @ coef_ + intercept_`.
+ Note that we often use the term raw_prediction instead of linear predictor.
+
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
@@ -385,16 +344,16 @@ def predict(self, X):
Returns predicted values.
"""
# check_array is done in _linear_predictor
- eta = self._linear_predictor(X)
- y_pred = self._link_instance.inverse(eta)
+ raw_prediction = self._linear_predictor(X)
+ y_pred = self._linear_loss.base_loss.link.inverse(raw_prediction)
return y_pred
def score(self, X, y, sample_weight=None):
"""Compute D^2, the percentage of deviance explained.
D^2 is a generalization of the coefficient of determination R^2.
- R^2 uses squared error and D^2 deviance. Note that those two are equal
- for ``family='normal'``.
+ R^2 uses squared error and D^2 uses the deviance of this GLM, see the
+ :ref:`User Guide <regression_metrics>`.
D^2 is defined as
:math:`D^2 = 1-\\frac{D(y_{true},y_{pred})}{D_{null}}`,
@@ -420,30 +379,88 @@ def score(self, X, y, sample_weight=None):
score : float
D^2 of self.predict(X) w.r.t. y.
"""
+ # TODO: Adapt link to User Guide in the docstring, once
+ # https://github.com/scikit-learn/scikit-learn/pull/22118 is merged.
+ #
# Note, default score defined in RegressorMixin is R^2 score.
# TODO: make D^2 a score function in module metrics (and thereby get
# input validation and so on)
- weights = _check_sample_weight(sample_weight, X)
- y_pred = self.predict(X)
- dev = self._family_instance.deviance(y, y_pred, weights=weights)
- y_mean = np.average(y, weights=weights)
- dev_null = self._family_instance.deviance(y, y_mean, weights=weights)
- return 1 - dev / dev_null
+ raw_prediction = self._linear_predictor(X) # validates X
+ # required by losses
+ y = check_array(y, dtype=raw_prediction.dtype, order="C", ensure_2d=False)
+
+ if sample_weight is not None:
+ # Note that _check_sample_weight calls check_array(order="C") required by
+ # losses.
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=y.dtype)
+
+ base_loss = self._linear_loss.base_loss
+
+ if not base_loss.in_y_true_range(y):
+ raise ValueError(
+ "Some value(s) of y are out of the valid range of the loss"
+ f" {self._base_loss.__name__}."
+ )
+
+ # Note that constant_to_optimal_zero is already multiplied by sample_weight.
+ constant = np.mean(base_loss.constant_to_optimal_zero(y_true=y))
+ if sample_weight is not None:
+ constant *= sample_weight.shape[0] / np.sum(sample_weight)
+
+ # Missing factor of 2 in deviance cancels out.
+ deviance = base_loss(
+ y_true=y,
+ raw_prediction=raw_prediction,
+ sample_weight=sample_weight,
+ n_threads=1,
+ )
+ y_mean = base_loss.link.link(np.average(y, weights=sample_weight))
+ deviance_null = base_loss(
+ y_true=y,
+ raw_prediction=np.tile(y_mean, y.shape[0]),
+ sample_weight=sample_weight,
+ n_threads=1,
+ )
+ return 1 - (deviance + constant) / (deviance_null + constant)
def _more_tags(self):
- # create the _family_instance if fit wasn't called yet.
- if hasattr(self, "_family_instance"):
- _family_instance = self._family_instance
- elif isinstance(self.family, ExponentialDispersionModel):
- _family_instance = self.family
- elif self.family in EDM_DISTRIBUTIONS:
- _family_instance = EDM_DISTRIBUTIONS[self.family]()
+ # Create instance of BaseLoss if fit wasn't called yet. This is necessary as
+ # TweedieRegressor might set the used loss during fit different from
+ # self._base_loss.
+ base_loss = self._get_loss()
+ return {"requires_positive_y": not base_loss.in_y_true_range(-1.0)}
+
+ def _get_loss(self):
+ """This is only necessary because of the link and power arguments of the
+ TweedieRegressor.
+
+ Note that we do not need to pass sample_weight to the loss class as this is
+ only needed to set loss.constant_hessian on which GLMs do not rely.
+ """
+ return HalfSquaredError()
+
+ # TODO(1.3): remove
+ @deprecated( # type: ignore
+ "Attribute `family` was deprecated in version 1.1 and will be removed in 1.3."
+ )
+ @property
+ def family(self):
+ """Ensure backward compatibility for the time of deprecation."""
+ if isinstance(self, PoissonRegressor):
+ return "poisson"
+ elif isinstance(self, GammaRegressor):
+ return "gamma"
+ elif isinstance(self, TweedieRegressor):
+ return TweedieDistribution(power=self.power)
else:
- raise ValueError
- return {"requires_positive_y": not _family_instance.in_y_range(-1.0)}
+ raise ValueError( # noqa
+ "This should never happen. You presumably accessed the deprecated "
+ "`family` attribute from a subclass of the private scikit-learn class "
+ "_GeneralizedLinearRegressor."
+ )
-class PoissonRegressor(GeneralizedLinearRegressor):
+class PoissonRegressor(_GeneralizedLinearRegressor):
"""Generalized Linear Model with a Poisson distribution.
This regressor uses the 'log' link function.
@@ -509,8 +526,7 @@ class PoissonRegressor(GeneralizedLinearRegressor):
See Also
--------
- GeneralizedLinearRegressor : Generalized Linear Model with a Poisson
- distribution.
+ TweedieRegressor : Generalized Linear Model with a Tweedie distribution.
Examples
--------
@@ -540,31 +556,20 @@ def __init__(
warm_start=False,
verbose=0,
):
-
super().__init__(
alpha=alpha,
fit_intercept=fit_intercept,
- family="poisson",
- link="log",
max_iter=max_iter,
tol=tol,
warm_start=warm_start,
verbose=verbose,
)
- @property
- def family(self):
- """Return the string `'poisson'`."""
- # Make this attribute read-only to avoid mis-uses e.g. in GridSearch.
- return "poisson"
-
- @family.setter
- def family(self, value):
- if value != "poisson":
- raise ValueError("PoissonRegressor.family must be 'poisson'!")
+ def _get_loss(self):
+ return HalfPoissonLoss()
-class GammaRegressor(GeneralizedLinearRegressor):
+class GammaRegressor(_GeneralizedLinearRegressor):
"""Generalized Linear Model with a Gamma distribution.
This regressor uses the 'log' link function.
@@ -661,31 +666,20 @@ def __init__(
warm_start=False,
verbose=0,
):
-
super().__init__(
alpha=alpha,
fit_intercept=fit_intercept,
- family="gamma",
- link="log",
max_iter=max_iter,
tol=tol,
warm_start=warm_start,
verbose=verbose,
)
- @property
- def family(self):
- """Return the family of the regressor."""
- # Make this attribute read-only to avoid mis-uses e.g. in GridSearch.
- return "gamma"
-
- @family.setter
- def family(self, value):
- if value != "gamma":
- raise ValueError("GammaRegressor.family must be 'gamma'!")
+ def _get_loss(self):
+ return HalfGammaLoss()
-class TweedieRegressor(GeneralizedLinearRegressor):
+class TweedieRegressor(_GeneralizedLinearRegressor):
"""Generalized Linear Model with a Tweedie distribution.
This estimator can be used to model different GLMs depending on the
@@ -731,10 +725,11 @@ class TweedieRegressor(GeneralizedLinearRegressor):
link : {'auto', 'identity', 'log'}, default='auto'
The link function of the GLM, i.e. mapping from linear predictor
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
- the link depending on the chosen family as follows:
+ the link depending on the chosen `power` parameter as follows:
- - 'identity' for Normal distribution
- - 'log' for Poisson, Gamma and Inverse Gaussian distributions
+ - 'identity' for ``power <= 0``, e.g. for the Normal distribution
+ - 'log' for ``power > 0``, e.g. for Poisson, Gamma and Inverse Gaussian
+ distributions
max_iter : int, default=100
The maximal number of iterations for the solver.
@@ -813,33 +808,31 @@ def __init__(
warm_start=False,
verbose=0,
):
-
super().__init__(
alpha=alpha,
fit_intercept=fit_intercept,
- family=TweedieDistribution(power=power),
- link=link,
max_iter=max_iter,
tol=tol,
warm_start=warm_start,
verbose=verbose,
)
+ self.link = link
+ self.power = power
- @property
- def family(self):
- """Return the family of the regressor."""
- # We use a property with a setter to make sure that the family is
- # always a Tweedie distribution, and that self.power and
- # self.family.power are identical by construction.
- dist = TweedieDistribution(power=self.power)
- # TODO: make the returned object immutable
- return dist
-
- @family.setter
- def family(self, value):
- if isinstance(value, TweedieDistribution):
- self.power = value.power
+ def _get_loss(self):
+ if self.link == "auto":
+ if self.power <= 0:
+ # identity link
+ return HalfTweedieLossIdentity(power=self.power)
+ else:
+ # log link
+ return HalfTweedieLoss(power=self.power)
+ elif self.link == "log":
+ return HalfTweedieLoss(power=self.power)
+ elif self.link == "identity":
+ return HalfTweedieLossIdentity(power=self.power)
else:
- raise TypeError(
- "TweedieRegressor.family must be of type TweedieDistribution!"
+ raise ValueError(
+ "The link must be an element of ['auto', 'identity', 'log']; "
+ f"got (link={self.link!r})"
)
diff --git a/sklearn/linear_model/_glm/link.py b/sklearn/linear_model/_glm/link.py
deleted file mode 100644
index 878d8e835bc42..0000000000000
--- a/sklearn/linear_model/_glm/link.py
+++ /dev/null
@@ -1,110 +0,0 @@
-"""
-Link functions used in GLM
-"""
-
-# Author: Christian Lorentzen <[email protected]>
-# License: BSD 3 clause
-
-from abc import ABCMeta, abstractmethod
-
-import numpy as np
-from scipy.special import expit, logit
-
-
-class BaseLink(metaclass=ABCMeta):
- """Abstract base class for Link functions."""
-
- @abstractmethod
- def __call__(self, y_pred):
- """Compute the link function g(y_pred).
-
- The link function links the mean y_pred=E[Y] to the so called linear
- predictor (X*w), i.e. g(y_pred) = linear predictor.
-
- Parameters
- ----------
- y_pred : array of shape (n_samples,)
- Usually the (predicted) mean.
- """
-
- @abstractmethod
- def derivative(self, y_pred):
- """Compute the derivative of the link g'(y_pred).
-
- Parameters
- ----------
- y_pred : array of shape (n_samples,)
- Usually the (predicted) mean.
- """
-
- @abstractmethod
- def inverse(self, lin_pred):
- """Compute the inverse link function h(lin_pred).
-
- Gives the inverse relationship between linear predictor and the mean
- y_pred=E[Y], i.e. h(linear predictor) = y_pred.
-
- Parameters
- ----------
- lin_pred : array of shape (n_samples,)
- Usually the (fitted) linear predictor.
- """
-
- @abstractmethod
- def inverse_derivative(self, lin_pred):
- """Compute the derivative of the inverse link function h'(lin_pred).
-
- Parameters
- ----------
- lin_pred : array of shape (n_samples,)
- Usually the (fitted) linear predictor.
- """
-
-
-class IdentityLink(BaseLink):
- """The identity link function g(x)=x."""
-
- def __call__(self, y_pred):
- return y_pred
-
- def derivative(self, y_pred):
- return np.ones_like(y_pred)
-
- def inverse(self, lin_pred):
- return lin_pred
-
- def inverse_derivative(self, lin_pred):
- return np.ones_like(lin_pred)
-
-
-class LogLink(BaseLink):
- """The log link function g(x)=log(x)."""
-
- def __call__(self, y_pred):
- return np.log(y_pred)
-
- def derivative(self, y_pred):
- return 1 / y_pred
-
- def inverse(self, lin_pred):
- return np.exp(lin_pred)
-
- def inverse_derivative(self, lin_pred):
- return np.exp(lin_pred)
-
-
-class LogitLink(BaseLink):
- """The logit link function g(x)=logit(x)."""
-
- def __call__(self, y_pred):
- return logit(y_pred)
-
- def derivative(self, y_pred):
- return 1 / (y_pred * (1 - y_pred))
-
- def inverse(self, lin_pred):
- return expit(lin_pred)
-
- def inverse_derivative(self, lin_pred):
- ep = expit(lin_pred)
- return ep * (1 - ep)
diff --git a/sklearn/linear_model/_linear_loss.py b/sklearn/linear_model/_linear_loss.py
index 93a7684aea5b6..64a99325dcd7a 100644
--- a/sklearn/linear_model/_linear_loss.py
+++ b/sklearn/linear_model/_linear_loss.py
@@ -9,6 +9,8 @@
class LinearModelLoss:
"""General class for loss functions with raw_prediction = X @ coef + intercept.
+ Note that raw_prediction is also known as linear predictor.
+
The loss is the sum of per sample losses and includes a term for L2
regularization::
@@ -194,13 +196,13 @@ def loss_gradient(
if not self.base_loss.is_multiclass:
loss += 0.5 * l2_reg_strength * (weights @ weights)
- grad = np.empty_like(coef, dtype=X.dtype)
+ grad = np.empty_like(coef, dtype=weights.dtype)
grad[:n_features] = X.T @ grad_per_sample + l2_reg_strength * weights
if self.fit_intercept:
grad[-1] = grad_per_sample.sum()
else:
loss += 0.5 * l2_reg_strength * squared_norm(weights)
- grad = np.empty((n_classes, n_dof), dtype=X.dtype, order="F")
+ grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F")
# grad_per_sample.shape = (n_samples, n_classes)
grad[:, :n_features] = grad_per_sample.T @ X + l2_reg_strength * weights
if self.fit_intercept:
@@ -250,13 +252,13 @@ def gradient(
)
if not self.base_loss.is_multiclass:
- grad = np.empty_like(coef, dtype=X.dtype)
+ grad = np.empty_like(coef, dtype=weights.dtype)
grad[:n_features] = X.T @ grad_per_sample + l2_reg_strength * weights
if self.fit_intercept:
grad[-1] = grad_per_sample.sum()
return grad
else:
- grad = np.empty((n_classes, n_dof), dtype=X.dtype, order="F")
+ grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F")
# gradient.shape = (n_samples, n_classes)
grad[:, :n_features] = grad_per_sample.T @ X + l2_reg_strength * weights
if self.fit_intercept:
@@ -309,7 +311,7 @@ def gradient_hessian_product(
sample_weight=sample_weight,
n_threads=n_threads,
)
- grad = np.empty_like(coef, dtype=X.dtype)
+ grad = np.empty_like(coef, dtype=weights.dtype)
grad[:n_features] = X.T @ gradient + l2_reg_strength * weights
if self.fit_intercept:
grad[-1] = gradient.sum()
@@ -356,7 +358,7 @@ def hessp(s):
sample_weight=sample_weight,
n_threads=n_threads,
)
- grad = np.empty((n_classes, n_dof), dtype=X.dtype, order="F")
+ grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F")
grad[:, :n_features] = gradient.T @ X + l2_reg_strength * weights
if self.fit_intercept:
grad[:, -1] = gradient.sum(axis=0)
@@ -396,7 +398,7 @@ def hessp(s):
tmp *= sample_weight[:, np.newaxis]
# hess_prod = empty_like(grad), but we ravel grad below and this
# function is run after that.
- hess_prod = np.empty((n_classes, n_dof), dtype=X.dtype, order="F")
+ hess_prod = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F")
hess_prod[:, :n_features] = tmp.T @ X + l2_reg_strength * s
if self.fit_intercept:
hess_prod[:, -1] = tmp.sum(axis=0)
diff --git a/sklearn/metrics/_regression.py b/sklearn/metrics/_regression.py
index c701320f9c23a..270d6a2c19cfe 100644
--- a/sklearn/metrics/_regression.py
+++ b/sklearn/metrics/_regression.py
@@ -19,21 +19,23 @@
# Manoj Kumar <[email protected]>
# Michael Eickenberg <[email protected]>
# Konstantin Shmelkov <[email protected]>
-# Christian Lorentzen <[email protected]>
+# Christian Lorentzen <[email protected]>
# Ashutosh Hathidara <[email protected]>
# Uttam kumar <[email protected]>
# Sylvain Marie <[email protected]>
# License: BSD 3 clause
+import numbers
import warnings
import numpy as np
+from scipy.special import xlogy
-from .._loss.glm_distribution import TweedieDistribution
from ..exceptions import UndefinedMetricWarning
from ..utils.validation import (
check_array,
check_consistent_length,
+ check_scalar,
_num_samples,
column_or_1d,
_check_sample_weight,
@@ -965,6 +967,35 @@ def max_error(y_true, y_pred):
return np.max(np.abs(y_true - y_pred))
+def _mean_tweedie_deviance(y_true, y_pred, sample_weight, power):
+ """Mean Tweedie deviance regression loss."""
+ p = power
+ if p < 0:
+ # 'Extreme stable', y any real number, y_pred > 0
+ dev = 2 * (
+ np.power(np.maximum(y_true, 0), 2 - p) / ((1 - p) * (2 - p))
+ - y_true * np.power(y_pred, 1 - p) / (1 - p)
+ + np.power(y_pred, 2 - p) / (2 - p)
+ )
+ elif p == 0:
+ # Normal distribution, y and y_pred any real number
+ dev = (y_true - y_pred) ** 2
+ elif p == 1:
+ # Poisson distribution
+ dev = 2 * (xlogy(y_true, y_true / y_pred) - y_true + y_pred)
+ elif p == 2:
+ # Gamma distribution
+ dev = 2 * (np.log(y_pred / y_true) + y_true / y_pred - 1)
+ else:
+ dev = 2 * (
+ np.power(y_true, 2 - p) / ((1 - p) * (2 - p))
+ - y_true * np.power(y_pred, 1 - p) / (1 - p)
+ + np.power(y_pred, 2 - p) / (2 - p)
+ )
+
+ return np.average(dev, weights=sample_weight)
+
+
def mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0):
"""Mean Tweedie deviance regression loss.
@@ -1024,10 +1055,37 @@ def mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0):
sample_weight = column_or_1d(sample_weight)
sample_weight = sample_weight[:, np.newaxis]
- dist = TweedieDistribution(power=power)
- dev = dist.unit_deviance(y_true, y_pred, check_input=True)
+ p = check_scalar(
+ power,
+ name="power",
+ target_type=numbers.Real,
+ )
- return np.average(dev, weights=sample_weight)
+ message = f"Mean Tweedie deviance error with power={p} can only be used on "
+ if p < 0:
+ # 'Extreme stable', y any real number, y_pred > 0
+ if (y_pred <= 0).any():
+ raise ValueError(message + "strictly positive y_pred.")
+ elif p == 0:
+ # Normal, y and y_pred can be any real number
+ pass
+ elif 0 < p < 1:
+ raise ValueError("Tweedie deviance is only defined for power<=0 and power>=1.")
+ elif 1 <= p < 2:
+ # Poisson and compound Poisson distribution, y >= 0, y_pred > 0
+ if (y_true < 0).any() or (y_pred <= 0).any():
+ raise ValueError(message + "non-negative y and strictly positive y_pred.")
+ elif p >= 2:
+ # Gamma and Extreme stable distribution, y and y_pred > 0
+ if (y_true <= 0).any() or (y_pred <= 0).any():
+ raise ValueError(message + "strictly positive y and y_pred.")
+ else: # pragma: nocover
+ # Unreachable statement
+ raise ValueError
+
+ return _mean_tweedie_deviance(
+ y_true, y_pred, sample_weight=sample_weight, power=power
+ )
def mean_poisson_deviance(y_true, y_pred, *, sample_weight=None):
@@ -1182,24 +1240,20 @@ def d2_tweedie_score(y_true, y_pred, *, sample_weight=None, power=0):
)
if y_type == "continuous-multioutput":
raise ValueError("Multioutput not supported in d2_tweedie_score")
- check_consistent_length(y_true, y_pred, sample_weight)
if _num_samples(y_pred) < 2:
msg = "D^2 score is not well-defined with less than two samples."
warnings.warn(msg, UndefinedMetricWarning)
return float("nan")
- if sample_weight is not None:
- sample_weight = column_or_1d(sample_weight)
- sample_weight = sample_weight[:, np.newaxis]
-
- dist = TweedieDistribution(power=power)
-
- dev = dist.unit_deviance(y_true, y_pred, check_input=True)
- numerator = np.average(dev, weights=sample_weight)
+ y_true, y_pred = np.squeeze(y_true), np.squeeze(y_pred)
+ numerator = mean_tweedie_deviance(
+ y_true, y_pred, sample_weight=sample_weight, power=power
+ )
y_avg = np.average(y_true, weights=sample_weight)
- dev = dist.unit_deviance(y_true, y_avg, check_input=True)
- denominator = np.average(dev, weights=sample_weight)
+ denominator = _mean_tweedie_deviance(
+ y_true, y_avg, sample_weight=sample_weight, power=power
+ )
return 1 - numerator / denominator
|
diff --git a/sklearn/_loss/tests/test_glm_distribution.py b/sklearn/_loss/tests/test_glm_distribution.py
index 453f61e2f3214..aaaa9de39a502 100644
--- a/sklearn/_loss/tests/test_glm_distribution.py
+++ b/sklearn/_loss/tests/test_glm_distribution.py
@@ -1,6 +1,8 @@
# Authors: Christian Lorentzen <[email protected]>
#
# License: BSD 3 clause
+#
+# TODO(1.3): remove file
import numpy as np
from numpy.testing import (
assert_allclose,
diff --git a/sklearn/_loss/tests/test_link.py b/sklearn/_loss/tests/test_link.py
index b363a45109989..435361eaa50f1 100644
--- a/sklearn/_loss/tests/test_link.py
+++ b/sklearn/_loss/tests/test_link.py
@@ -16,7 +16,7 @@
def test_interval_raises():
"""Test that interval with low > high raises ValueError."""
with pytest.raises(
- ValueError, match="On must have low <= high; got low=1, high=0."
+ ValueError, match="One must have low <= high; got low=1, high=0."
):
Interval(1, 0, False, False)
diff --git a/sklearn/_loss/tests/test_loss.py b/sklearn/_loss/tests/test_loss.py
index a830592d7796c..8aeb350440005 100644
--- a/sklearn/_loss/tests/test_loss.py
+++ b/sklearn/_loss/tests/test_loss.py
@@ -23,6 +23,7 @@
HalfPoissonLoss,
HalfSquaredError,
HalfTweedieLoss,
+ HalfTweedieLossIdentity,
PinballLoss,
)
from sklearn.utils import assert_all_finite
@@ -40,6 +41,10 @@
HalfTweedieLoss(power=1),
HalfTweedieLoss(power=2),
HalfTweedieLoss(power=3.0),
+ HalfTweedieLossIdentity(power=0),
+ HalfTweedieLossIdentity(power=1),
+ HalfTweedieLossIdentity(power=2),
+ HalfTweedieLossIdentity(power=3.0),
]
@@ -70,8 +75,14 @@ def random_y_true_raw_prediction(
)
y_true = np.arange(n_samples).astype(float) % loss.n_classes
else:
+ # If link is identity, we must respect the interval of y_pred:
+ if isinstance(loss.link, IdentityLink):
+ low, high = _inclusive_low_high(loss.interval_y_pred)
+ low = np.amax([low, raw_bound[0]])
+ high = np.amin([high, raw_bound[1]])
+ raw_bound = (low, high)
raw_prediction = rng.uniform(
- low=raw_bound[0], high=raw_bound[0], size=n_samples
+ low=raw_bound[0], high=raw_bound[1], size=n_samples
)
# generate a y_true in valid range
low, high = _inclusive_low_high(loss.interval_y_true)
@@ -149,6 +160,11 @@ def test_loss_boundary(loss):
(HalfTweedieLoss(power=1.5), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
(HalfTweedieLoss(power=2), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
(HalfTweedieLoss(power=3), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
+ (HalfTweedieLossIdentity(power=-3), [0.1, 100], [-np.inf, np.inf]),
+ (HalfTweedieLossIdentity(power=0), [-3, -0.1, 0, 0.1, 100], [-np.inf, np.inf]),
+ (HalfTweedieLossIdentity(power=1.5), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
+ (HalfTweedieLossIdentity(power=2), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
+ (HalfTweedieLossIdentity(power=3), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
(HalfBinomialLoss(), [0.1, 0.5, 0.9], [-np.inf, -1, 2, np.inf]),
(HalfMultinomialLoss(), [], [-np.inf, -1, 1.1, np.inf]),
]
@@ -160,6 +176,9 @@ def test_loss_boundary(loss):
(HalfTweedieLoss(power=-3), [-100, -0.1, 0], []),
(HalfTweedieLoss(power=0), [-100, 0], []),
(HalfTweedieLoss(power=1.5), [0], []),
+ (HalfTweedieLossIdentity(power=-3), [-100, -0.1, 0], []),
+ (HalfTweedieLossIdentity(power=0), [-100, 0], []),
+ (HalfTweedieLossIdentity(power=1.5), [0], []),
(HalfBinomialLoss(), [0, 1], []),
(HalfMultinomialLoss(), [0.0, 1.0, 2], []),
]
@@ -169,6 +188,9 @@ def test_loss_boundary(loss):
(HalfTweedieLoss(power=-3), [], [-3, -0.1, 0]),
(HalfTweedieLoss(power=0), [], [-3, -0.1, 0]),
(HalfTweedieLoss(power=1.5), [], [0]),
+ (HalfTweedieLossIdentity(power=-3), [], [-3, -0.1, 0]),
+ (HalfTweedieLossIdentity(power=0), [-3, -0.1, 0], []),
+ (HalfTweedieLossIdentity(power=1.5), [], [0]),
(HalfBinomialLoss(), [], [0, 1]),
(HalfMultinomialLoss(), [0.1, 0.5], [0, 1]),
]
@@ -207,6 +229,9 @@ def test_loss_boundary_y_pred(loss, y_pred_success, y_pred_fail):
(HalfPoissonLoss(), 2.0, np.log(4), 4 - 2 * np.log(4)),
(HalfGammaLoss(), 2.0, np.log(4), np.log(4) + 2 / 4),
(HalfTweedieLoss(power=3), 2.0, np.log(4), -1 / 4 + 1 / 4**2),
+ (HalfTweedieLossIdentity(power=1), 2.0, 4.0, 2 - 2 * np.log(2)),
+ (HalfTweedieLossIdentity(power=2), 2.0, 4.0, np.log(2) - 1 / 2),
+ (HalfTweedieLossIdentity(power=3), 2.0, 4.0, -1 / 4 + 1 / 4**2 + 1 / 2 / 2),
(HalfBinomialLoss(), 0.25, np.log(4), np.log(5) - 0.25 * np.log(4)),
(
HalfMultinomialLoss(n_classes=3),
@@ -604,6 +629,16 @@ def test_loss_of_perfect_prediction(loss, sample_weight):
if not loss.is_multiclass:
# Use small values such that exp(value) is not nan.
raw_prediction = np.array([-10, -0.1, 0, 0.1, 3, 10])
+ # If link is identity, we must respect the interval of y_pred:
+ if isinstance(loss.link, IdentityLink):
+ eps = 1e-10
+ low = loss.interval_y_pred.low
+ if not loss.interval_y_pred.low_inclusive:
+ low = low + eps
+ high = loss.interval_y_pred.high
+ if not loss.interval_y_pred.high_inclusive:
+ high = high - eps
+ raw_prediction = np.clip(raw_prediction, low, high)
y_true = loss.link.inverse(raw_prediction)
else:
# HalfMultinomialLoss
@@ -1091,3 +1126,48 @@ def test_loss_pickle(loss):
assert loss(y_true=y_true, raw_prediction=raw_prediction) == approx(
unpickled_loss(y_true=y_true, raw_prediction=raw_prediction)
)
+
+
[email protected]("p", [-1.5, 0, 1, 1.5, 2, 3])
+def test_tweedie_log_identity_consistency(p):
+ """Test for identical losses when only the link function is different."""
+ half_tweedie_log = HalfTweedieLoss(power=p)
+ half_tweedie_identity = HalfTweedieLossIdentity(power=p)
+ n_samples = 10
+ y_true, raw_prediction = random_y_true_raw_prediction(
+ loss=half_tweedie_log, n_samples=n_samples, seed=42
+ )
+ y_pred = half_tweedie_log.link.inverse(raw_prediction) # exp(raw_prediction)
+
+ # Let's compare the loss values, up to some constant term that is dropped
+ # in HalfTweedieLoss but not in HalfTweedieLossIdentity.
+ loss_log = half_tweedie_log.loss(
+ y_true=y_true, raw_prediction=raw_prediction
+ ) + half_tweedie_log.constant_to_optimal_zero(y_true)
+ loss_identity = half_tweedie_identity.loss(
+ y_true=y_true, raw_prediction=y_pred
+ ) + half_tweedie_identity.constant_to_optimal_zero(y_true)
+ # Note that HalfTweedieLoss ignores different constant terms than
+ # HalfTweedieLossIdentity. Constant terms means terms not depending on
+ # raw_prediction. By adding these terms, `constant_to_optimal_zero`, both losses
+ # give the same values.
+ assert_allclose(loss_log, loss_identity)
+
+ # For gradients and hessians, the constant terms do not matter. We have, however,
+ # to account for the chain rule, i.e. with x=raw_prediction
+ # gradient_log(x) = d/dx loss_log(x)
+ # = d/dx loss_identity(exp(x))
+ # = exp(x) * gradient_identity(exp(x))
+ # Similarly,
+ # hessian_log(x) = exp(x) * gradient_identity(exp(x))
+ # + exp(x)**2 * hessian_identity(x)
+ gradient_log, hessian_log = half_tweedie_log.gradient_hessian(
+ y_true=y_true, raw_prediction=raw_prediction
+ )
+ gradient_identity, hessian_identity = half_tweedie_identity.gradient_hessian(
+ y_true=y_true, raw_prediction=y_pred
+ )
+ assert_allclose(gradient_log, y_pred * gradient_identity)
+ assert_allclose(
+ hessian_log, y_pred * gradient_identity + y_pred**2 * hessian_identity
+ )
diff --git a/sklearn/linear_model/_glm/tests/test_glm.py b/sklearn/linear_model/_glm/tests/test_glm.py
index 87fe2b51f4d28..9bfa2fe28e91a 100644
--- a/sklearn/linear_model/_glm/tests/test_glm.py
+++ b/sklearn/linear_model/_glm/tests/test_glm.py
@@ -2,27 +2,22 @@
#
# License: BSD 3 clause
+import re
import numpy as np
from numpy.testing import assert_allclose
import pytest
import warnings
+from sklearn.base import clone
+from sklearn._loss.glm_distribution import TweedieDistribution
+from sklearn._loss.link import IdentityLink, LogLink
+
from sklearn.datasets import make_regression
-from sklearn.linear_model._glm import GeneralizedLinearRegressor
+from sklearn.linear_model._glm import _GeneralizedLinearRegressor
from sklearn.linear_model import TweedieRegressor, PoissonRegressor, GammaRegressor
-from sklearn.linear_model._glm.link import (
- IdentityLink,
- LogLink,
-)
-from sklearn._loss.glm_distribution import (
- TweedieDistribution,
- NormalDistribution,
- PoissonDistribution,
- GammaDistribution,
- InverseGaussianDistribution,
-)
from sklearn.linear_model import Ridge
from sklearn.exceptions import ConvergenceWarning
+from sklearn.metrics import d2_tweedie_score
from sklearn.model_selection import train_test_split
@@ -40,7 +35,7 @@ def test_sample_weights_validation():
X = [[1]]
y = [1]
weights = 0
- glm = GeneralizedLinearRegressor()
+ glm = _GeneralizedLinearRegressor()
# Positive weights are accepted
glm.fit(X, y, sample_weight=1)
@@ -57,65 +52,12 @@ def test_sample_weights_validation():
glm.fit(X, y, weights)
[email protected](
- "name, instance",
- [
- ("normal", NormalDistribution()),
- ("poisson", PoissonDistribution()),
- ("gamma", GammaDistribution()),
- ("inverse-gaussian", InverseGaussianDistribution()),
- ],
-)
-def test_glm_family_argument(name, instance):
- """Test GLM family argument set as string."""
- y = np.array([0.1, 0.5]) # in range of all distributions
- X = np.array([[1], [2]])
- glm = GeneralizedLinearRegressor(family=name, alpha=0).fit(X, y)
- assert isinstance(glm._family_instance, instance.__class__)
-
- glm = GeneralizedLinearRegressor(family="not a family")
- with pytest.raises(ValueError, match="family must be"):
- glm.fit(X, y)
-
-
[email protected](
- "name, instance", [("identity", IdentityLink()), ("log", LogLink())]
-)
-def test_glm_link_argument(name, instance):
- """Test GLM link argument set as string."""
- y = np.array([0.1, 0.5]) # in range of all distributions
- X = np.array([[1], [2]])
- glm = GeneralizedLinearRegressor(family="normal", link=name).fit(X, y)
- assert isinstance(glm._link_instance, instance.__class__)
-
- glm = GeneralizedLinearRegressor(family="normal", link="not a link")
- with pytest.raises(ValueError, match="link must be"):
- glm.fit(X, y)
-
-
[email protected](
- "family, expected_link_class",
- [
- ("normal", IdentityLink),
- ("poisson", LogLink),
- ("gamma", LogLink),
- ("inverse-gaussian", LogLink),
- ],
-)
-def test_glm_link_auto(family, expected_link_class):
- # Make sure link='auto' delivers the expected link function
- y = np.array([0.1, 0.5]) # in range of all distributions
- X = np.array([[1], [2]])
- glm = GeneralizedLinearRegressor(family=family, link="auto").fit(X, y)
- assert isinstance(glm._link_instance, expected_link_class)
-
-
@pytest.mark.parametrize("fit_intercept", ["not bool", 1, 0, [True]])
def test_glm_fit_intercept_argument(fit_intercept):
"""Test GLM for invalid fit_intercept argument."""
y = np.array([1, 2])
X = np.array([[1], [1]])
- glm = GeneralizedLinearRegressor(fit_intercept=fit_intercept)
+ glm = _GeneralizedLinearRegressor(fit_intercept=fit_intercept)
with pytest.raises(ValueError, match="fit_intercept must be bool"):
glm.fit(X, y)
@@ -125,14 +67,14 @@ def test_glm_solver_argument(solver):
"""Test GLM for invalid solver argument."""
y = np.array([1, 2])
X = np.array([[1], [2]])
- glm = GeneralizedLinearRegressor(solver=solver)
+ glm = _GeneralizedLinearRegressor(solver=solver)
with pytest.raises(ValueError):
glm.fit(X, y)
@pytest.mark.parametrize(
"Estimator",
- [GeneralizedLinearRegressor, PoissonRegressor, GammaRegressor, TweedieRegressor],
+ [_GeneralizedLinearRegressor, PoissonRegressor, GammaRegressor, TweedieRegressor],
)
@pytest.mark.parametrize(
"params, err_type, err_msg",
@@ -200,21 +142,36 @@ def test_glm_warm_start_argument(warm_start):
"""Test GLM for invalid warm_start argument."""
y = np.array([1, 2])
X = np.array([[1], [1]])
- glm = GeneralizedLinearRegressor(warm_start=warm_start)
+ glm = _GeneralizedLinearRegressor(warm_start=warm_start)
with pytest.raises(ValueError, match="warm_start must be bool"):
glm.fit(X, y)
[email protected](
+ "glm",
+ [
+ TweedieRegressor(power=3),
+ PoissonRegressor(),
+ GammaRegressor(),
+ TweedieRegressor(power=1.5),
+ ],
+)
+def test_glm_wrong_y_range(glm):
+ y = np.array([-1, 2])
+ X = np.array([[1], [1]])
+ msg = r"Some value\(s\) of y are out of the valid range of the loss"
+ with pytest.raises(ValueError, match=msg):
+ glm.fit(X, y)
+
+
@pytest.mark.parametrize("fit_intercept", [False, True])
def test_glm_identity_regression(fit_intercept):
"""Test GLM regression with identity link on a simple dataset."""
coef = [1.0, 2.0]
X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T
y = np.dot(X, coef)
- glm = GeneralizedLinearRegressor(
+ glm = _GeneralizedLinearRegressor(
alpha=0,
- family="normal",
- link="identity",
fit_intercept=fit_intercept,
tol=1e-12,
)
@@ -229,19 +186,19 @@ def test_glm_identity_regression(fit_intercept):
@pytest.mark.parametrize("fit_intercept", [False, True])
@pytest.mark.parametrize("alpha", [0.0, 1.0])
[email protected]("family", ["normal", "poisson", "gamma"])
-def test_glm_sample_weight_consistentcy(fit_intercept, alpha, family):
[email protected](
+ "GLMEstimator", [_GeneralizedLinearRegressor, PoissonRegressor, GammaRegressor]
+)
+def test_glm_sample_weight_consistency(fit_intercept, alpha, GLMEstimator):
"""Test that the impact of sample_weight is consistent"""
rng = np.random.RandomState(0)
n_samples, n_features = 10, 5
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
- glm_params = dict(
- alpha=alpha, family=family, link="auto", fit_intercept=fit_intercept
- )
+ glm_params = dict(alpha=alpha, fit_intercept=fit_intercept)
- glm = GeneralizedLinearRegressor(**glm_params).fit(X, y)
+ glm = GLMEstimator(**glm_params).fit(X, y)
coef = glm.coef_.copy()
# sample_weight=np.ones(..) should be equivalent to sample_weight=None
@@ -270,38 +227,38 @@ def test_glm_sample_weight_consistentcy(fit_intercept, alpha, family):
sample_weight_1 = np.ones(len(y))
sample_weight_1[: n_samples // 2] = 2
- glm1 = GeneralizedLinearRegressor(**glm_params).fit(
- X, y, sample_weight=sample_weight_1
- )
+ glm1 = GLMEstimator(**glm_params).fit(X, y, sample_weight=sample_weight_1)
- glm2 = GeneralizedLinearRegressor(**glm_params).fit(X2, y2, sample_weight=None)
+ glm2 = GLMEstimator(**glm_params).fit(X2, y2, sample_weight=None)
assert_allclose(glm1.coef_, glm2.coef_)
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize(
- "family",
+ "estimator",
[
- NormalDistribution(),
- PoissonDistribution(),
- GammaDistribution(),
- InverseGaussianDistribution(),
- TweedieDistribution(power=1.5),
- TweedieDistribution(power=4.5),
+ PoissonRegressor(),
+ GammaRegressor(),
+ TweedieRegressor(power=3.0),
+ TweedieRegressor(power=0, link="log"),
+ TweedieRegressor(power=1.5),
+ TweedieRegressor(power=4.5),
],
)
-def test_glm_log_regression(fit_intercept, family):
+def test_glm_log_regression(fit_intercept, estimator):
"""Test GLM regression with log link on a simple dataset."""
coef = [0.2, -0.1]
- X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T
+ X = np.array([[0, 1, 2, 3, 4], [1, 1, 1, 1, 1]]).T
y = np.exp(np.dot(X, coef))
- glm = GeneralizedLinearRegressor(
- alpha=0, family=family, link="log", fit_intercept=fit_intercept, tol=1e-7
+ glm = clone(estimator).set_params(
+ alpha=0,
+ fit_intercept=fit_intercept,
+ tol=1e-8,
)
if fit_intercept:
- res = glm.fit(X[:, 1:], y)
- assert_allclose(res.coef_, coef[1:], rtol=1e-6)
- assert_allclose(res.intercept_, coef[0], rtol=1e-6)
+ res = glm.fit(X[:, :-1], y)
+ assert_allclose(res.coef_, coef[:-1], rtol=1e-6)
+ assert_allclose(res.intercept_, coef[-1], rtol=1e-6)
else:
res = glm.fit(X, y)
assert_allclose(res.coef_, coef, rtol=2e-6)
@@ -318,12 +275,12 @@ def test_warm_start(fit_intercept):
random_state=42,
)
- glm1 = GeneralizedLinearRegressor(
+ glm1 = _GeneralizedLinearRegressor(
warm_start=False, fit_intercept=fit_intercept, max_iter=1000
)
glm1.fit(X, y)
- glm2 = GeneralizedLinearRegressor(
+ glm2 = _GeneralizedLinearRegressor(
warm_start=True, fit_intercept=fit_intercept, max_iter=1
)
# As we intentionally set max_iter=1, L-BFGS-B will issue a
@@ -389,10 +346,8 @@ def test_normal_ridge_comparison(
)
ridge.fit(X_train, y_train, sample_weight=sw_train)
- glm = GeneralizedLinearRegressor(
+ glm = _GeneralizedLinearRegressor(
alpha=alpha,
- family="normal",
- link="identity",
fit_intercept=fit_intercept,
max_iter=300,
tol=1e-5,
@@ -420,11 +375,9 @@ def test_poisson_glmnet():
# b 0.03741173122
X = np.array([[-2, -1, 1, 2], [0, 0, 1, 1]]).T
y = np.array([0, 1, 1, 2])
- glm = GeneralizedLinearRegressor(
+ glm = PoissonRegressor(
alpha=1,
fit_intercept=True,
- family="poisson",
- link="log",
tol=1e-7,
max_iter=300,
)
@@ -436,52 +389,57 @@ def test_poisson_glmnet():
def test_convergence_warning(regression_data):
X, y = regression_data
- est = GeneralizedLinearRegressor(max_iter=1, tol=1e-20)
+ est = _GeneralizedLinearRegressor(max_iter=1, tol=1e-20)
with pytest.warns(ConvergenceWarning):
est.fit(X, y)
-def test_poisson_regression_family(regression_data):
- # Make sure the family attribute is read-only to prevent searching over it
- # e.g. in a grid search
- est = PoissonRegressor()
- est.family == "poisson"
-
- msg = "PoissonRegressor.family must be 'poisson'!"
- with pytest.raises(ValueError, match=msg):
- est.family = 0
-
-
-def test_gamma_regression_family(regression_data):
- # Make sure the family attribute is read-only to prevent searching over it
- # e.g. in a grid search
- est = GammaRegressor()
- est.family == "gamma"
-
- msg = "GammaRegressor.family must be 'gamma'!"
- with pytest.raises(ValueError, match=msg):
- est.family = 0
[email protected](
+ "name, link_class", [("identity", IdentityLink), ("log", LogLink)]
+)
+def test_tweedie_link_argument(name, link_class):
+ """Test GLM link argument set as string."""
+ y = np.array([0.1, 0.5]) # in range of all distributions
+ X = np.array([[1], [2]])
+ glm = TweedieRegressor(power=1, link=name).fit(X, y)
+ assert isinstance(glm._linear_loss.base_loss.link, link_class)
+
+ glm = TweedieRegressor(power=1, link="not a link")
+ with pytest.raises(
+ ValueError,
+ match=re.escape("The link must be an element of ['auto', 'identity', 'log']"),
+ ):
+ glm.fit(X, y)
-def test_tweedie_regression_family(regression_data):
- # Make sure the family attribute is always a TweedieDistribution and that
- # the power attribute is properly updated
- power = 2.0
- est = TweedieRegressor(power=power)
- assert isinstance(est.family, TweedieDistribution)
- assert est.family.power == power
- assert est.power == power
[email protected](
+ "power, expected_link_class",
+ [
+ (0, IdentityLink), # normal
+ (1, LogLink), # poisson
+ (2, LogLink), # gamma
+ (3, LogLink), # inverse-gaussian
+ ],
+)
+def test_tweedie_link_auto(power, expected_link_class):
+ """Test that link='auto' delivers the expected link function"""
+ y = np.array([0.1, 0.5]) # in range of all distributions
+ X = np.array([[1], [2]])
+ glm = TweedieRegressor(link="auto", power=power).fit(X, y)
+ assert isinstance(glm._linear_loss.base_loss.link, expected_link_class)
- new_power = 0
- new_family = TweedieDistribution(power=new_power)
- est.family = new_family
- assert isinstance(est.family, TweedieDistribution)
- assert est.family.power == new_power
- assert est.power == new_power
- msg = "TweedieRegressor.family must be of type TweedieDistribution!"
- with pytest.raises(TypeError, match=msg):
- est.family = None
[email protected]("power", [0, 1, 1.5, 2, 3])
[email protected]("link", ["log", "identity"])
+def test_tweedie_score(regression_data, power, link):
+ """Test that GLM score equals d2_tweedie_score for Tweedie losses."""
+ X, y = regression_data
+ # make y positive
+ y = np.abs(y) + 1.0
+ glm = TweedieRegressor(power=power, link=link).fit(X, y)
+ assert glm.score(X, y) == pytest.approx(
+ d2_tweedie_score(y, glm.predict(X), power=power)
+ )
@pytest.mark.parametrize(
@@ -495,3 +453,24 @@ def test_tweedie_regression_family(regression_data):
)
def test_tags(estimator, value):
assert estimator._get_tags()["requires_positive_y"] is value
+
+
+# TODO(1.3): remove
[email protected](
+ "est, family",
+ [
+ (PoissonRegressor(), "poisson"),
+ (GammaRegressor(), "gamma"),
+ (TweedieRegressor(), TweedieDistribution()),
+ (TweedieRegressor(power=2), TweedieDistribution(power=2)),
+ (TweedieRegressor(power=3), TweedieDistribution(power=3)),
+ ],
+)
+def test_family_deprecation(est, family):
+ """Test backward compatibility of the family property."""
+ with pytest.warns(FutureWarning, match="`family` was deprecated"):
+ if isinstance(family, str):
+ assert est.family == family
+ else:
+ assert est.family.__class__ == family.__class__
+ assert est.family.power == family.power
diff --git a/sklearn/linear_model/_glm/tests/test_link.py b/sklearn/linear_model/_glm/tests/test_link.py
deleted file mode 100644
index a52d05b7cff6e..0000000000000
--- a/sklearn/linear_model/_glm/tests/test_link.py
+++ /dev/null
@@ -1,43 +0,0 @@
-# Authors: Christian Lorentzen <[email protected]>
-#
-# License: BSD 3 clause
-import numpy as np
-from numpy.testing import assert_allclose
-import pytest
-from scipy.optimize import check_grad
-
-from sklearn.linear_model._glm.link import (
- IdentityLink,
- LogLink,
- LogitLink,
-)
-
-
-LINK_FUNCTIONS = [IdentityLink, LogLink, LogitLink]
-
-
[email protected]("Link", LINK_FUNCTIONS)
-def test_link_properties(Link):
- """Test link inverse and derivative."""
- rng = np.random.RandomState(42)
- x = rng.rand(100) * 100
- link = Link()
- if isinstance(link, LogitLink):
- # careful for large x, note expit(36) = 1
- # limit max eta to 15
- x = x / 100 * 15
- assert_allclose(link(link.inverse(x)), x)
- # if g(h(x)) = x, then g'(h(x)) = 1/h'(x)
- # g = link, h = link.inverse
- assert_allclose(link.derivative(link.inverse(x)), 1 / link.inverse_derivative(x))
-
-
[email protected]("Link", LINK_FUNCTIONS)
-def test_link_derivative(Link):
- link = Link()
- x = np.random.RandomState(0).rand(1)
- err = check_grad(link, link.derivative, x) / link.derivative(x)
- assert abs(err) < 1e-6
-
- err = check_grad(link.inverse, link.inverse_derivative, x) / link.derivative(x)
- assert abs(err) < 1e-6
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index 251f0831fb380..4ff94b11793d2 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -415,7 +415,6 @@ def test_transformers_get_feature_names_out(transformer):
VALIDATE_ESTIMATOR_INIT = [
"SGDOneClassSVM",
"TheilSenRegressor",
- "TweedieRegressor",
]
VALIDATE_ESTIMATOR_INIT = set(VALIDATE_ESTIMATOR_INIT)
|
[
{
"path": "doc/modules/linear_model.rst",
"old_path": "a/doc/modules/linear_model.rst",
"new_path": "b/doc/modules/linear_model.rst",
"metadata": "diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst\nindex 6d176e8482537..24dfa901b1d42 100644\n--- a/doc/modules/linear_model.rst\n+++ b/doc/modules/linear_model.rst\n@@ -1032,7 +1032,7 @@ reproductive exponential dispersion model (EDM) [11]_).\n \n The minimization problem becomes:\n \n-.. math:: \\min_{w} \\frac{1}{2 n_{\\text{samples}}} \\sum_i d(y_i, \\hat{y}_i) + \\frac{\\alpha}{2} ||w||_2,\n+.. math:: \\min_{w} \\frac{1}{2 n_{\\text{samples}}} \\sum_i d(y_i, \\hat{y}_i) + \\frac{\\alpha}{2} ||w||_2^2,\n \n where :math:`\\alpha` is the L2 regularization penalty. When sample weights are\n provided, the average becomes a weighted average.\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex f64a6bda6ea95..13b473fba11a9 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -557,6 +557,12 @@ Changelog\n :pr:`21808`, :pr:`20567` and :pr:`21814` by\n :user:`Christian Lorentzen <lorentzenchr>`.\n \n+- |Enhancement| :class:`~linear_model.GammaRegressor`,\n+ :class:`~linear_model.PoissonRegressor` and :class:`~linear_model.TweedieRegressor`\n+ are faster for ``solvers=\"lbfgs\"``.\n+ :pr:`22548`, :pr:`21808` and :pr:`20567` by\n+ :user:`Christian Lorentzen <lorentzenchr>`.\n+\n - |Enhancement| Rename parameter `base_estimator` to `estimator` in\n :class:`linear_model.RANSACRegressor` to improve readability and consistency.\n `base_estimator` is deprecated and will be removed in 1.3.\n@@ -590,6 +596,12 @@ Changelog\n sub-problem while now all of them are recorded. :pr:`21998` by\n :user:`Olivier Grisel <ogrisel>`.\n \n+- |Fix| The property `family` of :class:`linear_model.TweedieRegressor` is not\n+ validated in `__init__` anymore. Instead, this (private) property is deprecated in\n+ :class:`linear_model.GammaRegressor`, :class:`linear_model.PoissonRegressor` and\n+ :class:`linear_model.TweedieRegressor`, and will be removed in 1.3.\n+ :pr:`22548` by :user:`Christian Lorentzen <lorentzenchr>`.\n+\n - |Enhancement| :class:`linear_model.BayesianRidge` and\n :class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`9087` by\n :user:`Arthur Imbert <Henley13>` and :pr:`22525` by :user:`Meekail Zain <micky774>`.\n"
}
] |
1.01
|
aee564c544e3245e52bd413709e43f192ad02ba9
|
[
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval1]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_derivative[TweedieDistribution0]",
"sklearn/_loss/tests/test_link.py::test_link_out_argument[MultinomialLogit]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_zero[family0-chk_values0]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval4]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval11]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval9]",
"sklearn/_loss/tests/test_link.py::test_link_inverse_identity[LogLink]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval8]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval5]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval3]",
"sklearn/_loss/tests/test_link.py::test_link_out_argument[IdentityLink]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_derivative[TweedieDistribution3]",
"sklearn/_loss/tests/test_glm_distribution.py::test_family_bounds[family1-expected1]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval10]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_derivative[TweedieDistribution2]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval2]",
"sklearn/_loss/tests/test_link.py::test_link_out_argument[LogitLink]",
"sklearn/_loss/tests/test_link.py::test_link_inverse_identity[MultinomialLogit]",
"sklearn/_loss/tests/test_link.py::test_link_out_argument[LogLink]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval7]",
"sklearn/_loss/tests/test_link.py::test_link_inverse_identity[LogitLink]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_zero[family2-chk_values2]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_derivative[InverseGaussianDistribution]",
"sklearn/_loss/tests/test_glm_distribution.py::test_invalid_distribution_bound",
"sklearn/_loss/tests/test_glm_distribution.py::test_tweedie_distribution_power",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_zero[family5-chk_values5]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_zero[family1-chk_values1]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_zero[family3-chk_values3]",
"sklearn/_loss/tests/test_glm_distribution.py::test_family_bounds[family3-expected3]",
"sklearn/_loss/tests/test_glm_distribution.py::test_family_bounds[family5-expected5]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_derivative[NormalDistribution]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_derivative[GammaDistribution]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval6]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_zero[family7-chk_values7]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_derivative[TweedieDistribution1]",
"sklearn/_loss/tests/test_glm_distribution.py::test_family_bounds[family0-expected0]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_zero[family6-chk_values6]",
"sklearn/_loss/tests/test_glm_distribution.py::test_family_bounds[family4-expected4]",
"sklearn/_loss/tests/test_glm_distribution.py::test_family_bounds[family2-expected2]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_derivative[TweedieDistribution4]",
"sklearn/_loss/tests/test_link.py::test_link_inverse_identity[IdentityLink]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_zero[family4-chk_values4]",
"sklearn/_loss/tests/test_link.py::test_is_in_range[interval0]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_derivative[PoissonDistribution]",
"sklearn/_loss/tests/test_glm_distribution.py::test_deviance_zero[family8-chk_values8]"
] |
[
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss13-y_true_success13-y_true_fail13]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfMultinomialLoss-0.0-[0.2, 0.5, 0.3]-1.23983106084446]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[binomial_loss-30-0.9]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss14-y_pred_success14-y_pred_fail14]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[PinballLoss-5.0-1.0-1.0]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[42-loss0-mean-normal]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[squared_error-117.0-1.05]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[42-loss4-mean-exponential]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss20-y_true_success20-y_true_fail20]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss22-y_true_success22-y_true_fail22]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_tweedie_log_identity_consistency[0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss9-y_pred_success9-y_pred_fail9]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss15-y_pred_success15-y_pred_fail15]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss18-y_true_success18-y_true_fail18]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss25-y_true_success25-y_true_fail25]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[squared_error-0.0-0.0]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss24-y_true_success24-y_true_fail24]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfTweedieLossIdentity-2.0-4.0-0.1931471805599453]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[PinballLoss-1.0-5.0-3.0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfMultinomialLoss-2.0-[0.2, 0.5, 0.3]-1.13983106084446]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss12-y_true_success12-y_true_fail12]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[42-loss5-mean-exponential]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfTweedieLossIdentity-2.0-4.0-0.0625]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss24-y_pred_success24-y_pred_fail24]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss3-y_true_success3-y_true_fail3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfPoissonLoss-2.0-1.3862943611198906-1.2274112777602189]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_init_parameter_validation[PinballLoss-params1-ValueError-quantile == 0, must be > 0.]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfMultinomialLoss-1.0-[0.2, 0.5, 0.3]-0.93983106084446]",
"sklearn/_loss/tests/test_loss.py::test_loss_init_parameter_validation[HalfTweedieLoss-params3-TypeError-power must be an instance of float, not NoneType.]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfBinomialLoss-0.25-1.3862943611198906-1.2628643221541276]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss1-y_true_success1-y_true_fail1]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss5-y_pred_success5-y_pred_fail5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss19-y_true_success19-y_true_fail19]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss22-y_pred_success22-y_pred_fail22]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_init_parameter_validation[PinballLoss-params0-TypeError-quantile must be an instance of float, not NoneType.]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_tweedie_log_identity_consistency[2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss8-y_true_success8-y_true_fail8]",
"sklearn/_loss/tests/test_loss.py::test_binomial_and_multinomial_loss[42]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss2-y_true_success2-y_true_fail2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_tweedie_log_identity_consistency[3]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss15-y_true_success15-y_true_fail15]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss4-y_true_success4-y_true_fail4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_tweedie_log_identity_consistency[-1.5]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[PinballLoss-1.0-5.0-2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss8-y_pred_success8-y_pred_fail8]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss10-y_true_success10-y_true_fail10]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfTweedieLoss-2.0-1.3862943611198906--0.1875]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss0-y_pred_success0-y_pred_fail0]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss14-y_true_success14-y_true_fail14]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[poisson_loss--22.0-10.0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfSquaredError-1.0-5.0-8]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[poisson_loss-0.0-2.0]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss16-y_true_success16-y_true_fail16]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[42-loss3-mean-poisson]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[42-loss2-<lambda>-normal]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[poisson_loss-12.0-1.0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss2-y_pred_success2-y_pred_fail2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[binomial_loss--12-0.2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[AbsoluteError-1.0-5.0-4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss5-y_true_success5-y_true_fail5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss1-y_pred_success1-y_pred_fail1]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss17-y_true_success17-y_true_fail17]",
"sklearn/_loss/tests/test_loss.py::test_loss_init_parameter_validation[HalfTweedieLoss-params4-ValueError-power == inf, must be < inf.]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[42-loss1-median-normal]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss23-y_pred_success23-y_pred_fail23]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_init_parameter_validation[PinballLoss-params2-ValueError-quantile == 1.1, must be < 1.]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss6-y_true_success6-y_true_fail6]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss18-y_pred_success18-y_pred_fail18]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfTweedieLossIdentity-2.0-4.0-0.6137056388801094]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss25-y_pred_success25-y_pred_fail25]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_tweedie_log_identity_consistency[1.5]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[binomial_loss-0.3-0.1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss21-y_pred_success21-y_pred_fail21]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_on_specific_values[HalfGammaLoss-2.0-1.3862943611198906-1.8862943611198906]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss0-y_true_success0-y_true_fail0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss7-y_true_success7-y_true_fail7]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss12-y_pred_success12-y_pred_fail12]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss7-y_pred_success7-y_pred_fail7]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss9-y_true_success9-y_true_fail9]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss13-y_pred_success13-y_pred_fail13]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss11-y_true_success11-y_true_fail11]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss6-y_pred_success6-y_pred_fail6]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_predict_proba[42-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss4-y_pred_success4-y_pred_fail4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLoss5]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss10-y_pred_success10-y_pred_fail10]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLossIdentity0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_tweedie_log_identity_consistency[1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss21-y_true_success21-y_true_fail21]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-None-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_same_as_C_functions[None-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLossIdentity2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss20-y_pred_success20-y_pred_fail20]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-random-PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss3-y_pred_success3-y_pred_fail3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss17-y_pred_success17-y_pred_fail17]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-range-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss11-y_pred_success11-y_pred_fail11]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_link.py::test_interval_raises",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float32-None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_sample_weight_multiplies[42-ones-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float32-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float32-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_specific_fit_intercept_only[42-loss6-mean-binomial]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLossIdentity1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-HalfTweedieLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float64-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessian_raises[params0-Valid options for 'dtype' are .* Got dtype=<class 'numpy.int64'> instead.-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[None-HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-HalfTweedieLossIdentity3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float64-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-None-PinballLoss0]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float64-float32-True-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float32-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float32-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[None-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-None-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float32-float64-False-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_gradients_hessians_numerically[42-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_true[loss23-y_true_success23-y_true_fail23]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float32-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float32-float64-True-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float32-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float32-float64-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfTweedieLoss3]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-None-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_gradients_are_the_same[42-range-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_multinomial_loss_fit_intercept_only",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float32-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss19-y_pred_success19-y_pred_fail19]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-1-float32-float32-False-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-None-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[C-float64-None-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_derivatives[squared_error--2.0-42]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float32-float32-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float64-False-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_intercept_only[range-HalfTweedieLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float64-False-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary_y_pred[loss16-y_pred_success16-y_pred_fail16]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float32-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-None-float64-float64-True-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-None-None-float32-float32-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-None-float64-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-AbsoluteError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-1-float64-float64-False-HalfGammaLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-1-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_pickle[HalfTweedieLoss4]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-None-1-float32-float32-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfMultinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float64-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-1-float32-float32-True-PinballLoss]",
"sklearn/_loss/tests/test_loss.py::test_graceful_squeezing[HalfTweedieLoss2]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-None-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-1-1-None-float64-float64-True-HalfSquaredError]",
"sklearn/_loss/tests/test_loss.py::test_loss_of_perfect_prediction[range-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_init_gradient_and_hessians[F-float64-range-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-None-None-float64-float64-False-HalfTweedieLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-None-1-None-float32-float32-False-HalfPoissonLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[1-None-1-1-float64-float32-True-HalfBinomialLoss]",
"sklearn/_loss/tests/test_loss.py::test_loss_boundary[PinballLoss1]",
"sklearn/_loss/tests/test_loss.py::test_loss_dtype[2-1-1-1-float64-float32-False-HalfGammaLoss]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/linear_model.rst",
"old_path": "a/doc/modules/linear_model.rst",
"new_path": "b/doc/modules/linear_model.rst",
"metadata": "diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst\nindex 6d176e8482537..24dfa901b1d42 100644\n--- a/doc/modules/linear_model.rst\n+++ b/doc/modules/linear_model.rst\n@@ -1032,7 +1032,7 @@ reproductive exponential dispersion model (EDM) [11]_).\n \n The minimization problem becomes:\n \n-.. math:: \\min_{w} \\frac{1}{2 n_{\\text{samples}}} \\sum_i d(y_i, \\hat{y}_i) + \\frac{\\alpha}{2} ||w||_2,\n+.. math:: \\min_{w} \\frac{1}{2 n_{\\text{samples}}} \\sum_i d(y_i, \\hat{y}_i) + \\frac{\\alpha}{2} ||w||_2^2,\n \n where :math:`\\alpha` is the L2 regularization penalty. When sample weights are\n provided, the average becomes a weighted average.\n"
},
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex f64a6bda6ea95..13b473fba11a9 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -557,6 +557,12 @@ Changelog\n :pr:`<PRID>`, :pr:`<PRID>` and :pr:`<PRID>` by\n :user:`<NAME>`.\n \n+- |Enhancement| :class:`~linear_model.GammaRegressor`,\n+ :class:`~linear_model.PoissonRegressor` and :class:`~linear_model.TweedieRegressor`\n+ are faster for ``solvers=\"lbfgs\"``.\n+ :pr:`<PRID>`, :pr:`<PRID>` and :pr:`<PRID>` by\n+ :user:`<NAME>`.\n+\n - |Enhancement| Rename parameter `base_estimator` to `estimator` in\n :class:`linear_model.RANSACRegressor` to improve readability and consistency.\n `base_estimator` is deprecated and will be removed in 1.3.\n@@ -590,6 +596,12 @@ Changelog\n sub-problem while now all of them are recorded. :pr:`<PRID>` by\n :user:`<NAME>`.\n \n+- |Fix| The property `family` of :class:`linear_model.TweedieRegressor` is not\n+ validated in `__init__` anymore. Instead, this (private) property is deprecated in\n+ :class:`linear_model.GammaRegressor`, :class:`linear_model.PoissonRegressor` and\n+ :class:`linear_model.TweedieRegressor`, and will be removed in 1.3.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Enhancement| :class:`linear_model.BayesianRidge` and\n :class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`<PRID>` by\n :user:`<NAME>` and :pr:`<PRID>` by :user:`<NAME>`.\n"
}
] |
diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst
index 6d176e8482537..24dfa901b1d42 100644
--- a/doc/modules/linear_model.rst
+++ b/doc/modules/linear_model.rst
@@ -1032,7 +1032,7 @@ reproductive exponential dispersion model (EDM) [11]_).
The minimization problem becomes:
-.. math:: \min_{w} \frac{1}{2 n_{\text{samples}}} \sum_i d(y_i, \hat{y}_i) + \frac{\alpha}{2} ||w||_2,
+.. math:: \min_{w} \frac{1}{2 n_{\text{samples}}} \sum_i d(y_i, \hat{y}_i) + \frac{\alpha}{2} ||w||_2^2,
where :math:`\alpha` is the L2 regularization penalty. When sample weights are
provided, the average becomes a weighted average.
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index f64a6bda6ea95..13b473fba11a9 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -557,6 +557,12 @@ Changelog
:pr:`<PRID>`, :pr:`<PRID>` and :pr:`<PRID>` by
:user:`<NAME>`.
+- |Enhancement| :class:`~linear_model.GammaRegressor`,
+ :class:`~linear_model.PoissonRegressor` and :class:`~linear_model.TweedieRegressor`
+ are faster for ``solvers="lbfgs"``.
+ :pr:`<PRID>`, :pr:`<PRID>` and :pr:`<PRID>` by
+ :user:`<NAME>`.
+
- |Enhancement| Rename parameter `base_estimator` to `estimator` in
:class:`linear_model.RANSACRegressor` to improve readability and consistency.
`base_estimator` is deprecated and will be removed in 1.3.
@@ -590,6 +596,12 @@ Changelog
sub-problem while now all of them are recorded. :pr:`<PRID>` by
:user:`<NAME>`.
+- |Fix| The property `family` of :class:`linear_model.TweedieRegressor` is not
+ validated in `__init__` anymore. Instead, this (private) property is deprecated in
+ :class:`linear_model.GammaRegressor`, :class:`linear_model.PoissonRegressor` and
+ :class:`linear_model.TweedieRegressor`, and will be removed in 1.3.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Enhancement| :class:`linear_model.BayesianRidge` and
:class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`<PRID>` by
:user:`<NAME>` and :pr:`<PRID>` by :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21278
|
https://github.com/scikit-learn/scikit-learn/pull/21278
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c4f16f4404963..39255056d4e91 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -113,6 +113,10 @@ Changelog
:pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`
and :user:`András Simon <simonandras>`.
+- |Enhancement| :func:`utils.validation.check_array` returns a float
+ ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension
+ array with `pd.NA`. :pr:`21278` by `Thomas Fan`_.
+
Code and Documentation Contributors
-----------------------------------
diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py
index a2693a44a9f8b..48dca589b2def 100644
--- a/sklearn/utils/validation.py
+++ b/sklearn/utils/validation.py
@@ -483,6 +483,33 @@ def _ensure_no_complex_data(array):
raise ValueError("Complex data not supported\n{}\n".format(array))
+def _pandas_dtype_needs_early_conversion(pd_dtype):
+ """Return True if pandas extension pd_dtype need to be converted early."""
+ try:
+ from pandas.api.types import (
+ is_extension_array_dtype,
+ is_float_dtype,
+ is_integer_dtype,
+ is_sparse,
+ )
+ except ImportError:
+ return False
+
+ if is_sparse(pd_dtype) or not is_extension_array_dtype(pd_dtype):
+ # Sparse arrays will be converted later in `check_array`
+ # Only handle extension arrays for interger and floats
+ return False
+ elif is_float_dtype(pd_dtype):
+ # Float ndarrays can normally support nans. They need to be converted
+ # first to map pd.NA to np.nan
+ return True
+ elif is_integer_dtype(pd_dtype):
+ # XXX: Warn when converting from a high integer to a float
+ return True
+
+ return False
+
+
def check_array(
array,
accept_sparse=False,
@@ -605,7 +632,7 @@ def check_array(
# check if the object contains several dtypes (typically a pandas
# DataFrame), and store them. If not, store None.
dtypes_orig = None
- has_pd_integer_array = False
+ pandas_requires_conversion = False
if hasattr(array, "dtypes") and hasattr(array.dtypes, "__array__"):
# throw warning if columns are sparse. If all columns are sparse, then
# array.sparse exists and sparsity will be preserved (later).
@@ -618,42 +645,17 @@ def check_array(
"It will be converted to a dense numpy array."
)
- dtypes_orig = list(array.dtypes)
- # pandas boolean dtype __array__ interface coerces bools to objects
- for i, dtype_iter in enumerate(dtypes_orig):
+ dtypes_orig = []
+ for dtype_iter in array.dtypes:
if dtype_iter.kind == "b":
- dtypes_orig[i] = np.dtype(object)
- elif dtype_iter.name.startswith(("Int", "UInt")):
- # name looks like an Integer Extension Array, now check for
- # the dtype
- with suppress(ImportError):
- from pandas import (
- Int8Dtype,
- Int16Dtype,
- Int32Dtype,
- Int64Dtype,
- UInt8Dtype,
- UInt16Dtype,
- UInt32Dtype,
- UInt64Dtype,
- )
-
- if isinstance(
- dtype_iter,
- (
- Int8Dtype,
- Int16Dtype,
- Int32Dtype,
- Int64Dtype,
- UInt8Dtype,
- UInt16Dtype,
- UInt32Dtype,
- UInt64Dtype,
- ),
- ):
- has_pd_integer_array = True
-
- if all(isinstance(dtype, np.dtype) for dtype in dtypes_orig):
+ # pandas boolean dtype __array__ interface coerces bools to objects
+ dtype_iter = np.dtype(object)
+ elif _pandas_dtype_needs_early_conversion(dtype_iter):
+ pandas_requires_conversion = True
+
+ dtypes_orig.append(dtype_iter)
+
+ if all(isinstance(dtype_iter, np.dtype) for dtype_iter in dtypes_orig):
dtype_orig = np.result_type(*dtypes_orig)
if dtype_numeric:
@@ -672,9 +674,12 @@ def check_array(
# list of accepted types.
dtype = dtype[0]
- if has_pd_integer_array:
- # If there are any pandas integer extension arrays,
+ if pandas_requires_conversion:
+ # pandas dataframe requires conversion earlier to handle extension dtypes with
+ # nans
array = array.astype(dtype)
+ # Since we converted here, we do not need to convert again later
+ dtype = None
if force_all_finite not in (True, False, "allow-nan"):
raise ValueError(
|
diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py
index 167118fb4ff8f..00c6cf85dda4d 100644
--- a/sklearn/utils/tests/test_validation.py
+++ b/sklearn/utils/tests/test_validation.py
@@ -390,7 +390,9 @@ def test_check_array_dtype_numeric_errors(X):
check_array(X, dtype="numeric")
[email protected]("pd_dtype", ["Int8", "Int16", "UInt8", "UInt16"])
[email protected](
+ "pd_dtype", ["Int8", "Int16", "UInt8", "UInt16", "Float32", "Float64"]
+)
@pytest.mark.parametrize(
"dtype, expected_dtype",
[
@@ -400,14 +402,18 @@ def test_check_array_dtype_numeric_errors(X):
],
)
def test_check_array_pandas_na_support(pd_dtype, dtype, expected_dtype):
- # Test pandas IntegerArray with pd.NA
+ # Test pandas numerical extension arrays with pd.NA
pd = pytest.importorskip("pandas", minversion="1.0")
+ if pd_dtype in {"Float32", "Float64"}:
+ # Extension dtypes with Floats was added in 1.2
+ pd = pytest.importorskip("pandas", minversion="1.2")
+
X_np = np.array(
[[1, 2, 3, np.nan, np.nan], [np.nan, np.nan, 8, 4, 6], [1, 2, 3, 4, 5]]
).T
- # Creates dataframe with IntegerArrays with pd.NA
+ # Creates dataframe with numerical extension arrays with pd.NA
X = pd.DataFrame(X_np, dtype=pd_dtype, columns=["a", "b", "c"])
# column c has no nans
X["c"] = X["c"].astype("float")
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c4f16f4404963..39255056d4e91 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -113,6 +113,10 @@ Changelog\n :pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`\n and :user:`András Simon <simonandras>`.\n \n+- |Enhancement| :func:`utils.validation.check_array` returns a float\n+ ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension\n+ array with `pd.NA`. :pr:`21278` by `Thomas Fan`_.\n+\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
1.01
|
958ccc5bb1d43594eafe825e387e3e9876ac8893
|
[
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csr]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-float]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[True]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[True]",
"sklearn/utils/tests/test_validation.py::test_num_features[list]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[str]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[bsr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[byte-uint16]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X0-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[asarray]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-float]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[tuple]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-float]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int16]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X2]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X4]",
"sklearn/utils/tests/test_validation.py::test_num_features[array]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[coo]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int32-long]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X3]",
"sklearn/utils/tests/test_validation.py::test_as_float_array",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint8-int8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int16-int32]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-allow-nan]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-inf-False]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float64]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_class",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name1-float-2-4-neither-err_msg0]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dok_matrix]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[multi-index]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-allow-nan]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[coo]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint-uint64-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csr]",
"sklearn/utils/tests/test_validation.py::test_check_array_series",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int8-byte-integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X0]",
"sklearn/utils/tests/test_validation.py::test_check_X_y_informative_error",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[float]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_no_exception",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csr]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-str]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X1]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[bsr]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-str]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[float16-float32]",
"sklearn/utils/tests/test_validation.py::test_np_matrix",
"sklearn/utils/tests/test_validation.py::test_check_sample_weight",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X0-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csc]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[intc-int32-integer]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-bool]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[lil_matrix]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[longdouble-float16]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-1-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int16]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-inf-False]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_is_fitted",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X3]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-float]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X1]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int64-longlong-integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X1]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-dict]",
"sklearn/utils/tests/test_validation.py::test_suppress_validation",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_attributes",
"sklearn/utils/tests/test_validation.py::test_num_features[tuple]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function",
"sklearn/utils/tests/test_validation.py::test_num_features[dataframe]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[float32-double]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X2-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_array_deprecated_matrix",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_warning",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintc-uint32-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[array]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint32-uint64]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X3-cannot convert float NaN to integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-str]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csr]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-dict]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[5-test_name3-int-2-4-neither-err_msg2]",
"sklearn/utils/tests/test_validation.py::test_check_array",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_min_samples_and_features_messages",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int8]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[indices1]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[2-test_name4-int-2-4-right-err_msg3]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[coo_matrix]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-bool]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X1-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-dict]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X2-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[list]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant_imag]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function_version",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_complex_data_error",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[array]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_retrieve_samples_from_non_standard_shape",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_numpy",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-dict]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name5-int-2-4-left-err_msg4]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X0]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X0]",
"sklearn/utils/tests/test_validation.py::test_memmap",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_consistent_length",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int0-long-integer]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint16-ushort-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-1-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int8]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-allow-nan-Input contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int-long-integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_casting",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int8]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dia_matrix]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-bool]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-bool]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[bool]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X2]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_object_conversion",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[all negative]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant pos]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-str]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[float16-half-floating]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_has_fit_parameter",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[int]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[None]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[False]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X3-cannot convert float NaN to integer]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[mixed]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[longfloat-longdouble-floating]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[ushort-uint32]",
"sklearn/utils/tests/test_validation.py::test_check_symmetric",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintp-ulonglong-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant_imag]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[single]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-allow-nan-Input contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[coo]",
"sklearn/utils/tests/test_validation.py::test_ordering",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_on_mock_dataframe",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_type_exception",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name6-int-2-4-bad parameter value-err_msg5]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float64]",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in_pandas",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int_-intp-integer]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_fit_attribute",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[ubyte-uint8-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name2-int-2-4-neither-err_msg1]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X1-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[double-float64-floating]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[short-int16-integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int16]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[single-float32-floating]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_stability",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float32]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_pandas"
] |
[
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Float64]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Float64]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Float64]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Float32]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c4f16f4404963..39255056d4e91 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -113,6 +113,10 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`\n and :user:`<NAME>`.\n \n+- |Enhancement| :func:`utils.validation.check_array` returns a float\n+ ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension\n+ array with `pd.NA`. :pr:`<PRID>` by `<NAME>`_.\n+\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c4f16f4404963..39255056d4e91 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -113,6 +113,10 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`
and :user:`<NAME>`.
+- |Enhancement| :func:`utils.validation.check_array` returns a float
+ ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension
+ array with `pd.NA`. :pr:`<PRID>` by `<NAME>`_.
+
Code and Documentation Contributors
-----------------------------------
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22212
|
https://github.com/scikit-learn/scikit-learn/pull/22212
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c0f705a8ceef7..a9d4013b9b375 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -423,6 +423,11 @@ Changelog
ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension
array with `pd.NA`. :pr:`21278` by `Thomas Fan`_.
+- |Enhancement| Adds :term:`get_feature_names_out` to
+ :class:`neighbors.RadiusNeighborsTransformer`, :class:`neighbors.KNeighborsTransformer`
+ and :class:`neighbors.NeighborhoodComponentsAnalysis`. :pr:`22212` by
+ :user : `Meekail Zain <micky774>`.
+
- |Fix| :class:`neighbors.KernelDensity` now validates input parameters in `fit`
instead of `__init__`. :pr:`21430` by :user:`Desislava Vasileva <DessyVV>` and
:user:`Lucy Jimenez <LucyJimenez>`.
diff --git a/sklearn/neighbors/_graph.py b/sklearn/neighbors/_graph.py
index 13c91f4f31339..1371d3234bbb4 100644
--- a/sklearn/neighbors/_graph.py
+++ b/sklearn/neighbors/_graph.py
@@ -7,7 +7,7 @@
from ._base import KNeighborsMixin, RadiusNeighborsMixin
from ._base import NeighborsBase
from ._unsupervised import NearestNeighbors
-from ..base import TransformerMixin
+from ..base import TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..utils.validation import check_is_fitted
@@ -223,7 +223,9 @@ def radius_neighbors_graph(
return X.radius_neighbors_graph(query, radius, mode)
-class KNeighborsTransformer(KNeighborsMixin, TransformerMixin, NeighborsBase):
+class KNeighborsTransformer(
+ _ClassNamePrefixFeaturesOutMixin, KNeighborsMixin, TransformerMixin, NeighborsBase
+):
"""Transform X into a (weighted) graph of k nearest neighbors.
The transformed data is a sparse graph as returned by kneighbors_graph.
@@ -389,7 +391,9 @@ def fit(self, X, y=None):
self : KNeighborsTransformer
The fitted k-nearest neighbors transformer.
"""
- return self._fit(X)
+ self._fit(X)
+ self._n_features_out = self.n_samples_fit_
+ return self
def transform(self, X):
"""Compute the (weighted) graph of Neighbors for points in X.
@@ -445,7 +449,12 @@ def _more_tags(self):
}
-class RadiusNeighborsTransformer(RadiusNeighborsMixin, TransformerMixin, NeighborsBase):
+class RadiusNeighborsTransformer(
+ _ClassNamePrefixFeaturesOutMixin,
+ RadiusNeighborsMixin,
+ TransformerMixin,
+ NeighborsBase,
+):
"""Transform X into a (weighted) graph of neighbors nearer than a radius.
The transformed data is a sparse graph as returned by
@@ -614,7 +623,9 @@ def fit(self, X, y=None):
self : RadiusNeighborsTransformer
The fitted radius neighbors transformer.
"""
- return self._fit(X)
+ self._fit(X)
+ self._n_features_out = self.n_samples_fit_
+ return self
def transform(self, X):
"""Compute the (weighted) graph of Neighbors for points in X.
diff --git a/sklearn/neighbors/_nca.py b/sklearn/neighbors/_nca.py
index db1d8246e87df..13c92fdc872ba 100644
--- a/sklearn/neighbors/_nca.py
+++ b/sklearn/neighbors/_nca.py
@@ -15,7 +15,7 @@
from scipy.optimize import minimize
from ..utils.extmath import softmax
from ..metrics import pairwise_distances
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutMixin
from ..preprocessing import LabelEncoder
from ..decomposition import PCA
from ..utils.multiclass import check_classification_targets
@@ -24,7 +24,9 @@
from ..exceptions import ConvergenceWarning
-class NeighborhoodComponentsAnalysis(TransformerMixin, BaseEstimator):
+class NeighborhoodComponentsAnalysis(
+ _ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
+):
"""Neighborhood Components Analysis.
Neighborhood Component Analysis (NCA) is a machine learning algorithm for
@@ -249,6 +251,7 @@ def fit(self, X, y):
# Reshape the solution found by the optimizer
self.components_ = opt_result.x.reshape(-1, X.shape[1])
+ self._n_features_out = self.components_.shape[1]
# Stop timer
t_train = time.time() - t_train
|
diff --git a/sklearn/neighbors/tests/test_graph.py b/sklearn/neighbors/tests/test_graph.py
index b51f40ac18e36..fb593485d17a8 100644
--- a/sklearn/neighbors/tests/test_graph.py
+++ b/sklearn/neighbors/tests/test_graph.py
@@ -1,8 +1,10 @@
import numpy as np
+import pytest
from sklearn.metrics import euclidean_distances
from sklearn.neighbors import KNeighborsTransformer, RadiusNeighborsTransformer
from sklearn.neighbors._base import _is_sorted_by_data
+from sklearn.utils._testing import assert_array_equal
def test_transformer_result():
@@ -77,3 +79,23 @@ def test_explicit_diagonal():
# Using transform on new data should not always have zero diagonal
X2t = nnt.transform(X2)
assert not _has_explicit_diagonal(X2t)
+
+
[email protected]("Klass", [KNeighborsTransformer, RadiusNeighborsTransformer])
+def test_graph_feature_names_out(Klass):
+ """Check `get_feature_names_out` for transformers defined in `_graph.py`."""
+
+ n_samples_fit = 20
+ n_features = 10
+ rng = np.random.RandomState(42)
+ X = rng.randn(n_samples_fit, n_features)
+
+ est = Klass().fit(X)
+ names_out = est.get_feature_names_out()
+
+ class_name_lower = Klass.__name__.lower()
+ expected_names_out = np.array(
+ [f"{class_name_lower}{i}" for i in range(est.n_samples_fit_)],
+ dtype=object,
+ )
+ assert_array_equal(names_out, expected_names_out)
diff --git a/sklearn/neighbors/tests/test_nca.py b/sklearn/neighbors/tests/test_nca.py
index f9d7e5503a2c8..ec0f71e4c1e9f 100644
--- a/sklearn/neighbors/tests/test_nca.py
+++ b/sklearn/neighbors/tests/test_nca.py
@@ -554,3 +554,20 @@ def test_parameters_valid_types(param, value):
y = iris_target
nca.fit(X, y)
+
+
+def test_nca_feature_names_out():
+ """Check `get_feature_names_out` for `NeighborhoodComponentsAnalysis`."""
+
+ X = iris_data
+ y = iris_target
+
+ est = NeighborhoodComponentsAnalysis().fit(X, y)
+ names_out = est.get_feature_names_out()
+
+ class_name_lower = est.__class__.__name__.lower()
+ expected_names_out = np.array(
+ [f"{class_name_lower}{i}" for i in range(est.components_.shape[1])],
+ dtype=object,
+ )
+ assert_array_equal(names_out, expected_names_out)
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index a8178a4219485..de00fd713c5c7 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -386,7 +386,6 @@ def test_pandas_column_name_consistency(estimator):
"kernel_approximation",
"preprocessing",
"manifold",
- "neighbors",
"neural_network",
]
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c0f705a8ceef7..a9d4013b9b375 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -423,6 +423,11 @@ Changelog\n ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension\n array with `pd.NA`. :pr:`21278` by `Thomas Fan`_.\n \n+- |Enhancement| Adds :term:`get_feature_names_out` to\n+ :class:`neighbors.RadiusNeighborsTransformer`, :class:`neighbors.KNeighborsTransformer`\n+ and :class:`neighbors.NeighborhoodComponentsAnalysis`. :pr:`22212` by\n+ :user : `Meekail Zain <micky774>`.\n+\n - |Fix| :class:`neighbors.KernelDensity` now validates input parameters in `fit`\n instead of `__init__`. :pr:`21430` by :user:`Desislava Vasileva <DessyVV>` and\n :user:`Lucy Jimenez <LucyJimenez>`.\n"
}
] |
1.01
|
9816b35d05e139f1fcc1a5541a1398205280d75a
|
[
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_params_validation",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_init_transformation",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_verbose[random]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_warm_start_validation",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_parameters_valid_types[n_components-value0]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-5-7]",
"sklearn/neighbors/tests/test_graph.py::test_explicit_diagonal",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_one_class",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_expected_transformation_shape",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_verbose[identity]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_transformation_dimensions",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-11-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_parameters_valid_types[tol-value2]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-11-11]",
"sklearn/neighbors/tests/test_graph.py::test_transformer_result",
"sklearn/neighbors/tests/test_nca.py::test_warm_start_effectiveness",
"sklearn/neighbors/tests/test_nca.py::test_n_components",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-7-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_simple_example",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-3-7]",
"sklearn/neighbors/tests/test_nca.py::test_callback",
"sklearn/neighbors/tests/test_nca.py::test_verbose[lda]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-5-11]",
"sklearn/neighbors/tests/test_nca.py::test_parameters_valid_types[max_iter-value1]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_finite_differences",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_no_verbose",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_singleton_class",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-7-3]",
"sklearn/neighbors/tests/test_nca.py::test_verbose[precomputed]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-5-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-11-3]",
"sklearn/neighbors/tests/test_nca.py::test_verbose[pca]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-11-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_toy_example_collapse_points",
"sklearn/neighbors/tests/test_nca.py::test_convergence_warning",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-11-3-3]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-5-7-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[7-7-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-11-11-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-5-3-11]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-7-7]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-5-7-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[11-11-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-5-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-3-5]",
"sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-7-3]"
] |
[
"sklearn/neighbors/tests/test_graph.py::test_graph_feature_names_out[KNeighborsTransformer]",
"sklearn/neighbors/tests/test_graph.py::test_graph_feature_names_out[RadiusNeighborsTransformer]",
"sklearn/neighbors/tests/test_nca.py::test_nca_feature_names_out"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c0f705a8ceef7..a9d4013b9b375 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -423,6 +423,11 @@ Changelog\n ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension\n array with `pd.NA`. :pr:`<PRID>` by `<NAME>`_.\n \n+- |Enhancement| Adds :term:`get_feature_names_out` to\n+ :class:`neighbors.RadiusNeighborsTransformer`, :class:`neighbors.KNeighborsTransformer`\n+ and :class:`neighbors.NeighborhoodComponentsAnalysis`. :pr:`<PRID>` by\n+ :user : `Meekail Zain <micky774>`.\n+\n - |Fix| :class:`neighbors.KernelDensity` now validates input parameters in `fit`\n instead of `__init__`. :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c0f705a8ceef7..a9d4013b9b375 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -423,6 +423,11 @@ Changelog
ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension
array with `pd.NA`. :pr:`<PRID>` by `<NAME>`_.
+- |Enhancement| Adds :term:`get_feature_names_out` to
+ :class:`neighbors.RadiusNeighborsTransformer`, :class:`neighbors.KNeighborsTransformer`
+ and :class:`neighbors.NeighborhoodComponentsAnalysis`. :pr:`<PRID>` by
+ :user : `Meekail Zain <micky774>`.
+
- |Fix| :class:`neighbors.KernelDensity` now validates input parameters in `fit`
instead of `__init__`. :pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21316
|
https://github.com/scikit-learn/scikit-learn/pull/21316
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c4f16f4404963..c34c9779e12ec 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -113,6 +113,10 @@ Changelog
:pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`
and :user:`András Simon <simonandras>`.
+- |Enhancement| :func:`utils.estimator_html_repr` shows a more helpful error
+ message when running in a jupyter notebook that is not trusted. :pr:`21316`
+ by `Thomas Fan`_.
+
Code and Documentation Contributors
-----------------------------------
diff --git a/sklearn/utils/_estimator_html_repr.py b/sklearn/utils/_estimator_html_repr.py
index b2d38b9e97ab3..1f5c339c12771 100644
--- a/sklearn/utils/_estimator_html_repr.py
+++ b/sklearn/utils/_estimator_html_repr.py
@@ -309,6 +309,9 @@ def _write_estimator_html(
display: inline-block;
position: relative;
}
+#$id div.sk-text-repr-fallback {
+ display: none;
+}
""".replace(
" ", ""
).replace(
@@ -335,16 +338,33 @@ def estimator_html_repr(estimator):
container_id = "sk-" + str(uuid.uuid4())
style_template = Template(_STYLE)
style_with_id = style_template.substitute(id=container_id)
+ estimator_str = str(estimator)
+
+ # The fallback message is shown by default and loading the CSS sets
+ # div.sk-text-repr-fallback to display: none to hide the fallback message.
+ #
+ # If the notebook is trusted, the CSS is loaded which hides the fallback
+ # message. If the notebook is not trusted, then the CSS is not loaded and the
+ # fallback message is shown by default.
+ #
+ # The reverse logic applies to HTML repr div.sk-container.
+ # div.sk-container is hidden by default and the loading the CSS displays it.
+ fallback_msg = (
+ "Please rerun this cell to show the HTML repr or trust the notebook."
+ )
out.write(
f"<style>{style_with_id}</style>"
f'<div id="{container_id}" class"sk-top-container">'
- '<div class="sk-container">'
+ '<div class="sk-text-repr-fallback">'
+ f"<pre>{html.escape(estimator_str)}</pre><b>{fallback_msg}</b>"
+ "</div>"
+ '<div class="sk-container" hidden>'
)
_write_estimator_html(
out,
estimator,
estimator.__class__.__name__,
- str(estimator),
+ estimator_str,
first_call=True,
)
out.write("</div></div>")
|
diff --git a/sklearn/utils/tests/test_estimator_html_repr.py b/sklearn/utils/tests/test_estimator_html_repr.py
index f22c03f20bdd7..9d474ad10fe10 100644
--- a/sklearn/utils/tests/test_estimator_html_repr.py
+++ b/sklearn/utils/tests/test_estimator_html_repr.py
@@ -1,4 +1,5 @@
from contextlib import closing
+import html
from io import StringIO
import pytest
@@ -278,3 +279,14 @@ def test_one_estimator_print_change_only(print_changed_only):
pca_repr = str(pca)
html_output = estimator_html_repr(pca)
assert pca_repr in html_output
+
+
+def test_fallback_exists():
+ """Check that repr fallback is in the HTML."""
+ pca = PCA(n_components=10)
+ html_output = estimator_html_repr(pca)
+
+ assert (
+ f'<div class="sk-text-repr-fallback"><pre>{html.escape(str(pca))}'
+ in html_output
+ )
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c4f16f4404963..c34c9779e12ec 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -113,6 +113,10 @@ Changelog\n :pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`\n and :user:`András Simon <simonandras>`.\n \n+- |Enhancement| :func:`utils.estimator_html_repr` shows a more helpful error\n+ message when running in a jupyter notebook that is not trusted. :pr:`21316`\n+ by `Thomas Fan`_.\n+\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
1.01
|
a343963d961225be25468ca64b54896dcba48e87
|
[
"sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_regressor[None]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_single_str_none[passthrough]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_write_label_html[True]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_pipeline",
"sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_classsifer[None]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_write_label_html[False]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_one_estimator_print_change_only[False]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_voting",
"sklearn/utils/tests/test_estimator_html_repr.py::test_duck_typing_nested_estimator",
"sklearn/utils/tests/test_estimator_html_repr.py::test_birch_duck_typing_meta",
"sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_pipeline",
"sklearn/utils/tests/test_estimator_html_repr.py::test_one_estimator_print_change_only[True]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_classsifer[final_estimator1]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_single_str_none[None]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_single_str_none[drop]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_regressor[final_estimator1]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_single_estimator",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_feature_union",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_column_transformer",
"sklearn/utils/tests/test_estimator_html_repr.py::test_ovo_classifier_duck_typing_meta"
] |
[
"sklearn/utils/tests/test_estimator_html_repr.py::test_fallback_exists"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex c4f16f4404963..c34c9779e12ec 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -113,6 +113,10 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`\n and :user:`<NAME>`.\n \n+- |Enhancement| :func:`utils.estimator_html_repr` shows a more helpful error\n+ message when running in a jupyter notebook that is not trusted. :pr:`<PRID>`\n+ by `<NAME>`_.\n+\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index c4f16f4404963..c34c9779e12ec 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -113,6 +113,10 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`
and :user:`<NAME>`.
+- |Enhancement| :func:`utils.estimator_html_repr` shows a more helpful error
+ message when running in a jupyter notebook that is not trusted. :pr:`<PRID>`
+ by `<NAME>`_.
+
Code and Documentation Contributors
-----------------------------------
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17443
|
https://github.com/scikit-learn/scikit-learn/pull/17443
|
diff --git a/doc/modules/calibration.rst b/doc/modules/calibration.rst
index d0a9737dac612..1fcd1d501d100 100644
--- a/doc/modules/calibration.rst
+++ b/doc/modules/calibration.rst
@@ -30,11 +30,25 @@ approximately 80% actually belong to the positive class.
Calibration curves
------------------
-The following plot compares how well the probabilistic predictions of
-different classifiers are calibrated, using :func:`calibration_curve`.
+Calibration curves (also known as reliability diagrams) compare how well the
+probabilistic predictions of a binary classifier are calibrated. It plots
+the true frequency of the positive label against its predicted probability,
+for binned predictions.
The x axis represents the average predicted probability in each bin. The
y axis is the *fraction of positives*, i.e. the proportion of samples whose
-class is the positive class (in each bin).
+class is the positive class (in each bin). The top calibration curve plot
+is created with :func:`CalibrationDisplay.from_estimators`, which uses
+:func:`calibration_curve` to calculate the per bin average predicted
+probabilities and fraction of positives.
+:func:`CalibrationDisplay.from_estimator`
+takes as input a fitted classifier, which is used to calculate the predicted
+probabilities. The classifier thus must have :term:`predict_proba` method. For
+the few classifiers that do not have a :term:`predict_proba` method, it is
+possible to use :class:`CalibratedClassifierCV` to calibrate the classifier
+outputs to probabilities.
+
+The bottom histogram gives some insight into the behavior of each classifier
+by showing the number of samples in each predicted probability bin.
.. figure:: ../auto_examples/calibration/images/sphx_glr_plot_compare_calibration_001.png
:target: ../auto_examples/calibration/plot_compare_calibration.html
@@ -161,6 +175,8 @@ mean a better calibrated model.
:class:`CalibratedClassifierCV` supports the use of two 'calibration'
regressors: 'sigmoid' and 'isotonic'.
+.. _sigmoid_regressor:
+
Sigmoid
^^^^^^^
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 3edd8adee8191..3848a189c35d4 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1123,7 +1123,7 @@ See the :ref:`visualizations` section of the user guide for further details.
metrics.DetCurveDisplay
metrics.PrecisionRecallDisplay
metrics.RocCurveDisplay
-
+ calibration.CalibrationDisplay
.. _mixture_ref:
diff --git a/doc/visualizations.rst b/doc/visualizations.rst
index a2d40408b403f..65612b2787d84 100644
--- a/doc/visualizations.rst
+++ b/doc/visualizations.rst
@@ -65,6 +65,7 @@ values of the curves.
* :ref:`sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py`
* :ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py`
* :ref:`sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py`
+ * :ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py`
Available Plotting Utilities
============================
@@ -90,6 +91,7 @@ Display Objects
.. autosummary::
+ calibration.CalibrationDisplay
inspection.PartialDependenceDisplay
metrics.ConfusionMatrixDisplay
metrics.DetCurveDisplay
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index d9f63cc62add4..001c3350fb056 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -152,6 +152,9 @@ Changelog
:class:`calibration.CalibratedClassifierCV` can now properly be used on
prefitted pipelines. :pr:`19641` by :user:`Alek Lefebvre <AlekLefebvre>`.
+- |Feature| :func:`calibration.CalibrationDisplay` added to plot
+ calibration curves. :pr:`17443` by :user:`Lucy Liu <lucyleeow>`.
+
- |Fix| Fixed an error when using a ::class:`ensemble.VotingClassifier`
as `base_estimator` in ::class:`calibration.CalibratedClassifierCV`.
:pr:`20087` by :user:`Clément Fauchereau <clement-f>`.
diff --git a/examples/calibration/plot_calibration_curve.py b/examples/calibration/plot_calibration_curve.py
index b397bb79a2ba2..d4bfda5a3a55d 100644
--- a/examples/calibration/plot_calibration_curve.py
+++ b/examples/calibration/plot_calibration_curve.py
@@ -5,131 +5,305 @@
When performing classification one often wants to predict not only the class
label, but also the associated probability. This probability gives some
-kind of confidence on the prediction. This example demonstrates how to display
-how well calibrated the predicted probabilities are and how to calibrate an
-uncalibrated classifier.
-
-The experiment is performed on an artificial dataset for binary classification
-with 100,000 samples (1,000 of them are used for model fitting) with 20
-features. Of the 20 features, only 2 are informative and 10 are redundant. The
-first figure shows the estimated probabilities obtained with logistic
-regression, Gaussian naive Bayes, and Gaussian naive Bayes with both isotonic
-calibration and sigmoid calibration. The calibration performance is evaluated
-with Brier score, reported in the legend (the smaller the better). One can
-observe here that logistic regression is well calibrated while raw Gaussian
-naive Bayes performs very badly. This is because of the redundant features
-which violate the assumption of feature-independence and result in an overly
-confident classifier, which is indicated by the typical transposed-sigmoid
-curve.
-
-Calibration of the probabilities of Gaussian naive Bayes with isotonic
-regression can fix this issue as can be seen from the nearly diagonal
-calibration curve. Sigmoid calibration also improves the brier score slightly,
-albeit not as strongly as the non-parametric isotonic regression. This can be
-attributed to the fact that we have plenty of calibration data such that the
-greater flexibility of the non-parametric model can be exploited.
-
-The second figure shows the calibration curve of a linear support-vector
-classifier (LinearSVC). LinearSVC shows the opposite behavior as Gaussian
-naive Bayes: the calibration curve has a sigmoid curve, which is typical for
-an under-confident classifier. In the case of LinearSVC, this is caused by the
-margin property of the hinge loss, which lets the model focus on hard samples
-that are close to the decision boundary (the support vectors).
-
-Both kinds of calibration can fix this issue and yield nearly identical
-results. This shows that sigmoid calibration can deal with situations where
-the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC)
-but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).
+kind of confidence on the prediction. This example demonstrates how to
+visualize how well calibrated the predicted probabilities are using calibration
+curves, also known as reliability diagrams. Calibration of an uncalibrated
+classifier will also be demonstrated.
"""
print(__doc__)
+# %%
# Author: Alexandre Gramfort <[email protected]>
# Jan Hendrik Metzen <[email protected]>
-# License: BSD Style.
+# License: BSD 3 clause.
+#
+# Dataset
+# -------
+#
+# We will use a synthetic binary classification dataset with 100,000 samples
+# and 20 features. Of the 20 features, only 2 are informative, 10 are
+# redundant (random combinations of the informative features) and the
+# remaining 8 are uninformative (random numbers). Of the 100,000 samples, 1,000
+# will be used for model fitting and the rest for testing.
+
+from sklearn.datasets import make_classification
+from sklearn.model_selection import train_test_split
+
+X, y = make_classification(n_samples=100_000, n_features=20, n_informative=2,
+ n_redundant=10, random_state=42)
+
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99,
+ random_state=42)
+
+# %%
+# Calibration curves
+# ------------------
+#
+# Gaussian Naive Bayes
+# ^^^^^^^^^^^^^^^^^^^^
+#
+# First, we will compare:
+#
+# * :class:`~sklearn.linear_model.LogisticRegression` (used as baseline
+# since very often, properly regularized logistic regression is well
+# calibrated by default thanks to the use of the log-loss)
+# * Uncalibrated :class:`~sklearn.naive_bayes.GaussianNB`
+# * :class:`~sklearn.naive_bayes.GaussianNB` with isotonic and sigmoid
+# calibration (see :ref:`User Guide <calibration>`)
+#
+# Calibration curves for all 4 conditions are plotted below, with the average
+# predicted probability for each bin on the x-axis and the fraction of positive
+# classes in each bin on the y-axis.
import matplotlib.pyplot as plt
+from matplotlib.gridspec import GridSpec
-from sklearn import datasets
-from sklearn.naive_bayes import GaussianNB
-from sklearn.svm import LinearSVC
+from sklearn.calibration import CalibratedClassifierCV, CalibrationDisplay
from sklearn.linear_model import LogisticRegression
-from sklearn.metrics import (brier_score_loss, precision_score, recall_score,
- f1_score)
-from sklearn.calibration import CalibratedClassifierCV, calibration_curve
-from sklearn.model_selection import train_test_split
+from sklearn.naive_bayes import GaussianNB
+lr = LogisticRegression(C=1.)
+gnb = GaussianNB()
+gnb_isotonic = CalibratedClassifierCV(gnb, cv=2, method='isotonic')
+gnb_sigmoid = CalibratedClassifierCV(gnb, cv=2, method='sigmoid')
-# Create dataset of classification task with many redundant and few
-# informative features
-X, y = datasets.make_classification(n_samples=100000, n_features=20,
- n_informative=2, n_redundant=10,
- random_state=42)
+clf_list = [(lr, 'Logistic'),
+ (gnb, 'Naive Bayes'),
+ (gnb_isotonic, 'Naive Bayes + Isotonic'),
+ (gnb_sigmoid, 'Naive Bayes + Sigmoid')]
-X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99,
- random_state=42)
+# %%
+fig = plt.figure(figsize=(10, 10))
+gs = GridSpec(4, 2)
+colors = plt.cm.get_cmap('Dark2')
+
+ax_calibration_curve = fig.add_subplot(gs[:2, :2])
+calibration_displays = {}
+for i, (clf, name) in enumerate(clf_list):
+ clf.fit(X_train, y_train)
+ display = CalibrationDisplay.from_estimator(
+ clf, X_test, y_test, n_bins=10, name=name, ax=ax_calibration_curve,
+ color=colors(i)
+ )
+ calibration_displays[name] = display
+
+ax_calibration_curve.grid()
+ax_calibration_curve.set_title('Calibration plots (Naive Bayes)')
+
+# Add histogram
+grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
+for i, (_, name) in enumerate(clf_list):
+ row, col = grid_positions[i]
+ ax = fig.add_subplot(gs[row, col])
+
+ ax.hist(
+ calibration_displays[name].y_prob, range=(0, 1), bins=10, label=name,
+ color=colors(i)
+ )
+ ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")
+
+plt.tight_layout()
+plt.show()
+
+# %%
+# Uncalibrated :class:`~sklearn.naive_bayes.GaussianNB` is poorly calibrated
+# because of
+# the redundant features which violate the assumption of feature-independence
+# and result in an overly confident classifier, which is indicated by the
+# typical transposed-sigmoid curve. Calibration of the probabilities of
+# :class:`~sklearn.naive_bayes.GaussianNB` with :ref:`isotonic` can fix
+# this issue as can be seen from the nearly diagonal calibration curve.
+# :ref:sigmoid regression `<sigmoid_regressor>` also improves calibration
+# slightly,
+# albeit not as strongly as the non-parametric isotonic regression. This can be
+# attributed to the fact that we have plenty of calibration data such that the
+# greater flexibility of the non-parametric model can be exploited.
+#
+# Below we will make a quantitative analysis considering several classification
+# metrics: :ref:`brier_score_loss`, :ref:`log_loss`,
+# :ref:`precision, recall, F1 score <precision_recall_f_measure_metrics>` and
+# :ref:`ROC AUC <roc_metrics>`.
+
+from collections import defaultdict
+
+import pandas as pd
+
+from sklearn.metrics import (precision_score, recall_score, f1_score,
+ brier_score_loss, log_loss, roc_auc_score)
+
+scores = defaultdict(list)
+for i, (clf, name) in enumerate(clf_list):
+ clf.fit(X_train, y_train)
+ y_prob = clf.predict_proba(X_test)
+ y_pred = clf.predict(X_test)
+ scores["Classifier"].append(name)
+
+ for metric in [brier_score_loss, log_loss]:
+ score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
+ scores[score_name].append(metric(y_test, y_prob[:, 1]))
+
+ for metric in [precision_score, recall_score, f1_score, roc_auc_score]:
+ score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
+ scores[score_name].append(metric(y_test, y_pred))
+
+ score_df = pd.DataFrame(scores).set_index("Classifier")
+ score_df.round(decimals=3)
+score_df
-def plot_calibration_curve(est, name, fig_index):
- """Plot calibration curve for est w/o and with calibration. """
- # Calibrated with isotonic calibration
- isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic')
+# %%
+# Notice that although calibration improves the :ref:`brier_score_loss` (a
+# metric composed
+# of calibration term and refinement term) and :ref:`log_loss`, it does not
+# significantly alter the prediction accuracy measures (precision, recall and
+# F1 score).
+# This is because calibration should not significantly change prediction
+# probabilities at the location of the decision threshold (at x = 0.5 on the
+# graph). Calibration should however, make the predicted probabilities more
+# accurate and thus more useful for making allocation decisions under
+# uncertainty.
+# Further, ROC AUC, should not change at all because calibration is a
+# monotonic transformation. Indeed, no rank metrics are affected by
+# calibration.
+#
+# Linear support vector classifier
+# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+# Next, we will compare:
+#
+# * :class:`~sklearn.linear_model.LogisticRegression` (baseline)
+# * Uncalibrated :class:`~sklearn.svm.LinearSVC`. Since SVC does not output
+# probabilities by default, we naively scale the output of the
+# :term:`decision_function` into [0, 1] by applying min-max scaling.
+# * :class:`~sklearn.svm.LinearSVC` with isotonic and sigmoid
+# calibration (see :ref:`User Guide <calibration>`)
- # Calibrated with sigmoid calibration
- sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid')
+import numpy as np
+
+from sklearn.svm import LinearSVC
- # Logistic regression with no calibration as baseline
- lr = LogisticRegression(C=1.)
- fig = plt.figure(fig_index, figsize=(10, 10))
- ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2, fig=fig)
- ax2 = plt.subplot2grid((3, 1), (2, 0), fig=fig)
+class NaivelyCalibratedLinearSVC(LinearSVC):
+ """LinearSVC with `predict_proba` method that naively scales
+ `decision_function` output for binary classification."""
- ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
- for clf, name in [(lr, 'Logistic'),
- (est, name),
- (isotonic, name + ' + Isotonic'),
- (sigmoid, name + ' + Sigmoid')]:
- clf.fit(X_train, y_train)
- y_pred = clf.predict(X_test)
- if hasattr(clf, "predict_proba"):
- prob_pos = clf.predict_proba(X_test)[:, 1]
- else: # use decision function
- prob_pos = clf.decision_function(X_test)
- prob_pos = \
- (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
+ def fit(self, X, y):
+ super().fit(X, y)
+ df = self.decision_function(X)
+ self.df_min_ = df.min()
+ self.df_max_ = df.max()
- clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max())
- print("%s:" % name)
- print("\tBrier: %1.3f" % (clf_score))
- print("\tPrecision: %1.3f" % precision_score(y_test, y_pred))
- print("\tRecall: %1.3f" % recall_score(y_test, y_pred))
- print("\tF1: %1.3f\n" % f1_score(y_test, y_pred))
+ def predict_proba(self, X):
+ """Min-max scale output of `decision_function` to [0, 1]."""
+ df = self.decision_function(X)
+ calibrated_df = (df - self.df_min_) / (self.df_max_ - self.df_min_)
+ proba_pos_class = np.clip(calibrated_df, 0, 1)
+ proba_neg_class = 1 - proba_pos_class
+ proba = np.c_[proba_neg_class, proba_pos_class]
+ return proba
- fraction_of_positives, mean_predicted_value = \
- calibration_curve(y_test, prob_pos, n_bins=10)
- ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
- label="%s (%1.3f)" % (name, clf_score))
+# %%
- ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
- histtype="step", lw=2)
+lr = LogisticRegression(C=1.)
+svc = NaivelyCalibratedLinearSVC(max_iter=10_000)
+svc_isotonic = CalibratedClassifierCV(svc, cv=2, method='isotonic')
+svc_sigmoid = CalibratedClassifierCV(svc, cv=2, method='sigmoid')
- ax1.set_ylabel("Fraction of positives")
- ax1.set_ylim([-0.05, 1.05])
- ax1.legend(loc="lower right")
- ax1.set_title('Calibration plots (reliability curve)')
+clf_list = [(lr, 'Logistic'),
+ (svc, 'SVC'),
+ (svc_isotonic, 'SVC + Isotonic'),
+ (svc_sigmoid, 'SVC + Sigmoid')]
- ax2.set_xlabel("Mean predicted value")
- ax2.set_ylabel("Count")
- ax2.legend(loc="upper center", ncol=2)
+# %%
+fig = plt.figure(figsize=(10, 10))
+gs = GridSpec(4, 2)
- plt.tight_layout()
+ax_calibration_curve = fig.add_subplot(gs[:2, :2])
+calibration_displays = {}
+for i, (clf, name) in enumerate(clf_list):
+ clf.fit(X_train, y_train)
+ display = CalibrationDisplay.from_estimator(
+ clf, X_test, y_test, n_bins=10, name=name, ax=ax_calibration_curve,
+ color=colors(i)
+ )
+ calibration_displays[name] = display
+ax_calibration_curve.grid()
+ax_calibration_curve.set_title('Calibration plots (SVC)')
-# Plot calibration curve for Gaussian Naive Bayes
-plot_calibration_curve(GaussianNB(), "Naive Bayes", 1)
+# Add histogram
+grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
+for i, (_, name) in enumerate(clf_list):
+ row, col = grid_positions[i]
+ ax = fig.add_subplot(gs[row, col])
-# Plot calibration curve for Linear SVC
-plot_calibration_curve(LinearSVC(max_iter=10000), "SVC", 2)
+ ax.hist(
+ calibration_displays[name].y_prob, range=(0, 1), bins=10, label=name,
+ color=colors(i)
+ )
+ ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")
+plt.tight_layout()
plt.show()
+
+# %%
+# :class:`~sklearn.svm.LinearSVC` shows the opposite
+# behavior to :class:`~sklearn.naive_bayes.GaussianNB`; the calibration
+# curve has a sigmoid shape, which is typical for an under-confident
+# classifier. In the case of :class:`~sklearn.svm.LinearSVC`, this is caused
+# by the margin property of the hinge loss, which focuses on samples that are
+# close to the decision boundary (support vectors). Samples that are far
+# away from the decision boundary do not impact the hinge loss. It thus makes
+# sense that :class:`~sklearn.svm.LinearSVC` does not try to separate samples
+# in the high confidence region regions. This leads to flatter calibration
+# curves near 0 and 1 and is empirically shown with a variety of datasets
+# in Niculescu-Mizil & Caruana [1]_.
+#
+# Both kinds of calibration (sigmoid and isotonic) can fix this issue and
+# yield similar results.
+#
+# As before, we show the :ref:`brier_score_loss`, :ref:`log_loss`,
+# :ref:`precision, recall, F1 score <precision_recall_f_measure_metrics>` and
+# :ref:`ROC AUC <roc_metrics>`.
+
+scores = defaultdict(list)
+for i, (clf, name) in enumerate(clf_list):
+ clf.fit(X_train, y_train)
+ y_prob = clf.predict_proba(X_test)
+ y_pred = clf.predict(X_test)
+ scores["Classifier"].append(name)
+
+ for metric in [brier_score_loss, log_loss]:
+ score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
+ scores[score_name].append(metric(y_test, y_prob[:, 1]))
+
+ for metric in [precision_score, recall_score, f1_score, roc_auc_score]:
+ score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
+ scores[score_name].append(metric(y_test, y_pred))
+
+ score_df = pd.DataFrame(scores).set_index("Classifier")
+ score_df.round(decimals=3)
+
+score_df
+
+# %%
+# As with :class:`~sklearn.naive_bayes.GaussianNB` above, calibration improves
+# both :ref:`brier_score_loss` and :ref:`log_loss` but does not alter the
+# prediction accuracy measures (precision, recall and F1 score) much.
+#
+# Summary
+# -------
+#
+# Parametric sigmoid calibration can deal with situations where the calibration
+# curve of the base classifier is sigmoid (e.g., for
+# :class:`~sklearn.svm.LinearSVC`) but not where it is transposed-sigmoid
+# (e.g., :class:`~sklearn.naive_bayes.GaussianNB`). Non-parametric
+# isotonic calibration can deal with both situations but may require more
+# data to produce good results.
+#
+# References
+# ----------
+#
+# .. [1] `Predicting Good Probabilities with Supervised Learning
+# <https://dl.acm.org/doi/pdf/10.1145/1102351.1102430>`_,
+# A. Niculescu-Mizil & R. Caruana, ICML 2005
diff --git a/examples/calibration/plot_compare_calibration.py b/examples/calibration/plot_compare_calibration.py
index a8599aecc16af..7ee4eaf4da7df 100644
--- a/examples/calibration/plot_compare_calibration.py
+++ b/examples/calibration/plot_compare_calibration.py
@@ -4,119 +4,192 @@
========================================
Well calibrated classifiers are probabilistic classifiers for which the output
-of the predict_proba method can be directly interpreted as a confidence level.
-For instance a well calibrated (binary) classifier should classify the samples
-such that among the samples to which it gave a predict_proba value close to
-0.8, approx. 80% actually belong to the positive class.
-
-LogisticRegression returns well calibrated predictions as it directly
-optimizes log-loss. In contrast, the other methods return biased probabilities,
-with different biases per method:
-
-* GaussianNaiveBayes tends to push probabilities to 0 or 1 (note the counts in
- the histograms). This is mainly because it makes the assumption that features
- are conditionally independent given the class, which is not the case in this
- dataset which contains 2 redundant features.
-
-* RandomForestClassifier shows the opposite behavior: the histograms show
- peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1
- are very rare. An explanation for this is given by Niculescu-Mizil and Caruana
- [1]_: "Methods such as bagging and random forests that average predictions
- from a base set of models can have difficulty making predictions near 0 and 1
- because variance in the underlying base models will bias predictions that
- should be near zero or one away from these values. Because predictions are
- restricted to the interval [0,1], errors caused by variance tend to be one-
- sided near zero and one. For example, if a model should predict p = 0 for a
- case, the only way bagging can achieve this is if all bagged trees predict
- zero. If we add noise to the trees that bagging is averaging over, this noise
- will cause some trees to predict values larger than 0 for this case, thus
- moving the average prediction of the bagged ensemble away from 0. We observe
- this effect most strongly with random forests because the base-level trees
- trained with random forests have relatively high variance due to feature
- subsetting." As a result, the calibration curve shows a characteristic
- sigmoid shape, indicating that the classifier could trust its "intuition"
- more and return probabilities closer to 0 or 1 typically.
-
-* Support Vector Classification (SVC) shows an even more sigmoid curve as
- the RandomForestClassifier, which is typical for maximum-margin methods
- (compare Niculescu-Mizil and Caruana [1]_), which focus on hard samples
- that are close to the decision boundary (the support vectors).
-
-.. topic:: References:
-
- .. [1] Predicting Good Probabilities with Supervised Learning,
- A. Niculescu-Mizil & R. Caruana, ICML 2005
+of :term:`predict_proba` can be directly interpreted as a confidence level.
+For instance, a well calibrated (binary) classifier should classify the samples
+such that for the samples to which it gave a :term:`predict_proba` value close
+to 0.8, approximately 80% actually belong to the positive class.
+
+In this example we will compare the calibration of four different
+models: :ref:`Logistic_regression`, :ref:`gaussian_naive_bayes`,
+:ref:`Random Forest Classifier <forest>` and :ref:`Linear SVM
+<svm_classification>`.
"""
-print(__doc__)
+# %%
# Author: Jan Hendrik Metzen <[email protected]>
-# License: BSD Style.
+# License: BSD 3 clause.
+#
+# Dataset
+# -------
+#
+# We will use a synthetic binary classification dataset with 100,000 samples
+# and 20 features. Of the 20 features, only 2 are informative, 2 are
+# redundant (random combinations of the informative features) and the
+# remaining 16 are uninformative (random numbers). Of the 100,000 samples,
+# 100 will be used for model fitting and the remaining for testing.
+
+from sklearn.datasets import make_classification
+from sklearn.model_selection import train_test_split
+
+X, y = make_classification(
+ n_samples=100_000, n_features=20, n_informative=2, n_redundant=2,
+ random_state=42
+)
-import numpy as np
-np.random.seed(0)
+train_samples = 100 # Samples used for training the models
+X_train, X_test, y_train, y_test = train_test_split(
+ X, y, shuffle=False, test_size=100_000 - train_samples,
+)
+
+# %%
+# Calibration curves
+# ------------------
+#
+# Below, we train each of the four models with the small training dataset, then
+# plot calibration curves (also known as reliability diagrams) using
+# predicted probabilities of the test dataset. Calibration curves are created
+# by binning predicted probabilities, then plotting the mean predicted
+# probability in each bin against the observed frequency ('fraction of
+# positives'). Below the calibration curve, we plot a histogram showing
+# the distribution of the predicted probabilities or more specifically,
+# the number of samples in each predicted probability bin.
-import matplotlib.pyplot as plt
+import numpy as np
-from sklearn import datasets
-from sklearn.naive_bayes import GaussianNB
-from sklearn.linear_model import LogisticRegression
-from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
-from sklearn.calibration import calibration_curve
-X, y = datasets.make_classification(n_samples=100000, n_features=20,
- n_informative=2, n_redundant=2)
-train_samples = 100 # Samples used for training the models
+class NaivelyCalibratedLinearSVC(LinearSVC):
+ """LinearSVC with `predict_proba` method that naively scales
+ `decision_function` output."""
+
+ def fit(self, X, y):
+ super().fit(X, y)
+ df = self.decision_function(X)
+ self.df_min_ = df.min()
+ self.df_max_ = df.max()
-X_train = X[:train_samples]
-X_test = X[train_samples:]
-y_train = y[:train_samples]
-y_test = y[train_samples:]
+ def predict_proba(self, X):
+ """Min-max scale output of `decision_function` to [0,1]."""
+ df = self.decision_function(X)
+ calibrated_df = (df - self.df_min_) / (self.df_max_ - self.df_min_)
+ proba_pos_class = np.clip(calibrated_df, 0, 1)
+ proba_neg_class = 1 - proba_pos_class
+ proba = np.c_[proba_neg_class, proba_pos_class]
+ return proba
+
+
+# %%
+
+from sklearn.calibration import CalibrationDisplay
+from sklearn.ensemble import RandomForestClassifier
+from sklearn.linear_model import LogisticRegression
+from sklearn.naive_bayes import GaussianNB
# Create classifiers
lr = LogisticRegression()
gnb = GaussianNB()
-svc = LinearSVC(C=1.0)
+svc = NaivelyCalibratedLinearSVC(C=1.0)
rfc = RandomForestClassifier()
+clf_list = [(lr, 'Logistic'),
+ (gnb, 'Naive Bayes'),
+ (svc, 'SVC'),
+ (rfc, 'Random forest')]
+
+# %%
-# #############################################################################
-# Plot calibration plots
+import matplotlib.pyplot as plt
+from matplotlib.gridspec import GridSpec
-plt.figure(figsize=(10, 10))
-ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
-ax2 = plt.subplot2grid((3, 1), (2, 0))
+fig = plt.figure(figsize=(10, 10))
+gs = GridSpec(4, 2)
+colors = plt.cm.get_cmap('Dark2')
-ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
-for clf, name in [(lr, 'Logistic'),
- (gnb, 'Naive Bayes'),
- (svc, 'Support Vector Classification'),
- (rfc, 'Random Forest')]:
+ax_calibration_curve = fig.add_subplot(gs[:2, :2])
+calibration_displays = {}
+for i, (clf, name) in enumerate(clf_list):
clf.fit(X_train, y_train)
- if hasattr(clf, "predict_proba"):
- prob_pos = clf.predict_proba(X_test)[:, 1]
- else: # use decision function
- prob_pos = clf.decision_function(X_test)
- prob_pos = \
- (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
- fraction_of_positives, mean_predicted_value = \
- calibration_curve(y_test, prob_pos, n_bins=10)
-
- ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
- label="%s" % (name, ))
-
- ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
- histtype="step", lw=2)
-
-ax1.set_ylabel("Fraction of positives")
-ax1.set_ylim([-0.05, 1.05])
-ax1.legend(loc="lower right")
-ax1.set_title('Calibration plots (reliability curve)')
-
-ax2.set_xlabel("Mean predicted value")
-ax2.set_ylabel("Count")
-ax2.legend(loc="upper center", ncol=2)
+ display = CalibrationDisplay.from_estimator(
+ clf, X_test, y_test, n_bins=10, name=name, ax=ax_calibration_curve,
+ color=colors(i)
+ )
+ calibration_displays[name] = display
+
+ax_calibration_curve.grid()
+ax_calibration_curve.set_title('Calibration plots')
+
+# Add histogram
+grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
+for i, (_, name) in enumerate(clf_list):
+ row, col = grid_positions[i]
+ ax = fig.add_subplot(gs[row, col])
+
+ ax.hist(
+ calibration_displays[name].y_prob, range=(0, 1), bins=10, label=name,
+ color=colors(i)
+ )
+ ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")
plt.tight_layout()
plt.show()
+
+# %%
+# :class:`~sklearn.linear_model.LogisticRegression` returns well calibrated
+# predictions as it directly optimizes log-loss. In contrast, the other methods
+# return biased probabilities, with different biases for each method:
+#
+# * :class:`~sklearn.naive_bayes.GaussianNB` tends to push
+# probabilities to 0 or 1 (see histogram). This is mainly
+# because the naive Bayes equation only provides correct estimate of
+# probabilities when the assumption that features are conditionally
+# independent holds [2]_. However, features tend to be positively correlated
+# and is the case with this dataset, which contains 2 features
+# generated as random linear combinations of the informative features. These
+# correlated features are effectively being 'counted twice', resulting in
+# pushing the predicted probabilities towards 0 and 1 [3]_.
+#
+# * :class:`~sklearn.ensemble.RandomForestClassifier` shows the opposite
+# behavior: the histograms show peaks at approx. 0.2 and 0.9 probability,
+# while probabilities close to 0 or 1 are very rare. An explanation for this
+# is given by Niculescu-Mizil and Caruana [1]_: "Methods such as bagging and
+# random forests that average predictions from a base set of models can have
+# difficulty making predictions near 0 and 1 because variance in the
+# underlying base models will bias predictions that should be near zero or
+# one away from these values. Because predictions are restricted to the
+# interval [0,1], errors caused by variance tend to be one- sided near zero
+# and one. For example, if a model should predict p = 0 for a case, the only
+# way bagging can achieve this is if all bagged trees predict zero. If we add
+# noise to the trees that bagging is averaging over, this noise will cause
+# some trees to predict values larger than 0 for this case, thus moving the
+# average prediction of the bagged ensemble away from 0. We observe this
+# effect most strongly with random forests because the base-level trees
+# trained with random forests have relatively high variance due to feature
+# subsetting." As a result, the calibration curve shows a characteristic
+# sigmoid shape, indicating that the classifier is under-confident
+# and could return probabilities closer to 0 or 1.
+#
+# * To show the performance of :class:`~sklearn.svm.LinearSVC`, we naively
+# scale the output of the :term:`decision_function` into [0, 1] by applying
+# min-max scaling, since SVC does not output probabilities by default.
+# :class:`~sklearn.svm.LinearSVC` shows an
+# even more sigmoid curve than the
+# :class:`~sklearn.ensemble.RandomForestClassifier`, which is typical for
+# maximum-margin methods [1]_ as they focus on difficult to classify samples
+# that are close to the decision boundary (the support vectors).
+#
+# References
+# ----------
+#
+# .. [1] `Predicting Good Probabilities with Supervised Learning
+# <https://dl.acm.org/doi/pdf/10.1145/1102351.1102430>`_,
+# A. Niculescu-Mizil & R. Caruana, ICML 2005
+# .. [2] `Beyond independence: Conditions for the optimality of the simple
+# bayesian classifier
+# <https://www.ics.uci.edu/~pazzani/Publications/mlc96-pedro.pdf>`_
+# Domingos, P., & Pazzani, M., Proc. 13th Intl. Conf. Machine Learning.
+# 1996.
+# .. [3] `Obtaining calibrated probability estimates from decision trees and
+# naive Bayesian classifiers
+# <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.3039&rep=rep1&type=pdf>`_
+# Zadrozny, Bianca, and Charles Elkan. Icml. Vol. 1. 2001.
diff --git a/sklearn/calibration.py b/sklearn/calibration.py
index 126cbbcbe9c88..95cd6731bb182 100644
--- a/sklearn/calibration.py
+++ b/sklearn/calibration.py
@@ -25,12 +25,14 @@
RegressorMixin,
clone,
MetaEstimatorMixin,
+ is_classifier,
)
from .preprocessing import label_binarize, LabelEncoder
from .utils import (
column_or_1d,
deprecated,
indexable,
+ check_matplotlib_support,
)
from .utils.multiclass import check_classification_targets
@@ -41,6 +43,7 @@
from .isotonic import IsotonicRegression
from .svm import LinearSVC
from .model_selection import check_cv, cross_val_predict
+from .metrics._plot.base import _get_response
class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator):
@@ -943,3 +946,351 @@ def calibration_curve(y_true, y_prob, *, normalize=False, n_bins=5, strategy="un
prob_pred = bin_sums[nonzero] / bin_total[nonzero]
return prob_true, prob_pred
+
+
+class CalibrationDisplay:
+ """Calibration curve (also known as reliability diagram) visualization.
+
+ It is recommended to use
+ :func:`~sklearn.calibration.CalibrationDisplay.from_estimator` or
+ :func:`~sklearn.calibration.CalibrationDisplay.from_predictions`
+ to create a `CalibrationDisplay`. All parameters are stored as attributes.
+
+ Read more about calibration in the :ref:`User Guide <calibration>` and
+ more about the scikit-learn visualization API in :ref:`visualizations`.
+
+ .. versionadded:: 1.0
+
+ Parameters
+ -----------
+ prob_true : ndarray of shape (n_bins,)
+ The proportion of samples whose class is the positive class (fraction
+ of positives), in each bin.
+
+ prob_pred : ndarray of shape (n_bins,)
+ The mean predicted probability in each bin.
+
+ y_prob : ndarray of shape (n_samples,)
+ Probability estimates for the positive class, for each sample.
+
+ name : str, default=None
+ Name for labeling curve.
+
+ Attributes
+ ----------
+ line_ : matplotlib Artist
+ Calibration curve.
+
+ ax_ : matplotlib Axes
+ Axes with calibration curve.
+
+ figure_ : matplotlib Figure
+ Figure containing the curve.
+
+ See Also
+ --------
+ calibration_curve : Compute true and predicted probabilities for a
+ calibration curve.
+ CalibrationDisplay.from_predictions : Plot calibration curve using true
+ and predicted labels.
+ CalibrationDisplay.from_estimator : Plot calibration curve using an
+ estimator and data.
+
+ Examples
+ --------
+ >>> from sklearn.datasets import make_classification
+ >>> from sklearn.model_selection import train_test_split
+ >>> from sklearn.linear_model import LogisticRegression
+ >>> from sklearn.calibration import calibration_curve, CalibrationDisplay
+ >>> X, y = make_classification(random_state=0)
+ >>> X_train, X_test, y_train, y_test = train_test_split(
+ ... X, y, random_state=0)
+ >>> clf = LogisticRegression(random_state=0)
+ >>> clf.fit(X_train, y_train)
+ LogisticRegression(random_state=0)
+ >>> y_prob = clf.predict_proba(X_test)[:, 1]
+ >>> prob_true, prob_pred = calibration_curve(y_test, y_prob, n_bins=10)
+ >>> disp = CalibrationDisplay(prob_true, prob_pred, y_prob)
+ >>> disp.plot()
+ <...>
+ """
+
+ def __init__(self, prob_true, prob_pred, y_prob, *, name=None):
+ self.prob_true = prob_true
+ self.prob_pred = prob_pred
+ self.y_prob = y_prob
+ self.name = name
+
+ def plot(self, *, ax=None, name=None, ref_line=True, **kwargs):
+ """Plot visualization.
+
+ Extra keyword arguments will be passed to
+ :func:`matplotlib.pyplot.plot`.
+
+ Parameters
+ ----------
+ ax : Matplotlib Axes, default=None
+ Axes object to plot on. If `None`, a new figure and axes is
+ created.
+
+ name : str, default=None
+ Name for labeling curve.
+
+ ref_line : bool, default=True
+ If `True`, plots a reference line representing a perfectly
+ calibrated classifier.
+
+ **kwargs : dict
+ Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
+
+ Returns
+ -------
+ display : :class:`~sklearn.calibration.CalibrationDisplay`
+ Object that stores computed values.
+ """
+ check_matplotlib_support("CalibrationDisplay.plot")
+ import matplotlib.pyplot as plt
+
+ if ax is None:
+ fig, ax = plt.subplots()
+
+ name = self.name if name is None else name
+ self.name = name
+
+ line_kwargs = {}
+ if name is not None:
+ line_kwargs["label"] = name
+ line_kwargs.update(**kwargs)
+
+ ref_line_label = "Perfectly calibrated"
+ existing_ref_line = ref_line_label in ax.get_legend_handles_labels()[1]
+ if ref_line and not existing_ref_line:
+ ax.plot([0, 1], [0, 1], "k:", label=ref_line_label)
+ self.line_ = ax.plot(self.prob_pred, self.prob_true, "s-", **line_kwargs)[0]
+
+ if "label" in line_kwargs:
+ ax.legend(loc="lower right")
+
+ ax.set(xlabel="Mean predicted probability", ylabel="Fraction of positives")
+
+ self.ax_ = ax
+ self.figure_ = ax.figure
+ return self
+
+ @classmethod
+ def from_estimator(
+ cls,
+ estimator,
+ X,
+ y,
+ *,
+ n_bins=5,
+ strategy="uniform",
+ name=None,
+ ref_line=True,
+ ax=None,
+ **kwargs,
+ ):
+ """Plot calibration curve using an binary classifier and data.
+
+ Calibration curve, also known as reliability diagram, uses inputs
+ from a binary classifier and plots the average predicted probability
+ for each bin against the fraction of positive classes, on the
+ y-axis.
+
+ Extra keyword arguments will be passed to
+ :func:`matplotlib.pyplot.plot`.
+
+ Read more about calibration in the :ref:`User Guide <calibration>` and
+ more about the scikit-learn visualization API in :ref:`visualizations`.
+
+ .. versionadded:: 1.0
+
+ Parameters
+ ----------
+ estimator : estimator instance
+ Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
+ in which the last estimator is a classifier. The classifier must
+ have a :term:`predict_proba` method.
+
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ Input values.
+
+ y : array-like of shape (n_samples,)
+ Binary target values.
+
+ n_bins : int, default=5
+ Number of bins to discretize the [0, 1] interval into when
+ calculating the calibration curve. A bigger number requires more
+ data.
+
+ strategy : {'uniform', 'quantile'}, default='uniform'
+ Strategy used to define the widths of the bins.
+
+ - `'uniform'`: The bins have identical widths.
+ - `'quantile'`: The bins have the same number of samples and depend
+ on predicted probabilities.
+
+ name : str, default=None
+ Name for labeling curve. If `None`, the name of the estimator is
+ used.
+
+ ref_line : bool, default=True
+ If `True`, plots a reference line representing a perfectly
+ calibrated classifier.
+
+ ax : matplotlib axes, default=None
+ Axes object to plot on. If `None`, a new figure and axes is
+ created.
+
+ **kwargs : dict
+ Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
+
+ Returns
+ -------
+ display : :class:`~sklearn.calibration.CalibrationDisplay`.
+ Object that stores computed values.
+
+ See Also
+ --------
+ CalibrationDisplay.from_predictions : Plot calibration curve using true
+ and predicted labels.
+
+ Examples
+ --------
+ >>> import matplotlib.pyplot as plt
+ >>> from sklearn.datasets import make_classification
+ >>> from sklearn.model_selection import train_test_split
+ >>> from sklearn.linear_model import LogisticRegression
+ >>> from sklearn.calibration import CalibrationDisplay
+ >>> X, y = make_classification(random_state=0)
+ >>> X_train, X_test, y_train, y_test = train_test_split(
+ ... X, y, random_state=0)
+ >>> clf = LogisticRegression(random_state=0)
+ >>> clf.fit(X_train, y_train)
+ LogisticRegression(random_state=0)
+ >>> disp = CalibrationDisplay.from_estimator(clf, X_test, y_test)
+ >>> plt.show()
+ """
+ method_name = f"{cls.__name__}.from_estimator"
+ check_matplotlib_support(method_name)
+
+ if not is_classifier(estimator):
+ raise ValueError("'estimator' should be a fitted classifier.")
+
+ # FIXME: `pos_label` should not be set to None
+ # We should allow any int or string in `calibration_curve`.
+ y_prob, _ = _get_response(
+ X, estimator, response_method="predict_proba", pos_label=None
+ )
+
+ name = name if name is not None else estimator.__class__.__name__
+ return cls.from_predictions(
+ y,
+ y_prob,
+ n_bins=n_bins,
+ strategy=strategy,
+ name=name,
+ ref_line=ref_line,
+ ax=ax,
+ **kwargs,
+ )
+
+ @classmethod
+ def from_predictions(
+ cls,
+ y_true,
+ y_prob,
+ *,
+ n_bins=5,
+ strategy="uniform",
+ name=None,
+ ref_line=True,
+ ax=None,
+ **kwargs,
+ ):
+ """Plot calibration curve using true labels and predicted probabilities.
+
+ Calibration curve, also known as reliability diagram, uses inputs
+ from a binary classifier and plots the average predicted probability
+ for each bin against the fraction of positive classes, on the
+ y-axis.
+
+ Extra keyword arguments will be passed to
+ :func:`matplotlib.pyplot.plot`.
+
+ Read more about calibration in the :ref:`User Guide <calibration>` and
+ more about the scikit-learn visualization API in :ref:`visualizations`.
+
+ .. versionadded:: 1.0
+
+ Parameters
+ ----------
+ y_true : array-like of shape (n_samples,)
+ True labels.
+
+ y_prob : array-like of shape (n_samples,)
+ The predicted probabilities of the positive class.
+
+ n_bins : int, default=5
+ Number of bins to discretize the [0, 1] interval into when
+ calculating the calibration curve. A bigger number requires more
+ data.
+
+ strategy : {'uniform', 'quantile'}, default='uniform'
+ Strategy used to define the widths of the bins.
+
+ - `'uniform'`: The bins have identical widths.
+ - `'quantile'`: The bins have the same number of samples and depend
+ on predicted probabilities.
+
+ name : str, default=None
+ Name for labeling curve.
+
+ ref_line : bool, default=True
+ If `True`, plots a reference line representing a perfectly
+ calibrated classifier.
+
+ ax : matplotlib axes, default=None
+ Axes object to plot on. If `None`, a new figure and axes is
+ created.
+
+ **kwargs : dict
+ Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
+
+ Returns
+ -------
+ display : :class:`~sklearn.calibration.CalibrationDisplay`.
+ Object that stores computed values.
+
+ See Also
+ --------
+ CalibrationDisplay.from_estimator : Plot calibration curve using an
+ estimator and data.
+
+ Examples
+ --------
+ >>> import matplotlib.pyplot as plt
+ >>> from sklearn.datasets import make_classification
+ >>> from sklearn.model_selection import train_test_split
+ >>> from sklearn.linear_model import LogisticRegression
+ >>> from sklearn.calibration import CalibrationDisplay
+ >>> X, y = make_classification(random_state=0)
+ >>> X_train, X_test, y_train, y_test = train_test_split(
+ ... X, y, random_state=0)
+ >>> clf = LogisticRegression(random_state=0)
+ >>> clf.fit(X_train, y_train)
+ LogisticRegression(random_state=0)
+ >>> y_prob = clf.predict_proba(X_test)[:, 1]
+ >>> disp = CalibrationDisplay.from_predictions(y_test, y_prob)
+ >>> plt.show()
+ """
+ method_name = f"{cls.__name__}.from_estimator"
+ check_matplotlib_support(method_name)
+
+ prob_true, prob_pred = calibration_curve(
+ y_true, y_prob, n_bins=n_bins, strategy=strategy
+ )
+
+ disp = cls(prob_true=prob_true, prob_pred=prob_pred, y_prob=y_prob, name=name)
+ return disp.plot(ax=ax, ref_line=ref_line, **kwargs)
diff --git a/sklearn/metrics/_plot/base.py b/sklearn/metrics/_plot/base.py
index 103fcffbd9187..8f5552ffd6808 100644
--- a/sklearn/metrics/_plot/base.py
+++ b/sklearn/metrics/_plot/base.py
@@ -101,8 +101,12 @@ def _get_response(X, estimator, response_method, pos_label=None):
)
if y_pred.ndim != 1: # `predict_proba`
- if y_pred.shape[1] != 2:
- raise ValueError(classification_error)
+ y_pred_shape = y_pred.shape[1]
+ if y_pred_shape != 2:
+ raise ValueError(
+ f"{classification_error} fit on multiclass ({y_pred_shape} classes)"
+ " data"
+ )
if pos_label is None:
pos_label = estimator.classes_[1]
y_pred = y_pred[:, 1]
|
diff --git a/sklearn/tests/test_calibration.py b/sklearn/tests/test_calibration.py
index 4fe08c27fb19e..8decff0cc96d5 100644
--- a/sklearn/tests/test_calibration.py
+++ b/sklearn/tests/test_calibration.py
@@ -18,7 +18,7 @@
)
from sklearn.utils.extmath import softmax
from sklearn.exceptions import NotFittedError
-from sklearn.datasets import make_classification, make_blobs
+from sklearn.datasets import make_classification, make_blobs, load_iris
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold, cross_val_predict
from sklearn.naive_bayes import MultinomialNB
@@ -27,15 +27,18 @@
RandomForestRegressor,
VotingClassifier,
)
+from sklearn.linear_model import LogisticRegression, LinearRegression
+from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import LinearSVC
+from sklearn.pipeline import Pipeline, make_pipeline
+from sklearn.preprocessing import StandardScaler
from sklearn.isotonic import IsotonicRegression
from sklearn.feature_extraction import DictVectorizer
-from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.metrics import brier_score_loss
from sklearn.calibration import CalibratedClassifierCV, _CalibratedClassifier
from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration
-from sklearn.calibration import calibration_curve
+from sklearn.calibration import calibration_curve, CalibrationDisplay
@pytest.fixture(scope="module")
@@ -618,3 +621,167 @@ def test_calibration_votingclassifier():
calib_clf = CalibratedClassifierCV(base_estimator=vote, cv="prefit")
# smoke test: should not raise an error
calib_clf.fit(X, y)
+
+
[email protected](scope="module")
+def iris_data():
+ return load_iris(return_X_y=True)
+
+
[email protected](scope="module")
+def iris_data_binary(iris_data):
+ X, y = iris_data
+ return X[y < 2], y[y < 2]
+
+
+def test_calibration_display_validation(pyplot, iris_data, iris_data_binary):
+ X, y = iris_data
+ X_binary, y_binary = iris_data_binary
+
+ reg = LinearRegression().fit(X, y)
+ msg = "'estimator' should be a fitted classifier"
+ with pytest.raises(ValueError, match=msg):
+ CalibrationDisplay.from_estimator(reg, X, y)
+
+ clf = LinearSVC().fit(X, y)
+ msg = "response method predict_proba is not defined in"
+ with pytest.raises(ValueError, match=msg):
+ CalibrationDisplay.from_estimator(clf, X, y)
+
+ clf = LogisticRegression()
+ with pytest.raises(NotFittedError):
+ CalibrationDisplay.from_estimator(clf, X, y)
+
+
[email protected]("constructor_name", ["from_estimator", "from_predictions"])
+def test_calibration_display_non_binary(pyplot, iris_data, constructor_name):
+ X, y = iris_data
+ clf = DecisionTreeClassifier()
+ clf.fit(X, y)
+ y_prob = clf.predict_proba(X)
+
+ if constructor_name == "from_estimator":
+ msg = "to be a binary classifier, but got"
+ with pytest.raises(ValueError, match=msg):
+ CalibrationDisplay.from_estimator(clf, X, y)
+ else:
+ msg = "y should be a 1d array, got an array of shape"
+ with pytest.raises(ValueError, match=msg):
+ CalibrationDisplay.from_predictions(y, y_prob)
+
+
[email protected]("n_bins", [5, 10])
[email protected]("strategy", ["uniform", "quantile"])
+def test_calibration_display_compute(pyplot, iris_data_binary, n_bins, strategy):
+ # Ensure `CalibrationDisplay.from_predictions` and `calibration_curve`
+ # compute the same results. Also checks attributes of the
+ # CalibrationDisplay object.
+ X, y = iris_data_binary
+
+ lr = LogisticRegression().fit(X, y)
+
+ viz = CalibrationDisplay.from_estimator(
+ lr, X, y, n_bins=n_bins, strategy=strategy, alpha=0.8
+ )
+
+ y_prob = lr.predict_proba(X)[:, 1]
+ prob_true, prob_pred = calibration_curve(
+ y, y_prob, n_bins=n_bins, strategy=strategy
+ )
+
+ assert_allclose(viz.prob_true, prob_true)
+ assert_allclose(viz.prob_pred, prob_pred)
+ assert_allclose(viz.y_prob, y_prob)
+
+ assert viz.name == "LogisticRegression"
+
+ # cannot fail thanks to pyplot fixture
+ import matplotlib as mpl # noqa
+
+ assert isinstance(viz.line_, mpl.lines.Line2D)
+ assert viz.line_.get_alpha() == 0.8
+ assert isinstance(viz.ax_, mpl.axes.Axes)
+ assert isinstance(viz.figure_, mpl.figure.Figure)
+
+ assert viz.ax_.get_xlabel() == "Mean predicted probability"
+ assert viz.ax_.get_ylabel() == "Fraction of positives"
+ assert viz.line_.get_label() == "LogisticRegression"
+
+
+def test_plot_calibration_curve_pipeline(pyplot, iris_data_binary):
+ # Ensure pipelines are supported by CalibrationDisplay.from_estimator
+ X, y = iris_data_binary
+ clf = make_pipeline(StandardScaler(), LogisticRegression())
+ clf.fit(X, y)
+ viz = CalibrationDisplay.from_estimator(clf, X, y)
+ assert clf.__class__.__name__ in viz.line_.get_label()
+ assert viz.name == clf.__class__.__name__
+
+
[email protected](
+ "name, expected_label", [(None, "_line1"), ("my_est", "my_est")]
+)
+def test_calibration_display_default_labels(pyplot, name, expected_label):
+ prob_true = np.array([0, 1, 1, 0])
+ prob_pred = np.array([0.2, 0.8, 0.8, 0.4])
+ y_prob = np.array([])
+
+ viz = CalibrationDisplay(prob_true, prob_pred, y_prob, name=name)
+ viz.plot()
+ assert viz.line_.get_label() == expected_label
+
+
+def test_calibration_display_label_class_plot(pyplot):
+ # Checks that when instantiating `CalibrationDisplay` class then calling
+ # `plot`, `self.name` is the one given in `plot`
+ prob_true = np.array([0, 1, 1, 0])
+ prob_pred = np.array([0.2, 0.8, 0.8, 0.4])
+ y_prob = np.array([])
+
+ name = "name one"
+ viz = CalibrationDisplay(prob_true, prob_pred, y_prob, name=name)
+ assert viz.name == name
+ name = "name two"
+ viz.plot(name=name)
+ assert viz.name == name
+ assert viz.line_.get_label() == name
+
+
[email protected]("constructor_name", ["from_estimator", "from_predictions"])
+def test_calibration_display_name_multiple_calls(
+ constructor_name, pyplot, iris_data_binary
+):
+ # Check that the `name` used when calling
+ # `CalibrationDisplay.from_predictions` or
+ # `CalibrationDisplay.from_estimator` is used when multiple
+ # `CalibrationDisplay.viz.plot()` calls are made.
+ X, y = iris_data_binary
+ clf_name = "my hand-crafted name"
+ clf = LogisticRegression().fit(X, y)
+ y_prob = clf.predict_proba(X)[:, 1]
+
+ constructor = getattr(CalibrationDisplay, constructor_name)
+ params = (clf, X, y) if constructor_name == "from_estimator" else (y, y_prob)
+
+ viz = constructor(*params, name=clf_name)
+ assert viz.name == clf_name
+ pyplot.close("all")
+ viz.plot()
+ assert clf_name == viz.line_.get_label()
+ pyplot.close("all")
+ clf_name = "another_name"
+ viz.plot(name=clf_name)
+ assert clf_name == viz.line_.get_label()
+
+
+def test_calibration_display_ref_line(pyplot, iris_data_binary):
+ # Check that `ref_line` only appears once
+ X, y = iris_data_binary
+ lr = LogisticRegression().fit(X, y)
+ dt = DecisionTreeClassifier().fit(X, y)
+
+ viz = CalibrationDisplay.from_estimator(lr, X, y)
+ viz2 = CalibrationDisplay.from_estimator(dt, X, y, ax=viz.ax_)
+
+ labels = viz2.ax_.get_legend_handles_labels()[1]
+ assert labels.count("Perfectly calibrated") == 1
|
[
{
"path": "doc/modules/calibration.rst",
"old_path": "a/doc/modules/calibration.rst",
"new_path": "b/doc/modules/calibration.rst",
"metadata": "diff --git a/doc/modules/calibration.rst b/doc/modules/calibration.rst\nindex d0a9737dac612..1fcd1d501d100 100644\n--- a/doc/modules/calibration.rst\n+++ b/doc/modules/calibration.rst\n@@ -30,11 +30,25 @@ approximately 80% actually belong to the positive class.\n Calibration curves\n ------------------\n \n-The following plot compares how well the probabilistic predictions of\n-different classifiers are calibrated, using :func:`calibration_curve`.\n+Calibration curves (also known as reliability diagrams) compare how well the\n+probabilistic predictions of a binary classifier are calibrated. It plots\n+the true frequency of the positive label against its predicted probability,\n+for binned predictions.\n The x axis represents the average predicted probability in each bin. The\n y axis is the *fraction of positives*, i.e. the proportion of samples whose\n-class is the positive class (in each bin).\n+class is the positive class (in each bin). The top calibration curve plot\n+is created with :func:`CalibrationDisplay.from_estimators`, which uses\n+:func:`calibration_curve` to calculate the per bin average predicted\n+probabilities and fraction of positives.\n+:func:`CalibrationDisplay.from_estimator`\n+takes as input a fitted classifier, which is used to calculate the predicted\n+probabilities. The classifier thus must have :term:`predict_proba` method. For\n+the few classifiers that do not have a :term:`predict_proba` method, it is\n+possible to use :class:`CalibratedClassifierCV` to calibrate the classifier\n+outputs to probabilities.\n+\n+The bottom histogram gives some insight into the behavior of each classifier\n+by showing the number of samples in each predicted probability bin.\n \n .. figure:: ../auto_examples/calibration/images/sphx_glr_plot_compare_calibration_001.png\n :target: ../auto_examples/calibration/plot_compare_calibration.html\n@@ -161,6 +175,8 @@ mean a better calibrated model.\n :class:`CalibratedClassifierCV` supports the use of two 'calibration'\n regressors: 'sigmoid' and 'isotonic'.\n \n+.. _sigmoid_regressor:\n+\n Sigmoid\n ^^^^^^^\n \n"
},
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 3edd8adee8191..3848a189c35d4 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1123,7 +1123,7 @@ See the :ref:`visualizations` section of the user guide for further details.\n metrics.DetCurveDisplay\n metrics.PrecisionRecallDisplay\n metrics.RocCurveDisplay\n-\n+ calibration.CalibrationDisplay\n \n .. _mixture_ref:\n \n"
},
{
"path": "doc/visualizations.rst",
"old_path": "a/doc/visualizations.rst",
"new_path": "b/doc/visualizations.rst",
"metadata": "diff --git a/doc/visualizations.rst b/doc/visualizations.rst\nindex a2d40408b403f..65612b2787d84 100644\n--- a/doc/visualizations.rst\n+++ b/doc/visualizations.rst\n@@ -65,6 +65,7 @@ values of the curves.\n * :ref:`sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py`\n * :ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py`\n * :ref:`sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py`\n+ * :ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py`\n \n Available Plotting Utilities\n ============================\n@@ -90,6 +91,7 @@ Display Objects\n \n .. autosummary::\n \n+ calibration.CalibrationDisplay\n inspection.PartialDependenceDisplay\n metrics.ConfusionMatrixDisplay\n metrics.DetCurveDisplay\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex d9f63cc62add4..001c3350fb056 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -152,6 +152,9 @@ Changelog\n :class:`calibration.CalibratedClassifierCV` can now properly be used on\n prefitted pipelines. :pr:`19641` by :user:`Alek Lefebvre <AlekLefebvre>`.\n \n+- |Feature| :func:`calibration.CalibrationDisplay` added to plot\n+ calibration curves. :pr:`17443` by :user:`Lucy Liu <lucyleeow>`.\n+\n - |Fix| Fixed an error when using a ::class:`ensemble.VotingClassifier`\n as `base_estimator` in ::class:`calibration.CalibratedClassifierCV`.\n :pr:`20087` by :user:`Clément Fauchereau <clement-f>`.\n"
}
] |
1.00
|
c3db2cdbf5244229af2c5eb54f9216a69f77a146
|
[] |
[
"sklearn/tests/test_calibration.py::test_calibration[True-isotonic]",
"sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_attributes[clf0-2]",
"sklearn/tests/test_calibration.py::test_plot_calibration_curve_pipeline",
"sklearn/tests/test_calibration.py::test_calibration_display_label_class_plot",
"sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_display_name_multiple_calls[from_predictions]",
"sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]",
"sklearn/tests/test_calibration.py::test_sigmoid_calibration",
"sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X0]",
"sklearn/tests/test_calibration.py::test_calibration_attributes[clf1-prefit]",
"sklearn/tests/test_calibration.py::test_calibration_curve",
"sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]",
"sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_display_non_binary[from_estimator]",
"sklearn/tests/test_calibration.py::test_calibration_display_non_binary[from_predictions]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration[False-isotonic]",
"sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_inconsistent_prefit_n_features_in",
"sklearn/tests/test_calibration.py::test_calibration_display_validation",
"sklearn/tests/test_calibration.py::test_calibration_display_compute[quantile-5]",
"sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_deprecation",
"sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_cv_splitter[True]",
"sklearn/tests/test_calibration.py::test_calibration_less_classes[True]",
"sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]",
"sklearn/tests/test_calibration.py::test_calibration_cv_splitter[False]",
"sklearn/tests/test_calibration.py::test_calibration_bad_method[False]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_votingclassifier",
"sklearn/tests/test_calibration.py::test_calibration_display_compute[uniform-5]",
"sklearn/tests/test_calibration.py::test_calibration_regressor[False]",
"sklearn/tests/test_calibration.py::test_calibration_prefit",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_display_compute[quantile-10]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_display_compute[uniform-10]",
"sklearn/tests/test_calibration.py::test_calibration_zero_probability",
"sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X1]",
"sklearn/tests/test_calibration.py::test_calibration_less_classes[False]",
"sklearn/tests/test_calibration.py::test_calibration_dict_pipeline",
"sklearn/tests/test_calibration.py::test_calibration[True-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration[False-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_display_name_multiple_calls[from_estimator]",
"sklearn/tests/test_calibration.py::test_calibration_prob_sum[True]",
"sklearn/tests/test_calibration.py::test_calibration_display_ref_line",
"sklearn/tests/test_calibration.py::test_calibration_display_default_labels[my_est-my_est]",
"sklearn/tests/test_calibration.py::test_calibration_default_estimator",
"sklearn/tests/test_calibration.py::test_calibration_bad_method[True]",
"sklearn/tests/test_calibration.py::test_calibration_regressor[True]",
"sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]",
"sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/calibration.rst",
"old_path": "a/doc/modules/calibration.rst",
"new_path": "b/doc/modules/calibration.rst",
"metadata": "diff --git a/doc/modules/calibration.rst b/doc/modules/calibration.rst\nindex d0a9737dac612..1fcd1d501d100 100644\n--- a/doc/modules/calibration.rst\n+++ b/doc/modules/calibration.rst\n@@ -30,11 +30,25 @@ approximately 80% actually belong to the positive class.\n Calibration curves\n ------------------\n \n-The following plot compares how well the probabilistic predictions of\n-different classifiers are calibrated, using :func:`calibration_curve`.\n+Calibration curves (also known as reliability diagrams) compare how well the\n+probabilistic predictions of a binary classifier are calibrated. It plots\n+the true frequency of the positive label against its predicted probability,\n+for binned predictions.\n The x axis represents the average predicted probability in each bin. The\n y axis is the *fraction of positives*, i.e. the proportion of samples whose\n-class is the positive class (in each bin).\n+class is the positive class (in each bin). The top calibration curve plot\n+is created with :func:`CalibrationDisplay.from_estimators`, which uses\n+:func:`calibration_curve` to calculate the per bin average predicted\n+probabilities and fraction of positives.\n+:func:`CalibrationDisplay.from_estimator`\n+takes as input a fitted classifier, which is used to calculate the predicted\n+probabilities. The classifier thus must have :term:`predict_proba` method. For\n+the few classifiers that do not have a :term:`predict_proba` method, it is\n+possible to use :class:`CalibratedClassifierCV` to calibrate the classifier\n+outputs to probabilities.\n+\n+The bottom histogram gives some insight into the behavior of each classifier\n+by showing the number of samples in each predicted probability bin.\n \n .. figure:: ../auto_examples/calibration/images/sphx_glr_plot_compare_calibration_001.png\n :target: ../auto_examples/calibration/plot_compare_calibration.html\n@@ -161,6 +175,8 @@ mean a better calibrated model.\n :class:`CalibratedClassifierCV` supports the use of two 'calibration'\n regressors: 'sigmoid' and 'isotonic'.\n \n+.. _sigmoid_regressor:\n+\n Sigmoid\n ^^^^^^^\n \n"
},
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 3edd8adee8191..3848a189c35d4 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1123,7 +1123,7 @@ See the :ref:`visualizations` section of the user guide for further details.\n metrics.DetCurveDisplay\n metrics.PrecisionRecallDisplay\n metrics.RocCurveDisplay\n-\n+ calibration.CalibrationDisplay\n \n .. _mixture_ref:\n \n"
},
{
"path": "doc/visualizations.rst",
"old_path": "a/doc/visualizations.rst",
"new_path": "b/doc/visualizations.rst",
"metadata": "diff --git a/doc/visualizations.rst b/doc/visualizations.rst\nindex a2d40408b403f..65612b2787d84 100644\n--- a/doc/visualizations.rst\n+++ b/doc/visualizations.rst\n@@ -65,6 +65,7 @@ values of the curves.\n * :ref:`sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py`\n * :ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py`\n * :ref:`sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py`\n+ * :ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py`\n \n Available Plotting Utilities\n ============================\n@@ -90,6 +91,7 @@ Display Objects\n \n .. autosummary::\n \n+ calibration.CalibrationDisplay\n inspection.PartialDependenceDisplay\n metrics.ConfusionMatrixDisplay\n metrics.DetCurveDisplay\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex d9f63cc62add4..001c3350fb056 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -152,6 +152,9 @@ Changelog\n :class:`calibration.CalibratedClassifierCV` can now properly be used on\n prefitted pipelines. :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Feature| :func:`calibration.CalibrationDisplay` added to plot\n+ calibration curves. :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Fix| Fixed an error when using a ::class:`ensemble.VotingClassifier`\n as `base_estimator` in ::class:`calibration.CalibratedClassifierCV`.\n :pr:`<PRID>` by :user:`<NAME>`.\n"
}
] |
diff --git a/doc/modules/calibration.rst b/doc/modules/calibration.rst
index d0a9737dac612..1fcd1d501d100 100644
--- a/doc/modules/calibration.rst
+++ b/doc/modules/calibration.rst
@@ -30,11 +30,25 @@ approximately 80% actually belong to the positive class.
Calibration curves
------------------
-The following plot compares how well the probabilistic predictions of
-different classifiers are calibrated, using :func:`calibration_curve`.
+Calibration curves (also known as reliability diagrams) compare how well the
+probabilistic predictions of a binary classifier are calibrated. It plots
+the true frequency of the positive label against its predicted probability,
+for binned predictions.
The x axis represents the average predicted probability in each bin. The
y axis is the *fraction of positives*, i.e. the proportion of samples whose
-class is the positive class (in each bin).
+class is the positive class (in each bin). The top calibration curve plot
+is created with :func:`CalibrationDisplay.from_estimators`, which uses
+:func:`calibration_curve` to calculate the per bin average predicted
+probabilities and fraction of positives.
+:func:`CalibrationDisplay.from_estimator`
+takes as input a fitted classifier, which is used to calculate the predicted
+probabilities. The classifier thus must have :term:`predict_proba` method. For
+the few classifiers that do not have a :term:`predict_proba` method, it is
+possible to use :class:`CalibratedClassifierCV` to calibrate the classifier
+outputs to probabilities.
+
+The bottom histogram gives some insight into the behavior of each classifier
+by showing the number of samples in each predicted probability bin.
.. figure:: ../auto_examples/calibration/images/sphx_glr_plot_compare_calibration_001.png
:target: ../auto_examples/calibration/plot_compare_calibration.html
@@ -161,6 +175,8 @@ mean a better calibrated model.
:class:`CalibratedClassifierCV` supports the use of two 'calibration'
regressors: 'sigmoid' and 'isotonic'.
+.. _sigmoid_regressor:
+
Sigmoid
^^^^^^^
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 3edd8adee8191..3848a189c35d4 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1123,7 +1123,7 @@ See the :ref:`visualizations` section of the user guide for further details.
metrics.DetCurveDisplay
metrics.PrecisionRecallDisplay
metrics.RocCurveDisplay
-
+ calibration.CalibrationDisplay
.. _mixture_ref:
diff --git a/doc/visualizations.rst b/doc/visualizations.rst
index a2d40408b403f..65612b2787d84 100644
--- a/doc/visualizations.rst
+++ b/doc/visualizations.rst
@@ -65,6 +65,7 @@ values of the curves.
* :ref:`sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py`
* :ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py`
* :ref:`sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py`
+ * :ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py`
Available Plotting Utilities
============================
@@ -90,6 +91,7 @@ Display Objects
.. autosummary::
+ calibration.CalibrationDisplay
inspection.PartialDependenceDisplay
metrics.ConfusionMatrixDisplay
metrics.DetCurveDisplay
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index d9f63cc62add4..001c3350fb056 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -152,6 +152,9 @@ Changelog
:class:`calibration.CalibratedClassifierCV` can now properly be used on
prefitted pipelines. :pr:`<PRID>` by :user:`<NAME>`.
+- |Feature| :func:`calibration.CalibrationDisplay` added to plot
+ calibration curves. :pr:`<PRID>` by :user:`<NAME>`.
+
- |Fix| Fixed an error when using a ::class:`ensemble.VotingClassifier`
as `base_estimator` in ::class:`calibration.CalibratedClassifierCV`.
:pr:`<PRID>` by :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20117
|
https://github.com/scikit-learn/scikit-learn/pull/20117
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 34e9f0670ba81..ba8d93f181059 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -150,6 +150,11 @@ Changelog
- |Efficiency| :class:`cluster.MiniBatchKMeans` is now faster in multicore
settings. :pr:`17622` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
+- |Enhancement| The `predict` and `fit_predict` methods of
+ :class:`cluster.AffinityPropagation` now accept sparse data type for input
+ data.
+ :pr:`20117` by :user:`Venkatachalam Natchiappan <venkyyuvy>`
+
- |Fix| Fixed a bug in :class:`cluster.MiniBatchKMeans` where the sample
weights were partially ignored when the input is sparse. :pr:`17622` by
:user:`Jérémie du Boisberranger <jeremiedbb>`.
diff --git a/sklearn/cluster/_affinity_propagation.py b/sklearn/cluster/_affinity_propagation.py
index ccae0b7538b58..59620ab31f63d 100644
--- a/sklearn/cluster/_affinity_propagation.py
+++ b/sklearn/cluster/_affinity_propagation.py
@@ -436,7 +436,7 @@ def predict(self, X):
Cluster labels.
"""
check_is_fitted(self)
- X = self._validate_data(X, reset=False)
+ X = self._validate_data(X, reset=False, accept_sparse='csr')
if not hasattr(self, "cluster_centers_"):
raise ValueError("Predict method is not supported when "
"affinity='precomputed'.")
|
diff --git a/sklearn/cluster/tests/test_affinity_propagation.py b/sklearn/cluster/tests/test_affinity_propagation.py
index ae2806bf38e59..a42a8112782a5 100644
--- a/sklearn/cluster/tests/test_affinity_propagation.py
+++ b/sklearn/cluster/tests/test_affinity_propagation.py
@@ -238,6 +238,25 @@ def test_affinity_propagation_float32():
assert_array_equal(afp.labels_, expected)
+def test_sparse_input_for_predict():
+ # Test to make sure sparse inputs are accepted for predict
+ # (non-regression test for issue #20049)
+ af = AffinityPropagation(affinity="euclidean", random_state=42)
+ af.fit(X)
+ labels = af.predict(csr_matrix((2, 2)))
+ assert_array_equal(labels, (2, 2))
+
+
+def test_sparse_input_for_fit_predict():
+ # Test to make sure sparse inputs are accepted for fit_predict
+ # (non-regression test for issue #20049)
+ af = AffinityPropagation(affinity="euclidean", random_state=42)
+ rng = np.random.RandomState(42)
+ X = csr_matrix(rng.randint(0, 2, size=(5, 5)))
+ labels = af.fit_predict(X)
+ assert_array_equal(labels, (0, 1, 1, 2, 3))
+
+
# TODO: Remove in 1.1
def test_affinity_propagation_pairwise_is_deprecated():
afp = AffinityPropagation(affinity='precomputed')
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 34e9f0670ba81..ba8d93f181059 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -150,6 +150,11 @@ Changelog\n - |Efficiency| :class:`cluster.MiniBatchKMeans` is now faster in multicore\n settings. :pr:`17622` by :user:`Jérémie du Boisberranger <jeremiedbb>`.\n \n+- |Enhancement| The `predict` and `fit_predict` methods of\n+ :class:`cluster.AffinityPropagation` now accept sparse data type for input\n+ data.\n+ :pr:`20117` by :user:`Venkatachalam Natchiappan <venkyyuvy>`\n+\n - |Fix| Fixed a bug in :class:`cluster.MiniBatchKMeans` where the sample\n weights were partially ignored when the input is sparse. :pr:`17622` by\n :user:`Jérémie du Boisberranger <jeremiedbb>`.\n"
}
] |
1.00
|
c67518350f91072f9d37ed09c5ef7edf555b6cf6
|
[
"sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict",
"sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_fit_non_convergence",
"sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict_error",
"sklearn/cluster/tests/test_affinity_propagation.py::test_equal_similarities_and_preferences",
"sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_float32",
"sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_predict_non_convergence",
"sklearn/cluster/tests/test_affinity_propagation.py::test_sparse_input_for_fit_predict",
"sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_pairwise_is_deprecated",
"sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_non_convergence_regressiontest",
"sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation_random_state",
"sklearn/cluster/tests/test_affinity_propagation.py::test_affinity_propagation"
] |
[
"sklearn/cluster/tests/test_affinity_propagation.py::test_sparse_input_for_predict"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 34e9f0670ba81..ba8d93f181059 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -150,6 +150,11 @@ Changelog\n - |Efficiency| :class:`cluster.MiniBatchKMeans` is now faster in multicore\n settings. :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| The `predict` and `fit_predict` methods of\n+ :class:`cluster.AffinityPropagation` now accept sparse data type for input\n+ data.\n+ :pr:`<PRID>` by :user:`<NAME>`\n+\n - |Fix| Fixed a bug in :class:`cluster.MiniBatchKMeans` where the sample\n weights were partially ignored when the input is sparse. :pr:`<PRID>` by\n :user:`<NAME>`.\n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 34e9f0670ba81..ba8d93f181059 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -150,6 +150,11 @@ Changelog
- |Efficiency| :class:`cluster.MiniBatchKMeans` is now faster in multicore
settings. :pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| The `predict` and `fit_predict` methods of
+ :class:`cluster.AffinityPropagation` now accept sparse data type for input
+ data.
+ :pr:`<PRID>` by :user:`<NAME>`
+
- |Fix| Fixed a bug in :class:`cluster.MiniBatchKMeans` where the sample
weights were partially ignored when the input is sparse. :pr:`<PRID>` by
:user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21298
|
https://github.com/scikit-learn/scikit-learn/pull/21298
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index f755aeba20030..7792fa14b13a5 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -113,10 +113,10 @@ Changelog
- |Fix| :class:`decomposition.FastICA` now validates input parameters in `fit` instead of `__init__`.
:pr:`21432` by :user:`Hannah Bohle <hhnnhh>` and :user:`Maren Westermann <marenwestermann>`.
-
+
- |Fix| :class:`decomposition.FactorAnalysis` now validates input parameters
in `fit` instead of `__init__`.
- :pr:`21713` by :user:`Haya <HayaAlmutairi>` and
+ :pr:`21713` by :user:`Haya <HayaAlmutairi>` and
:user:`Krum Arnaudov <krumeto>`.
- |Fix| :class:`decomposition.KernelPCA` now validates input parameters in
@@ -257,6 +257,10 @@ Changelog
message when running in a jupyter notebook that is not trusted. :pr:`21316`
by `Thomas Fan`_.
+- |Enhancement| :func:`utils.estimator_html_repr` displays an arrow on the top
+ left corner of the HTML representation to show how the elements are
+ clickable. :pr:`21298` by `Thomas Fan`_.
+
:mod:`sklearn.neighbors`
........................
diff --git a/sklearn/utils/_estimator_html_repr.py b/sklearn/utils/_estimator_html_repr.py
index d0e61a3abe3c6..c1bb1801cd9e6 100644
--- a/sklearn/utils/_estimator_html_repr.py
+++ b/sklearn/utils/_estimator_html_repr.py
@@ -70,13 +70,14 @@ def _write_label_html(
if name_details is not None:
name_details = html.escape(str(name_details))
+ label_class = "sk-toggleable__label sk-toggleable__label-arrow"
+
checked_str = "checked" if checked else ""
est_id = uuid.uuid4()
out.write(
'<input class="sk-toggleable__control sk-hidden--visually" '
f'id="{est_id}" type="checkbox" {checked_str}>'
- f'<label class="sk-toggleable__label" for="{est_id}">'
- f"{name}</label>"
+ f'<label for="{est_id}" class="{label_class}">{name}</label>'
f'<div class="sk-toggleable__content"><pre>{name_details}'
"</pre></div>"
)
@@ -179,6 +180,18 @@ def _write_estimator_html(
box-sizing: border-box;
text-align: center;
}
+#$id label.sk-toggleable__label-arrow:before {
+ content: "▸";
+ float: left;
+ margin-right: 0.25em;
+ color: #696969;
+}
+#$id label.sk-toggleable__label-arrow:hover:before {
+ color: black;
+}
+#$id div.sk-estimator:hover label.sk-toggleable__label-arrow:before {
+ color: black;
+}
#$id div.sk-toggleable__content {
max-height: 0;
max-width: 0;
@@ -197,6 +210,9 @@ def _write_estimator_html(
max-width: 100%;
overflow: auto;
}
+#$id input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
+ content: "▾";
+}
#$id div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
background-color: #d4ebff;
}
@@ -310,7 +326,7 @@ def _write_estimator_html(
/* jupyter's `normalize.less` sets `[hidden] { display: none; }`
but bootstrap.min.css set `[hidden] { display: none !important; }`
so we also need the `!important` here to be able to override the
- default hidden behavior on the sphinx rendered scikit-learn.org.
+ default hidden behavior on the sphinx rendered scikit-learn.org.
See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
display: inline-block !important;
position: relative;
|
diff --git a/sklearn/utils/tests/test_estimator_html_repr.py b/sklearn/utils/tests/test_estimator_html_repr.py
index 90300a9bef948..39731860fdd3f 100644
--- a/sklearn/utils/tests/test_estimator_html_repr.py
+++ b/sklearn/utils/tests/test_estimator_html_repr.py
@@ -18,6 +18,7 @@
from sklearn.cluster import Birch
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import OneHotEncoder
+from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from sklearn.svm import LinearSVR
from sklearn.tree import DecisionTreeClassifier
@@ -292,3 +293,14 @@ def test_fallback_exists():
f'<div class="sk-text-repr-fallback"><pre>{html.escape(str(pca))}'
in html_output
)
+
+
+def test_show_arrow_pipeline():
+ """Show arrow in pipeline for top level in pipeline"""
+ pipe = Pipeline([("scale", StandardScaler()), ("log_Reg", LogisticRegression())])
+
+ html_output = estimator_html_repr(pipe)
+ assert (
+ 'class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline'
+ in html_output
+ )
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex f755aeba20030..7792fa14b13a5 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -113,10 +113,10 @@ Changelog\n \n - |Fix| :class:`decomposition.FastICA` now validates input parameters in `fit` instead of `__init__`.\n :pr:`21432` by :user:`Hannah Bohle <hhnnhh>` and :user:`Maren Westermann <marenwestermann>`.\n- \n+\n - |Fix| :class:`decomposition.FactorAnalysis` now validates input parameters\n in `fit` instead of `__init__`.\n- :pr:`21713` by :user:`Haya <HayaAlmutairi>` and \n+ :pr:`21713` by :user:`Haya <HayaAlmutairi>` and\n :user:`Krum Arnaudov <krumeto>`.\n \n - |Fix| :class:`decomposition.KernelPCA` now validates input parameters in\n@@ -257,6 +257,10 @@ Changelog\n message when running in a jupyter notebook that is not trusted. :pr:`21316`\n by `Thomas Fan`_.\n \n+- |Enhancement| :func:`utils.estimator_html_repr` displays an arrow on the top\n+ left corner of the HTML representation to show how the elements are\n+ clickable. :pr:`21298` by `Thomas Fan`_.\n+\n :mod:`sklearn.neighbors`\n ........................\n \n"
}
] |
1.01
|
863bbc07b307ee1af0f0d7d794b9fb9d59ac3e1c
|
[
"sklearn/utils/tests/test_estimator_html_repr.py::test_fallback_exists",
"sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_regressor[None]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_single_str_none[passthrough]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_write_label_html[True]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_pipeline",
"sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_classsifer[None]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_write_label_html[False]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_one_estimator_print_change_only[False]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_voting",
"sklearn/utils/tests/test_estimator_html_repr.py::test_duck_typing_nested_estimator",
"sklearn/utils/tests/test_estimator_html_repr.py::test_birch_duck_typing_meta",
"sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_pipeline",
"sklearn/utils/tests/test_estimator_html_repr.py::test_one_estimator_print_change_only[True]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_classsifer[final_estimator1]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_single_str_none[None]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_single_str_none[drop]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_stacking_regressor[final_estimator1]",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_single_estimator",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_feature_union",
"sklearn/utils/tests/test_estimator_html_repr.py::test_get_visual_block_column_transformer",
"sklearn/utils/tests/test_estimator_html_repr.py::test_ovo_classifier_duck_typing_meta"
] |
[
"sklearn/utils/tests/test_estimator_html_repr.py::test_show_arrow_pipeline"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex f755aeba20030..7792fa14b13a5 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -113,10 +113,10 @@ Changelog\n \n - |Fix| :class:`decomposition.FastICA` now validates input parameters in `fit` instead of `__init__`.\n :pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.\n- \n+\n - |Fix| :class:`decomposition.FactorAnalysis` now validates input parameters\n in `fit` instead of `__init__`.\n- :pr:`<PRID>` by :user:`<NAME>` and \n+ :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n \n - |Fix| :class:`decomposition.KernelPCA` now validates input parameters in\n@@ -257,6 +257,10 @@ Changelog\n message when running in a jupyter notebook that is not trusted. :pr:`<PRID>`\n by `<NAME>`_.\n \n+- |Enhancement| :func:`utils.estimator_html_repr` displays an arrow on the top\n+ left corner of the HTML representation to show how the elements are\n+ clickable. :pr:`<PRID>` by `<NAME>`_.\n+\n :mod:`sklearn.neighbors`\n ........................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index f755aeba20030..7792fa14b13a5 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -113,10 +113,10 @@ Changelog
- |Fix| :class:`decomposition.FastICA` now validates input parameters in `fit` instead of `__init__`.
:pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.
-
+
- |Fix| :class:`decomposition.FactorAnalysis` now validates input parameters
in `fit` instead of `__init__`.
- :pr:`<PRID>` by :user:`<NAME>` and
+ :pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
- |Fix| :class:`decomposition.KernelPCA` now validates input parameters in
@@ -257,6 +257,10 @@ Changelog
message when running in a jupyter notebook that is not trusted. :pr:`<PRID>`
by `<NAME>`_.
+- |Enhancement| :func:`utils.estimator_html_repr` displays an arrow on the top
+ left corner of the HTML representation to show how the elements are
+ clickable. :pr:`<PRID>` by `<NAME>`_.
+
:mod:`sklearn.neighbors`
........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20880
|
https://github.com/scikit-learn/scikit-learn/pull/20880
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 1639b4b691c65..fba40e25a9e7e 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -38,9 +38,20 @@ Changelog
:pr:`123456` by :user:`Joe Bloggs <joeongithub>`.
where 123456 is the *pull request* number, not the issue number.
-
-:mod:`sklearn.decomposition`
-............................
+:mod:`sklearn.utils`
+....................
+
+- |Enhancement| :func:`utils.validation._check_sample_weight` can perform a
+ non-negativity check on the sample weights. It can be turned on
+ using the only_non_negative bool parameter.
+ Estimators that check for non-negative weights are updated:
+ :func:`linear_model.LinearRegression` (here the previous
+ error message was misleading),
+ :func:`ensemble.AdaBoostClassifier`,
+ :func:`ensemble.AdaBoostRegressor`,
+ :func:`neighbors.KernelDensity`.
+ :pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`
+ and :user:`András Simon <simonandras>`.
Code and Documentation Contributors
diff --git a/sklearn/ensemble/_weight_boosting.py b/sklearn/ensemble/_weight_boosting.py
index 77ef449ba1933..a47937880d91c 100644
--- a/sklearn/ensemble/_weight_boosting.py
+++ b/sklearn/ensemble/_weight_boosting.py
@@ -123,10 +123,10 @@ def fit(self, X, y, sample_weight=None):
y_numeric=is_regressor(self),
)
- sample_weight = _check_sample_weight(sample_weight, X, np.float64, copy=True)
+ sample_weight = _check_sample_weight(
+ sample_weight, X, np.float64, copy=True, only_non_negative=True
+ )
sample_weight /= sample_weight.sum()
- if np.any(sample_weight < 0):
- raise ValueError("sample_weight cannot contain negative weights")
# Check parameters
self._validate_estimator()
@@ -136,7 +136,7 @@ def fit(self, X, y, sample_weight=None):
self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64)
self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64)
- # Initializion of the random number instance that will be used to
+ # Initialization of the random number instance that will be used to
# generate a seed at each iteration
random_state = check_random_state(self.random_state)
diff --git a/sklearn/linear_model/_base.py b/sklearn/linear_model/_base.py
index 79d6f321cb124..8b5102ecdd403 100644
--- a/sklearn/linear_model/_base.py
+++ b/sklearn/linear_model/_base.py
@@ -663,7 +663,9 @@ def fit(self, X, y, sample_weight=None):
)
if sample_weight is not None:
- sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
+ sample_weight = _check_sample_weight(
+ sample_weight, X, dtype=X.dtype, only_non_negative=True
+ )
X, y, X_offset, y_offset, X_scale = self._preprocess_data(
X,
diff --git a/sklearn/neighbors/_kde.py b/sklearn/neighbors/_kde.py
index 328a13371bafd..0ac0ea7226b90 100644
--- a/sklearn/neighbors/_kde.py
+++ b/sklearn/neighbors/_kde.py
@@ -191,9 +191,9 @@ def fit(self, X, y=None, sample_weight=None):
X = self._validate_data(X, order="C", dtype=DTYPE)
if sample_weight is not None:
- sample_weight = _check_sample_weight(sample_weight, X, DTYPE)
- if sample_weight.min() <= 0:
- raise ValueError("sample_weight must have positive values")
+ sample_weight = _check_sample_weight(
+ sample_weight, X, DTYPE, only_non_negative=True
+ )
kwargs = self.metric_params
if kwargs is None:
diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py
index 87f957b931073..d45f246b233f8 100644
--- a/sklearn/utils/validation.py
+++ b/sklearn/utils/validation.py
@@ -1492,7 +1492,9 @@ def _check_psd_eigenvalues(lambdas, enable_warnings=False):
return lambdas
-def _check_sample_weight(sample_weight, X, dtype=None, copy=False):
+def _check_sample_weight(
+ sample_weight, X, dtype=None, copy=False, only_non_negative=False
+):
"""Validate sample weights.
Note that passing sample_weight=None will output an array of ones.
@@ -1503,17 +1505,22 @@ def _check_sample_weight(sample_weight, X, dtype=None, copy=False):
Parameters
----------
sample_weight : {ndarray, Number or None}, shape (n_samples,)
- Input sample weights.
+ Input sample weights.
X : {ndarray, list, sparse matrix}
Input data.
+ only_non_negative : bool, default=False,
+ Whether or not the weights are expected to be non-negative.
+
+ .. versionadded:: 1.0
+
dtype : dtype, default=None
- dtype of the validated `sample_weight`.
- If None, and the input `sample_weight` is an array, the dtype of the
- input is preserved; otherwise an array with the default numpy dtype
- is be allocated. If `dtype` is not one of `float32`, `float64`,
- `None`, the output will be of dtype `float64`.
+ dtype of the validated `sample_weight`.
+ If None, and the input `sample_weight` is an array, the dtype of the
+ input is preserved; otherwise an array with the default numpy dtype
+ is be allocated. If `dtype` is not one of `float32`, `float64`,
+ `None`, the output will be of dtype `float64`.
copy : bool, default=False
If True, a copy of sample_weight will be created.
@@ -1521,7 +1528,7 @@ def _check_sample_weight(sample_weight, X, dtype=None, copy=False):
Returns
-------
sample_weight : ndarray of shape (n_samples,)
- Validated sample weight. It is guaranteed to be "C" contiguous.
+ Validated sample weight. It is guaranteed to be "C" contiguous.
"""
n_samples = _num_samples(X)
@@ -1553,6 +1560,9 @@ def _check_sample_weight(sample_weight, X, dtype=None, copy=False):
)
)
+ if only_non_negative:
+ check_non_negative(sample_weight, "`sample_weight`")
+
return sample_weight
|
diff --git a/sklearn/ensemble/tests/test_weight_boosting.py b/sklearn/ensemble/tests/test_weight_boosting.py
index 6927d47c11cfe..159f83abf24c4 100755
--- a/sklearn/ensemble/tests/test_weight_boosting.py
+++ b/sklearn/ensemble/tests/test_weight_boosting.py
@@ -576,6 +576,6 @@ def test_adaboost_negative_weight_error(model, X, y):
sample_weight = np.ones_like(y)
sample_weight[-1] = -10
- err_msg = "sample_weight cannot contain negative weight"
+ err_msg = "Negative values in data passed to `sample_weight`"
with pytest.raises(ValueError, match=err_msg):
model.fit(X, y, sample_weight=sample_weight)
diff --git a/sklearn/neighbors/tests/test_kde.py b/sklearn/neighbors/tests/test_kde.py
index 84f7623c8dbf1..d4fb775c44826 100644
--- a/sklearn/neighbors/tests/test_kde.py
+++ b/sklearn/neighbors/tests/test_kde.py
@@ -209,7 +209,7 @@ def test_sample_weight_invalid():
data = np.reshape([1.0, 2.0, 3.0], (-1, 1))
sample_weight = [0.1, -0.2, 0.3]
- expected_err = "sample_weight must have positive values"
+ expected_err = "Negative values in data passed to `sample_weight`"
with pytest.raises(ValueError, match=expected_err):
kde.fit(data, sample_weight=sample_weight)
diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py
index d1409d6129812..2cbbaac35a31b 100644
--- a/sklearn/utils/tests/test_validation.py
+++ b/sklearn/utils/tests/test_validation.py
@@ -52,8 +52,8 @@
FLOAT_DTYPES,
_get_feature_names,
_check_feature_names_in,
+ _check_fit_params,
)
-from sklearn.utils.validation import _check_fit_params
from sklearn.base import BaseEstimator
import sklearn
@@ -1253,6 +1253,14 @@ def test_check_sample_weight():
sample_weight = _check_sample_weight(None, X, dtype=X.dtype)
assert sample_weight.dtype == np.float64
+ # check negative weight when only_non_negative=True
+ X = np.ones((5, 2))
+ sample_weight = np.ones(_num_samples(X))
+ sample_weight[-1] = -10
+ err_msg = "Negative values in data passed to `sample_weight`"
+ with pytest.raises(ValueError, match=err_msg):
+ _check_sample_weight(sample_weight, X, only_non_negative=True)
+
@pytest.mark.parametrize("toarray", [np.array, sp.csr_matrix, sp.csc_matrix])
def test_allclose_dense_sparse_equals(toarray):
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 1639b4b691c65..fba40e25a9e7e 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -38,9 +38,20 @@ Changelog\n :pr:`123456` by :user:`Joe Bloggs <joeongithub>`.\n where 123456 is the *pull request* number, not the issue number.\n \n-\n-:mod:`sklearn.decomposition`\n-............................\n+:mod:`sklearn.utils`\n+....................\n+\n+- |Enhancement| :func:`utils.validation._check_sample_weight` can perform a\n+ non-negativity check on the sample weights. It can be turned on\n+ using the only_non_negative bool parameter.\n+ Estimators that check for non-negative weights are updated:\n+ :func:`linear_model.LinearRegression` (here the previous\n+ error message was misleading),\n+ :func:`ensemble.AdaBoostClassifier`,\n+ :func:`ensemble.AdaBoostRegressor`,\n+ :func:`neighbors.KernelDensity`.\n+ :pr:`20880` by :user:`Guillaume Lemaitre <glemaitre>`\n+ and :user:`András Simon <simonandras>`.\n \n \n Code and Documentation Contributors\n"
}
] |
1.01
|
89d66b39a0949c01beee5eb9739e192b8bcac7bd
|
[
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csr]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-linear]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-float]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[True]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[True]",
"sklearn/utils/tests/test_validation.py::test_num_features[list]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[str]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[bsr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[byte-uint16]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X0-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[euclidean-kd_tree]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csr_matrix]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME.R]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[asarray]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-gaussian]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-tophat]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-float]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[tuple]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_error",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-float]",
"sklearn/neighbors/tests/test_kde.py::test_kde_badargs",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int16]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X2]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X4]",
"sklearn/utils/tests/test_validation.py::test_num_features[array]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[coo]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int32-long]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[minkowski-auto]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X3]",
"sklearn/neighbors/tests/test_kde.py::test_pickling[sample_weight1]",
"sklearn/neighbors/tests/test_kde.py::test_check_is_fitted[score_samples]",
"sklearn/utils/tests/test_validation.py::test_as_float_array",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint8-int8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int16-int32]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-allow-nan]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-inf-False]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float64]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[chebyshev-ball_tree]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-epanechnikov]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_class",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density_sampling",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name1-float-2-4-neither-err_msg0]",
"sklearn/neighbors/tests/test_kde.py::test_kde_sample_weights",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dok_matrix]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-exponential]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_importances",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[multi-index]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-allow-nan]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-cosine]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[coo]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint-uint64-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_array_series",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int8-byte-integer]",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csr]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-tophat]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[chebyshev-auto]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X0]",
"sklearn/utils/tests/test_validation.py::test_check_X_y_informative_error",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[float]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[minkowski-kd_tree]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_regression_toy",
"sklearn/neighbors/tests/test_kde.py::test_kde_score",
"sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[linear]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_no_exception",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csr]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-str]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X1]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[bsr]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-str]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification",
"sklearn/utils/tests/test_validation.py::test_np_matrix",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-gaussian]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[exponential]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X0-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csc]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[intc-int32-integer]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-bool]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-tophat]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_samme_proba",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[lil_matrix]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[manhattan-auto]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-1-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int16]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-inf-False]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_is_fitted",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostregressor_sample_weight",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X3]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-float]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[square]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME.R]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X1]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int64-longlong-integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X1]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-gaussian]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-dict]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-cosine]",
"sklearn/utils/tests/test_validation.py::test_suppress_validation",
"sklearn/ensemble/tests/test_weight_boosting.py::test_iris",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_attributes",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[haversine-auto]",
"sklearn/utils/tests/test_validation.py::test_num_features[tuple]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-exponential]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function",
"sklearn/utils/tests/test_validation.py::test_num_features[dataframe]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X2-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_array_deprecated_matrix",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_warning",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintc-uint32-unsignedinteger]",
"sklearn/neighbors/tests/test_kde.py::test_kde_pipeline_gridsearch",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[array]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X3-cannot convert float NaN to integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint32-uint64]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-str]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csr]",
"sklearn/neighbors/tests/test_kde.py::test_pickling[None]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-dict]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[5-test_name3-int-2-4-neither-err_msg2]",
"sklearn/utils/tests/test_validation.py::test_check_array",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_min_samples_and_features_messages",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-linear]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int8]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[indices1]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[2-test_name4-int-2-4-right-err_msg3]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_pickle",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[coo_matrix]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-bool]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X1-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[euclidean-auto]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-dict]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[manhattan-kd_tree]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X2-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[list]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[manhattan-ball_tree]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csr_matrix]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-exponential]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant_imag]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function_version",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_complex_data_error",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-cosine]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[array]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_retrieve_samples_from_non_standard_shape",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_numpy",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-dict]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name5-int-2-4-left-err_msg4]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostclassifier_without_sample_weight[SAMME]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X0]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X0]",
"sklearn/utils/tests/test_validation.py::test_memmap",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_consistent_length",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int0-long-integer]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint16-ushort-unsignedinteger]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostclassifier_without_sample_weight[SAMME.R]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_multidimensional_X",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-1-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-allow-nan-Input contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int-long-integer]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME.R]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_sample_weights_infinite",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[chebyshev-kd_tree]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_sample_weight_adaboost_regressor",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_casting",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int8]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dia_matrix]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-bool]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-bool]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[bool]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[haversine-kd_tree]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X2]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_object_conversion",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[all negative]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant pos]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-str]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_has_fit_parameter",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[int]",
"sklearn/neighbors/tests/test_kde.py::test_check_is_fitted[sample]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[None]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[False]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-epanechnikov]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X3-cannot convert float NaN to integer]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_base_estimator",
"sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[mixed]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[ushort-uint32]",
"sklearn/utils/tests/test_validation.py::test_check_symmetric",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintp-ulonglong-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant_imag]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[single]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-int]",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-epanechnikov]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-allow-nan-Input contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[coo]",
"sklearn/utils/tests/test_validation.py::test_ordering",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_on_mock_dataframe",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_type_exception",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name6-int-2-4-bad parameter value-err_msg5]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float64]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_oneclass_adaboost_proba",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in_pandas",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int_-intp-integer]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_fit_attribute",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[ubyte-uint8-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name2-int-2-4-neither-err_msg1]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt8]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[haversine-ball_tree]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X1-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes",
"sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-linear]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[short-int16-integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int16]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csc_matrix]",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[euclidean-ball_tree]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_gridsearch",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_stability",
"sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[minkowski-ball_tree]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float32]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_pandas"
] |
[
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_negative_weight_error[model0-X0-y0]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_negative_weight_error[model1-X1-y1]",
"sklearn/utils/tests/test_validation.py::test_check_sample_weight",
"sklearn/neighbors/tests/test_kde.py::test_sample_weight_invalid"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 1639b4b691c65..fba40e25a9e7e 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -38,9 +38,20 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`.\n where <PRID> is the *pull request* number, not the issue number.\n \n-\n-:mod:`sklearn.decomposition`\n-............................\n+:mod:`sklearn.utils`\n+....................\n+\n+- |Enhancement| :func:`utils.validation._check_sample_weight` can perform a\n+ non-negativity check on the sample weights. It can be turned on\n+ using the only_non_negative bool parameter.\n+ Estimators that check for non-negative weights are updated:\n+ :func:`linear_model.LinearRegression` (here the previous\n+ error message was misleading),\n+ :func:`ensemble.AdaBoostClassifier`,\n+ :func:`ensemble.AdaBoostRegressor`,\n+ :func:`neighbors.KernelDensity`.\n+ :pr:`<PRID>` by :user:`<NAME>`\n+ and :user:`<NAME>`.\n \n \n Code and Documentation Contributors\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 1639b4b691c65..fba40e25a9e7e 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -38,9 +38,20 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`.
where <PRID> is the *pull request* number, not the issue number.
-
-:mod:`sklearn.decomposition`
-............................
+:mod:`sklearn.utils`
+....................
+
+- |Enhancement| :func:`utils.validation._check_sample_weight` can perform a
+ non-negativity check on the sample weights. It can be turned on
+ using the only_non_negative bool parameter.
+ Estimators that check for non-negative weights are updated:
+ :func:`linear_model.LinearRegression` (here the previous
+ error message was misleading),
+ :func:`ensemble.AdaBoostClassifier`,
+ :func:`ensemble.AdaBoostRegressor`,
+ :func:`neighbors.KernelDensity`.
+ :pr:`<PRID>` by :user:`<NAME>`
+ and :user:`<NAME>`.
Code and Documentation Contributors
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-18393
|
https://github.com/scikit-learn/scikit-learn/pull/18393
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index be894774f5a27..a54abb78730a4 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -102,6 +102,13 @@ Changelog
- |Enhancement| :func:`datasets.fetch_kddcup99` raises a better message
when the cached file is invalid. :pr:`19669` `Thomas Fan`_.
+:mod:`sklearn.compose`
+......................
+
+- |Enhancement| :class:`compose.ColumnTransformer` now records the output
+ of each transformer in `output_indices_`. :pr:`18393` by
+ :user:`Luca Bittarello <lbittarello>`.
+
:mod:`sklearn.decomposition`
............................
diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py
index c0444fe2d6cda..da4a2dd93507c 100644
--- a/sklearn/compose/_column_transformer.py
+++ b/sklearn/compose/_column_transformer.py
@@ -134,6 +134,12 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):
sparse matrix or a dense numpy array, which depends on the output
of the individual transformers and the `sparse_threshold` keyword.
+ output_indices_ : dict
+ A dictionary from each transformer name to a slice, where the slice
+ corresponds to indices in the transformed output. This is useful to
+ inspect which transformer is responsible for which transformed
+ feature(s).
+
Notes
-----
The order of the columns in the transformed feature matrix follows the
@@ -408,6 +414,28 @@ def _validate_output(self, result):
"The output of the '{0}' transformer should be 2D (scipy "
"matrix, array, or pandas DataFrame).".format(name))
+ def _record_output_indices(self, Xs):
+ """
+ Record which transformer produced which column.
+ """
+ idx = 0
+ self.output_indices_ = {}
+
+ for transformer_idx, (name, _, _, _) in enumerate(
+ self._iter(fitted=True, replace_strings=True)
+ ):
+ n_columns = Xs[transformer_idx].shape[1]
+ self.output_indices_[name] = slice(idx, idx + n_columns)
+ idx += n_columns
+
+ # `_iter` only generates transformers that have a non empty
+ # selection. Here we set empty slices for transformers that
+ # generate no output, which are safe for indexing
+ all_names = [t[0] for t in self.transformers] + ['remainder']
+ for name in all_names:
+ if name not in self.output_indices_:
+ self.output_indices_[name] = slice(0, 0)
+
def _log_message(self, name, idx, total):
if not self.verbose:
return None
@@ -518,6 +546,7 @@ def fit_transform(self, X, y=None):
self._update_fitted_transformers(transformers)
self._validate_output(Xs)
+ self._record_output_indices(Xs)
return self._hstack(list(Xs))
|
diff --git a/sklearn/compose/tests/test_column_transformer.py b/sklearn/compose/tests/test_column_transformer.py
index ae2e25b68210f..f7c1874d4a1b7 100644
--- a/sklearn/compose/tests/test_column_transformer.py
+++ b/sklearn/compose/tests/test_column_transformer.py
@@ -225,7 +225,7 @@ def test_column_transformer_dataframe():
assert len(both.transformers_) == 1
assert both.transformers_[-1][0] != 'remainder'
- # ensure pandas object is passes through
+ # ensure pandas object is passed through
class TransAssert(BaseEstimator):
@@ -310,6 +310,92 @@ def test_column_transformer_empty_columns(pandas, column_selection,
assert isinstance(ct.transformers_[0][1], TransRaise)
+def test_column_transformer_output_indices():
+ # Checks for the output_indices_ attribute
+ X_array = np.arange(6).reshape(3, 2)
+
+ ct = ColumnTransformer([('trans1', Trans(), [0]),
+ ('trans2', Trans(), [1])])
+ X_trans = ct.fit_transform(X_array)
+ assert ct.output_indices_ == {'trans1': slice(0, 1),
+ 'trans2': slice(1, 2),
+ 'remainder': slice(0, 0)}
+ assert_array_equal(X_trans[:, [0]],
+ X_trans[:, ct.output_indices_['trans1']])
+ assert_array_equal(X_trans[:, [1]],
+ X_trans[:, ct.output_indices_['trans2']])
+
+ # test with transformer_weights and multiple columns
+ ct = ColumnTransformer([('trans', Trans(), [0, 1])],
+ transformer_weights={'trans': .1})
+ X_trans = ct.fit_transform(X_array)
+ assert ct.output_indices_ == {'trans': slice(0, 2),
+ 'remainder': slice(0, 0)}
+ assert_array_equal(X_trans[:, [0, 1]],
+ X_trans[:, ct.output_indices_['trans']])
+ assert_array_equal(X_trans[:, []],
+ X_trans[:, ct.output_indices_['remainder']])
+
+ # test case that ensures that the attribute does also work when
+ # a given transformer doesn't have any columns to work on
+ ct = ColumnTransformer([('trans1', Trans(), [0, 1]),
+ ('trans2', TransRaise(), [])])
+ X_trans = ct.fit_transform(X_array)
+ assert ct.output_indices_ == {'trans1': slice(0, 2),
+ 'trans2': slice(0, 0),
+ 'remainder': slice(0, 0)}
+ assert_array_equal(X_trans[:, [0, 1]],
+ X_trans[:, ct.output_indices_['trans1']])
+ assert_array_equal(X_trans[:, []],
+ X_trans[:, ct.output_indices_['trans2']])
+ assert_array_equal(X_trans[:, []],
+ X_trans[:, ct.output_indices_['remainder']])
+
+ ct = ColumnTransformer([('trans', TransRaise(), [])],
+ remainder='passthrough')
+ X_trans = ct.fit_transform(X_array)
+ assert ct.output_indices_ == {'trans': slice(0, 0),
+ 'remainder': slice(0, 2)}
+ assert_array_equal(X_trans[:, []],
+ X_trans[:, ct.output_indices_['trans']])
+ assert_array_equal(X_trans[:, [0, 1]],
+ X_trans[:, ct.output_indices_['remainder']])
+
+
+def test_column_transformer_output_indices_df():
+ # Checks for the output_indices_ attribute with data frames
+ pd = pytest.importorskip('pandas')
+
+ X_df = pd.DataFrame(np.arange(6).reshape(3, 2),
+ columns=['first', 'second'])
+
+ ct = ColumnTransformer([('trans1', Trans(), ['first']),
+ ('trans2', Trans(), ['second'])])
+ X_trans = ct.fit_transform(X_df)
+ assert ct.output_indices_ == {'trans1': slice(0, 1),
+ 'trans2': slice(1, 2),
+ 'remainder': slice(0, 0)}
+ assert_array_equal(X_trans[:, [0]],
+ X_trans[:, ct.output_indices_['trans1']])
+ assert_array_equal(X_trans[:, [1]],
+ X_trans[:, ct.output_indices_['trans2']])
+ assert_array_equal(X_trans[:, []],
+ X_trans[:, ct.output_indices_['remainder']])
+
+ ct = ColumnTransformer([('trans1', Trans(), [0]),
+ ('trans2', Trans(), [1])])
+ X_trans = ct.fit_transform(X_df)
+ assert ct.output_indices_ == {'trans1': slice(0, 1),
+ 'trans2': slice(1, 2),
+ 'remainder': slice(0, 0)}
+ assert_array_equal(X_trans[:, [0]],
+ X_trans[:, ct.output_indices_['trans1']])
+ assert_array_equal(X_trans[:, [1]],
+ X_trans[:, ct.output_indices_['trans2']])
+ assert_array_equal(X_trans[:, []],
+ X_trans[:, ct.output_indices_['remainder']])
+
+
def test_column_transformer_sparse_array():
X_sparse = sparse.eye(3, 2).tocsr()
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex be894774f5a27..a54abb78730a4 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -102,6 +102,13 @@ Changelog\n - |Enhancement| :func:`datasets.fetch_kddcup99` raises a better message\n when the cached file is invalid. :pr:`19669` `Thomas Fan`_.\n \n+:mod:`sklearn.compose`\n+......................\n+\n+- |Enhancement| :class:`compose.ColumnTransformer` now records the output\n+ of each transformer in `output_indices_`. :pr:`18393` by\n+ :user:`Luca Bittarello <lbittarello>`.\n+\n :mod:`sklearn.decomposition`\n ............................\n \n"
}
] |
1.00
|
114616d9f6ce9eba7c1aacd3d4a254f868010e25
|
[
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est5-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing trans2.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key0]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est2-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_transformer_pandas",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est1-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_no_estimators",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_with_make_column_selector",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key3]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[passthrough]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_stacking",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key0]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_feature_names_dataframe",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est1-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[callable]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols10-^col_s-None-exclude10]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_array",
"sklearn/compose/tests/test_column_transformer.py::test_2D_transformer_output_pandas",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols2-None-include2-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_threshold",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key7]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key2]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_set_params_with_remainder",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mixed_cols_sparse",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est3-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_get_feature_names_empty_selection[selector0]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[csr_matrix]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_negative_column_indexes",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key3]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols9-float|str-None-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[second]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_numpy[passthrough]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est0-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_2D_transformer_output",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_columns[passthrough]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[first]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder[passthrough]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_set_params",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[pd-index]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est2-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_feature_names",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols8-^col_int-include8-None]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols0-None-number-None]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_numpy[remainder1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_special_strings",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key5]",
"sklearn/compose/tests/test_column_transformer.py::test_n_features_in",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols6-at$-include6-None]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols5-None-float-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_drop_all_sparse_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_error",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key1]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols4-None-object-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_columns[drop]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key2]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_no_estimators_set_params",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key8]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols11-str$-float-None]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_no_remaining_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key2]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key0]",
"sklearn/compose/tests/test_column_transformer.py::test_feature_name_validation",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_transformer_kwargs",
"sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[array]",
"sklearn/compose/tests/test_column_transformer.py::test_get_feature_names_empty_selection[selector1]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols12-None-include12-None]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_transformer_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_callable_specifier_dataframe",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols1-None-None-object]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_named_estimators",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est3-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder[remainder1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_list",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est6-\\\\[ColumnTransformer\\\\].*\\\\(1 of 1\\\\) Processing trans1.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est4-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_drops_all_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key3]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_cloning",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_drop",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_pickle",
"sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[list]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_callable_specifier",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[remainder1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key1]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols3-None-include3-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est0-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[asarray]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_dataframe",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key6]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_error_msg_1D",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols7-None-include7-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est4-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est5-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing trans2.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est6-\\\\[ColumnTransformer\\\\].*\\\\(1 of 1\\\\) Processing trans1.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-pandas]"
] |
[
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_output_indices",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_output_indices_df"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex be894774f5a27..a54abb78730a4 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -102,6 +102,13 @@ Changelog\n - |Enhancement| :func:`datasets.fetch_kddcup99` raises a better message\n when the cached file is invalid. :pr:`<PRID>` `Thomas Fan`_.\n \n+:mod:`sklearn.compose`\n+......................\n+\n+- |Enhancement| :class:`compose.ColumnTransformer` now records the output\n+ of each transformer in `output_indices_`. :pr:`<PRID>` by\n+ :user:`<NAME>`.\n+\n :mod:`sklearn.decomposition`\n ............................\n \n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index be894774f5a27..a54abb78730a4 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -102,6 +102,13 @@ Changelog
- |Enhancement| :func:`datasets.fetch_kddcup99` raises a better message
when the cached file is invalid. :pr:`<PRID>` `Thomas Fan`_.
+:mod:`sklearn.compose`
+......................
+
+- |Enhancement| :class:`compose.ColumnTransformer` now records the output
+ of each transformer in `output_indices_`. :pr:`<PRID>` by
+ :user:`<NAME>`.
+
:mod:`sklearn.decomposition`
............................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22237
|
https://github.com/scikit-learn/scikit-learn/pull/22237
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 0acd0612dd0c7..332fbc33dd192 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -1048,6 +1048,11 @@ Changelog
left corner of the HTML representation to show how the elements are
clickable. :pr:`21298` by `Thomas Fan`_.
+- |Enhancement| :func:`utils.check_array` with `dtype=None` returns numeric
+ arrays when passed in a pandas DataFrame with mixed dtypes. `dtype="numeric"`
+ will also make better infer the dtype when the DataFrame has mixed dtypes.
+ :pr:`22237` by `Thomas Fan`_.
+
- |Enhancement| Removes random unique identifiers in the HTML representation.
With this change, jupyter notebooks are reproducible as long as the cells are
run in the same order. :pr:`23098` by `Thomas Fan`_.
diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py
index aba4e2b179953..2b5ce5b4f09ae 100644
--- a/sklearn/utils/validation.py
+++ b/sklearn/utils/validation.py
@@ -575,13 +575,25 @@ def _check_estimator_name(estimator):
def _pandas_dtype_needs_early_conversion(pd_dtype):
"""Return True if pandas extension pd_dtype need to be converted early."""
+ # Check these early for pandas versions without extension dtypes
+ from pandas.api.types import (
+ is_bool_dtype,
+ is_sparse,
+ is_float_dtype,
+ is_integer_dtype,
+ )
+
+ if is_bool_dtype(pd_dtype):
+ # bool and extension booleans need early converstion because __array__
+ # converts mixed dtype dataframes into object dtypes
+ return True
+
+ if is_sparse(pd_dtype):
+ # Sparse arrays will be converted later in `check_array`
+ return False
+
try:
- from pandas.api.types import (
- is_extension_array_dtype,
- is_float_dtype,
- is_integer_dtype,
- is_sparse,
- )
+ from pandas.api.types import is_extension_array_dtype
except ImportError:
return False
@@ -744,16 +756,10 @@ def check_array(
"It will be converted to a dense numpy array."
)
- dtypes_orig = []
- for dtype_iter in array.dtypes:
- if dtype_iter.kind == "b":
- # pandas boolean dtype __array__ interface coerces bools to objects
- dtype_iter = np.dtype(object)
- elif _pandas_dtype_needs_early_conversion(dtype_iter):
- pandas_requires_conversion = True
-
- dtypes_orig.append(dtype_iter)
-
+ dtypes_orig = list(array.dtypes)
+ pandas_requires_conversion = any(
+ _pandas_dtype_needs_early_conversion(i) for i in dtypes_orig
+ )
if all(isinstance(dtype_iter, np.dtype) for dtype_iter in dtypes_orig):
dtype_orig = np.result_type(*dtypes_orig)
@@ -776,7 +782,9 @@ def check_array(
if pandas_requires_conversion:
# pandas dataframe requires conversion earlier to handle extension dtypes with
# nans
- array = array.astype(dtype)
+ # Use the original dtype for conversion if dtype is None
+ new_dtype = dtype_orig if dtype is None else dtype
+ array = array.astype(new_dtype)
# Since we converted here, we do not need to convert again later
dtype = None
|
diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py
index 84a71a10981fb..391d9603d29de 100644
--- a/sklearn/utils/tests/test_validation.py
+++ b/sklearn/utils/tests/test_validation.py
@@ -924,26 +924,69 @@ def test_check_array_series():
assert_array_equal(res, np.array(["a", "b", "c"], dtype=object))
-def test_check_dataframe_mixed_float_dtypes():
[email protected](
+ "dtype", ((np.float64, np.float32), np.float64, None, "numeric")
+)
[email protected]("bool_dtype", ("bool", "boolean"))
+def test_check_dataframe_mixed_float_dtypes(dtype, bool_dtype):
# pandas dataframe will coerce a boolean into a object, this is a mismatch
# with np.result_type which will return a float
# check_array needs to explicitly check for bool dtype in a dataframe for
# this situation
# https://github.com/scikit-learn/scikit-learn/issues/15787
- pd = importorskip("pandas")
+ if bool_dtype == "boolean":
+ # boolean extension arrays was introduced in 1.0
+ pd = importorskip("pandas", minversion="1.0")
+ else:
+ pd = importorskip("pandas")
+
df = pd.DataFrame(
- {"int": [1, 2, 3], "float": [0, 0.1, 2.1], "bool": [True, False, True]},
+ {
+ "int": [1, 2, 3],
+ "float": [0, 0.1, 2.1],
+ "bool": pd.Series([True, False, True], dtype=bool_dtype),
+ },
columns=["int", "float", "bool"],
)
- array = check_array(df, dtype=(np.float64, np.float32, np.float16))
+ array = check_array(df, dtype=dtype)
+ assert array.dtype == np.float64
expected_array = np.array(
[[1.0, 0.0, 1.0], [2.0, 0.1, 0.0], [3.0, 2.1, 1.0]], dtype=float
)
assert_allclose_dense_sparse(array, expected_array)
+def test_check_dataframe_with_only_bool():
+ """Check that dataframe with bool return a boolean arrays."""
+ pd = importorskip("pandas")
+ df = pd.DataFrame({"bool": [True, False, True]})
+
+ array = check_array(df, dtype=None)
+ assert array.dtype == np.bool_
+ assert_array_equal(array, [[True], [False], [True]])
+
+ # common dtype is int for bool + int
+ df = pd.DataFrame(
+ {"bool": [True, False, True], "int": [1, 2, 3]},
+ columns=["bool", "int"],
+ )
+ array = check_array(df, dtype="numeric")
+ assert array.dtype == np.int64
+ assert_array_equal(array, [[1, 1], [0, 2], [1, 3]])
+
+
+def test_check_dataframe_with_only_boolean():
+ """Check that dataframe with boolean return a float array with dtype=None"""
+ pd = importorskip("pandas", minversion="1.0")
+ df = pd.DataFrame({"bool": pd.Series([True, False, True], dtype="boolean")})
+
+ array = check_array(df, dtype=None)
+ assert array.dtype == np.float64
+ assert_array_equal(array, [[True], [False], [True]])
+
+
class DummyMemory:
def cache(self, func):
return func
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 0acd0612dd0c7..332fbc33dd192 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -1048,6 +1048,11 @@ Changelog\n left corner of the HTML representation to show how the elements are\n clickable. :pr:`21298` by `Thomas Fan`_.\n \n+- |Enhancement| :func:`utils.check_array` with `dtype=None` returns numeric\n+ arrays when passed in a pandas DataFrame with mixed dtypes. `dtype=\"numeric\"`\n+ will also make better infer the dtype when the DataFrame has mixed dtypes.\n+ :pr:`22237` by `Thomas Fan`_.\n+\n - |Enhancement| Removes random unique identifiers in the HTML representation.\n With this change, jupyter notebooks are reproducible as long as the cells are\n run in the same order. :pr:`23098` by `Thomas Fan`_.\n"
}
] |
1.01
|
8d295fbdc77c859b2ee811b2ee0588c48960bf6a
|
[
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan--allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csr]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-float]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[True]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[True]",
"sklearn/utils/tests/test_validation.py::test_num_features[list]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[str]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[bsr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-X-True-Input X contains NaN]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[byte-uint16]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[asarray]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name6-int-2-4-bad parameter value-err_msg8]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[2-test_name4-int-2-4-right-err_msg6]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-float]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[tuple]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-float]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan--1-Input contains NaN]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-y-True-Input y contains NaN]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int16]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_error[X1]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_pandas_with_ints_no_warning[MultiIndex]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_pandas_with_ints_no_warning[list-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_error[X3]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Float64]",
"sklearn/utils/tests/test_validation.py::test_num_features[array]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[coo]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int32-long]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[5-test_name3-int-2-4-neither-err_msg5]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-sample_weight-True-Input sample_weight contains infinity]",
"sklearn/utils/tests/test_validation.py::test_as_float_array",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_error[X2]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint8-int8]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan--True-Input contains NaN]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_pandas_with_ints_no_warning[default]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan--1-Input contains NaN]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int16-int32]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-y-True-Input y contains NaN]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-allow-nan]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name5-int-2-4-left-err_msg7]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf--True-Input contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-inf-False]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float64]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_class",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes[boolean-numeric]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X0-Input contains NaN.]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-sample_weight-True-Input sample_weight contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name1-float-2-4-neither-err_msg0]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dok_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_error[X0]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X2-Input contains infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-allow-nan]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-y]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-X-allow-nan-Input X contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[coo]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint-uint64-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csr]",
"sklearn/utils/tests/test_validation.py::test_check_array_series",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int8-byte-integer]",
"sklearn/utils/tests/test_validation.py::test_check_X_y_informative_error",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[float]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_no_exception",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csr]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-str]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[bsr]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-y]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-str]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_valid[3]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[None-test_name1-Integral-2-4-neither-err_msg2]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name7-int-None-4-left-err_msg9]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[float16-float32]",
"sklearn/utils/tests/test_validation.py::test_np_matrix",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X1-Input contains NaN.]",
"sklearn/utils/tests/test_validation.py::test_check_sample_weight",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes[boolean-float64]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csc]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[intc-int32-integer]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-bool]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X2-Input contains infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes[bool-dtype0]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[lil_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf--True-Input contains infinity]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-X-True-Input X contains NaN]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_valid[2.5]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int16]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csc]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[longdouble-float16]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-inf-False]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_is_fitted",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Float64]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-float]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X1]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int64-longlong-integer]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-dict]",
"sklearn/utils/tests/test_validation.py::test_suppress_validation",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_attributes",
"sklearn/utils/tests/test_validation.py::test_check_memory",
"sklearn/utils/tests/test_validation.py::test_num_features[tuple]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function",
"sklearn/utils/tests/test_validation.py::test_num_features[dataframe]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[float32-double]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_array_deprecated_matrix",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csc]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_valid[2]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_warning",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintc-uint32-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[array]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint32-uint64]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X3-cannot convert float NaN to integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-str]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X1-Input contains NaN.]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csr]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-sample_weight]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X0-Input contains NaN.]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name1-target_type3-2-4-neither-err_msg3]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name8-int-2-None-right-err_msg10]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-dict]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_array",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_min_samples_and_features_messages",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int8]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[indices1]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[coo_matrix]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-bool]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[int-str]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-dict]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-X-True-Input X contains infinity]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-int]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[list]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan--allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes[bool-numeric]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant_imag]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function_version",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_complex_data_error",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[array]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_error[X4]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-sample_weight]",
"sklearn/utils/tests/test_validation.py::test_retrieve_samples_from_non_standard_shape",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_numpy",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-dict]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X0]",
"sklearn/utils/tests/test_validation.py::test_check_consistent_length",
"sklearn/utils/tests/test_validation.py::test_memmap",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int0-long-integer]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint16-ushort-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int8]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes[bool-float64]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int-long-integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Float64]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_casting",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int8]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dia_matrix]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-bool]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-X]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-bool]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[bool]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[None-test_name1-Real-2-4-neither-err_msg1]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[all negative]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant pos]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-str]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[float16-half-floating]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_pandas_with_ints_no_warning[range]",
"sklearn/utils/tests/test_validation.py::test_has_fit_parameter",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[int]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[None]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[False]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X3-cannot convert float NaN to integer]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[longfloat-longdouble-floating]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[ushort-uint32]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan--True-Input contains NaN]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name2-int-2-4-neither-err_msg4]",
"sklearn/utils/tests/test_validation.py::test_check_symmetric",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Float32]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintp-ulonglong-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant_imag]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[single]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[coo]",
"sklearn/utils/tests/test_validation.py::test_ordering",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_on_mock_dataframe",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-X-allow-nan-Input X contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-X]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_type_exception",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes[boolean-dtype0]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float64]",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in_pandas",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int_-intp-integer]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_fit_attribute",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[ubyte-uint8-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_valid[5]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[double-float64-floating]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-X-True-Input X contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[short-int16-integer]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int16]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[list-str]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[single-float32-floating]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_stability",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float32]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_pandas"
] |
[
"sklearn/utils/tests/test_validation.py::test_check_dataframe_with_only_bool",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes[bool-None]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes[boolean-None]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_with_only_boolean"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 0acd0612dd0c7..332fbc33dd192 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -1048,6 +1048,11 @@ Changelog\n left corner of the HTML representation to show how the elements are\n clickable. :pr:`<PRID>` by `<NAME>`_.\n \n+- |Enhancement| :func:`utils.check_array` with `dtype=None` returns numeric\n+ arrays when passed in a pandas DataFrame with mixed dtypes. `dtype=\"numeric\"`\n+ will also make better infer the dtype when the DataFrame has mixed dtypes.\n+ :pr:`<PRID>` by `<NAME>`_.\n+\n - |Enhancement| Removes random unique identifiers in the HTML representation.\n With this change, jupyter notebooks are reproducible as long as the cells are\n run in the same order. :pr:`<PRID>` by `<NAME>`_.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 0acd0612dd0c7..332fbc33dd192 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -1048,6 +1048,11 @@ Changelog
left corner of the HTML representation to show how the elements are
clickable. :pr:`<PRID>` by `<NAME>`_.
+- |Enhancement| :func:`utils.check_array` with `dtype=None` returns numeric
+ arrays when passed in a pandas DataFrame with mixed dtypes. `dtype="numeric"`
+ will also make better infer the dtype when the DataFrame has mixed dtypes.
+ :pr:`<PRID>` by `<NAME>`_.
+
- |Enhancement| Removes random unique identifiers in the HTML representation.
With this change, jupyter notebooks are reproducible as long as the cells are
run in the same order. :pr:`<PRID>` by `<NAME>`_.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22248
|
https://github.com/scikit-learn/scikit-learn/pull/22248
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 4c307d9e54250..0240ad706b6ca 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -503,6 +503,9 @@ Changelog
messages when optimizers produce non-finite parameter weights. :pr:`22150`
by :user:`Christian Ritter <chritter>` and :user:`Norbert Preining <norbusan>`.
+- |Enhancement| Adds :term:`get_feature_names_out` to
+ :class:`neural_network.BernoulliRBM`. :pr:`22248` by `Thomas Fan`_.
+
:mod:`sklearn.pipeline`
.......................
diff --git a/sklearn/neural_network/_rbm.py b/sklearn/neural_network/_rbm.py
index 6a6cb67f17de0..aac92c3108787 100644
--- a/sklearn/neural_network/_rbm.py
+++ b/sklearn/neural_network/_rbm.py
@@ -15,6 +15,7 @@
from ..base import BaseEstimator
from ..base import TransformerMixin
+from ..base import _ClassNamePrefixFeaturesOutMixin
from ..utils import check_random_state
from ..utils import gen_even_slices
from ..utils.extmath import safe_sparse_dot
@@ -22,7 +23,7 @@
from ..utils.validation import check_is_fitted
-class BernoulliRBM(TransformerMixin, BaseEstimator):
+class BernoulliRBM(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Bernoulli Restricted Boltzmann Machine (RBM).
A Restricted Boltzmann Machine with binary visible units and
@@ -284,6 +285,7 @@ def partial_fit(self, X, y=None):
self.random_state_.normal(0, 0.01, (self.n_components, X.shape[1])),
order="F",
)
+ self._n_features_out = self.components_.shape[0]
if not hasattr(self, "intercept_hidden_"):
self.intercept_hidden_ = np.zeros(
self.n_components,
@@ -389,6 +391,7 @@ def fit(self, X, y=None):
order="F",
dtype=X.dtype,
)
+ self._n_features_out = self.components_.shape[0]
self.intercept_hidden_ = np.zeros(self.n_components, dtype=X.dtype)
self.intercept_visible_ = np.zeros(X.shape[1], dtype=X.dtype)
self.h_samples_ = np.zeros((self.batch_size, self.n_components), dtype=X.dtype)
|
diff --git a/sklearn/neural_network/tests/test_rbm.py b/sklearn/neural_network/tests/test_rbm.py
index aadae44479ad5..d36fa6b0bd11f 100644
--- a/sklearn/neural_network/tests/test_rbm.py
+++ b/sklearn/neural_network/tests/test_rbm.py
@@ -238,3 +238,15 @@ def test_convergence_dtype_consistency():
)
assert_allclose(rbm_64.components_, rbm_32.components_, rtol=1e-03, atol=0)
assert_allclose(rbm_64.h_samples_, rbm_32.h_samples_)
+
+
[email protected]("method", ["fit", "partial_fit"])
+def test_feature_names_out(method):
+ """Check `get_feature_names_out` for `BernoulliRBM`."""
+ n_components = 10
+ rbm = BernoulliRBM(n_components=n_components)
+ getattr(rbm, method)(Xdigits)
+
+ names = rbm.get_feature_names_out()
+ expected_names = [f"bernoullirbm{i}" for i in range(n_components)]
+ assert_array_equal(expected_names, names)
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index fb4de8942f131..be26202d458d1 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -383,7 +383,6 @@ def test_pandas_column_name_consistency(estimator):
"ensemble",
"kernel_approximation",
"preprocessing",
- "neural_network",
]
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 4c307d9e54250..0240ad706b6ca 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -503,6 +503,9 @@ Changelog\n messages when optimizers produce non-finite parameter weights. :pr:`22150`\n by :user:`Christian Ritter <chritter>` and :user:`Norbert Preining <norbusan>`.\n \n+- |Enhancement| Adds :term:`get_feature_names_out` to\n+ :class:`neural_network.BernoulliRBM`. :pr:`22248` by `Thomas Fan`_.\n+\n :mod:`sklearn.pipeline`\n .......................\n \n"
}
] |
1.01
|
8991c3d7870df692fe01510e0fe6de62ea550cad
|
[
"sklearn/neural_network/tests/test_rbm.py::test_fit_gibbs",
"sklearn/neural_network/tests/test_rbm.py::test_small_sparse_partial_fit",
"sklearn/neural_network/tests/test_rbm.py::test_gibbs_smoke",
"sklearn/neural_network/tests/test_rbm.py::test_transform",
"sklearn/neural_network/tests/test_rbm.py::test_transformer_dtypes_casting[float32-float32]",
"sklearn/neural_network/tests/test_rbm.py::test_transformer_dtypes_casting[float64-float64]",
"sklearn/neural_network/tests/test_rbm.py::test_fit",
"sklearn/neural_network/tests/test_rbm.py::test_rbm_verbose",
"sklearn/neural_network/tests/test_rbm.py::test_sample_hiddens",
"sklearn/neural_network/tests/test_rbm.py::test_convergence_dtype_consistency",
"sklearn/neural_network/tests/test_rbm.py::test_sparse_and_verbose",
"sklearn/neural_network/tests/test_rbm.py::test_small_sparse",
"sklearn/neural_network/tests/test_rbm.py::test_score_samples",
"sklearn/neural_network/tests/test_rbm.py::test_partial_fit",
"sklearn/neural_network/tests/test_rbm.py::test_fit_gibbs_sparse",
"sklearn/neural_network/tests/test_rbm.py::test_transformer_dtypes_casting[int-float64]"
] |
[
"sklearn/neural_network/tests/test_rbm.py::test_feature_names_out[fit]",
"sklearn/neural_network/tests/test_rbm.py::test_feature_names_out[partial_fit]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 4c307d9e54250..0240ad706b6ca 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -503,6 +503,9 @@ Changelog\n messages when optimizers produce non-finite parameter weights. :pr:`<PRID>`\n by :user:`<NAME>` and :user:`<NAME>`.\n \n+- |Enhancement| Adds :term:`get_feature_names_out` to\n+ :class:`neural_network.BernoulliRBM`. :pr:`<PRID>` by `<NAME>`_.\n+\n :mod:`sklearn.pipeline`\n .......................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 4c307d9e54250..0240ad706b6ca 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -503,6 +503,9 @@ Changelog
messages when optimizers produce non-finite parameter weights. :pr:`<PRID>`
by :user:`<NAME>` and :user:`<NAME>`.
+- |Enhancement| Adds :term:`get_feature_names_out` to
+ :class:`neural_network.BernoulliRBM`. :pr:`<PRID>` by `<NAME>`_.
+
:mod:`sklearn.pipeline`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19263
|
https://github.com/scikit-learn/scikit-learn/pull/19263
|
diff --git a/doc/modules/compose.rst b/doc/modules/compose.rst
index 6e827304c38cd..a9195ba9ab022 100644
--- a/doc/modules/compose.rst
+++ b/doc/modules/compose.rst
@@ -527,6 +527,20 @@ above example would be::
('countvectorizer', CountVectorizer(),
'title')])
+If :class:`~sklearn.compose.ColumnTransformer` is fitted with a dataframe
+and the dataframe only has string column names, then transforming a dataframe
+will use the column names to select the columns::
+
+
+ >>> ct = ColumnTransformer(
+ ... [("scale", StandardScaler(), ["expert_rating"])]).fit(X)
+ >>> X_new = pd.DataFrame({"expert_rating": [5, 6, 1],
+ ... "ignored_new_col": [1.2, 0.3, -0.1]})
+ >>> ct.transform(X_new)
+ array([[ 0.9...],
+ [ 2.1...],
+ [-3.9...]])
+
.. _visualizing_composite_estimators:
Visualizing Composite Estimators
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 977d83890e0c0..d26c5dd0c347d 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -131,6 +131,11 @@ Changelog
of each transformer in `output_indices_`. :pr:`18393` by
:user:`Luca Bittarello <lbittarello>`.
+- |Enhancement| :class:`compose.ColumnTransformer` now allows DataFrame input to
+ have its columns appear in a changed order in `transform`. Further, columns that
+ are dropped will not be required in transform, and additional columns will be
+ ignored if `remainder='drop'`. :pr:`19263` by `Thomas Fan`_
+
- |FIX| :meth:`compose.ColumnTransformer.get_feature_names` supports
non-string feature names returned by any of its transformers.
:pr:`18459` by :user:`Albert Villanova del Moral <albertvillanova>` and
diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py
index 2f2da882652c0..441fc95a106f1 100644
--- a/sklearn/compose/_column_transformer.py
+++ b/sklearn/compose/_column_transformer.py
@@ -244,7 +244,8 @@ def set_params(self, **kwargs):
self._set_params('_transformers', **kwargs)
return self
- def _iter(self, fitted=False, replace_strings=False):
+ def _iter(self, fitted=False, replace_strings=False,
+ column_as_strings=False):
"""
Generate (name, trans, column, weight) tuples.
@@ -262,11 +263,11 @@ def _iter(self, fitted=False, replace_strings=False):
in zip(self.transformers, self._columns)
]
# add transformer tuple for remainder
- if self._remainder[2] is not None:
+ if self._remainder[2]:
transformers = chain(transformers, [self._remainder])
get_weight = (self.transformer_weights or {}).get
- for name, trans, column in transformers:
+ for name, trans, columns in transformers:
if replace_strings:
# replace 'passthrough' with identity transformer and
# skip in case of 'drop'
@@ -276,10 +277,21 @@ def _iter(self, fitted=False, replace_strings=False):
)
elif trans == 'drop':
continue
- elif _is_empty_column_selection(column):
+ elif _is_empty_column_selection(columns):
continue
- yield (name, trans, column, get_weight(name))
+ if column_as_strings and self._only_str_columns:
+ # Convert all columns to using their string labels
+ columns_is_scalar = np.isscalar(columns)
+
+ indices = self._transformer_to_input_indices[name]
+ columns = self._feature_names_in[indices]
+
+ if columns_is_scalar:
+ # selection is done with one dimension
+ columns = columns[0]
+
+ yield (name, trans, columns, get_weight(name))
def _validate_transformers(self):
if not self.transformers:
@@ -305,12 +317,17 @@ def _validate_column_callables(self, X):
"""
Converts callable column specifications.
"""
- columns = []
- for _, _, column in self.transformers:
- if callable(column):
- column = column(X)
- columns.append(column)
- self._columns = columns
+ all_columns = []
+ transformer_to_input_indices = {}
+ for name, _, columns in self.transformers:
+ if callable(columns):
+ columns = columns(X)
+ all_columns.append(columns)
+ transformer_to_input_indices[name] = _get_column_indices(X,
+ columns)
+
+ self._columns = all_columns
+ self._transformer_to_input_indices = transformer_to_input_indices
def _validate_remainder(self, X):
"""
@@ -328,12 +345,10 @@ def _validate_remainder(self, X):
self.remainder)
self._n_features = X.shape[1]
- cols = []
- for columns in self._columns:
- cols.extend(_get_column_indices(X, columns))
-
- remaining_idx = sorted(set(range(self._n_features)) - set(cols))
- self._remainder = ('remainder', self.remainder, remaining_idx or None)
+ cols = set(chain(*self._transformer_to_input_indices.values()))
+ remaining = sorted(set(range(self._n_features)) - cols)
+ self._remainder = ('remainder', self.remainder, remaining)
+ self._transformer_to_input_indices['remainder'] = remaining
@property
def named_transformers_(self):
@@ -443,7 +458,8 @@ def _log_message(self, name, idx, total):
return None
return '(%d of %d) Processing %s' % (idx, total, name)
- def _fit_transform(self, X, y, func, fitted=False):
+ def _fit_transform(self, X, y, func, fitted=False,
+ column_as_strings=False):
"""
Private function to fit and/or transform on demand.
@@ -452,7 +468,9 @@ def _fit_transform(self, X, y, func, fitted=False):
``fitted=True`` ensures the fitted transformers are used.
"""
transformers = list(
- self._iter(fitted=fitted, replace_strings=True))
+ self._iter(
+ fitted=fitted, replace_strings=True,
+ column_as_strings=column_as_strings))
try:
return Parallel(n_jobs=self.n_jobs)(
delayed(func)(
@@ -518,6 +536,8 @@ def fit_transform(self, X, y=None):
# TODO: this should be `feature_names_in_` when we start having it
if hasattr(X, "columns"):
self._feature_names_in = np.asarray(X.columns)
+ self._only_str_columns = all(isinstance(col, str)
+ for col in self._feature_names_in)
else:
self._feature_names_in = None
X = _check_X(X)
@@ -572,20 +592,34 @@ def transform(self, X):
"""
check_is_fitted(self)
X = _check_X(X)
- if hasattr(X, "columns"):
- X_feature_names = np.asarray(X.columns)
+
+ fit_dataframe_and_transform_dataframe = (
+ self._feature_names_in is not None and hasattr(X, "columns"))
+
+ if fit_dataframe_and_transform_dataframe:
+ named_transformers = self.named_transformers_
+ # check that all names seen in fit are in transform, unless
+ # they were dropped
+ non_dropped_indices = [
+ ind for name, ind in self._transformer_to_input_indices.items()
+ if name in named_transformers and
+ isinstance(named_transformers[name], str) and
+ named_transformers[name] != 'drop']
+
+ all_indices = set(chain(*non_dropped_indices))
+ all_names = set(self._feature_names_in[ind] for ind in all_indices)
+
+ diff = all_names - set(X.columns)
+ if diff:
+ raise ValueError(f"columns are missing: {diff}")
else:
- X_feature_names = None
-
- self._check_n_features(X, reset=False)
- if (self._feature_names_in is not None and
- X_feature_names is not None and
- np.any(self._feature_names_in != X_feature_names)):
- raise RuntimeError(
- "Given feature/column names do not match the ones for the "
- "data given during fit."
- )
- Xs = self._fit_transform(X, None, _transform_one, fitted=True)
+ # ndarray was used for fitting or transforming, thus we only
+ # check that n_features_in_ is consistent
+ self._check_n_features(X, reset=False)
+
+ Xs = self._fit_transform(
+ X, None, _transform_one, fitted=True,
+ column_as_strings=fit_dataframe_and_transform_dataframe)
self._validate_output(Xs)
if not Xs:
@@ -629,10 +663,12 @@ def _sk_visual_block_(self):
transformers = self.transformers
elif hasattr(self, "_remainder"):
remainder_columns = self._remainder[2]
- if self._feature_names_in is not None:
+ if (self._feature_names_in is not None and
+ remainder_columns and
+ not all(isinstance(col, str)
+ for col in remainder_columns)):
remainder_columns = (
- self._feature_names_in[remainder_columns].tolist()
- )
+ self._feature_names_in[remainder_columns].tolist())
transformers = chain(self.transformers,
[('remainder', self.remainder,
remainder_columns)])
|
diff --git a/sklearn/compose/tests/test_column_transformer.py b/sklearn/compose/tests/test_column_transformer.py
index 549292ab51445..9278d67296ec5 100644
--- a/sklearn/compose/tests/test_column_transformer.py
+++ b/sklearn/compose/tests/test_column_transformer.py
@@ -4,7 +4,6 @@
import re
import pickle
-import warnings
import numpy as np
from scipy import sparse
import pytest
@@ -1260,82 +1259,6 @@ def test_column_transformer_negative_column_indexes():
assert_array_equal(tf_1.fit_transform(X), tf_2.fit_transform(X))
[email protected]("explicit_colname", ['first', 'second'])
-def test_column_transformer_reordered_column_names_remainder(explicit_colname):
- """Regression test for issue #14223: 'Named col indexing fails with
- ColumnTransformer remainder on changing DataFrame column ordering'
-
- Should raise error on changed order combined with remainder.
- Should allow for added columns in `transform` input DataFrame
- as long as all preceding columns match.
- """
- pd = pytest.importorskip('pandas')
-
- X_fit_array = np.array([[0, 1, 2], [2, 4, 6]]).T
- X_fit_df = pd.DataFrame(X_fit_array, columns=['first', 'second'])
-
- X_trans_array = np.array([[2, 4, 6], [0, 1, 2]]).T
- X_trans_df = pd.DataFrame(X_trans_array, columns=['second', 'first'])
-
- tf = ColumnTransformer([('bycol', Trans(), explicit_colname)],
- remainder=Trans())
-
- tf.fit(X_fit_df)
- err_msg = ("Given feature/column names do not match the ones for the "
- "data given during fit.")
- with pytest.raises(RuntimeError, match=err_msg):
- tf.transform(X_trans_df)
-
- # ValueError for added columns
- X_extended_df = X_fit_df.copy()
- X_extended_df['third'] = [3, 6, 9]
- err_msg = ("X has 3 features, but ColumnTransformer is expecting 2 "
- "features as input.")
- with pytest.raises(ValueError, match=err_msg):
- tf.transform(X_extended_df)
-
- # No 'columns' AttributeError when transform input is a numpy array
- X_array = X_fit_array.copy()
- err_msg = 'Specifying the columns'
- with pytest.raises(ValueError, match=err_msg):
- tf.transform(X_array)
-
-
-def test_feature_name_validation():
- """Tests if the proper warning/error is raised if the columns do not match
- during fit and transform."""
- pd = pytest.importorskip("pandas")
-
- X = np.ones(shape=(3, 2))
- X_extra = np.ones(shape=(3, 3))
- df = pd.DataFrame(X, columns=['a', 'b'])
- df_extra = pd.DataFrame(X_extra, columns=['a', 'b', 'c'])
-
- tf = ColumnTransformer([('bycol', Trans(), ['a', 'b'])])
- tf.fit(df)
-
- msg = ("X has 3 features, but ColumnTransformer is expecting 2 features "
- "as input.")
- with pytest.raises(ValueError, match=msg):
- tf.transform(df_extra)
-
- tf = ColumnTransformer([('bycol', Trans(), [0])])
- tf.fit(df)
-
- with pytest.raises(ValueError, match=msg):
- tf.transform(X_extra)
-
- with warnings.catch_warnings(record=True) as warns:
- tf.transform(X)
- assert not warns
-
- tf = ColumnTransformer([('bycol', Trans(), ['a'])],
- remainder=Trans())
- tf.fit(df)
- with pytest.raises(ValueError, match=msg):
- tf.transform(df_extra)
-
-
@pytest.mark.parametrize("array_type", [np.asarray, sparse.csr_matrix])
def test_column_transformer_mask_indexing(array_type):
# Regression test for #14510
@@ -1516,6 +1439,80 @@ def test_sk_visual_block_remainder_fitted_numpy(remainder):
assert visual_block.estimators == (scaler, remainder)
[email protected]("explicit_colname", ['first', 'second', 0, 1])
[email protected]("remainder", [Trans(), 'passthrough', 'drop'])
+def test_column_transformer_reordered_column_names_remainder(explicit_colname,
+ remainder):
+ """Test the interaction between remainder and column transformer"""
+ pd = pytest.importorskip('pandas')
+
+ X_fit_array = np.array([[0, 1, 2], [2, 4, 6]]).T
+ X_fit_df = pd.DataFrame(X_fit_array, columns=['first', 'second'])
+
+ X_trans_array = np.array([[2, 4, 6], [0, 1, 2]]).T
+ X_trans_df = pd.DataFrame(X_trans_array, columns=['second', 'first'])
+
+ tf = ColumnTransformer([('bycol', Trans(), explicit_colname)],
+ remainder=remainder)
+
+ tf.fit(X_fit_df)
+ X_fit_trans = tf.transform(X_fit_df)
+
+ # Changing the order still works
+ X_trans = tf.transform(X_trans_df)
+ assert_allclose(X_trans, X_fit_trans)
+
+ # extra columns are ignored
+ X_extended_df = X_fit_df.copy()
+ X_extended_df['third'] = [3, 6, 9]
+ X_trans = tf.transform(X_extended_df)
+ assert_allclose(X_trans, X_fit_trans)
+
+ if isinstance(explicit_colname, str):
+ # Raise error if columns are specified by names but input only allows
+ # to specify by position, e.g. numpy array instead of a pandas df.
+ X_array = X_fit_array.copy()
+ err_msg = 'Specifying the columns'
+ with pytest.raises(ValueError, match=err_msg):
+ tf.transform(X_array)
+
+
+def test_feature_name_validation_missing_columns_drop_passthough():
+ """Test the interaction between {'drop', 'passthrough'} and
+ missing column names."""
+ pd = pytest.importorskip("pandas")
+
+ X = np.ones(shape=(3, 4))
+ df = pd.DataFrame(X, columns=['a', 'b', 'c', 'd'])
+
+ df_dropped = df.drop('c', axis=1)
+
+ # with remainder='passthrough', all columns seen during `fit` must be
+ # present
+ tf = ColumnTransformer([('bycol', Trans(), [1])], remainder='passthrough')
+ tf.fit(df)
+ msg = r"columns are missing: {'c'}"
+ with pytest.raises(ValueError, match=msg):
+ tf.transform(df_dropped)
+
+ # with remainder='drop', it is allowed to have column 'c' missing
+ tf = ColumnTransformer([('bycol', Trans(), [1])],
+ remainder='drop')
+ tf.fit(df)
+
+ df_dropped_trans = tf.transform(df_dropped)
+ df_fit_trans = tf.transform(df)
+ assert_allclose(df_dropped_trans, df_fit_trans)
+
+ # bycol drops 'c', thus it is allowed for 'c' to be missing
+ tf = ColumnTransformer([('bycol', 'drop', ['c'])],
+ remainder='passthrough')
+ tf.fit(df)
+ df_dropped_trans = tf.transform(df_dropped)
+ df_fit_trans = tf.transform(df)
+ assert_allclose(df_dropped_trans, df_fit_trans)
+
+
@pytest.mark.parametrize("selector", [[], [False, False]])
def test_get_feature_names_empty_selection(selector):
"""Test that get_feature_names is only called for transformers that
|
[
{
"path": "doc/modules/compose.rst",
"old_path": "a/doc/modules/compose.rst",
"new_path": "b/doc/modules/compose.rst",
"metadata": "diff --git a/doc/modules/compose.rst b/doc/modules/compose.rst\nindex 6e827304c38cd..a9195ba9ab022 100644\n--- a/doc/modules/compose.rst\n+++ b/doc/modules/compose.rst\n@@ -527,6 +527,20 @@ above example would be::\n ('countvectorizer', CountVectorizer(),\n 'title')])\n \n+If :class:`~sklearn.compose.ColumnTransformer` is fitted with a dataframe\n+and the dataframe only has string column names, then transforming a dataframe\n+will use the column names to select the columns::\n+\n+\n+ >>> ct = ColumnTransformer(\n+ ... [(\"scale\", StandardScaler(), [\"expert_rating\"])]).fit(X)\n+ >>> X_new = pd.DataFrame({\"expert_rating\": [5, 6, 1],\n+ ... \"ignored_new_col\": [1.2, 0.3, -0.1]})\n+ >>> ct.transform(X_new)\n+ array([[ 0.9...],\n+ [ 2.1...],\n+ [-3.9...]])\n+\n .. _visualizing_composite_estimators:\n \n Visualizing Composite Estimators\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 977d83890e0c0..d26c5dd0c347d 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -131,6 +131,11 @@ Changelog\n of each transformer in `output_indices_`. :pr:`18393` by\n :user:`Luca Bittarello <lbittarello>`.\n \n+- |Enhancement| :class:`compose.ColumnTransformer` now allows DataFrame input to\n+ have its columns appear in a changed order in `transform`. Further, columns that\n+ are dropped will not be required in transform, and additional columns will be\n+ ignored if `remainder='drop'`. :pr:`19263` by `Thomas Fan`_\n+\n - |FIX| :meth:`compose.ColumnTransformer.get_feature_names` supports\n non-string feature names returned by any of its transformers.\n :pr:`18459` by :user:`Albert Villanova del Moral <albertvillanova>` and\n"
}
] |
1.00
|
a9cc0ed86fca1480acbd8aaf211f062ee2abd5b7
|
[
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est5-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing trans2.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key0]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est2-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_transformer_pandas",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est1-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_no_estimators",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_with_make_column_selector",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key3]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[passthrough]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_stacking",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_feature_names_raises",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key0]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_feature_names_dataframe",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est1-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[callable]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols10-^col_s-None-exclude10]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_array",
"sklearn/compose/tests/test_column_transformer.py::test_2D_transformer_output_pandas",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols2-None-include2-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_threshold",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key7]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key2]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_set_params_with_remainder",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mixed_cols_sparse",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est3-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_output_indices",
"sklearn/compose/tests/test_column_transformer.py::test_get_feature_names_empty_selection[selector0]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[csr_matrix]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_negative_column_indexes",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key3]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols9-float|str-None-None]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_numpy[passthrough]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est0-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_2D_transformer_output",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_columns[passthrough]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder[passthrough]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_set_params",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[pd-index]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est2-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols8-^col_int-include8-None]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols0-None-number-None]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_numpy[remainder1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_special_strings",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key5]",
"sklearn/compose/tests/test_column_transformer.py::test_n_features_in",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols6-at$-include6-None]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols5-None-float-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_drop_all_sparse_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_error",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key1]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols4-None-object-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_columns[drop]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key2]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_no_estimators_set_params",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key8]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols11-str$-float-None]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_no_remaining_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key2]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-pandas]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key0]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_transformer_kwargs",
"sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[array]",
"sklearn/compose/tests/test_column_transformer.py::test_get_feature_names_empty_selection[selector1]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols12-None-include12-None]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_transformer_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_callable_specifier_dataframe",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols1-None-None-object]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_named_estimators",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est3-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder[remainder1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-numpy]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_list",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est6-\\\\[ColumnTransformer\\\\].*\\\\(1 of 1\\\\) Processing trans1.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est4-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_drops_all_remainder_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key3]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_cloning",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_drop",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_feature_names[X0-keys0]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_pickle",
"sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[list]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_callable_specifier",
"sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[remainder1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_output_indices_df",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_feature_names[X1-keys1]",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols3-None-include3-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est0-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[asarray]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_dataframe",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key6]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_error_msg_1D",
"sklearn/compose/tests/test_column_transformer.py::test_make_column_selector_with_select_dtypes[cols7-None-include7-None]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est4-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est5-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing trans2.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est6-\\\\[ColumnTransformer\\\\].*\\\\(1 of 1\\\\) Processing trans1.* total=.*\\\\n$]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-pandas]"
] |
[
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-first]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-0]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-0]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-first]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-second]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-1]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-0]",
"sklearn/compose/tests/test_column_transformer.py::test_feature_name_validation_missing_columns_drop_passthough",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-first]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-second]",
"sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-second]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/compose.rst",
"old_path": "a/doc/modules/compose.rst",
"new_path": "b/doc/modules/compose.rst",
"metadata": "diff --git a/doc/modules/compose.rst b/doc/modules/compose.rst\nindex 6e827304c38cd..a9195ba9ab022 100644\n--- a/doc/modules/compose.rst\n+++ b/doc/modules/compose.rst\n@@ -527,6 +527,20 @@ above example would be::\n ('countvectorizer', CountVectorizer(),\n 'title')])\n \n+If :class:`~sklearn.compose.ColumnTransformer` is fitted with a dataframe\n+and the dataframe only has string column names, then transforming a dataframe\n+will use the column names to select the columns::\n+\n+\n+ >>> ct = ColumnTransformer(\n+ ... [(\"scale\", StandardScaler(), [\"expert_rating\"])]).fit(X)\n+ >>> X_new = pd.DataFrame({\"expert_rating\": [5, 6, 1],\n+ ... \"ignored_new_col\": [1.2, 0.3, -0.1]})\n+ >>> ct.transform(X_new)\n+ array([[ 0.9...],\n+ [ 2.1...],\n+ [-3.9...]])\n+\n .. _visualizing_composite_estimators:\n \n Visualizing Composite Estimators\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 977d83890e0c0..d26c5dd0c347d 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -131,6 +131,11 @@ Changelog\n of each transformer in `output_indices_`. :pr:`<PRID>` by\n :user:`<NAME>`.\n \n+- |Enhancement| :class:`compose.ColumnTransformer` now allows DataFrame input to\n+ have its columns appear in a changed order in `transform`. Further, columns that\n+ are dropped will not be required in transform, and additional columns will be\n+ ignored if `remainder='drop'`. :pr:`<PRID>` by `<NAME>`_\n+\n - |FIX| :meth:`compose.ColumnTransformer.get_feature_names` supports\n non-string feature names returned by any of its transformers.\n :pr:`<PRID>` by :user:`<NAME>` and\n"
}
] |
diff --git a/doc/modules/compose.rst b/doc/modules/compose.rst
index 6e827304c38cd..a9195ba9ab022 100644
--- a/doc/modules/compose.rst
+++ b/doc/modules/compose.rst
@@ -527,6 +527,20 @@ above example would be::
('countvectorizer', CountVectorizer(),
'title')])
+If :class:`~sklearn.compose.ColumnTransformer` is fitted with a dataframe
+and the dataframe only has string column names, then transforming a dataframe
+will use the column names to select the columns::
+
+
+ >>> ct = ColumnTransformer(
+ ... [("scale", StandardScaler(), ["expert_rating"])]).fit(X)
+ >>> X_new = pd.DataFrame({"expert_rating": [5, 6, 1],
+ ... "ignored_new_col": [1.2, 0.3, -0.1]})
+ >>> ct.transform(X_new)
+ array([[ 0.9...],
+ [ 2.1...],
+ [-3.9...]])
+
.. _visualizing_composite_estimators:
Visualizing Composite Estimators
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 977d83890e0c0..d26c5dd0c347d 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -131,6 +131,11 @@ Changelog
of each transformer in `output_indices_`. :pr:`<PRID>` by
:user:`<NAME>`.
+- |Enhancement| :class:`compose.ColumnTransformer` now allows DataFrame input to
+ have its columns appear in a changed order in `transform`. Further, columns that
+ are dropped will not be required in transform, and additional columns will be
+ ignored if `remainder='drop'`. :pr:`<PRID>` by `<NAME>`_
+
- |FIX| :meth:`compose.ColumnTransformer.get_feature_names` supports
non-string feature names returned by any of its transformers.
:pr:`<PRID>` by :user:`<NAME>` and
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19244
|
https://github.com/scikit-learn/scikit-learn/pull/19244
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 269a5d46e71b2..7202ab4e00476 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -214,7 +214,12 @@ Changelog
- |Enhancement| :class:`compose.ColumnTransformer` now allows DataFrame input to
have its columns appear in a changed order in `transform`. Further, columns that
are dropped will not be required in transform, and additional columns will be
- ignored if `remainder='drop'`. :pr:`19263` by `Thomas Fan`_
+ ignored if `remainder='drop'`. :pr:`19263` by `Thomas Fan`_.
+
+- |Enhancement| Adds `**predict_params` keyword argument to
+ :meth:`compose.TransformedTargetRegressor.predict` that passes keyword
+ argument to the regressor.
+ :pr:`19244` by :user:`Ricardo <ricardojnf>`.
- |FIX| :meth:`compose.ColumnTransformer.get_feature_names` supports
non-string feature names returned by any of its transformers.
diff --git a/sklearn/compose/_target.py b/sklearn/compose/_target.py
index 562c5bae5a2dc..b8c1d7a8a76a1 100644
--- a/sklearn/compose/_target.py
+++ b/sklearn/compose/_target.py
@@ -235,7 +235,7 @@ def fit(self, X, y, **fit_params):
return self
- def predict(self, X):
+ def predict(self, X, **predict_params):
"""Predict using the base regressor, applying inverse.
The regressor is used to predict and the ``inverse_func`` or
@@ -246,6 +246,10 @@ def predict(self, X):
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
+ **predict_params : dict of str -> object
+ Parameters passed to the `predict` method of the underlying
+ regressor.
+
Returns
-------
y_hat : ndarray of shape (n_samples,)
@@ -253,7 +257,7 @@ def predict(self, X):
"""
check_is_fitted(self)
- pred = self.regressor_.predict(X)
+ pred = self.regressor_.predict(X, **predict_params)
if pred.ndim == 1:
pred_trans = self.transformer_.inverse_transform(pred.reshape(-1, 1))
else:
|
diff --git a/sklearn/compose/tests/test_target.py b/sklearn/compose/tests/test_target.py
index 5c57ce37af2aa..f0d63c00c2772 100644
--- a/sklearn/compose/tests/test_target.py
+++ b/sklearn/compose/tests/test_target.py
@@ -375,3 +375,24 @@ def test_transform_target_regressor_route_pipeline():
pip.fit(X, y, **{"est__check_input": False})
assert regr.transformer_.fit_counter == 1
+
+
+class DummyRegressorWithExtraPredictParams(DummyRegressor):
+ def predict(self, X, check_input=True):
+ # In the test below we make sure that the check input parameter is
+ # passed as false
+ self.predict_called = True
+ assert not check_input
+ return super().predict(X)
+
+
+def test_transform_target_regressor_pass_extra_predict_parameters():
+ # Checks that predict kwargs are passed to regressor.
+ X, y = friedman
+ regr = TransformedTargetRegressor(
+ regressor=DummyRegressorWithExtraPredictParams(), transformer=DummyTransformer()
+ )
+
+ regr.fit(X, y)
+ regr.predict(X, check_input=False)
+ assert regr.regressor_.predict_called
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 269a5d46e71b2..7202ab4e00476 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -214,7 +214,12 @@ Changelog\n - |Enhancement| :class:`compose.ColumnTransformer` now allows DataFrame input to\n have its columns appear in a changed order in `transform`. Further, columns that\n are dropped will not be required in transform, and additional columns will be\n- ignored if `remainder='drop'`. :pr:`19263` by `Thomas Fan`_\n+ ignored if `remainder='drop'`. :pr:`19263` by `Thomas Fan`_.\n+\n+- |Enhancement| Adds `**predict_params` keyword argument to\n+ :meth:`compose.TransformedTargetRegressor.predict` that passes keyword\n+ argument to the regressor.\n+ :pr:`19244` by :user:`Ricardo <ricardojnf>`.\n \n - |FIX| :meth:`compose.ColumnTransformer.get_feature_names` supports\n non-string feature names returned by any of its transformers.\n"
}
] |
1.00
|
6ab86fb34baf7429e52cb184a3535d4fd99d02d7
|
[
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X0-y0]",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X1-y1]",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_error",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X0-y0]",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer_multioutput",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_3d_target",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_count_fit[False]",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_route_pipeline",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_ensure_y_array",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_pass_fit_parameters",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_multi_to_single",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X1-y1]",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_count_fit[True]",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_invertible",
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions_multioutput"
] |
[
"sklearn/compose/tests/test_target.py::test_transform_target_regressor_pass_extra_predict_parameters"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 269a5d46e71b2..7202ab4e00476 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -214,7 +214,12 @@ Changelog\n - |Enhancement| :class:`compose.ColumnTransformer` now allows DataFrame input to\n have its columns appear in a changed order in `transform`. Further, columns that\n are dropped will not be required in transform, and additional columns will be\n- ignored if `remainder='drop'`. :pr:`<PRID>` by `<NAME>`_\n+ ignored if `remainder='drop'`. :pr:`<PRID>` by `<NAME>`_.\n+\n+- |Enhancement| Adds `**predict_params` keyword argument to\n+ :meth:`compose.TransformedTargetRegressor.predict` that passes keyword\n+ argument to the regressor.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n \n - |FIX| :meth:`compose.ColumnTransformer.get_feature_names` supports\n non-string feature names returned by any of its transformers.\n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 269a5d46e71b2..7202ab4e00476 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -214,7 +214,12 @@ Changelog
- |Enhancement| :class:`compose.ColumnTransformer` now allows DataFrame input to
have its columns appear in a changed order in `transform`. Further, columns that
are dropped will not be required in transform, and additional columns will be
- ignored if `remainder='drop'`. :pr:`<PRID>` by `<NAME>`_
+ ignored if `remainder='drop'`. :pr:`<PRID>` by `<NAME>`_.
+
+- |Enhancement| Adds `**predict_params` keyword argument to
+ :meth:`compose.TransformedTargetRegressor.predict` that passes keyword
+ argument to the regressor.
+ :pr:`<PRID>` by :user:`<NAME>`.
- |FIX| :meth:`compose.ColumnTransformer.get_feature_names` supports
non-string feature names returned by any of its transformers.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21079
|
https://github.com/scikit-learn/scikit-learn/pull/21079
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 8de10a11ca351..fdaf50364671a 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -550,6 +550,12 @@ Changelog
`fit` instead of `__init__`.
:pr:`21434` by :user:`Krum Arnaudov <krumeto>`.
+- |API| Adds :meth:`get_feature_names_out` to
+ :class:`preprocessing.Normalizer`,
+ :class:`preprocessing.KernelCenterer`,
+ :class:`preprocessing.OrdinalEncoder`, and
+ :class:`preprocessing.Binarizer`. :pr:`21079` by `Thomas Fan`_.
+
:mod:`sklearn.random_projection`
................................
diff --git a/sklearn/preprocessing/_data.py b/sklearn/preprocessing/_data.py
index 835694e11512c..ea38106837642 100644
--- a/sklearn/preprocessing/_data.py
+++ b/sklearn/preprocessing/_data.py
@@ -16,7 +16,12 @@
from scipy import optimize
from scipy.special import boxcox
-from ..base import BaseEstimator, TransformerMixin, _OneToOneFeatureMixin
+from ..base import (
+ BaseEstimator,
+ TransformerMixin,
+ _OneToOneFeatureMixin,
+ _ClassNamePrefixFeaturesOutMixin,
+)
from ..utils import check_array
from ..utils.deprecation import deprecated
from ..utils.extmath import _incremental_mean_and_var, row_norms
@@ -1825,7 +1830,7 @@ def normalize(X, norm="l2", *, axis=1, copy=True, return_norm=False):
return X
-class Normalizer(TransformerMixin, BaseEstimator):
+class Normalizer(_OneToOneFeatureMixin, TransformerMixin, BaseEstimator):
"""Normalize samples individually to unit norm.
Each sample (i.e. each row of the data matrix) with at least one
@@ -1996,7 +2001,7 @@ def binarize(X, *, threshold=0.0, copy=True):
return X
-class Binarizer(TransformerMixin, BaseEstimator):
+class Binarizer(_OneToOneFeatureMixin, TransformerMixin, BaseEstimator):
"""Binarize data (set feature values to 0 or 1) according to a threshold.
Values greater than the threshold map to 1, while values less than
@@ -2119,7 +2124,7 @@ def _more_tags(self):
return {"stateless": True}
-class KernelCenterer(TransformerMixin, BaseEstimator):
+class KernelCenterer(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
r"""Center an arbitrary kernel matrix :math:`K`.
Let define a kernel :math:`K` such that:
@@ -2258,6 +2263,15 @@ def transform(self, K, copy=True):
return K
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features."""
+ # Used by _ClassNamePrefixFeaturesOutMixin. This model preserves the
+ # number of input features but this is not a one-to-one mapping in the
+ # usual sense. Hence the choice not to use _OneToOneFeatureMixin to
+ # implement get_feature_names_out for this class.
+ return self.n_features_in_
+
def _more_tags(self):
return {"pairwise": True}
diff --git a/sklearn/preprocessing/_encoders.py b/sklearn/preprocessing/_encoders.py
index 4c59cb691527f..b7fcdf616760a 100644
--- a/sklearn/preprocessing/_encoders.py
+++ b/sklearn/preprocessing/_encoders.py
@@ -7,7 +7,7 @@
from scipy import sparse
import numbers
-from ..base import BaseEstimator, TransformerMixin
+from ..base import BaseEstimator, TransformerMixin, _OneToOneFeatureMixin
from ..utils import check_array, is_scalar_nan
from ..utils.deprecation import deprecated
from ..utils.validation import check_is_fitted
@@ -731,7 +731,7 @@ def get_feature_names_out(self, input_features=None):
return np.asarray(feature_names, dtype=object)
-class OrdinalEncoder(_BaseEncoder):
+class OrdinalEncoder(_OneToOneFeatureMixin, _BaseEncoder):
"""
Encode categorical features as an integer array.
diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py
index a4fa30ce55035..a6459059ba2f6 100644
--- a/sklearn/utils/validation.py
+++ b/sklearn/utils/validation.py
@@ -1828,7 +1828,9 @@ def _get_feature_names(X):
def _check_feature_names_in(estimator, input_features=None, *, generate_names=True):
- """Get output feature names for transformation.
+ """Check `input_features` and generate names if needed.
+
+ Commonly used in :term:`get_feature_names_out`.
Parameters
----------
@@ -1842,8 +1844,10 @@ def _check_feature_names_in(estimator, input_features=None, *, generate_names=Tr
match `feature_names_in_` if `feature_names_in_` is defined.
generate_names : bool, default=True
- Wether to generate names when `input_features` is `None` and
- `estimator.feature_names_in_` is not defined.
+ Whether to generate names when `input_features` is `None` and
+ `estimator.feature_names_in_` is not defined. This is useful for transformers
+ that validates `input_features` but do not require them in
+ :term:`get_feature_names_out` e.g. `PCA`.
Returns
-------
|
diff --git a/sklearn/preprocessing/tests/test_data.py b/sklearn/preprocessing/tests/test_data.py
index 3476e40dd9bbc..ee326aba1b3de 100644
--- a/sklearn/preprocessing/tests/test_data.py
+++ b/sklearn/preprocessing/tests/test_data.py
@@ -45,6 +45,7 @@
from sklearn.preprocessing import power_transform
from sklearn.preprocessing._data import _handle_zeros_in_scale
from sklearn.preprocessing._data import BOUNDS_THRESHOLD
+from sklearn.metrics.pairwise import linear_kernel
from sklearn.exceptions import NotFittedError
@@ -2672,6 +2673,8 @@ def test_one_to_one_features(Transformer):
StandardScaler,
QuantileTransformer,
PowerTransformer,
+ Normalizer,
+ Binarizer,
],
)
def test_one_to_one_features_pandas(Transformer):
@@ -2691,3 +2694,16 @@ def test_one_to_one_features_pandas(Transformer):
with pytest.raises(ValueError, match=msg):
invalid_names = list("abcd")
tr.get_feature_names_out(invalid_names)
+
+
+def test_kernel_centerer_feature_names_out():
+ """Test that kernel centerer `feature_names_out`."""
+
+ rng = np.random.RandomState(0)
+ X = rng.random_sample((6, 4))
+ X_pairwise = linear_kernel(X)
+ centerer = KernelCenterer().fit(X_pairwise)
+
+ names_out = centerer.get_feature_names_out()
+ samples_out2 = X_pairwise.shape[1]
+ assert_array_equal(names_out, [f"kernelcenterer{i}" for i in range(samples_out2)])
diff --git a/sklearn/preprocessing/tests/test_encoders.py b/sklearn/preprocessing/tests/test_encoders.py
index dcc07d25af5fd..27c52088f80d9 100644
--- a/sklearn/preprocessing/tests/test_encoders.py
+++ b/sklearn/preprocessing/tests/test_encoders.py
@@ -1387,3 +1387,15 @@ def test_ordinal_encoder_python_integer():
assert_array_equal(encoder.categories_, np.sort(X, axis=0).T)
X_trans = encoder.transform(X)
assert_array_equal(X_trans, [[0], [3], [2], [1]])
+
+
+def test_ordinal_encoder_features_names_out_pandas():
+ """Check feature names out is same as the input."""
+ pd = pytest.importorskip("pandas")
+
+ names = ["b", "c", "a"]
+ X = pd.DataFrame([[1, 2, 3]], columns=names)
+ enc = OrdinalEncoder().fit(X)
+
+ feature_names_out = enc.get_feature_names_out()
+ assert_array_equal(names, feature_names_out)
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index be26202d458d1..350e1e95d9882 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -382,7 +382,6 @@ def test_pandas_column_name_consistency(estimator):
GET_FEATURES_OUT_MODULES_TO_IGNORE = [
"ensemble",
"kernel_approximation",
- "preprocessing",
]
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 8de10a11ca351..fdaf50364671a 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -550,6 +550,12 @@ Changelog\n `fit` instead of `__init__`.\n :pr:`21434` by :user:`Krum Arnaudov <krumeto>`.\n \n+- |API| Adds :meth:`get_feature_names_out` to\n+ :class:`preprocessing.Normalizer`,\n+ :class:`preprocessing.KernelCenterer`,\n+ :class:`preprocessing.OrdinalEncoder`, and\n+ :class:`preprocessing.Binarizer`. :pr:`21079` by `Thomas Fan`_.\n+\n :mod:`sklearn.random_projection`\n ................................\n \n"
}
] |
1.01
|
6440856fbb0e1c0a048316befbf6df4e0a5765c1
|
[
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_sparse_ignore_zeros",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_subsampling",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float64-1e-10-100]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-0.5]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_pandas",
"sklearn/preprocessing/tests/test_data.py::test_add_dummy_feature_csc",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes_pandas",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-False-csr_matrix-scaler1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test1-X_train1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float32-10000000000.0-100]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-False-asarray-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_normalizer_l1",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_matrix-True-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-False-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_matrix-False-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_nans[box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features_pandas[MaxAbsScaler]",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[box-cox-0.5]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float64-1e-10-10]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_pairwise_deprecated",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-asarray-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_2d",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float64-1-100]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-False-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_binarizer",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X1-True-False]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[None]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float64-1-100]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float64-1-10000]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_int",
"sklearn/preprocessing/tests/test_data.py::test_robust_scale_1d_array",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float32-1e-10-10000]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_notfitted[box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test0-X_train1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False]",
"sklearn/preprocessing/tests/test_data.py::test_center_kernel",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[int]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-True]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X0-True-True]",
"sklearn/preprocessing/tests/test_data.py::test_standard_check_array_of_inverse_transform",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_warning",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float32-1-100]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float64-1-10]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float32-1-10000]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_nan",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_yeojohnson_any_input[X0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_fit_with_unseen_category",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[False-csr_matrix]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_col_zero_sparse",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test0-X_train2]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float32-10000000000.0-10]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-int32]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[None]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params1-TypeError-unknown_value should only be set when handle_unknown is 'use_encoded_value', got -2.]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-O]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float64-10000000000.0-100]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_unit_variance",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_partial_fit_numerical_stability",
"sklearn/preprocessing/tests/test_data.py::test_scale_sparse_with_mean_raise_exception",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X1-expected_X_trans1-X_test1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transformer_sorted_quantiles[array]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode[get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_yeojohnson_any_input[X1]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-sparse]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float32-1e-10-10]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csr-Xw1-X1-sample_weight1]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OneHotEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-False-asarray-scaler1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X0-expected_X_trans0-X_test0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float64-10000000000.0-10000]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-False-csc_matrix-scaler1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[numeric]",
"sklearn/preprocessing/tests/test_data.py::test_minmax_scaler_clip[feature_range0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-0.1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float32-1-10]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_iris_quantiles",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-True-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[True]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float32-10000000000.0-10000]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float32-1-10]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_1d",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float64]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float32-10000000000.0-10000]",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_1d",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-np.nan-object]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[False-csc_matrix]",
"sklearn/preprocessing/tests/test_data.py::test_add_dummy_feature_coo",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_if_binary",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_boxcox_strictly_positive_exception",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test2-X_train1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float64-1-10000]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float64-10000000000.0-10]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-None-missing-value]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-False-csr_matrix-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float32-1-100]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-asarray-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float32-1e-10-100]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-asarray-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_params",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-O]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_1d",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[False-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_iris",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[numeric]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_nans[yeo-johnson]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-O]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[True-yeo-johnson]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-False-csc_matrix-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[True-yeo-johnson]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float-nan-object]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[False-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sparse_partial_fit_finite_variance[X_20]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-csr_matrix]",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features_pandas[QuantileTransformer]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-U]",
"sklearn/preprocessing/tests/test_data.py::test_cv_pipeline_precomputed",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float32-1e-10-10000]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[int32]",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features[QuantileTransformer]",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features_pandas[StandardScaler]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit_transform]",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[yeo-johnson-1.0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-False-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[mixed]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-0.5]",
"sklearn/preprocessing/tests/test_data.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/preprocessing/tests/test_data.py::test_kernelcenterer_non_linear_kernel",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X3-expected_X_trans3-X_test3]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_partial_fit",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features_pandas[MinMaxScaler]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-sparse]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_equals_if_binary",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit_transform]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float64-10000000000.0-100]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-O]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[array-Xw1-X1-sample_weight1]",
"sklearn/preprocessing/tests/test_data.py::test_normalizer_max",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float64-1e-10-10000]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-U]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float64-1e-10-100]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X1-False-False]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csc-Xw1-X1-sample_weight1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[array-Xw0-X0-sample_weight0]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-True-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[asarray-True-False]",
"sklearn/preprocessing/tests/test_data.py::test_yeo_johnson_darwin_example",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_dense_toy",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params3-ValueError-The used value for unknown_value (1) is one of the values already used for encoding the seen categories.]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-0.05]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_lambda_zero",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-False-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_method_exception",
"sklearn/preprocessing/tests/test_data.py::test_normalize",
"sklearn/preprocessing/tests/test_data.py::test_minmax_scaler_partial_fit",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features_pandas[RobustScaler]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_minmax_scaler_clip[feature_range1]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_and_inverse",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_shape_exception[box-cox]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[string]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-S]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_float16_overflow",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-True-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float64-1-10]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float32-10000000000.0-10]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-False-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_without_copy",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-int32]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_matrix-True-False]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-False-asarray-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-U]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float32-10000000000.0-100]",
"sklearn/preprocessing/tests/test_data.py::test_handle_zeros_in_scale",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[False-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[np.nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-S-O]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-False-asarray-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-False-csr_matrix-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float32-1e-10-10]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-False-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float64-1e-10-100]",
"sklearn/preprocessing/tests/test_data.py::test_fit_transform",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-False-asarray-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-False-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-False-asarray-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[array-Xw2-X2-sample_weight2]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test1-X_train2]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-False-asarray-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-False-box-cox]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[numeric-missing-value]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_transform_one_row_csr",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names[get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_not_fitted",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_axis1",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[None]",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[box-cox-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float64-1-10]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-False-csr_matrix-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X0-False-True]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[asarray-False-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csc-Xw0-X0-sample_weight0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-nan-missing_value]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float32-10000000000.0-10]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-asarray-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_raise_categories_shape",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_iris",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_2d_arrays",
"sklearn/preprocessing/tests/test_data.py::test_scaler_2d_arrays",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-True-asarray-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sparse_partial_fit_finite_variance[X_21]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X0-True-False]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-False-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_large_negative_value",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop0]",
"sklearn/preprocessing/tests/test_data.py::test_normalizer_max_sign",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_lambda_one",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_unsorted_categories",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transformer_sorted_quantiles[sparse]",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features[PowerTransformer]",
"sklearn/preprocessing/tests/test_data.py::test_min_max_scaler_iris",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float64-10000000000.0-10000]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan_non_float_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test1-X_train0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float32-1-10000]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features[StandardScaler]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-0.5]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_trasform_with_partial_fit[None]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float32-1-10000]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-False-asarray-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-True-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X0-False-False]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-True-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float64-10000000000.0-10]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_fit_transform[True-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-False-csc_matrix-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_zero_variance_features",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-dense]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scale_axis1",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit0-params0-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit2-params2-The following categories were supposed]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float64-1-100]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params0-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got None.]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-False-asarray-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_fit_transform[False-yeo-johnson]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test0-X_train0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-False-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_notfitted[yeo-johnson]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float32-1e-10-10000]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit1-params1-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-dense]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float64-1-10000]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float64-1e-10-10]",
"sklearn/preprocessing/tests/test_data.py::test_scale_input_finiteness_validation",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-True-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-U-U]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-csc_matrix]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float64-10000000000.0-10000]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float32-1-10]",
"sklearn/preprocessing/tests/test_data.py::test_add_dummy_feature_csr",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_fit_transform[True-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-0.05]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csr-Xw0-X0-sample_weight0]",
"sklearn/preprocessing/tests/test_data.py::test_minmax_scale_axis1",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-0.05]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-True-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[yeo-johnson-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features[MaxAbsScaler]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_python_integer",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-S-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[dataframe-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-False-csc_matrix-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-True-asarray-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float64-10000000000.0-10]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-0.5]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan1]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_sparse_toy",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X2-expected_X_trans2-X_test2]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float64]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float32-1e-10-100]",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_partial_fit",
"sklearn/preprocessing/tests/test_data.py::test_scale_function_without_centering",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float32-1-100]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-0]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_matrix-False-False]",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_transform_one_row_csr",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-False-asarray-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_raise_error_for_1d_input",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[asarray-False-True]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_bounds",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csr-Xw2-X2-sample_weight2]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float64-False-asarray-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[False-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-False-csc_matrix-scaler1]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-O]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[0-float32-False-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_normalizer_l2",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_inverse",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[True-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-False-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float64-1e-10-10000]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_shape_exception[yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-False-csr_matrix-scaler1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names[get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_yeojohnson_any_input[X3]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float32-10000000000.0-100]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-0.1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float64-1e-10-10000]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_get_feature_names_deprecated",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float32-1e-10-10]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_valid_axis",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-False-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-nan-and-None]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_zero_variance_features",
"sklearn/preprocessing/tests/test_data.py::test_min_max_scaler_1d",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features[MinMaxScaler]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories_mixed_columns",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-True-box-cox]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float32]",
"sklearn/preprocessing/tests/test_data.py::test_add_dummy_feature",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-False-asarray-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[yeo-johnson-0.5]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_yeojohnson_any_input[X2]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan-get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float32-False-csr_matrix-scaler1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None-get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[float]",
"sklearn/preprocessing/tests/test_data.py::test_min_max_scaler_zero_variance_features",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OrdinalEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float_errors_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test2-X_train0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_trasform_with_partial_fit[True]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_error_sparse",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features_pandas[PowerTransformer]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float64-1e-10-10]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_invalid_range",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float32-False-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknown_string_dtypes[X_test2-X_train2]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csc-Xw2-X2-sample_weight2]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csc_matrix-float64-10000000000.0-100]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[list-U-U]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_return_identity",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode[get_feature_names]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params4-ValueError-handle_unknown should be either 'error' or 'use_encoded_value', got ignore.]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_sparse",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object-string-cat]",
"sklearn/preprocessing/tests/test_data.py::test_scale_1d",
"sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[True]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary-get_feature_names]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_fit_transform[False-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_check_error",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[1.0-float64-False-csc_matrix-scaler1]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[asarray-True-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_sparse_dense",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None-get_feature_names_out]",
"sklearn/preprocessing/tests/test_data.py::test_fit_cold_start",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-False-csc_matrix-scaler0]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-0.05]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[asarray-float32-1e-10-100]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-nan]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_near_constant_features[csr_matrix-float32-10000000000.0-10000]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_string_categories[array-S-S]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first-get_feature_names_out]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params2-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got bla.]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[pd.NA]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[True-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_constant_features[100.0-float64-False-csr_matrix-scaler0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_string",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-True]",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features[RobustScaler]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[False-yeo-johnson]"
] |
[
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features_pandas[Normalizer]",
"sklearn/preprocessing/tests/test_data.py::test_one_to_one_features_pandas[Binarizer]",
"sklearn/preprocessing/tests/test_data.py::test_kernel_centerer_feature_names_out",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_features_names_out_pandas"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 8de10a11ca351..fdaf50364671a 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -550,6 +550,12 @@ Changelog\n `fit` instead of `__init__`.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |API| Adds :meth:`get_feature_names_out` to\n+ :class:`preprocessing.Normalizer`,\n+ :class:`preprocessing.KernelCenterer`,\n+ :class:`preprocessing.OrdinalEncoder`, and\n+ :class:`preprocessing.Binarizer`. :pr:`<PRID>` by `<NAME>`_.\n+\n :mod:`sklearn.random_projection`\n ................................\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 8de10a11ca351..fdaf50364671a 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -550,6 +550,12 @@ Changelog
`fit` instead of `__init__`.
:pr:`<PRID>` by :user:`<NAME>`.
+- |API| Adds :meth:`get_feature_names_out` to
+ :class:`preprocessing.Normalizer`,
+ :class:`preprocessing.KernelCenterer`,
+ :class:`preprocessing.OrdinalEncoder`, and
+ :class:`preprocessing.Binarizer`. :pr:`<PRID>` by `<NAME>`_.
+
:mod:`sklearn.random_projection`
................................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17169
|
https://github.com/scikit-learn/scikit-learn/pull/17169
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index c658bc6b12452..d56914f874b42 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -560,6 +560,7 @@ From text
feature_selection.chi2
feature_selection.f_classif
feature_selection.f_regression
+ feature_selection.r_regression
feature_selection.mutual_info_classif
feature_selection.mutual_info_regression
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index a566d03ae1bbc..eaf02942cf316 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -103,6 +103,14 @@ Changelog
input strings would result in negative indices in the transformed data.
:pr:`19035` by :user:`Liu Yu <ly648499246>`.
+:mod:`sklearn.feature_selection`
+................................
+
+- |Feature| :func:`feature_selection.r_regression` computes Pearson's R
+ correlation coefficients between the features and the target.
+ :pr:`17169` by `Dmytro Lituiev <DSLituiev>`
+ and `Julien Jerphanion <jjerphan>`.
+
:mod:`sklearn.inspection`
.........................
diff --git a/sklearn/feature_selection/__init__.py b/sklearn/feature_selection/__init__.py
index 86e8a2af39084..ef894b40065de 100644
--- a/sklearn/feature_selection/__init__.py
+++ b/sklearn/feature_selection/__init__.py
@@ -8,6 +8,7 @@
from ._univariate_selection import f_classif
from ._univariate_selection import f_oneway
from ._univariate_selection import f_regression
+from ._univariate_selection import r_regression
from ._univariate_selection import SelectPercentile
from ._univariate_selection import SelectKBest
from ._univariate_selection import SelectFpr
@@ -44,6 +45,7 @@
'f_classif',
'f_oneway',
'f_regression',
+ 'r_regression',
'mutual_info_classif',
'mutual_info_regression',
'SelectorMixin']
diff --git a/sklearn/feature_selection/_univariate_selection.py b/sklearn/feature_selection/_univariate_selection.py
index 0656e27d6e30f..7fc69a4b13cf2 100644
--- a/sklearn/feature_selection/_univariate_selection.py
+++ b/sklearn/feature_selection/_univariate_selection.py
@@ -229,60 +229,53 @@ def chi2(X, y):
return _chisquare(observed, expected)
-@_deprecate_positional_args
-def f_regression(X, y, *, center=True):
- """Univariate linear regression tests.
+def r_regression(X, y, *, center=True):
+ """Compute Pearson's r for each features and the target.
+
+ Pearson's r is also known as the Pearson correlation coefficient.
+
+ .. versionadded:: 1.0
Linear model for testing the individual effect of each of many regressors.
This is a scoring function to be used in a feature selection procedure, not
a free standing feature selection procedure.
- This is done in 2 steps:
-
- 1. The correlation between each regressor and the target is computed,
- that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) *
- std(y)).
- 2. It is converted to an F score then to a p-value.
+ The cross correlation between each regressor and the target is computed
+ as ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) * std(y)).
For more on usage see the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
- X : {array-like, sparse matrix} shape = (n_samples, n_features)
- The set of regressors that will be tested sequentially.
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ The data matrix.
- y : array of shape(n_samples).
- The data matrix
+ y : array-like of shape (n_samples,)
+ The target vector.
center : bool, default=True
- If true, X and y will be centered.
+ Whether or not to center the data matrix `X` and the target vector `y`.
+ By default, `X` and `y` will be centered.
Returns
-------
- F : array, shape=(n_features,)
- F values of features.
-
- pval : array, shape=(n_features,)
- p-values of F-scores.
+ correlation_coefficient : ndarray of shape (n_features,)
+ Pearson's R correlation coefficients of features.
See Also
--------
- mutual_info_regression : Mutual information for a continuous target.
- f_classif : ANOVA F-value between label/feature for classification tasks.
- chi2 : Chi-squared stats of non-negative features for classification tasks.
- SelectKBest : Select features based on the k highest scores.
- SelectFpr : Select features based on a false positive rate test.
- SelectFdr : Select features based on an estimated false discovery rate.
- SelectFwe : Select features based on family-wise error rate.
- SelectPercentile : Select features based on percentile of the highest
- scores.
+ f_regression: Univariate linear regression tests returning f-statistic
+ and p-values
+ mutual_info_regression: Mutual information for a continuous target.
+ f_classif: ANOVA F-value between label/feature for classification tasks.
+ chi2: Chi-squared stats of non-negative features for classification tasks.
"""
X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
dtype=np.float64)
n_samples = X.shape[0]
- # compute centered values
- # note that E[(x - mean(x))*(y - mean(y))] = E[x*(y - mean(y))], so we
+ # Compute centered values
+ # Note that E[(x - mean(x))*(y - mean(y))] = E[x*(y - mean(y))], so we
# need not center X
if center:
y = y - np.mean(y)
@@ -290,22 +283,86 @@ def f_regression(X, y, *, center=True):
X_means = X.mean(axis=0).getA1()
else:
X_means = X.mean(axis=0)
- # compute the scaled standard deviations via moments
+ # Compute the scaled standard deviations via moments
X_norms = np.sqrt(row_norms(X.T, squared=True) -
n_samples * X_means ** 2)
else:
X_norms = row_norms(X.T)
- # compute the correlation
- corr = safe_sparse_dot(y, X)
- corr /= X_norms
- corr /= np.linalg.norm(y)
+ correlation_coefficient = safe_sparse_dot(y, X)
+ correlation_coefficient /= X_norms
+ correlation_coefficient /= np.linalg.norm(y)
+ return correlation_coefficient
+
+
+@_deprecate_positional_args
+def f_regression(X, y, *, center=True):
+ """Univariate linear regression tests returning F-statistic and p-values.
+
+ Quick linear model for testing the effect of a single regressor,
+ sequentially for many regressors.
+
+ This is done in 2 steps:
+
+ 1. The cross correlation between each regressor and the target is computed,
+ that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) *
+ std(y)) using r_regression function.
+ 2. It is converted to an F score and then to a p-value.
+
+ :func:`f_regression` is derived from :func:`r_regression` and will rank
+ features in the same order if all the features are positively correlated
+ with the target.
+
+ Note however that contrary to :func:`f_regression`, :func:`r_regression`
+ values lie in [-1, 1] and can thus be negative. :func:`f_regression` is
+ therefore recommended as a feature selection criterion to identify
+ potentially predictive feature for a downstream classifier, irrespective of
+ the sign of the association with the target variable.
+
+ Furthermore :func:`f_regression` returns p-values while
+ :func:`r_regression` does not.
+
+ Read more in the :ref:`User Guide <univariate_feature_selection>`.
+
+ Parameters
+ ----------
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ The data matrix.
+
+ y : array-like of shape (n_samples,)
+ The target vector.
+
+ center : bool, default=True
+ Whether or not to center the data matrix `X` and the target vector `y`.
+ By default, `X` and `y` will be centered.
+
+ Returns
+ -------
+ f_statistic : ndarray of shape (n_features,)
+ F-statistic for each feature.
+
+ p_values : ndarray of shape (n_features,)
+ P-values associated with the F-statistic.
+
+ See Also
+ --------
+ r_regression: Pearson's R between label/feature for regression tasks.
+ f_classif: ANOVA F-value between label/feature for classification tasks.
+ chi2: Chi-squared stats of non-negative features for classification tasks.
+ SelectKBest: Select features based on the k highest scores.
+ SelectFpr: Select features based on a false positive rate test.
+ SelectFdr: Select features based on an estimated false discovery rate.
+ SelectFwe: Select features based on family-wise error rate.
+ SelectPercentile: Select features based on percentile of the highest
+ scores.
+ """
+ correlation_coefficient = r_regression(X, y, center=center)
+ deg_of_freedom = y.size - (2 if center else 1)
- # convert to p-value
- degrees_of_freedom = y.size - (2 if center else 1)
- F = corr ** 2 / (1 - corr ** 2) * degrees_of_freedom
- pv = stats.f.sf(F, 1, degrees_of_freedom)
- return F, pv
+ corr_coef_squared = correlation_coefficient ** 2
+ f_statistic = corr_coef_squared / (1 - corr_coef_squared) * deg_of_freedom
+ p_values = stats.f.sf(f_statistic, 1, deg_of_freedom)
+ return f_statistic, p_values
######################################################################
@@ -502,12 +559,12 @@ class SelectKBest(_BaseFilter):
See Also
--------
- f_classif : ANOVA F-value between label/feature for classification tasks.
- mutual_info_classif : Mutual information for a discrete target.
- chi2 : Chi-squared stats of non-negative features for classification tasks.
- f_regression : F-value between label/feature for regression tasks.
- mutual_info_regression : Mutual information for a continuous target.
- SelectPercentile : Select features based on percentile of the highest
+ f_classif: ANOVA F-value between label/feature for classification tasks.
+ mutual_info_classif: Mutual information for a discrete target.
+ chi2: Chi-squared stats of non-negative features for classification tasks.
+ f_regression: F-value between label/feature for regression tasks.
+ mutual_info_regression: Mutual information for a continuous target.
+ SelectPercentile: Select features based on percentile of the highest
scores.
SelectFpr : Select features based on a false positive rate test.
SelectFdr : Select features based on an estimated false discovery rate.
|
diff --git a/sklearn/feature_selection/tests/test_feature_select.py b/sklearn/feature_selection/tests/test_feature_select.py
index 61f709094147e..852c8228b2a76 100644
--- a/sklearn/feature_selection/tests/test_feature_select.py
+++ b/sklearn/feature_selection/tests/test_feature_select.py
@@ -4,11 +4,12 @@
import itertools
import warnings
import numpy as np
+from numpy.testing import assert_allclose
from scipy import stats, sparse
import pytest
-from sklearn.utils._testing import assert_almost_equal
+from sklearn.utils._testing import assert_almost_equal, _convert_container
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_warns
@@ -18,9 +19,20 @@
from sklearn.datasets import make_classification, make_regression
from sklearn.feature_selection import (
- chi2, f_classif, f_oneway, f_regression, mutual_info_classif,
- mutual_info_regression, SelectPercentile, SelectKBest, SelectFpr,
- SelectFdr, SelectFwe, GenericUnivariateSelect)
+ chi2,
+ f_classif,
+ f_oneway,
+ f_regression,
+ GenericUnivariateSelect,
+ mutual_info_classif,
+ mutual_info_regression,
+ r_regression,
+ SelectPercentile,
+ SelectKBest,
+ SelectFpr,
+ SelectFdr,
+ SelectFwe,
+)
##############################################################################
@@ -71,6 +83,27 @@ def test_f_classif():
assert_array_almost_equal(pv_sparse, pv)
[email protected]("center", [True, False])
+def test_r_regression(center):
+ X, y = make_regression(n_samples=2000, n_features=20, n_informative=5,
+ shuffle=False, random_state=0)
+
+ corr_coeffs = r_regression(X, y, center=center)
+ assert ((-1 < corr_coeffs).all())
+ assert ((corr_coeffs < 1).all())
+
+ sparse_X = _convert_container(X, "sparse")
+
+ sparse_corr_coeffs = r_regression(sparse_X, y, center=center)
+ assert_allclose(sparse_corr_coeffs, corr_coeffs)
+
+ # Testing against numpy for reference
+ Z = np.hstack((X, y[:, np.newaxis]))
+ correlation_matrix = np.corrcoef(Z, rowvar=False)
+ np_corr_coeffs = correlation_matrix[:-1, -1]
+ assert_array_almost_equal(np_corr_coeffs, corr_coeffs, decimal=3)
+
+
def test_f_regression():
# Test whether the F test yields meaningful results
# on a simple simulated regression problem
@@ -87,14 +120,14 @@ def test_f_regression():
# with centering, compare with sparse
F, pv = f_regression(X, y, center=True)
F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=True)
- assert_array_almost_equal(F_sparse, F)
- assert_array_almost_equal(pv_sparse, pv)
+ assert_allclose(F_sparse, F)
+ assert_allclose(pv_sparse, pv)
# again without centering, compare with sparse
F, pv = f_regression(X, y, center=False)
F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=False)
- assert_array_almost_equal(F_sparse, F)
- assert_array_almost_equal(pv_sparse, pv)
+ assert_allclose(F_sparse, F)
+ assert_allclose(pv_sparse, pv)
def test_f_regression_input_dtype():
@@ -106,8 +139,8 @@ def test_f_regression_input_dtype():
F1, pv1 = f_regression(X, y)
F2, pv2 = f_regression(X, y.astype(float))
- assert_array_almost_equal(F1, F2, 5)
- assert_array_almost_equal(pv1, pv2, 5)
+ assert_allclose(F1, F2, 5)
+ assert_allclose(pv1, pv2, 5)
def test_f_regression_center():
@@ -123,7 +156,7 @@ def test_f_regression_center():
F1, _ = f_regression(X, Y, center=True)
F2, _ = f_regression(X, Y, center=False)
- assert_array_almost_equal(F1 * (n_samples - 1.) / (n_samples - 2.), F2)
+ assert_allclose(F1 * (n_samples - 1.) / (n_samples - 2.), F2)
assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS
@@ -262,7 +295,7 @@ def test_select_heuristics_classif():
f_classif, mode=mode, param=0.01).fit(X, y).transform(X)
assert_array_equal(X_r, X_r2)
support = univariate_filter.get_support()
- assert_array_almost_equal(support, gtruth)
+ assert_allclose(support, gtruth)
##############################################################################
@@ -272,7 +305,7 @@ def test_select_heuristics_classif():
def assert_best_scores_kept(score_filter):
scores = score_filter.scores_
support = score_filter.get_support()
- assert_array_almost_equal(np.sort(scores[support]),
+ assert_allclose(np.sort(scores[support]),
np.sort(scores)[-support.sum():])
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex c658bc6b12452..d56914f874b42 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -560,6 +560,7 @@ From text\n feature_selection.chi2\n feature_selection.f_classif\n feature_selection.f_regression\n+ feature_selection.r_regression\n feature_selection.mutual_info_classif\n feature_selection.mutual_info_regression\n \n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex a566d03ae1bbc..eaf02942cf316 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -103,6 +103,14 @@ Changelog\n input strings would result in negative indices in the transformed data.\n :pr:`19035` by :user:`Liu Yu <ly648499246>`.\n \n+:mod:`sklearn.feature_selection`\n+................................\n+\n+- |Feature| :func:`feature_selection.r_regression` computes Pearson's R\n+ correlation coefficients between the features and the target.\n+ :pr:`17169` by `Dmytro Lituiev <DSLituiev>`\n+ and `Julien Jerphanion <jjerphan>`.\n+\n :mod:`sklearn.inspection`\n .........................\n \n"
}
] |
1.00
|
579e7de7f38f9f514ff2b2be049e67b14e723d17
|
[] |
[
"sklearn/feature_selection/tests/test_feature_select.py::test_r_regression[True]",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fdr_regression[1-0.01]",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fdr_regression[5-0.1]",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fdr_regression[10-0.001]",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_percentile_classif",
"sklearn/feature_selection/tests/test_feature_select.py::test_mutual_info_classif",
"sklearn/feature_selection/tests/test_feature_select.py::test_f_classif_multi_class",
"sklearn/feature_selection/tests/test_feature_select.py::test_invalid_k",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fdr_regression[10-0.1]",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fwe_regression",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_percentile_regression_full",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_kbest_zero",
"sklearn/feature_selection/tests/test_feature_select.py::test_f_regression",
"sklearn/feature_selection/tests/test_feature_select.py::test_scorefunc_multilabel",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fdr_regression[5-0.01]",
"sklearn/feature_selection/tests/test_feature_select.py::test_boundary_case_ch2",
"sklearn/feature_selection/tests/test_feature_select.py::test_f_classif",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_kbest_classif",
"sklearn/feature_selection/tests/test_feature_select.py::test_tied_pvalues",
"sklearn/feature_selection/tests/test_feature_select.py::test_selectpercentile_tiebreaking",
"sklearn/feature_selection/tests/test_feature_select.py::test_nans",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fdr_regression[1-0.1]",
"sklearn/feature_selection/tests/test_feature_select.py::test_r_regression[False]",
"sklearn/feature_selection/tests/test_feature_select.py::test_f_regression_input_dtype",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_heuristics_regression",
"sklearn/feature_selection/tests/test_feature_select.py::test_no_feature_selected",
"sklearn/feature_selection/tests/test_feature_select.py::test_f_classif_constant_feature",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_kbest_regression",
"sklearn/feature_selection/tests/test_feature_select.py::test_invalid_percentile",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fdr_regression[5-0.001]",
"sklearn/feature_selection/tests/test_feature_select.py::test_f_oneway_vs_scipy_stats",
"sklearn/feature_selection/tests/test_feature_select.py::test_f_regression_center",
"sklearn/feature_selection/tests/test_feature_select.py::test_selectkbest_tiebreaking",
"sklearn/feature_selection/tests/test_feature_select.py::test_score_func_error",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_heuristics_classif",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fdr_regression[10-0.01]",
"sklearn/feature_selection/tests/test_feature_select.py::test_mutual_info_regression",
"sklearn/feature_selection/tests/test_feature_select.py::test_f_oneway_ints",
"sklearn/feature_selection/tests/test_feature_select.py::test_tied_scores",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_fdr_regression[1-0.001]",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_kbest_all",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_percentile_classif_sparse",
"sklearn/feature_selection/tests/test_feature_select.py::test_select_percentile_regression"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex c658bc6b12452..d56914f874b42 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -560,6 +560,7 @@ From text\n feature_selection.chi2\n feature_selection.f_classif\n feature_selection.f_regression\n+ feature_selection.r_regression\n feature_selection.mutual_info_classif\n feature_selection.mutual_info_regression\n \n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex a566d03ae1bbc..eaf02942cf316 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -103,6 +103,14 @@ Changelog\n input strings would result in negative indices in the transformed data.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.feature_selection`\n+................................\n+\n+- |Feature| :func:`feature_selection.r_regression` computes Pearson's R\n+ correlation coefficients between the features and the target.\n+ :pr:`<PRID>` by `Dmytro Lituiev <DSLituiev>`\n+ and `Julien Jerphanion <jjerphan>`.\n+\n :mod:`sklearn.inspection`\n .........................\n \n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index c658bc6b12452..d56914f874b42 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -560,6 +560,7 @@ From text
feature_selection.chi2
feature_selection.f_classif
feature_selection.f_regression
+ feature_selection.r_regression
feature_selection.mutual_info_classif
feature_selection.mutual_info_regression
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index a566d03ae1bbc..eaf02942cf316 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -103,6 +103,14 @@ Changelog
input strings would result in negative indices in the transformed data.
:pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.feature_selection`
+................................
+
+- |Feature| :func:`feature_selection.r_regression` computes Pearson's R
+ correlation coefficients between the features and the target.
+ :pr:`<PRID>` by `Dmytro Lituiev <DSLituiev>`
+ and `Julien Jerphanion <jjerphan>`.
+
:mod:`sklearn.inspection`
.........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20380
|
https://github.com/scikit-learn/scikit-learn/pull/20380
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index ecb4b5972a669..ce252a502e28d 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -337,6 +337,11 @@ Changelog
when the variance threshold is negative.
:pr:`20207` by :user:`Tomohiro Endo <europeanplaice>`
+- |Enhancement| :func:`feature_selection.RFE.fit` accepts additional estimator
+ parameters that are passed directly to the estimator's `fit` method.
+ :pr:`20380` by :user:`Iván Pulido <ijpulidos>`, :user:`Felipe Bidu <fbidu>`,
+ :user:`Gil Rutter <g-rutter>`, and :user:`Adrin Jalali <adrinjalali>`.
+
- |FIX| Fix a bug in :func:`isotonic.isotonic_regression` where the
`sample_weight` passed by a user were overwritten during the fit.
:pr:`20515` by :user:`Carsten Allefeld <allefeld>`.
diff --git a/sklearn/feature_selection/_rfe.py b/sklearn/feature_selection/_rfe.py
index 3471a0b939b59..8d64f05a48b4d 100644
--- a/sklearn/feature_selection/_rfe.py
+++ b/sklearn/feature_selection/_rfe.py
@@ -192,7 +192,7 @@ def classes_(self):
"""
return self.estimator_.classes_
- def fit(self, X, y):
+ def fit(self, X, y, **fit_params):
"""Fit the RFE model and then the underlying estimator on the selected features.
Parameters
@@ -203,14 +203,18 @@ def fit(self, X, y):
y : array-like of shape (n_samples,)
The target values.
+ **fit_params : dict
+ Additional parameters passed to the `fit` method of the underlying
+ estimator.
+
Returns
-------
self : object
Fitted estimator.
"""
- return self._fit(X, y)
+ return self._fit(X, y, **fit_params)
- def _fit(self, X, y, step_score=None):
+ def _fit(self, X, y, step_score=None, **fit_params):
# Parameter step_score controls the calculation of self.scores_
# step_score is not exposed to users
# and is used when implementing RFECV
@@ -269,7 +273,7 @@ def _fit(self, X, y, step_score=None):
if self.verbose > 0:
print("Fitting estimator with %d features." % np.sum(support_))
- estimator.fit(X[:, features], y)
+ estimator.fit(X[:, features], y, **fit_params)
# Get importance and rank them
importances = _get_feature_importances(
@@ -296,7 +300,7 @@ def _fit(self, X, y, step_score=None):
# Set final attributes
features = np.arange(n_features)[support_]
self.estimator_ = clone(self.estimator)
- self.estimator_.fit(X[:, features], y)
+ self.estimator_.fit(X[:, features], y, **fit_params)
# Compute step score when only n_features_to_select features left
if step_score:
@@ -325,7 +329,7 @@ def predict(self, X):
return self.estimator_.predict(self.transform(X))
@if_delegate_has_method(delegate="estimator")
- def score(self, X, y):
+ def score(self, X, y, **fit_params):
"""Reduce X to the selected features and return the score of the underlying estimator.
Parameters
@@ -336,6 +340,12 @@ def score(self, X, y):
y : array of shape [n_samples]
The target values.
+ **fit_params : dict
+ Parameters to pass to the `score` method of the underlying
+ estimator.
+
+ .. versionadded:: 1.0
+
Returns
-------
score : float
@@ -343,7 +353,7 @@ def score(self, X, y):
features returned by `rfe.transform(X)` and `y`.
"""
check_is_fitted(self)
- return self.estimator_.score(self.transform(X), y)
+ return self.estimator_.score(self.transform(X), y, **fit_params)
def _get_support_mask(self):
check_is_fitted(self)
|
diff --git a/sklearn/feature_selection/tests/test_rfe.py b/sklearn/feature_selection/tests/test_rfe.py
index 190672ea248d3..d2e9ab16aafc5 100644
--- a/sklearn/feature_selection/tests/test_rfe.py
+++ b/sklearn/feature_selection/tests/test_rfe.py
@@ -8,6 +8,7 @@
from numpy.testing import assert_array_almost_equal, assert_array_equal
from scipy import sparse
+from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.feature_selection import RFE, RFECV
from sklearn.datasets import load_iris, make_friedman1
from sklearn.metrics import zero_one_loss
@@ -108,6 +109,31 @@ def test_rfe():
assert_array_almost_equal(X_r, X_r_sparse.toarray())
+def test_RFE_fit_score_params():
+ # Make sure RFE passes the metadata down to fit and score methods of the
+ # underlying estimator
+ class TestEstimator(BaseEstimator, ClassifierMixin):
+ def fit(self, X, y, prop=None):
+ if prop is None:
+ raise ValueError("fit: prop cannot be None")
+ self.svc_ = SVC(kernel="linear").fit(X, y)
+ self.coef_ = self.svc_.coef_
+ return self
+
+ def score(self, X, y, prop=None):
+ if prop is None:
+ raise ValueError("score: prop cannot be None")
+ return self.svc_.score(X, y)
+
+ X, y = load_iris(return_X_y=True)
+ with pytest.raises(ValueError, match="fit: prop cannot be None"):
+ RFE(estimator=TestEstimator()).fit(X, y)
+ with pytest.raises(ValueError, match="score: prop cannot be None"):
+ RFE(estimator=TestEstimator()).fit(X, y, prop="foo").score(X, y)
+
+ RFE(estimator=TestEstimator()).fit(X, y, prop="foo").score(X, y, prop="foo")
+
+
@pytest.mark.parametrize("n_features_to_select", [-1, 2.1])
def test_rfe_invalid_n_features_errors(n_features_to_select):
clf = SVC(kernel="linear")
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex ecb4b5972a669..ce252a502e28d 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -337,6 +337,11 @@ Changelog\n when the variance threshold is negative.\n :pr:`20207` by :user:`Tomohiro Endo <europeanplaice>`\n \n+- |Enhancement| :func:`feature_selection.RFE.fit` accepts additional estimator\n+ parameters that are passed directly to the estimator's `fit` method.\n+ :pr:`20380` by :user:`Iván Pulido <ijpulidos>`, :user:`Felipe Bidu <fbidu>`,\n+ :user:`Gil Rutter <g-rutter>`, and :user:`Adrin Jalali <adrinjalali>`.\n+\n - |FIX| Fix a bug in :func:`isotonic.isotonic_regression` where the\n `sample_weight` passed by a user were overwritten during the fit.\n :pr:`20515` by :user:`Carsten Allefeld <allefeld>`.\n"
}
] |
1.00
|
238451d55ed57c3d16bc42f6a74f5f0126a7c700
|
[
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-importance_getter0]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-auto-ValueError]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-<lambda>-AttributeError]",
"sklearn/feature_selection/tests/test_rfe.py::test_multioutput[RFE]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-importance_getter3-ValueError]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-regressor_.coef_]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_n_jobs",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_features_importance",
"sklearn/feature_selection/tests/test_rfe.py::test_w_pipeline_2d_coef_",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_invalid_n_features_errors[2.1]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_allow_nan_inf_in_x[None]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_allow_nan_inf_in_x[5]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-random-AttributeError]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_estimator_tags",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_percent_n_features",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-auto-ValueError]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_min_step",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_invalid_n_features_errors[-1]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-<lambda>-AttributeError]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-random-AttributeError]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-importance_getter3-ValueError]",
"sklearn/feature_selection/tests/test_rfe.py::test_multioutput[RFECV]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfecv_verbose_output",
"sklearn/feature_selection/tests/test_rfe.py::test_rfecv_mockclassifier",
"sklearn/feature_selection/tests/test_rfe.py::test_rfecv_grid_scores_size",
"sklearn/feature_selection/tests/test_rfe.py::test_rfecv",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_groups",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-importance_getter0]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-regressor_.coef_]",
"sklearn/feature_selection/tests/test_rfe.py::test_rfe_mockclassifier",
"sklearn/feature_selection/tests/test_rfe.py::test_number_of_subsets_of_features"
] |
[
"sklearn/feature_selection/tests/test_rfe.py::test_RFE_fit_score_params"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex ecb4b5972a669..ce252a502e28d 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -337,6 +337,11 @@ Changelog\n when the variance threshold is negative.\n :pr:`<PRID>` by :user:`<NAME>`\n \n+- |Enhancement| :func:`feature_selection.RFE.fit` accepts additional estimator\n+ parameters that are passed directly to the estimator's `fit` method.\n+ :pr:`<PRID>` by :user:`<NAME>`, :user:`<NAME>`,\n+ :user:`<NAME>`, and :user:`<NAME>`.\n+\n - |FIX| Fix a bug in :func:`isotonic.isotonic_regression` where the\n `sample_weight` passed by a user were overwritten during the fit.\n :pr:`<PRID>` by :user:`<NAME>`.\n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index ecb4b5972a669..ce252a502e28d 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -337,6 +337,11 @@ Changelog
when the variance threshold is negative.
:pr:`<PRID>` by :user:`<NAME>`
+- |Enhancement| :func:`feature_selection.RFE.fit` accepts additional estimator
+ parameters that are passed directly to the estimator's `fit` method.
+ :pr:`<PRID>` by :user:`<NAME>`, :user:`<NAME>`,
+ :user:`<NAME>`, and :user:`<NAME>`.
+
- |FIX| Fix a bug in :func:`isotonic.isotonic_regression` where the
`sample_weight` passed by a user were overwritten during the fit.
:pr:`<PRID>` by :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20431
|
https://github.com/scikit-learn/scikit-learn/pull/20431
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 3b23360fe60c4..3bb2c6457d8ab 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -386,6 +386,13 @@ Changelog
:mod:`sklearn.inspection`
.........................
+- |Enhancement| Add `max_samples` parameter in
+ :func:`inspection._permutation_importance`. It enables to draw a subset of
+ the samples to compute the permutation importance. This is useful to
+ keep the method tractable when evaluating feature importance on
+ large datasets.
+ :pr:`20431` by :user:`Oliver Pfaffel <o1iv3r>`.
+
- |Fix| Allow multiple scorers input to
:func:`~sklearn.inspection.permutation_importance`.
:pr:`19411` by :user:`Simona Maggio <simonamaggio>`.
diff --git a/sklearn/inspection/_permutation_importance.py b/sklearn/inspection/_permutation_importance.py
index e8d2260d60ca0..f94219e7d6190 100644
--- a/sklearn/inspection/_permutation_importance.py
+++ b/sklearn/inspection/_permutation_importance.py
@@ -1,11 +1,13 @@
"""Permutation importance for estimators."""
+import numbers
import numpy as np
from joblib import Parallel
+from ..ensemble._bagging import _generate_indices
from ..metrics import check_scoring
from ..metrics._scorer import _check_multimetric_scoring, _MultimetricScorer
from ..model_selection._validation import _aggregate_score_dicts
-from ..utils import Bunch
+from ..utils import Bunch, _safe_indexing
from ..utils import check_random_state
from ..utils import check_array
from ..utils.fixes import delayed
@@ -18,7 +20,15 @@ def _weights_scorer(scorer, estimator, X, y, sample_weight):
def _calculate_permutation_scores(
- estimator, X, y, sample_weight, col_idx, random_state, n_repeats, scorer
+ estimator,
+ X,
+ y,
+ sample_weight,
+ col_idx,
+ random_state,
+ n_repeats,
+ scorer,
+ max_samples,
):
"""Calculate score when `col_idx` is permuted."""
random_state = check_random_state(random_state)
@@ -29,10 +39,20 @@ def _calculate_permutation_scores(
# if X is large it will be automatically be backed by a readonly memory map
# (memmap). X.copy() on the other hand is always guaranteed to return a
# writable data-structure whose columns can be shuffled inplace.
- X_permuted = X.copy()
+ if max_samples < X.shape[0]:
+ row_indices = _generate_indices(
+ random_state=random_state,
+ bootstrap=False,
+ n_population=X.shape[0],
+ n_samples=max_samples,
+ )
+ X_permuted = _safe_indexing(X, row_indices, axis=0)
+ y = _safe_indexing(y, row_indices, axis=0)
+ else:
+ X_permuted = X.copy()
scores = []
- shuffling_idx = np.arange(X.shape[0])
+ shuffling_idx = np.arange(X_permuted.shape[0])
for _ in range(n_repeats):
random_state.shuffle(shuffling_idx)
if hasattr(X_permuted, "iloc"):
@@ -90,6 +110,7 @@ def permutation_importance(
n_jobs=None,
random_state=None,
sample_weight=None,
+ max_samples=1.0,
):
"""Permutation importance for feature evaluation [BRE]_.
@@ -157,6 +178,22 @@ def permutation_importance(
.. versionadded:: 0.24
+ max_samples : int or float, default=1.0
+ The number of samples to draw from X to compute feature importance
+ in each repeat (without replacement).
+
+ - If int, then draw `max_samples` samples.
+ - If float, then draw `max_samples * X.shape[0]` samples.
+ - If `max_samples` is equal to `1.0` or `X.shape[0]`, all samples
+ will be used.
+
+ While using this option may provide less accurate importance estimates,
+ it keeps the method tractable when evaluating feature importance on
+ large datasets. In combination with `n_repeats`, this allows to control
+ the computational speed vs statistical accuracy trade-off of this method.
+
+ .. versionadded:: 1.0
+
Returns
-------
result : :class:`~sklearn.utils.Bunch` or dict of such instances
@@ -204,6 +241,11 @@ def permutation_importance(
random_state = check_random_state(random_state)
random_seed = random_state.randint(np.iinfo(np.int32).max + 1)
+ if not isinstance(max_samples, numbers.Integral):
+ max_samples = int(max_samples * X.shape[0])
+ elif not (0 < max_samples <= X.shape[0]):
+ raise ValueError("max_samples must be in (0, n_samples]")
+
if callable(scoring):
scorer = scoring
elif scoring is None or isinstance(scoring, str):
@@ -216,7 +258,15 @@ def permutation_importance(
scores = Parallel(n_jobs=n_jobs)(
delayed(_calculate_permutation_scores)(
- estimator, X, y, sample_weight, col_idx, random_seed, n_repeats, scorer
+ estimator,
+ X,
+ y,
+ sample_weight,
+ col_idx,
+ random_seed,
+ n_repeats,
+ scorer,
+ max_samples,
)
for col_idx in range(X.shape[1])
)
|
diff --git a/sklearn/inspection/tests/test_permutation_importance.py b/sklearn/inspection/tests/test_permutation_importance.py
index 13386624363ed..46065cac4f560 100644
--- a/sklearn/inspection/tests/test_permutation_importance.py
+++ b/sklearn/inspection/tests/test_permutation_importance.py
@@ -31,7 +31,8 @@
@pytest.mark.parametrize("n_jobs", [1, 2])
-def test_permutation_importance_correlated_feature_regression(n_jobs):
[email protected]("max_samples", [0.5, 1.0])
+def test_permutation_importance_correlated_feature_regression(n_jobs, max_samples):
# Make sure that feature highly correlated to the target have a higher
# importance
rng = np.random.RandomState(42)
@@ -46,7 +47,13 @@ def test_permutation_importance_correlated_feature_regression(n_jobs):
clf.fit(X, y)
result = permutation_importance(
- clf, X, y, n_repeats=n_repeats, random_state=rng, n_jobs=n_jobs
+ clf,
+ X,
+ y,
+ n_repeats=n_repeats,
+ random_state=rng,
+ n_jobs=n_jobs,
+ max_samples=max_samples,
)
assert result.importances.shape == (X.shape[1], n_repeats)
@@ -57,7 +64,10 @@ def test_permutation_importance_correlated_feature_regression(n_jobs):
@pytest.mark.parametrize("n_jobs", [1, 2])
-def test_permutation_importance_correlated_feature_regression_pandas(n_jobs):
[email protected]("max_samples", [0.5, 1.0])
+def test_permutation_importance_correlated_feature_regression_pandas(
+ n_jobs, max_samples
+):
pd = pytest.importorskip("pandas")
# Make sure that feature highly correlated to the target have a higher
@@ -77,7 +87,13 @@ def test_permutation_importance_correlated_feature_regression_pandas(n_jobs):
clf.fit(X, y)
result = permutation_importance(
- clf, X, y, n_repeats=n_repeats, random_state=rng, n_jobs=n_jobs
+ clf,
+ X,
+ y,
+ n_repeats=n_repeats,
+ random_state=rng,
+ n_jobs=n_jobs,
+ max_samples=max_samples,
)
assert result.importances.shape == (X.shape[1], n_repeats)
@@ -88,7 +104,8 @@ def test_permutation_importance_correlated_feature_regression_pandas(n_jobs):
@pytest.mark.parametrize("n_jobs", [1, 2])
-def test_robustness_to_high_cardinality_noisy_feature(n_jobs, seed=42):
[email protected]("max_samples", [0.5, 1.0])
+def test_robustness_to_high_cardinality_noisy_feature(n_jobs, max_samples, seed=42):
# Permutation variable importance should not be affected by the high
# cardinality bias of traditional feature importances, especially when
# computed on a held-out test set:
@@ -137,7 +154,13 @@ def test_robustness_to_high_cardinality_noisy_feature(n_jobs, seed=42):
# Let's check that permutation-based feature importances do not have this
# problem.
r = permutation_importance(
- clf, X_test, y_test, n_repeats=n_repeats, random_state=rng, n_jobs=n_jobs
+ clf,
+ X_test,
+ y_test,
+ n_repeats=n_repeats,
+ random_state=rng,
+ n_jobs=n_jobs,
+ max_samples=max_samples,
)
assert r.importances.shape == (X.shape[1], n_repeats)
@@ -233,14 +256,16 @@ def test_permutation_importance_linear_regresssion():
)
-def test_permutation_importance_equivalence_sequential_parallel():
[email protected]("max_samples", [500, 1.0])
+def test_permutation_importance_equivalence_sequential_parallel(max_samples):
# regression test to make sure that sequential and parallel calls will
# output the same results.
+ # Also tests that max_samples equal to number of samples is equivalent to 1.0
X, y = make_regression(n_samples=500, n_features=10, random_state=0)
lr = LinearRegression().fit(X, y)
importance_sequential = permutation_importance(
- lr, X, y, n_repeats=5, random_state=0, n_jobs=1
+ lr, X, y, n_repeats=5, random_state=0, n_jobs=1, max_samples=max_samples
)
# First check that the problem is structured enough and that the model is
@@ -273,7 +298,8 @@ def test_permutation_importance_equivalence_sequential_parallel():
@pytest.mark.parametrize("n_jobs", [None, 1, 2])
-def test_permutation_importance_equivalence_array_dataframe(n_jobs):
[email protected]("max_samples", [0.5, 1.0])
+def test_permutation_importance_equivalence_array_dataframe(n_jobs, max_samples):
# This test checks that the column shuffling logic has the same behavior
# both a dataframe and a simple numpy array.
pd = pytest.importorskip("pandas")
@@ -310,7 +336,13 @@ def test_permutation_importance_equivalence_array_dataframe(n_jobs):
n_repeats = 3
importance_array = permutation_importance(
- rf, X, y, n_repeats=n_repeats, random_state=0, n_jobs=n_jobs
+ rf,
+ X,
+ y,
+ n_repeats=n_repeats,
+ random_state=0,
+ n_jobs=n_jobs,
+ max_samples=max_samples,
)
# First check that the problem is structured enough and that the model is
@@ -322,7 +354,13 @@ def test_permutation_importance_equivalence_array_dataframe(n_jobs):
# Now check that importances computed on dataframe matche the values
# of those computed on the array with the same data.
importance_dataframe = permutation_importance(
- rf, X_df, y, n_repeats=n_repeats, random_state=0, n_jobs=n_jobs
+ rf,
+ X_df,
+ y,
+ n_repeats=n_repeats,
+ random_state=0,
+ n_jobs=n_jobs,
+ max_samples=max_samples,
)
assert_allclose(
importance_array["importances"], importance_dataframe["importances"]
@@ -485,3 +523,20 @@ def test_permutation_importance_multi_metric(list_single_scorer, multi_scorer):
)
assert_allclose(multi_result.importances, single_result.importances)
+
+
[email protected]("max_samples", [-1, 5])
+def test_permutation_importance_max_samples_error(max_samples):
+ """Check that a proper error message is raised when `max_samples` is not
+ set to a valid input value.
+ """
+ X = np.array([(1.0, 2.0, 3.0, 4.0)]).T
+ y = np.array([0, 1, 0, 1])
+
+ clf = LogisticRegression()
+ clf.fit(X, y)
+
+ err_msg = r"max_samples must be in \(0, n_samples\]"
+
+ with pytest.raises(ValueError, match=err_msg):
+ permutation_importance(clf, X, y, max_samples=max_samples)
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 3b23360fe60c4..3bb2c6457d8ab 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -386,6 +386,13 @@ Changelog\n :mod:`sklearn.inspection`\n .........................\n \n+- |Enhancement| Add `max_samples` parameter in\n+ :func:`inspection._permutation_importance`. It enables to draw a subset of\n+ the samples to compute the permutation importance. This is useful to\n+ keep the method tractable when evaluating feature importance on\n+ large datasets.\n+ :pr:`20431` by :user:`Oliver Pfaffel <o1iv3r>`.\n+\n - |Fix| Allow multiple scorers input to\n :func:`~sklearn.inspection.permutation_importance`.\n :pr:`19411` by :user:`Simona Maggio <simonamaggio>`.\n"
}
] |
1.00
|
81165cabad383db2ff7fd856e467041eea9b55dc
|
[
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_no_weights_scoring_function",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[dataframe]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer2-<lambda>]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_linear_regresssion",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[array]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer0-multi_scorer0]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_sample_weight",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer1-multi_scorer1]"
] |
[
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-None]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-None]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[0.5-2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[0.5-2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[1.0-2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[1.0-1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_max_samples_error[5]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_sequential_parallel[1.0]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_sequential_parallel[500]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[0.5-1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[1.0-1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[1.0-2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[0.5-1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_max_samples_error[-1]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 3b23360fe60c4..3bb2c6457d8ab 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -386,6 +386,13 @@ Changelog\n :mod:`sklearn.inspection`\n .........................\n \n+- |Enhancement| Add `max_samples` parameter in\n+ :func:`inspection._permutation_importance`. It enables to draw a subset of\n+ the samples to compute the permutation importance. This is useful to\n+ keep the method tractable when evaluating feature importance on\n+ large datasets.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Fix| Allow multiple scorers input to\n :func:`~sklearn.inspection.permutation_importance`.\n :pr:`<PRID>` by :user:`<NAME>`.\n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 3b23360fe60c4..3bb2c6457d8ab 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -386,6 +386,13 @@ Changelog
:mod:`sklearn.inspection`
.........................
+- |Enhancement| Add `max_samples` parameter in
+ :func:`inspection._permutation_importance`. It enables to draw a subset of
+ the samples to compute the permutation importance. This is useful to
+ keep the method tractable when evaluating feature importance on
+ large datasets.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Fix| Allow multiple scorers input to
:func:`~sklearn.inspection.permutation_importance`.
:pr:`<PRID>` by :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19836
|
https://github.com/scikit-learn/scikit-learn/pull/19836
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index ece6ff15ac51b..b66c87815bae7 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -270,6 +270,10 @@ Changelog
:class:`ensemble.StackingClassifier` and :class:`ensemble.StackingRegressor`.
:pr:`19564` by `Thomas Fan`_.
+- |Enhancement| Documented and tested support of the Poisson criterion for
+ :class:`ensemble.RandomForestRegressor`. :pr:`19836` by
+ :user:`Brian Sun <bsun94>`.
+
- |Fix| Fixed the range of the argument max_samples to be (0.0, 1.0]
in :class:`ensemble.RandomForestClassifier`,
:class:`ensemble.RandomForestRegressor`, where `max_samples=1.0` is
diff --git a/sklearn/ensemble/_forest.py b/sklearn/ensemble/_forest.py
index 06ca0c171efc6..bc29c0362bb3e 100644
--- a/sklearn/ensemble/_forest.py
+++ b/sklearn/ensemble/_forest.py
@@ -323,6 +323,14 @@ def fit(self, X, y, sample_weight=None):
# [:, np.newaxis] that does not.
y = np.reshape(y, (-1, 1))
+ if self.criterion == "poisson":
+ if np.any(y < 0):
+ raise ValueError("Some value(s) of y are negative which is "
+ "not allowed for Poisson regression.")
+ if np.sum(y) <= 0:
+ raise ValueError("Sum of y is not strictly positive which "
+ "is necessary for Poisson regression.")
+
self.n_outputs_ = y.shape[1]
y, expanded_class_weight = self._validate_y_class_weight(y)
@@ -1324,16 +1332,20 @@ class RandomForestRegressor(ForestRegressor):
The default value of ``n_estimators`` changed from 10 to 100
in 0.22.
- criterion : {"squared_error", "mse", "absolute_error", "mae"}, \
+ criterion : {"squared_error", "mse", "absolute_error", "poisson"}, \
default="squared_error"
The function to measure the quality of a split. Supported criteria
are "squared_error" for the mean squared error, which is equal to
- variance reduction as feature selection criterion, and "absolute_error"
- for the mean absolute error.
+ variance reduction as feature selection criterion, "absolute_error"
+ for the mean absolute error, and "poisson" which uses reduction in
+ Poisson deviance to find splits.
.. versionadded:: 0.18
Mean Absolute Error (MAE) criterion.
+ .. versionadded:: 1.0
+ Poisson criterion.
+
.. deprecated:: 1.0
Criterion "mse" was deprecated in v1.0 and will be removed in
version 1.2. Use `criterion="squared_error"` which is equivalent.
|
diff --git a/sklearn/ensemble/tests/test_forest.py b/sklearn/ensemble/tests/test_forest.py
index 52615d037cf63..6c4aa905abe55 100644
--- a/sklearn/ensemble/tests/test_forest.py
+++ b/sklearn/ensemble/tests/test_forest.py
@@ -27,6 +27,8 @@
import joblib
from numpy.testing import assert_allclose
+from sklearn.dummy import DummyRegressor
+from sklearn.metrics import mean_poisson_deviance
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
@@ -185,6 +187,76 @@ def test_regression(name, criterion):
check_regression_criterion(name, criterion)
+def test_poisson_vs_mse():
+ """Test that random forest with poisson criterion performs better than
+ mse for a poisson target."""
+ rng = np.random.RandomState(42)
+ n_train, n_test, n_features = 500, 500, 10
+ X = datasets.make_low_rank_matrix(n_samples=n_train + n_test,
+ n_features=n_features, random_state=rng)
+ X = np.abs(X)
+ X /= np.max(np.abs(X), axis=0)
+ # We create a log-linear Poisson model
+ coef = rng.uniform(low=-4, high=1, size=n_features)
+ y = rng.poisson(lam=np.exp(X @ coef))
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=n_test,
+ random_state=rng)
+
+ forest_poi = RandomForestRegressor(
+ criterion="poisson",
+ min_samples_leaf=10,
+ max_features="sqrt",
+ random_state=rng)
+ forest_mse = RandomForestRegressor(
+ criterion="squared_error",
+ min_samples_leaf=10,
+ max_features="sqrt",
+ random_state=rng)
+
+ forest_poi.fit(X_train, y_train)
+ forest_mse.fit(X_train, y_train)
+ dummy = DummyRegressor(strategy="mean").fit(X_train, y_train)
+
+ for X, y, val in [(X_train, y_train, "train"), (X_test, y_test, "test")]:
+ metric_poi = mean_poisson_deviance(y, forest_poi.predict(X))
+ # squared_error forest might produce non-positive predictions => clip
+ # If y = 0 for those, the poisson deviance gets too good.
+ # If we drew more samples, we would eventually get y > 0 and the
+ # poisson deviance would explode, i.e. be undefined. Therefore, we do
+ # not clip to a tiny value like 1e-15, but to 0.1. This acts like a
+ # mild penalty to the non-positive predictions.
+ metric_mse = mean_poisson_deviance(
+ y,
+ np.clip(forest_mse.predict(X), 1e-6, None))
+ metric_dummy = mean_poisson_deviance(y, dummy.predict(X))
+ # As squared_error might correctly predict 0 in train set, its train
+ # score can be better than Poisson. This is no longer the case for the
+ # test set. But keep the above comment for clipping in mind.
+ if val == "test":
+ assert metric_poi < metric_mse
+ assert metric_poi < metric_dummy
+
+
[email protected]('criterion', ('poisson', 'squared_error'))
+def test_balance_property_random_forest(criterion):
+ """"Test that sum(y_pred)==sum(y_true) on the training set."""
+ rng = np.random.RandomState(42)
+ n_train, n_test, n_features = 500, 500, 10
+ X = datasets.make_low_rank_matrix(n_samples=n_train + n_test,
+ n_features=n_features, random_state=rng)
+
+ coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
+ y = rng.poisson(lam=np.exp(X @ coef))
+
+ reg = RandomForestRegressor(criterion=criterion,
+ n_estimators=10,
+ bootstrap=False,
+ random_state=rng)
+ reg.fit(X, y)
+
+ assert np.sum(reg.predict(X)) == pytest.approx(np.sum(y))
+
+
def check_regressor_attributes(name):
# Regression models should not have a classes_ attribute.
r = FOREST_REGRESSORS[name](random_state=0)
@@ -1367,6 +1439,23 @@ def test_min_impurity_decrease():
assert tree.min_impurity_decrease == 0.1
+def test_poisson_y_positive_check():
+ est = RandomForestRegressor(criterion="poisson")
+ X = np.zeros((3, 3))
+
+ y = [-1, 1, 3]
+ err_msg = (r"Some value\(s\) of y are negative which is "
+ r"not allowed for Poisson regression.")
+ with pytest.raises(ValueError, match=err_msg):
+ est.fit(X, y)
+
+ y = [0, 0, 0]
+ err_msg = (r"Sum of y is not strictly positive which "
+ r"is necessary for Poisson regression.")
+ with pytest.raises(ValueError, match=err_msg):
+ est.fit(X, y)
+
+
# mypy error: Variable "DEFAULT_JOBLIB_BACKEND" is not valid type
class MyBackend(DEFAULT_JOBLIB_BACKEND): # type: ignore
def __init__(self, *args, **kwargs):
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex ece6ff15ac51b..b66c87815bae7 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -270,6 +270,10 @@ Changelog\n :class:`ensemble.StackingClassifier` and :class:`ensemble.StackingRegressor`.\n :pr:`19564` by `Thomas Fan`_.\n \n+- |Enhancement| Documented and tested support of the Poisson criterion for\n+ :class:`ensemble.RandomForestRegressor`. :pr:`19836` by\n+ :user:`Brian Sun <bsun94>`.\n+\n - |Fix| Fixed the range of the argument max_samples to be (0.0, 1.0]\n in :class:`ensemble.RandomForestClassifier`,\n :class:`ensemble.RandomForestRegressor`, where `max_samples=1.0` is\n"
}
] |
1.00
|
a1a6b3a9602283792ec4091cdb990be1afab9163
|
[
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X2-y2-0.65-sparse_csr-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_random_trees_embedding_raise_error_oob[False]",
"sklearn/ensemble/tests/test_forest.py::test_regressor_attributes[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_little_tree_with_small_max_samples[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestClassifier-entropy-float32]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[1000000000-ValueError-`max_samples` must be in range 1 to 6 but got value 1000000000-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_iris[gini-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_error[X0-y0-params0-Out of bag estimation only available if bootstrap=True-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_regression[friedman_mse-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_class_weights[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X2-y2-0.65-sparse_csc-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_distribution",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[max_samples6-TypeError-`max_samples` should be int or float, but got type '\\\\<class 'numpy.ndarray'\\\\>'-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_gridsearch[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_iris[gini-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X3-y3-0.18-sparse_csc-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-friedman_mse-float32]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-squared_error-float32]",
"sklearn/ensemble/tests/test_forest.py::test_multioutput_string[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_classification_toy[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesClassifier-entropy-float64]",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestClassifier-gini-float64]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X3-y3-0.18-array-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_pickle[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_error[X0-y0-params0-Out of bag estimation only available if bootstrap=True-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_pickle[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X0-y0-0.9-array-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[nan-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value nan-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_poisson_vs_mse",
"sklearn/ensemble/tests/test_forest.py::test_memory_layout[float64-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_error[X1-y1-params1-The type of target cannot be used to compute OOB estimates-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X0-y0-0.7-sparse_csc-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_y_sparse",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-absolute_error-float32]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_random_hasher",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X1-y1-0.65-array-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_dtype_convert",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X1-y1-0.55-sparse_csc-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_random_trees_dense_equal",
"sklearn/ensemble/tests/test_forest.py::test_memory_layout[float32-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_backend_respected",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[inf-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value inf-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_class_weights[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[nan-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value nan-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesClassifier-gini-float64]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[0.0-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value 0.0-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X2-y2-0.65-array-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_regression[squared_error-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_memory_layout[float64-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X3-y3-0.18-sparse_csr-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_balance_property_random_forest[poisson]",
"sklearn/ensemble/tests/test_forest.py::test_parallel[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_parallel[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_regression[squared_error-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-friedman_mse-float64]",
"sklearn/ensemble/tests/test_forest.py::test_iris[entropy-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X1-y1-0.55-sparse_csr-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_n_features_deprecation[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_decision_path[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[str max_samples?!-TypeError-`max_samples` should be int or float, but got type '\\\\<class 'str'\\\\>'-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X0-y0-0.7-sparse_csc-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_multioutput[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_memory_layout[float32-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X0-y0-0.9-sparse_csr-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[max_samples6-TypeError-`max_samples` should be int or float, but got type '\\\\<class 'numpy.ndarray'\\\\>'-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesClassifier-gini-float32]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[max_samples6-TypeError-`max_samples` should be int or float, but got type '\\\\<class 'numpy.ndarray'\\\\>'-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_split[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[str max_samples?!-TypeError-`max_samples` should be int or float, but got type '\\\\<class 'str'\\\\>'-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[inf-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value inf-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[1000000000-ValueError-`max_samples` must be in range 1 to 6 but got value 1000000000-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-friedman_mse-float64]",
"sklearn/ensemble/tests/test_forest.py::test_1d_input[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_class_weight_balanced_and_bootstrap_multi_output[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X1-y1-0.65-array-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_multioutput_string[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestClassifier-entropy-float64]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[nan-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value nan-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-absolute_error-float64]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_regressors[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X2-y2-0.65-sparse_csc-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X3-y3-0.18-sparse_csc-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_split[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_1d_input[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_1d_input[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_class_weight_balanced_and_bootstrap_multi_output[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances_asymptotic",
"sklearn/ensemble/tests/test_forest.py::test_min_impurity_decrease",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X3-y3-0.18-array-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_unfitted_feature_importances[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_memory_layout[float64-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_decision_path[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[1000000000-ValueError-`max_samples` must be in range 1 to 6 but got value 1000000000-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_regression[absolute_error-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[0.0-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value 0.0-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X1-y1-0.55-sparse_csr-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_parallel[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestClassifier-gini-float32]",
"sklearn/ensemble/tests/test_forest.py::test_n_features_deprecation[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_error[X0-y0-params0-Out of bag estimation only available if bootstrap=True-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_leaf[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_classes_shape[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_memory_layout[float32-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_error[X0-y0-params0-Out of bag estimation only available if bootstrap=True-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_balance_property_random_forest[squared_error]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_error[X1-y1-params1-The type of target cannot be used to compute OOB estimates-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_feature_importances_sum",
"sklearn/ensemble/tests/test_forest.py::test_probability[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X2-y2-0.65-array-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X1-y1-0.65-sparse_csc-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_parallel[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X0-y0-0.9-sparse_csc-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X0-y0-0.7-sparse_csr-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[inf-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value inf-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_multioutput[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_multioutput[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[inf-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value inf-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_regressors[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[0.0-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value 0.0-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[str max_samples?!-TypeError-`max_samples` should be int or float, but got type '\\\\<class 'str'\\\\>'-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X1-y1-0.55-sparse_csc-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_memory_layout[float32-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_n_features_deprecation[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_multioutput[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_random_hasher_sparse_data",
"sklearn/ensemble/tests/test_forest.py::test_decision_path[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[2.0-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value 2.0-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_regression[absolute_error-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-squared_error-float64]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[2.0-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value 2.0-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_clear[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_unfitted_feature_importances[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_unfitted_feature_importances[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X0-y0-0.7-sparse_csr-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_class_weight_errors[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X1-y1-0.55-array-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_classes_shape[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_min_impurity_split",
"sklearn/ensemble/tests/test_forest.py::test_regression[friedman_mse-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[nan-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value nan-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-squared_error-float32]",
"sklearn/ensemble/tests/test_forest.py::test_n_features_deprecation[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_mse_criterion_object_segfault_smoke_test[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_mse_criterion_object_segfault_smoke_test[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_random_trees_embedding_raise_error_oob[True]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[1000000000-ValueError-`max_samples` must be in range 1 to 6 but got value 1000000000-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_regressor_attributes[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_criterion_deprecated[mae-absolute_error]",
"sklearn/ensemble/tests/test_forest.py::test_classification_toy[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-friedman_mse-float32]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_split[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X2-y2-0.65-sparse_csr-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_unfitted_feature_importances[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_gridsearch[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[2.0-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value 2.0-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_smaller_n_estimators[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_class_weight_errors[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X1-y1-0.65-sparse_csr-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_importances[ExtraTreesClassifier-entropy-float32]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X1-y1-0.65-sparse_csr-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-absolute_error-float32]",
"sklearn/ensemble/tests/test_forest.py::test_decision_path[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_probability[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[RandomTreesEmbedding]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[0.0-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value 0.0-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_criterion_deprecated[mse-squared_error]",
"sklearn/ensemble/tests/test_forest.py::test_forest_degenerate_feature_importances",
"sklearn/ensemble/tests/test_forest.py::test_n_features_deprecation[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_1d_input[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X1-y1-0.55-array-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_pickle[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X0-y0-0.9-array-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X0-y0-0.9-sparse_csr-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_iris[entropy-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_parallel_train",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-absolute_error-float64]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X1-y1-0.65-sparse_csc-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_min_weight_fraction_leaf[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_1d_input[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_unfitted_feature_importances[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X0-y0-0.7-array-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_error[X1-y1-params1-The type of target cannot be used to compute OOB estimates-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_error[X1-y1-params1-The type of target cannot be used to compute OOB estimates-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_pickle[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_little_tree_with_small_max_samples[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X3-y3-0.18-sparse_csr-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_random_trees_dense_type",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[2.0-ValueError-`max_samples` must be in range \\\\(0.0, 1.0\\\\] but got value 2.0-ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_importances[RandomForestRegressor-squared_error-float64]",
"sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[ExtraTreesClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_memory_layout[float64-RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_split[ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_warm_start_equal_n_estimators[RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[str max_samples?!-TypeError-`max_samples` should be int or float, but got type '\\\\<class 'str'\\\\>'-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[X0-y0-0.9-sparse_csc-RandomForestClassifier]",
"sklearn/ensemble/tests/test_forest.py::test_forest_regressor_oob[X0-y0-0.7-array-ExtraTreesRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_min_samples_split[RandomForestRegressor]",
"sklearn/ensemble/tests/test_forest.py::test_max_samples_exceptions[max_samples6-TypeError-`max_samples` should be int or float, but got type '\\\\<class 'numpy.ndarray'\\\\>'-ExtraTreesRegressor]"
] |
[
"sklearn/ensemble/tests/test_forest.py::test_poisson_y_positive_check"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex ece6ff15ac51b..b66c87815bae7 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -270,6 +270,10 @@ Changelog\n :class:`ensemble.StackingClassifier` and :class:`ensemble.StackingRegressor`.\n :pr:`<PRID>` by `<NAME>`_.\n \n+- |Enhancement| Documented and tested support of the Poisson criterion for\n+ :class:`ensemble.RandomForestRegressor`. :pr:`<PRID>` by\n+ :user:`<NAME>`.\n+\n - |Fix| Fixed the range of the argument max_samples to be (0.0, 1.0]\n in :class:`ensemble.RandomForestClassifier`,\n :class:`ensemble.RandomForestRegressor`, where `max_samples=1.0` is\n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index ece6ff15ac51b..b66c87815bae7 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -270,6 +270,10 @@ Changelog
:class:`ensemble.StackingClassifier` and :class:`ensemble.StackingRegressor`.
:pr:`<PRID>` by `<NAME>`_.
+- |Enhancement| Documented and tested support of the Poisson criterion for
+ :class:`ensemble.RandomForestRegressor`. :pr:`<PRID>` by
+ :user:`<NAME>`.
+
- |Fix| Fixed the range of the argument max_samples to be (0.0, 1.0]
in :class:`ensemble.RandomForestClassifier`,
:class:`ensemble.RandomForestRegressor`, where `max_samples=1.0` is
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19428
|
https://github.com/scikit-learn/scikit-learn/pull/19428
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 1338606e3a096..688c42fd1748d 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -411,6 +411,11 @@ Changelog
:func:`~sklearn.inspection.permutation_importance`.
:pr:`19411` by :user:`Simona Maggio <simonamaggio>`.
+- |Enhancement| Add kwargs to format ICE and PD lines separately in partial
+ dependence plots :func:`~sklearn.inspection.plot_partial_dependence` and
+ :meth:`~sklearn.inspection.PartialDependenceDisplay.plot`.
+ :pr:`19428` by :user:`Mehdi Hamoumi <mhham>`.
+
:mod:`sklearn.linear_model`
...........................
diff --git a/examples/inspection/plot_partial_dependence.py b/examples/inspection/plot_partial_dependence.py
index ac8d20ec9f155..ceccd8c3001c1 100644
--- a/examples/inspection/plot_partial_dependence.py
+++ b/examples/inspection/plot_partial_dependence.py
@@ -53,9 +53,7 @@
y -= y.mean()
-X_train, X_test, y_train, y_test = train_test_split(
- X, y, test_size=0.1, random_state=0
-)
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)
# %%
# 1-way partial dependence with different models
@@ -80,10 +78,12 @@
print("Training MLPRegressor...")
tic = time()
-est = make_pipeline(QuantileTransformer(),
- MLPRegressor(hidden_layer_sizes=(50, 50),
- learning_rate_init=0.01,
- early_stopping=True))
+est = make_pipeline(
+ QuantileTransformer(),
+ MLPRegressor(
+ hidden_layer_sizes=(50, 50), learning_rate_init=0.01, early_stopping=True
+ ),
+)
est.fit(X_train, y_train)
print(f"done in {time() - tic:.3f}s")
print(f"Test R2 score: {est.score(X_test, y_test):.2f}")
@@ -113,17 +113,25 @@
from sklearn.inspection import partial_dependence
from sklearn.inspection import plot_partial_dependence
-print('Computing partial dependence plots...')
+print("Computing partial dependence plots...")
tic = time()
-features = ['MedInc', 'AveOccup', 'HouseAge', 'AveRooms']
+features = ["MedInc", "AveOccup", "HouseAge", "AveRooms"]
display = plot_partial_dependence(
- est, X_train, features, kind="both", subsample=50,
- n_jobs=3, grid_resolution=20, random_state=0
+ est,
+ X_train,
+ features,
+ kind="both",
+ subsample=50,
+ n_jobs=3,
+ grid_resolution=20,
+ random_state=0,
+ ice_lines_kw={"color": "tab:blue", "alpha": 0.2, "linewidth": 0.5},
+ pd_line_kw={"color": "tab:orange", "linestyle": "--"},
)
print(f"done in {time() - tic:.3f}s")
display.figure_.suptitle(
- 'Partial dependence of house value on non-location features\n'
- 'for the California housing dataset, with MLPRegressor'
+ "Partial dependence of house value on non-location features\n"
+ "for the California housing dataset, with MLPRegressor"
)
display.figure_.subplots_adjust(hspace=0.3)
@@ -156,16 +164,24 @@
# We will plot the partial dependence, both individual (ICE) and averaged one
# (PDP). We limit to only 50 ICE curves to not overcrowd the plot.
-print('Computing partial dependence plots...')
+print("Computing partial dependence plots...")
tic = time()
display = plot_partial_dependence(
- est, X_train, features, kind="both", subsample=50,
- n_jobs=3, grid_resolution=20, random_state=0
+ est,
+ X_train,
+ features,
+ kind="both",
+ subsample=50,
+ n_jobs=3,
+ grid_resolution=20,
+ random_state=0,
+ ice_lines_kw={"color": "tab:blue", "alpha": 0.2, "linewidth": 0.5},
+ pd_line_kw={"color": "tab:orange", "linestyle": "--"},
)
print(f"done in {time() - tic:.3f}s")
display.figure_.suptitle(
- 'Partial dependence of house value on non-location features\n'
- 'for the California housing dataset, with Gradient Boosting'
+ "Partial dependence of house value on non-location features\n"
+ "for the California housing dataset, with Gradient Boosting"
)
display.figure_.subplots_adjust(wspace=0.4, hspace=0.3)
@@ -209,18 +225,23 @@
# the tree-based algorithm, when only PDPs are requested, they can be computed
# on an efficient way using the `'recursion'` method.
-features = ['AveOccup', 'HouseAge', ('AveOccup', 'HouseAge')]
-print('Computing partial dependence plots...')
+features = ["AveOccup", "HouseAge", ("AveOccup", "HouseAge")]
+print("Computing partial dependence plots...")
tic = time()
_, ax = plt.subplots(ncols=3, figsize=(9, 4))
display = plot_partial_dependence(
- est, X_train, features, kind='average', n_jobs=3, grid_resolution=20,
+ est,
+ X_train,
+ features,
+ kind="average",
+ n_jobs=3,
+ grid_resolution=20,
ax=ax,
)
print(f"done in {time() - tic:.3f}s")
display.figure_.suptitle(
- 'Partial dependence of house value on non-location features\n'
- 'for the California housing dataset, with Gradient Boosting'
+ "Partial dependence of house value on non-location features\n"
+ "for the California housing dataset, with Gradient Boosting"
)
display.figure_.subplots_adjust(wspace=0.4, hspace=0.3)
@@ -240,24 +261,27 @@
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
+
fig = plt.figure()
-features = ('AveOccup', 'HouseAge')
+features = ("AveOccup", "HouseAge")
pdp = partial_dependence(
- est, X_train, features=features, kind='average', grid_resolution=20
+ est, X_train, features=features, kind="average", grid_resolution=20
)
XX, YY = np.meshgrid(pdp["values"][0], pdp["values"][1])
Z = pdp.average[0].T
ax = Axes3D(fig)
-surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1,
- cmap=plt.cm.BuPu, edgecolor='k')
+fig.add_axes(ax)
+surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu, edgecolor="k")
ax.set_xlabel(features[0])
ax.set_ylabel(features[1])
-ax.set_zlabel('Partial dependence')
+ax.set_zlabel("Partial dependence")
# pretty init view
ax.view_init(elev=22, azim=122)
plt.colorbar(surf)
-plt.suptitle('Partial dependence of house value on median\n'
- 'age and average occupancy, with Gradient Boosting')
+plt.suptitle(
+ "Partial dependence of house value on median\n"
+ "age and average occupancy, with Gradient Boosting"
+)
plt.subplots_adjust(top=0.9)
plt.show()
diff --git a/sklearn/inspection/_plot/partial_dependence.py b/sklearn/inspection/_plot/partial_dependence.py
index b45bdbe0b2fb1..f03669e7a4207 100644
--- a/sklearn/inspection/_plot/partial_dependence.py
+++ b/sklearn/inspection/_plot/partial_dependence.py
@@ -32,6 +32,8 @@ def plot_partial_dependence(
n_jobs=None,
verbose=0,
line_kw=None,
+ ice_lines_kw=None,
+ pd_line_kw=None,
contour_kw=None,
ax=None,
kind="average",
@@ -185,7 +187,24 @@ def plot_partial_dependence(
line_kw : dict, default=None
Dict with keywords passed to the ``matplotlib.pyplot.plot`` call.
- For one-way partial dependence plots.
+ For one-way partial dependence plots. It can be used to define common
+ properties for both `ice_lines_kw` and `pdp_line_kw`.
+
+ ice_lines_kw : dict, default=None
+ Dictionary with keywords passed to the `matplotlib.pyplot.plot` call.
+ For ICE lines in the one-way partial dependence plots.
+ The key value pairs defined in `ice_lines_kw` takes priority over
+ `line_kw`.
+
+ .. versionadded:: 1.0
+
+ pd_line_kw : dict, default=None
+ Dictionary with keywords passed to the `matplotlib.pyplot.plot` call.
+ For partial dependence in one-way partial dependence plots.
+ The key value pairs defined in `pd_line_kw` takes priority over
+ `line_kw`.
+
+ .. versionadded:: 1.0
contour_kw : dict, default=None
Dict with keywords passed to the ``matplotlib.pyplot.contourf`` call.
@@ -413,7 +432,14 @@ def convert_feature(fx):
subsample=subsample,
random_state=random_state,
)
- return display.plot(ax=ax, n_cols=n_cols, line_kw=line_kw, contour_kw=contour_kw)
+ return display.plot(
+ ax=ax,
+ n_cols=n_cols,
+ line_kw=line_kw,
+ ice_lines_kw=ice_lines_kw,
+ pd_line_kw=pd_line_kw,
+ contour_kw=contour_kw,
+ )
class PartialDependenceDisplay:
@@ -675,8 +701,8 @@ def _plot_one_way_partial_dependence(
n_cols,
pd_plot_idx,
n_lines,
- individual_line_kw,
- line_kw,
+ ice_lines_kw,
+ pd_line_kw,
):
"""Plot 1-way partial dependence: ICE and PDP.
@@ -704,9 +730,9 @@ def _plot_one_way_partial_dependence(
matching 2D position in the grid layout.
n_lines : int
The total number of lines expected to be plot on the axis.
- individual_line_kw : dict
+ ice_lines_kw : dict
Dict with keywords passed when plotting the ICE lines.
- line_kw : dict
+ pd_line_kw : dict
Dict with keywords passed when plotting the PD plot.
"""
from matplotlib import transforms # noqa
@@ -719,7 +745,7 @@ def _plot_one_way_partial_dependence(
ax,
pd_plot_idx,
n_lines,
- individual_line_kw,
+ ice_lines_kw,
)
if self.kind in ("average", "both"):
@@ -733,7 +759,7 @@ def _plot_one_way_partial_dependence(
feature_values,
ax,
pd_line_idx,
- line_kw,
+ pd_line_kw,
)
trans = transforms.blended_transform_factory(ax.transData, ax.transAxes)
@@ -759,7 +785,7 @@ def _plot_one_way_partial_dependence(
else:
ax.set_yticklabels([])
- if line_kw.get("label", None) and self.kind != "individual":
+ if pd_line_kw.get("label", None) and self.kind != "individual":
ax.legend()
def _plot_two_way_partial_dependence(
@@ -842,7 +868,16 @@ def _plot_two_way_partial_dependence(
ax.set_ylabel(self.feature_names[feature_idx[1]])
@_deprecate_positional_args(version="1.1")
- def plot(self, *, ax=None, n_cols=3, line_kw=None, contour_kw=None):
+ def plot(
+ self,
+ *,
+ ax=None,
+ n_cols=3,
+ line_kw=None,
+ ice_lines_kw=None,
+ pd_line_kw=None,
+ contour_kw=None,
+ ):
"""Plot partial dependence plots.
Parameters
@@ -865,6 +900,22 @@ def plot(self, *, ax=None, n_cols=3, line_kw=None, contour_kw=None):
Dict with keywords passed to the `matplotlib.pyplot.plot` call.
For one-way partial dependence plots.
+ ice_lines_kw : dict, default=None
+ Dictionary with keywords passed to the `matplotlib.pyplot.plot` call.
+ For ICE lines in the one-way partial dependence plots.
+ The key value pairs defined in `ice_lines_kw` takes priority over
+ `line_kw`.
+
+ .. versionadded:: 1.0
+
+ pd_line_kw : dict, default=None
+ Dictionary with keywords passed to the `matplotlib.pyplot.plot` call.
+ For partial dependence in one-way partial dependence plots.
+ The key value pairs defined in `pd_line_kw` takes priority over
+ `line_kw`.
+
+ .. versionadded:: 1.0
+
contour_kw : dict, default=None
Dict with keywords passed to the `matplotlib.pyplot.contourf`
call for two-way partial dependence plots.
@@ -880,6 +931,10 @@ def plot(self, *, ax=None, n_cols=3, line_kw=None, contour_kw=None):
if line_kw is None:
line_kw = {}
+ if ice_lines_kw is None:
+ ice_lines_kw = {}
+ if pd_line_kw is None:
+ pd_line_kw = {}
if contour_kw is None:
contour_kw = {}
@@ -893,14 +948,20 @@ def plot(self, *, ax=None, n_cols=3, line_kw=None, contour_kw=None):
"color": "C0",
"label": "average" if self.kind == "both" else None,
}
- line_kw = {**default_line_kws, **line_kw}
+ if self.kind in ("individual", "both"):
+ default_ice_lines_kws = {"alpha": 0.3, "linewidth": 0.5}
+ else:
+ default_ice_lines_kws = {}
- individual_line_kw = line_kw.copy()
- del individual_line_kw["label"]
+ ice_lines_kw = {
+ **default_line_kws,
+ **line_kw,
+ **default_ice_lines_kws,
+ **ice_lines_kw,
+ }
+ del ice_lines_kw["label"]
- if self.kind == "individual" or self.kind == "both":
- individual_line_kw["alpha"] = 0.3
- individual_line_kw["linewidth"] = 0.5
+ pd_line_kw = {**default_line_kws, **line_kw, **pd_line_kw}
n_features = len(self.features)
if self.kind in ("individual", "both"):
@@ -998,8 +1059,8 @@ def plot(self, *, ax=None, n_cols=3, line_kw=None, contour_kw=None):
n_cols,
pd_plot_idx,
n_lines,
- individual_line_kw,
- line_kw,
+ ice_lines_kw,
+ pd_line_kw,
)
else:
self._plot_two_way_partial_dependence(
|
diff --git a/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py b/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py
index 25c543d94c3c0..4d33313c8c884 100644
--- a/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py
+++ b/sklearn/inspection/_plot/tests/test_plot_partial_dependence.py
@@ -687,3 +687,56 @@ def test_partial_dependence_overwrite_labels(
legend_text = ax.get_legend().get_texts()
assert len(legend_text) == 1
assert legend_text[0].get_text() == label
+
+
[email protected]("ignore:A Bunch will be returned")
[email protected](
+ "line_kw, pd_line_kw, ice_lines_kw, expected_colors",
+ [
+ ({"color": "r"}, {"color": "g"}, {"color": "b"}, ("g", "b")),
+ (None, {"color": "g"}, {"color": "b"}, ("g", "b")),
+ ({"color": "r"}, None, {"color": "b"}, ("r", "b")),
+ ({"color": "r"}, {"color": "g"}, None, ("g", "r")),
+ ({"color": "r"}, None, None, ("r", "r")),
+ ({"color": "r"}, {"linestyle": "--"}, {"linestyle": "-."}, ("r", "r")),
+ ],
+)
+def test_plot_partial_dependence_lines_kw(
+ pyplot,
+ clf_diabetes,
+ diabetes,
+ line_kw,
+ pd_line_kw,
+ ice_lines_kw,
+ expected_colors,
+):
+ """Check that passing `pd_line_kw` and `ice_lines_kw` will act on the
+ specific lines in the plot.
+ """
+
+ disp = plot_partial_dependence(
+ clf_diabetes,
+ diabetes.data,
+ [0, 2],
+ grid_resolution=20,
+ feature_names=diabetes.feature_names,
+ n_cols=2,
+ kind="both",
+ line_kw=line_kw,
+ pd_line_kw=pd_line_kw,
+ ice_lines_kw=ice_lines_kw,
+ )
+
+ line = disp.lines_[0, 0, -1]
+ assert line.get_color() == expected_colors[0]
+ if pd_line_kw is not None and "linestyle" in pd_line_kw:
+ assert line.get_linestyle() == pd_line_kw["linestyle"]
+ else:
+ assert line.get_linestyle() == "-"
+
+ line = disp.lines_[0, 0, 0]
+ assert line.get_color() == expected_colors[1]
+ if ice_lines_kw is not None and "linestyle" in ice_lines_kw:
+ assert line.get_linestyle() == ice_lines_kw["linestyle"]
+ else:
+ assert line.get_linestyle() == "-"
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 1338606e3a096..688c42fd1748d 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -411,6 +411,11 @@ Changelog\n :func:`~sklearn.inspection.permutation_importance`.\n :pr:`19411` by :user:`Simona Maggio <simonamaggio>`.\n \n+- |Enhancement| Add kwargs to format ICE and PD lines separately in partial\n+ dependence plots :func:`~sklearn.inspection.plot_partial_dependence` and\n+ :meth:`~sklearn.inspection.PartialDependenceDisplay.plot`.\n+ :pr:`19428` by :user:`Mehdi Hamoumi <mhham>`.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
1.00
|
94edc00caba1bde6b793da4d0c53fd2d63fedf96
|
[
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[20]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data1-params1-target must be in \\\\[0, n_tasks\\\\]]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-series]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[average-1]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data2-params2-target must be in \\\\[0, n_tasks\\\\]]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-array]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[2-2]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-series]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data0-params0-target must be specified for multi-output]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-0.5-shape5]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params1-target must be specified for multi-class]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[10]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data3-params3-Feature foobar not in feature_names]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data6-params6-Each entry in features must be either an int, ]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data13-params13-When a floating-point, subsample=1.2 should be in the \\\\(0, 1\\\\) range]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw2-None]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-None-shape1]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-0.5-shape6]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-index]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data12-params12-When an integer, subsample=-1 should be positive.]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_does_not_override_ylabel",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_same_axes",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data4-params4-Feature foobar not in feature_names]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-series]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[3-1]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_feature_name_reuse",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw3-xxx]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data7-params7-Each entry in features must be either an int, ]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-index]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw0-None]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw5-xxx]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params0-target not in est.classes_, got 4]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data10-params10-It is not possible to display individual effects for more than one]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw1-None]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-list]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-index]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[average-expected_shape0]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[both-expected_shape2]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multioutput[0]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-None-shape0]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[both-443]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw4-average]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-50-shape3]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-None]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_custom_axes",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_dataframe",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-list]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-list]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[individual-expected_shape1]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data5-params5-Each entry in features must be either an int, ]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-50-shape4]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[individual-442]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data8-params8-All entries of features must be less than ]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multioutput[1]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-array]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data9-params9-feature_names should not contain duplicates]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data11-params11-It is not possible to display individual effects for more than one]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params2-Each entry in features must be either an int,]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-None-shape2]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-array]"
] |
[
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw2-None-ice_lines_kw2-expected_colors2]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[None-pd_line_kw1-ice_lines_kw1-expected_colors1]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw0-pd_line_kw0-ice_lines_kw0-expected_colors0]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw4-None-None-expected_colors4]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw5-pd_line_kw5-ice_lines_kw5-expected_colors5]",
"sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw3-pd_line_kw3-None-expected_colors3]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 1338606e3a096..688c42fd1748d 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -411,6 +411,11 @@ Changelog\n :func:`~sklearn.inspection.permutation_importance`.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| Add kwargs to format ICE and PD lines separately in partial\n+ dependence plots :func:`~sklearn.inspection.plot_partial_dependence` and\n+ :meth:`~sklearn.inspection.PartialDependenceDisplay.plot`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 1338606e3a096..688c42fd1748d 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -411,6 +411,11 @@ Changelog
:func:`~sklearn.inspection.permutation_importance`.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| Add kwargs to format ICE and PD lines separately in partial
+ dependence plots :func:`~sklearn.inspection.plot_partial_dependence` and
+ :meth:`~sklearn.inspection.PartialDependenceDisplay.plot`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.linear_model`
...........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-10027
|
https://github.com/scikit-learn/scikit-learn/pull/10027
|
diff --git a/benchmarks/bench_online_ocsvm.py b/benchmarks/bench_online_ocsvm.py
new file mode 100644
index 0000000000000..33262e8fcb690
--- /dev/null
+++ b/benchmarks/bench_online_ocsvm.py
@@ -0,0 +1,279 @@
+"""
+=====================================
+SGDOneClassSVM benchmark
+=====================================
+This benchmark compares the :class:`SGDOneClassSVM` with :class:`OneClassSVM`.
+The former is an online One-Class SVM implemented with a Stochastic Gradient
+Descent (SGD). The latter is based on the LibSVM implementation. The
+complexity of :class:`SGDOneClassSVM` is linear in the number of samples
+whereas the one of :class:`OneClassSVM` is at best quadratic in the number of
+samples. We here compare the performance in terms of AUC and training time on
+classical anomaly detection datasets.
+
+The :class:`OneClassSVM` is applied with a Gaussian kernel and we therefore
+use a kernel approximation prior to the application of :class:`SGDOneClassSVM`.
+"""
+
+from time import time
+import numpy as np
+
+from scipy.interpolate import interp1d
+
+from sklearn.metrics import roc_curve, auc
+from sklearn.datasets import fetch_kddcup99, fetch_covtype
+from sklearn.preprocessing import LabelBinarizer, StandardScaler
+from sklearn.pipeline import make_pipeline
+from sklearn.utils import shuffle
+from sklearn.kernel_approximation import Nystroem
+from sklearn.svm import OneClassSVM
+from sklearn.linear_model import SGDOneClassSVM
+
+import matplotlib.pyplot as plt
+import matplotlib
+
+font = {'weight': 'normal',
+ 'size': 15}
+
+matplotlib.rc('font', **font)
+
+print(__doc__)
+
+
+def print_outlier_ratio(y):
+ """
+ Helper function to show the distinct value count of element in the target.
+ Useful indicator for the datasets used in bench_isolation_forest.py.
+ """
+ uniq, cnt = np.unique(y, return_counts=True)
+ print("----- Target count values: ")
+ for u, c in zip(uniq, cnt):
+ print("------ %s -> %d occurrences" % (str(u), c))
+ print("----- Outlier ratio: %.5f" % (np.min(cnt) / len(y)))
+
+
+# for roc curve computation
+n_axis = 1000
+x_axis = np.linspace(0, 1, n_axis)
+
+datasets = ['http', 'smtp', 'SA', 'SF', 'forestcover']
+
+novelty_detection = False # if False, training set polluted by outliers
+
+random_states = [42]
+nu = 0.05
+
+results_libsvm = np.empty((len(datasets), n_axis + 5))
+results_online = np.empty((len(datasets), n_axis + 5))
+
+for dat, dataset_name in enumerate(datasets):
+
+ print(dataset_name)
+
+ # Loading datasets
+ if dataset_name in ['http', 'smtp', 'SA', 'SF']:
+ dataset = fetch_kddcup99(subset=dataset_name, shuffle=False,
+ percent10=False, random_state=88)
+ X = dataset.data
+ y = dataset.target
+
+ if dataset_name == 'forestcover':
+ dataset = fetch_covtype(shuffle=False)
+ X = dataset.data
+ y = dataset.target
+ # normal data are those with attribute 2
+ # abnormal those with attribute 4
+ s = (y == 2) + (y == 4)
+ X = X[s, :]
+ y = y[s]
+ y = (y != 2).astype(int)
+
+ # Vectorizing data
+ if dataset_name == 'SF':
+ # Casting type of X (object) as string is needed for string categorical
+ # features to apply LabelBinarizer
+ lb = LabelBinarizer()
+ x1 = lb.fit_transform(X[:, 1].astype(str))
+ X = np.c_[X[:, :1], x1, X[:, 2:]]
+ y = (y != b'normal.').astype(int)
+
+ if dataset_name == 'SA':
+ lb = LabelBinarizer()
+ # Casting type of X (object) as string is needed for string categorical
+ # features to apply LabelBinarizer
+ x1 = lb.fit_transform(X[:, 1].astype(str))
+ x2 = lb.fit_transform(X[:, 2].astype(str))
+ x3 = lb.fit_transform(X[:, 3].astype(str))
+ X = np.c_[X[:, :1], x1, x2, x3, X[:, 4:]]
+ y = (y != b'normal.').astype(int)
+
+ if dataset_name in ['http', 'smtp']:
+ y = (y != b'normal.').astype(int)
+
+ print_outlier_ratio(y)
+
+ n_samples, n_features = np.shape(X)
+ if dataset_name == 'SA': # LibSVM too long with n_samples // 2
+ n_samples_train = n_samples // 20
+ else:
+ n_samples_train = n_samples // 2
+
+ n_samples_test = n_samples - n_samples_train
+ print('n_train: ', n_samples_train)
+ print('n_features: ', n_features)
+
+ tpr_libsvm = np.zeros(n_axis)
+ tpr_online = np.zeros(n_axis)
+ fit_time_libsvm = 0
+ fit_time_online = 0
+ predict_time_libsvm = 0
+ predict_time_online = 0
+
+ X = X.astype(float)
+
+ gamma = 1 / n_features # OCSVM default parameter
+
+ for random_state in random_states:
+
+ print('random state: %s' % random_state)
+
+ X, y = shuffle(X, y, random_state=random_state)
+ X_train = X[:n_samples_train]
+ X_test = X[n_samples_train:]
+ y_train = y[:n_samples_train]
+ y_test = y[n_samples_train:]
+
+ if novelty_detection:
+ X_train = X_train[y_train == 0]
+ y_train = y_train[y_train == 0]
+
+ std = StandardScaler()
+
+ print('----------- LibSVM OCSVM ------------')
+ ocsvm = OneClassSVM(kernel='rbf', gamma=gamma, nu=nu)
+ pipe_libsvm = make_pipeline(std, ocsvm)
+
+ tstart = time()
+ pipe_libsvm.fit(X_train)
+ fit_time_libsvm += time() - tstart
+
+ tstart = time()
+ # scoring such that the lower, the more normal
+ scoring = -pipe_libsvm.decision_function(X_test)
+ predict_time_libsvm += time() - tstart
+ fpr_libsvm_, tpr_libsvm_, _ = roc_curve(y_test, scoring)
+
+ f_libsvm = interp1d(fpr_libsvm_, tpr_libsvm_)
+ tpr_libsvm += f_libsvm(x_axis)
+
+ print('----------- Online OCSVM ------------')
+ nystroem = Nystroem(gamma=gamma, random_state=random_state)
+ online_ocsvm = SGDOneClassSVM(nu=nu, random_state=random_state)
+ pipe_online = make_pipeline(std, nystroem, online_ocsvm)
+
+ tstart = time()
+ pipe_online.fit(X_train)
+ fit_time_online += time() - tstart
+
+ tstart = time()
+ # scoring such that the lower, the more normal
+ scoring = -pipe_online.decision_function(X_test)
+ predict_time_online += time() - tstart
+ fpr_online_, tpr_online_, _ = roc_curve(y_test, scoring)
+
+ f_online = interp1d(fpr_online_, tpr_online_)
+ tpr_online += f_online(x_axis)
+
+ tpr_libsvm /= len(random_states)
+ tpr_libsvm[0] = 0.
+ fit_time_libsvm /= len(random_states)
+ predict_time_libsvm /= len(random_states)
+ auc_libsvm = auc(x_axis, tpr_libsvm)
+
+ results_libsvm[dat] = ([fit_time_libsvm, predict_time_libsvm,
+ auc_libsvm, n_samples_train,
+ n_features] + list(tpr_libsvm))
+
+ tpr_online /= len(random_states)
+ tpr_online[0] = 0.
+ fit_time_online /= len(random_states)
+ predict_time_online /= len(random_states)
+ auc_online = auc(x_axis, tpr_online)
+
+ results_online[dat] = ([fit_time_online, predict_time_online,
+ auc_online, n_samples_train,
+ n_features] + list(tpr_libsvm))
+
+
+# -------- Plotting bar charts -------------
+fit_time_libsvm_all = results_libsvm[:, 0]
+predict_time_libsvm_all = results_libsvm[:, 1]
+auc_libsvm_all = results_libsvm[:, 2]
+n_train_all = results_libsvm[:, 3]
+n_features_all = results_libsvm[:, 4]
+
+fit_time_online_all = results_online[:, 0]
+predict_time_online_all = results_online[:, 1]
+auc_online_all = results_online[:, 2]
+
+
+width = 0.7
+ind = 2 * np.arange(len(datasets))
+x_tickslabels = [(name + '\n' + r'$n={:,d}$' + '\n' + r'$d={:d}$')
+ .format(int(n), int(d))
+ for name, n, d in zip(datasets, n_train_all, n_features_all)]
+
+
+def autolabel_auc(rects, ax):
+ """Attach a text label above each bar displaying its height."""
+ for rect in rects:
+ height = rect.get_height()
+ ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height,
+ '%.3f' % height, ha='center', va='bottom')
+
+
+def autolabel_time(rects, ax):
+ """Attach a text label above each bar displaying its height."""
+ for rect in rects:
+ height = rect.get_height()
+ ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height,
+ '%.1f' % height, ha='center', va='bottom')
+
+
+fig, ax = plt.subplots(figsize=(15, 8))
+ax.set_ylabel('AUC')
+ax.set_ylim((0, 1.3))
+rect_libsvm = ax.bar(ind, auc_libsvm_all, width=width, color='r')
+rect_online = ax.bar(ind + width, auc_online_all, width=width, color='y')
+ax.legend((rect_libsvm[0], rect_online[0]), ('LibSVM', 'Online SVM'))
+ax.set_xticks(ind + width / 2)
+ax.set_xticklabels(x_tickslabels)
+autolabel_auc(rect_libsvm, ax)
+autolabel_auc(rect_online, ax)
+plt.show()
+
+
+fig, ax = plt.subplots(figsize=(15, 8))
+ax.set_ylabel('Training time (sec) - Log scale')
+ax.set_yscale('log')
+rect_libsvm = ax.bar(ind, fit_time_libsvm_all, color='r', width=width)
+rect_online = ax.bar(ind + width, fit_time_online_all, color='y', width=width)
+ax.legend((rect_libsvm[0], rect_online[0]), ('LibSVM', 'Online SVM'))
+ax.set_xticks(ind + width / 2)
+ax.set_xticklabels(x_tickslabels)
+autolabel_time(rect_libsvm, ax)
+autolabel_time(rect_online, ax)
+plt.show()
+
+
+fig, ax = plt.subplots(figsize=(15, 8))
+ax.set_ylabel('Testing time (sec) - Log scale')
+ax.set_yscale('log')
+rect_libsvm = ax.bar(ind, predict_time_libsvm_all, color='r', width=width)
+rect_online = ax.bar(ind + width, predict_time_online_all,
+ color='y', width=width)
+ax.legend((rect_libsvm[0], rect_online[0]), ('LibSVM', 'Online SVM'))
+ax.set_xticks(ind + width / 2)
+ax.set_xticklabels(x_tickslabels)
+autolabel_time(rect_libsvm, ax)
+autolabel_time(rect_online, ax)
+plt.show()
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index ceebfc337352a..45195dcedec64 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -762,6 +762,7 @@ Linear classifiers
linear_model.RidgeClassifier
linear_model.RidgeClassifierCV
linear_model.SGDClassifier
+ linear_model.SGDOneClassSVM
Classical linear regressors
---------------------------
diff --git a/doc/modules/outlier_detection.rst b/doc/modules/outlier_detection.rst
index 5d2008f3c3f58..14495bc558dab 100644
--- a/doc/modules/outlier_detection.rst
+++ b/doc/modules/outlier_detection.rst
@@ -110,9 +110,14 @@ does not perform very well for outlier detection. That being said, outlier
detection in high-dimension, or without any assumptions on the distribution
of the inlying data is very challenging. :class:`svm.OneClassSVM` may still
be used with outlier detection but requires fine-tuning of its hyperparameter
-`nu` to handle outliers and prevent overfitting. Finally,
-:class:`covariance.EllipticEnvelope` assumes the data is Gaussian and learns
-an ellipse. For more details on the different estimators refer to the example
+`nu` to handle outliers and prevent overfitting.
+:class:`linear_model.SGDOneClassSVM` provides an implementation of a
+linear One-Class SVM with a linear complexity in the number of samples. This
+implementation is here used with a kernel approximation technique to obtain
+results similar to :class:`svm.OneClassSVM` which uses a Gaussian kernel
+by default. Finally, :class:`covariance.EllipticEnvelope` assumes the data is
+Gaussian and learns an ellipse. For more details on the different estimators
+refer to the example
:ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` and the
sections hereunder.
@@ -173,6 +178,23 @@ but regular, observation outside the frontier.
:scale: 75%
+Scaling up the One-Class SVM
+----------------------------
+
+An online linear version of the One-Class SVM is implemented in
+:class:`linear_model.SGDOneClassSVM`. This implementation scales linearly with
+the number of samples and can be used with a kernel approximation to
+approximate the solution of a kernelized :class:`svm.OneClassSVM` whose
+complexity is at best quadratic in the number of samples. See section
+:ref:`sgd_online_one_class_svm` for more details.
+
+.. topic:: Examples:
+
+ * See :ref:`sphx_glr_auto_examples_linear_model_plot_sgdocsvm_vs_ocsvm.py`
+ for an illustration of the approximation of a kernelized One-Class SVM
+ with the `linear_model.SGDOneClassSVM` combined with kernel approximation.
+
+
Outlier Detection
=================
@@ -278,8 +300,8 @@ allows you to add more trees to an already fitted model::
for a comparison of :class:`ensemble.IsolationForest` with
:class:`neighbors.LocalOutlierFactor`,
:class:`svm.OneClassSVM` (tuned to perform like an outlier detection
- method) and a covariance-based outlier detection with
- :class:`covariance.EllipticEnvelope`.
+ method), :class:`linear_model.SGDOneClassSVM`, and a covariance-based
+ outlier detection with :class:`covariance.EllipticEnvelope`.
.. topic:: References:
diff --git a/doc/modules/sgd.rst b/doc/modules/sgd.rst
index 1376947540e78..0a1d8407e64ae 100644
--- a/doc/modules/sgd.rst
+++ b/doc/modules/sgd.rst
@@ -232,6 +232,58 @@ For regression with a squared loss and a l2 penalty, another variant of
SGD with an averaging strategy is available with Stochastic Average
Gradient (SAG) algorithm, available as a solver in :class:`Ridge`.
+.. _sgd_online_one_class_svm:
+
+Online One-Class SVM
+====================
+
+The class :class:`sklearn.linear_model.SGDOneClassSVM` implements an online
+linear version of the One-Class SVM using a stochastic gradient descent.
+Combined with kernel approximation techniques,
+:class:`sklearn.linear_model.SGDOneClassSVM` can be used to approximate the
+solution of a kernelized One-Class SVM, implemented in
+:class:`sklearn.svm.OneClassSVM`, with a linear complexity in the number of
+samples. Note that the complexity of a kernelized One-Class SVM is at best
+quadratic in the number of samples.
+:class:`sklearn.linear_model.SGDOneClassSVM` is thus well suited for datasets
+with a large number of training samples (> 10,000) for which the SGD
+variant can be several orders of magnitude faster.
+
+Its implementation is based on the implementation of the stochastic
+gradient descent. Indeed, the original optimization problem of the One-Class
+SVM is given by
+
+.. math::
+
+ \begin{aligned}
+ \min_{w, \rho, \xi} & \quad \frac{1}{2}\Vert w \Vert^2 - \rho + \frac{1}{\nu n} \sum_{i=1}^n \xi_i \\
+ \text{s.t.} & \quad \langle w, x_i \rangle \geq \rho - \xi_i \quad 1 \leq i \leq n \\
+ & \quad \xi_i \geq 0 \quad 1 \leq i \leq n
+ \end{aligned}
+
+where :math:`\nu \in (0, 1]` is the user-specified parameter controlling the
+proportion of outliers and the proportion of support vectors. Getting rid of
+the slack variables :math:`\xi_i` this problem is equivalent to
+
+.. math::
+
+ \min_{w, \rho} \frac{1}{2}\Vert w \Vert^2 - \rho + \frac{1}{\nu n} \sum_{i=1}^n \max(0, \rho - \langle w, x_i \rangle) \, .
+
+Multiplying by the constant :math:`\nu` and introducing the intercept
+:math:`b = 1 - \rho` we obtain the following equivalent optimization problem
+
+.. math::
+
+ \min_{w, b} \frac{\nu}{2}\Vert w \Vert^2 + b\nu + \frac{1}{n} \sum_{i=1}^n \max(0, 1 - (\langle w, x_i \rangle + b)) \, .
+
+This is similar to the optimization problems studied in section
+:ref:`sgd_mathematical_formulation` with :math:`y_i = 1, 1 \leq i \leq n` and
+:math:`\alpha = \nu/2`, :math:`L` being the hinge loss function and :math:`R`
+being the L2 norm. We just need to add the term :math:`b\nu` in the
+optimization loop.
+
+As :class:`SGDClassifier` and :class:`SGDRegressor`, :class:`SGDOneClassSVM`
+supports averaged SGD. Averaging can be enabled by setting ``average=True``.
Stochastic Gradient Descent for sparse data
===========================================
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 521e358ac2f02..c252f5df1074e 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -147,6 +147,13 @@ Changelog
:mod:`sklearn.linear_model`
...........................
+- |Feature| The new :class:`linear_model.SGDOneClassSVM` provides an SGD
+ implementation of the linear One-Class SVM. Combined with kernel
+ approximation techniques, this implementation approximates the solution of
+ a kernelized One Class SVM while benefitting from a linear
+ complexity in the number of samples.
+ :pr:`10027` by :user:`Albert Thomas <albertcthomas>`.
+
- |Efficiency| The implementation of :class:`linear_model.LogisticRegression`
has been optimised for dense matrices when using `solver='newton-cg'` and
`multi_class!='multinomial'`.
diff --git a/examples/linear_model/plot_sgdocsvm_vs_ocsvm.py b/examples/linear_model/plot_sgdocsvm_vs_ocsvm.py
new file mode 100644
index 0000000000000..e70694cdb1c1b
--- /dev/null
+++ b/examples/linear_model/plot_sgdocsvm_vs_ocsvm.py
@@ -0,0 +1,135 @@
+"""
+====================================================================
+One-Class SVM versus One-Class SVM using Stochastic Gradient Descent
+====================================================================
+
+This example shows how to approximate the solution of
+:class:`sklearn.svm.OneClassSVM` in the case of an RBF kernel with
+:class:`sklearn.linear_model.SGDOneClassSVM`, a Stochastic Gradient Descent
+(SGD) version of the One-Class SVM. A kernel approximation is first used in
+order to apply :class:`sklearn.linear_model.SGDOneClassSVM` which implements a
+linear One-Class SVM using SGD.
+
+Note that :class:`sklearn.linear_model.SGDOneClassSVM` scales linearly with
+the number of samples whereas the complexity of a kernelized
+:class:`sklearn.svm.OneClassSVM` is at best quadratic with respect to the
+number of samples. It is not the purpose of this example to illustrate the
+benefits of such an approximation in terms of computation time but rather to
+show that we obtain similar results on a toy dataset.
+"""
+print(__doc__) # noqa
+
+import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib
+from sklearn.svm import OneClassSVM
+from sklearn.linear_model import SGDOneClassSVM
+from sklearn.kernel_approximation import Nystroem
+from sklearn.pipeline import make_pipeline
+
+font = {'weight': 'normal',
+ 'size': 15}
+
+matplotlib.rc('font', **font)
+
+random_state = 42
+rng = np.random.RandomState(random_state)
+
+# Generate train data
+X = 0.3 * rng.randn(500, 2)
+X_train = np.r_[X + 2, X - 2]
+# Generate some regular novel observations
+X = 0.3 * rng.randn(20, 2)
+X_test = np.r_[X + 2, X - 2]
+# Generate some abnormal novel observations
+X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
+
+xx, yy = np.meshgrid(np.linspace(-4.5, 4.5, 50), np.linspace(-4.5, 4.5, 50))
+
+# OCSVM hyperparameters
+nu = 0.05
+gamma = 2.
+
+# Fit the One-Class SVM
+clf = OneClassSVM(gamma=gamma, kernel='rbf', nu=nu)
+clf.fit(X_train)
+y_pred_train = clf.predict(X_train)
+y_pred_test = clf.predict(X_test)
+y_pred_outliers = clf.predict(X_outliers)
+n_error_train = y_pred_train[y_pred_train == -1].size
+n_error_test = y_pred_test[y_pred_test == -1].size
+n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size
+
+Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
+Z = Z.reshape(xx.shape)
+
+
+# Fit the One-Class SVM using a kernel approximation and SGD
+transform = Nystroem(gamma=gamma, random_state=random_state)
+clf_sgd = SGDOneClassSVM(nu=nu, shuffle=True, fit_intercept=True,
+ random_state=random_state, tol=1e-4)
+pipe_sgd = make_pipeline(transform, clf_sgd)
+pipe_sgd.fit(X_train)
+y_pred_train_sgd = pipe_sgd.predict(X_train)
+y_pred_test_sgd = pipe_sgd.predict(X_test)
+y_pred_outliers_sgd = pipe_sgd.predict(X_outliers)
+n_error_train_sgd = y_pred_train_sgd[y_pred_train_sgd == -1].size
+n_error_test_sgd = y_pred_test_sgd[y_pred_test_sgd == -1].size
+n_error_outliers_sgd = y_pred_outliers_sgd[y_pred_outliers_sgd == 1].size
+
+Z_sgd = pipe_sgd.decision_function(np.c_[xx.ravel(), yy.ravel()])
+Z_sgd = Z_sgd.reshape(xx.shape)
+
+# plot the level sets of the decision function
+plt.figure(figsize=(9, 6))
+plt.title('One Class SVM')
+plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu)
+a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='darkred')
+plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='palevioletred')
+
+s = 20
+b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=s, edgecolors='k')
+b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='blueviolet', s=s,
+ edgecolors='k')
+c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='gold', s=s,
+ edgecolors='k')
+plt.axis('tight')
+plt.xlim((-4.5, 4.5))
+plt.ylim((-4.5, 4.5))
+plt.legend([a.collections[0], b1, b2, c],
+ ["learned frontier", "training observations",
+ "new regular observations", "new abnormal observations"],
+ loc="upper left")
+plt.xlabel(
+ "error train: %d/%d; errors novel regular: %d/%d; "
+ "errors novel abnormal: %d/%d"
+ % (n_error_train, X_train.shape[0], n_error_test, X_test.shape[0],
+ n_error_outliers, X_outliers.shape[0]))
+plt.show()
+
+plt.figure(figsize=(9, 6))
+plt.title('Online One-Class SVM')
+plt.contourf(xx, yy, Z_sgd, levels=np.linspace(Z_sgd.min(), 0, 7),
+ cmap=plt.cm.PuBu)
+a = plt.contour(xx, yy, Z_sgd, levels=[0], linewidths=2, colors='darkred')
+plt.contourf(xx, yy, Z_sgd, levels=[0, Z_sgd.max()], colors='palevioletred')
+
+s = 20
+b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=s, edgecolors='k')
+b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='blueviolet', s=s,
+ edgecolors='k')
+c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='gold', s=s,
+ edgecolors='k')
+plt.axis('tight')
+plt.xlim((-4.5, 4.5))
+plt.ylim((-4.5, 4.5))
+plt.legend([a.collections[0], b1, b2, c],
+ ["learned frontier", "training observations",
+ "new regular observations", "new abnormal observations"],
+ loc="upper left")
+plt.xlabel(
+ "error train: %d/%d; errors novel regular: %d/%d; "
+ "errors novel abnormal: %d/%d"
+ % (n_error_train_sgd, X_train.shape[0], n_error_test_sgd, X_test.shape[0],
+ n_error_outliers_sgd, X_outliers.shape[0]))
+plt.show()
diff --git a/examples/miscellaneous/plot_anomaly_comparison.py b/examples/miscellaneous/plot_anomaly_comparison.py
index b5ebd96bd8815..c0c3a4f890923 100644
--- a/examples/miscellaneous/plot_anomaly_comparison.py
+++ b/examples/miscellaneous/plot_anomaly_comparison.py
@@ -22,7 +22,17 @@
One-class SVM might give useful results in these situations depending on the
value of its hyperparameters.
-:class:`~sklearn.covariance.EllipticEnvelope` assumes the data is Gaussian and
+The :class:`sklearn.linear_model.SGDOneClassSVM` is an implementation of the
+One-Class SVM based on stochastic gradient descent (SGD). Combined with kernel
+approximation, this estimator can be used to approximate the solution
+of a kernelized :class:`sklearn.svm.OneClassSVM`. We note that, although not
+identical, the decision boundaries of the
+:class:`sklearn.linear_model.SGDOneClassSVM` and the ones of
+:class:`sklearn.svm.OneClassSVM` are very similar. The main advantage of using
+:class:`sklearn.linear_model.SGDOneClassSVM` is that it scales linearly with
+the number of samples.
+
+:class:`sklearn.covariance.EllipticEnvelope` assumes the data is Gaussian and
learns an ellipse. It thus degrades when the data is not unimodal. Notice
however that this estimator is robust to outliers.
@@ -66,6 +76,9 @@
from sklearn.covariance import EllipticEnvelope
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
+from sklearn.linear_model import SGDOneClassSVM
+from sklearn.kernel_approximation import Nystroem
+from sklearn.pipeline import make_pipeline
print(__doc__)
@@ -77,11 +90,18 @@
n_outliers = int(outliers_fraction * n_samples)
n_inliers = n_samples - n_outliers
-# define outlier/anomaly detection methods to be compared
+# define outlier/anomaly detection methods to be compared.
+# the SGDOneClassSVM must be used in a pipeline with a kernel approximation
+# to give similar results to the OneClassSVM
anomaly_algorithms = [
("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)),
("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf",
gamma=0.1)),
+ ("One-Class SVM (SGD)", make_pipeline(
+ Nystroem(gamma=0.1, random_state=42, n_components=150),
+ SGDOneClassSVM(nu=outliers_fraction, shuffle=True,
+ fit_intercept=True, random_state=42, tol=1e-6)
+ )),
("Isolation Forest", IsolationForest(contamination=outliers_fraction,
random_state=42)),
("Local Outlier Factor", LocalOutlierFactor(
@@ -104,7 +124,7 @@
xx, yy = np.meshgrid(np.linspace(-7, 7, 150),
np.linspace(-7, 7, 150))
-plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5))
+plt.figure(figsize=(len(anomaly_algorithms) * 2 + 4, 12.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,
hspace=.01)
@@ -113,8 +133,8 @@
for i_dataset, X in enumerate(datasets):
# Add outliers
- X = np.concatenate([X, rng.uniform(low=-6, high=6,
- size=(n_outliers, 2))], axis=0)
+ X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))],
+ axis=0)
for name, algorithm in anomaly_algorithms:
t0 = time.time()
diff --git a/sklearn/linear_model/__init__.py b/sklearn/linear_model/__init__.py
index 110e0008bccc9..f715e30795961 100644
--- a/sklearn/linear_model/__init__.py
+++ b/sklearn/linear_model/__init__.py
@@ -18,7 +18,7 @@
GammaRegressor, TweedieRegressor)
from ._huber import HuberRegressor
from ._sgd_fast import Hinge, Log, ModifiedHuber, SquaredLoss, Huber
-from ._stochastic_gradient import SGDClassifier, SGDRegressor
+from ._stochastic_gradient import SGDClassifier, SGDRegressor, SGDOneClassSVM
from ._ridge import (Ridge, RidgeCV, RidgeClassifier, RidgeClassifierCV,
ridge_regression)
from ._logistic import LogisticRegression, LogisticRegressionCV
@@ -65,6 +65,7 @@
'RidgeClassifierCV',
'SGDClassifier',
'SGDRegressor',
+ 'SGDOneClassSVM',
'SquaredLoss',
'TheilSenRegressor',
'enet_path',
diff --git a/sklearn/linear_model/_sgd_fast.pyx b/sklearn/linear_model/_sgd_fast.pyx
index 3940e5d873669..dab7b36b14d0e 100644
--- a/sklearn/linear_model/_sgd_fast.pyx
+++ b/sklearn/linear_model/_sgd_fast.pyx
@@ -55,7 +55,7 @@ cdef class LossFunction:
Parameters
----------
p : double
- The prediction, p = w^T x
+ The prediction, p = w^T x + intercept
y : double
The true value (aka target)
@@ -358,6 +358,7 @@ def _plain_sgd(np.ndarray[double, ndim=1, mode='c'] weights,
double weight_pos, double weight_neg,
int learning_rate, double eta0,
double power_t,
+ bint one_class,
double t=1.0,
double intercept_decay=1.0,
int average=0):
@@ -427,6 +428,8 @@ def _plain_sgd(np.ndarray[double, ndim=1, mode='c'] weights,
The initial learning rate.
power_t : double
The exponent for inverse scaling learning rate.
+ one_class : boolean
+ Whether to solve the One-Class SVM optimization problem.
t : double
Initial state of the learning rate. This value is equal to the
iteration count except when the learning rate is set to `optimal`.
@@ -435,6 +438,7 @@ def _plain_sgd(np.ndarray[double, ndim=1, mode='c'] weights,
The number of iterations before averaging starts. average=1 is
equivalent to averaging for all iterations.
+
Returns
-------
weights : array, shape=[n_features]
@@ -468,6 +472,7 @@ def _plain_sgd(np.ndarray[double, ndim=1, mode='c'] weights,
cdef double eta = 0.0
cdef double p = 0.0
cdef double update = 0.0
+ cdef double intercept_update = 0.0
cdef double sumloss = 0.0
cdef double score = 0.0
cdef double best_loss = INFINITY
@@ -574,10 +579,15 @@ def _plain_sgd(np.ndarray[double, ndim=1, mode='c'] weights,
# do not scale to negative values when eta or alpha are too
# big: instead set the weights to zero
w.scale(max(0, 1.0 - ((1.0 - l1_ratio) * eta * alpha)))
+
if update != 0.0:
w.add(x_data_ptr, x_ind_ptr, xnnz, update)
- if fit_intercept == 1:
- intercept += update * intercept_decay
+ if fit_intercept == 1:
+ intercept_update = update
+ if one_class: # specific for One-Class SVM
+ intercept_update -= 2. * eta * alpha
+ if intercept_update != 0:
+ intercept += intercept_update * intercept_decay
if 0 < average <= t:
# compute the average for the intercept and update the
diff --git a/sklearn/linear_model/_stochastic_gradient.py b/sklearn/linear_model/_stochastic_gradient.py
index a426c9a8d95f2..44ecf564ffcc5 100644
--- a/sklearn/linear_model/_stochastic_gradient.py
+++ b/sklearn/linear_model/_stochastic_gradient.py
@@ -2,7 +2,9 @@
# Mathieu Blondel (partial_fit support)
#
# License: BSD 3 clause
-"""Classification and regression using Stochastic Gradient Descent (SGD)."""
+"""Classification, regression and One-Class SVM using Stochastic Gradient
+Descent (SGD).
+"""
import numpy as np
import warnings
@@ -14,7 +16,7 @@
from ..base import clone, is_classifier
from ._base import LinearClassifierMixin, SparseCoefMixin
from ._base import make_dataset
-from ..base import BaseEstimator, RegressorMixin
+from ..base import BaseEstimator, RegressorMixin, OutlierMixin
from ..utils import check_random_state
from ..utils.extmath import safe_sparse_dot
from ..utils.multiclass import _check_partial_fit_first_call
@@ -134,7 +136,7 @@ def _validate_params(self, for_partial_fit=False):
raise ValueError("max_iter must be > zero. Got %f" % self.max_iter)
if not (0.0 <= self.l1_ratio <= 1.0):
raise ValueError("l1_ratio must be in [0, 1]")
- if self.alpha < 0.0:
+ if not isinstance(self, SGDOneClassSVM) and self.alpha < 0.0:
raise ValueError("alpha must be >= 0")
if self.n_iter_no_change < 1:
raise ValueError("n_iter_no_change must be >= 1")
@@ -190,7 +192,7 @@ def _get_penalty_type(self, penalty):
raise ValueError("Penalty %s is not supported. " % penalty) from e
def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None,
- intercept_init=None):
+ intercept_init=None, one_class=0):
"""Allocate mem for parameters; initialize if provided."""
if n_classes > 2:
# allocate coef_ for multi-class
@@ -215,7 +217,7 @@ def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None,
self.intercept_ = np.zeros(n_classes, dtype=np.float64,
order="C")
else:
- # allocate coef_ for binary problem
+ # allocate coef_
if coef_init is not None:
coef_init = np.asarray(coef_init, dtype=np.float64,
order="C")
@@ -229,26 +231,36 @@ def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None,
dtype=np.float64,
order="C")
- # allocate intercept_ for binary problem
+ # allocate intercept_
if intercept_init is not None:
intercept_init = np.asarray(intercept_init, dtype=np.float64)
if intercept_init.shape != (1,) and intercept_init.shape != ():
raise ValueError("Provided intercept_init "
"does not match dataset.")
- self.intercept_ = intercept_init.reshape(1,)
+ if one_class:
+ self.offset_ = intercept_init.reshape(1,)
+ else:
+ self.intercept_ = intercept_init.reshape(1,)
else:
- self.intercept_ = np.zeros(1, dtype=np.float64, order="C")
+ if one_class:
+ self.offset_ = np.zeros(1, dtype=np.float64, order="C")
+ else:
+ self.intercept_ = np.zeros(1, dtype=np.float64, order="C")
# initialize average parameters
if self.average > 0:
self._standard_coef = self.coef_
- self._standard_intercept = self.intercept_
self._average_coef = np.zeros(self.coef_.shape,
dtype=np.float64,
order="C")
- self._average_intercept = np.zeros(self._standard_intercept.shape,
- dtype=np.float64,
- order="C")
+ if one_class:
+ self._standard_intercept = 1 - self.offset_
+ else:
+ self._standard_intercept = self.intercept_
+
+ self._average_intercept = np.zeros(
+ self._standard_intercept.shape, dtype=np.float64,
+ order="C")
def _make_validation_split(self, y):
"""Split the dataset between training set and validation set.
@@ -447,7 +459,7 @@ def fit_binary(est, i, X, y, alpha, C, learning_rate, max_iter,
est.early_stopping, validation_score_cb, int(est.n_iter_no_change),
max_iter, tol, int(est.fit_intercept), int(est.verbose),
int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type,
- est.eta0, est.power_t, est.t_, intercept_decay, est.average)
+ est.eta0, est.power_t, 0, est.t_, intercept_decay, est.average)
if est.average:
if len(est.classes_) == 2:
@@ -1363,7 +1375,7 @@ def _fit_regressor(self, X, y, alpha, C, loss, learning_rate,
seed,
1.0, 1.0,
learning_rate_type,
- self.eta0, self.power_t, self.t_,
+ self.eta0, self.power_t, 0, self.t_,
intercept_decay, self.average)
self.t_ += self.n_iter_ * X.shape[0]
@@ -1626,3 +1638,449 @@ def _more_tags(self):
'zero sample_weight is not equivalent to removing samples',
}
}
+
+
+class SGDOneClassSVM(BaseSGD, OutlierMixin):
+ """Solves linear One-Class SVM using Stochastic Gradient Descent.
+
+ This implementation is meant to be used with a kernel approximation
+ technique (e.g. `sklearn.kernel_approximation.Nystroem`) to obtain results
+ similar to `sklearn.svm.OneClassSVM` which uses a Gaussian kernel by
+ default.
+
+ Read more in the :ref:`User Guide <sgd_online_one_class_svm>`.
+
+ .. versionadded:: 1.0
+
+ Parameters
+ ----------
+ nu : float, optional
+ The nu parameter of the One Class SVM: an upper bound on the
+ fraction of training errors and a lower bound of the fraction of
+ support vectors. Should be in the interval (0, 1]. By default 0.5
+ will be taken.
+
+ fit_intercept : bool
+ Whether the intercept should be estimated or not. Defaults to True.
+
+ max_iter : int, optional
+ The maximum number of passes over the training data (aka epochs).
+ It only impacts the behavior in the ``fit`` method, and not the
+ `partial_fit`. Defaults to 1000.
+
+ tol : float or None, optional
+ The stopping criterion. If it is not None, the iterations will stop
+ when (loss > previous_loss - tol). Defaults to 1e-3.
+
+ shuffle : bool, optional
+ Whether or not the training data should be shuffled after each epoch.
+ Defaults to True.
+
+ verbose : integer, optional
+ The verbosity level
+
+ random_state : int, RandomState instance or None, optional (default=None)
+ The seed of the pseudo random number generator to use when shuffling
+ the data. If int, random_state is the seed used by the random number
+ generator; If RandomState instance, random_state is the random number
+ generator; If None, the random number generator is the RandomState
+ instance used by `np.random`.
+
+ learning_rate : string, optional
+ The learning rate schedule:
+
+ 'constant':
+ eta = eta0
+ 'optimal': [default]
+ eta = 1.0 / (alpha * (t + t0))
+ where t0 is chosen by a heuristic proposed by Leon Bottou.
+ 'invscaling':
+ eta = eta0 / pow(t, power_t)
+ 'adaptive':
+ eta = eta0, as long as the training keeps decreasing.
+ Each time n_iter_no_change consecutive epochs fail to decrease the
+ training loss by tol or fail to increase validation score by tol if
+ early_stopping is True, the current learning rate is divided by 5.
+
+ eta0 : double
+ The initial learning rate for the 'constant', 'invscaling' or
+ 'adaptive' schedules. The default value is 0.0 as eta0 is not used by
+ the default schedule 'optimal'.
+
+ power_t : double
+ The exponent for inverse scaling learning rate [default 0.5].
+
+ warm_start : bool, optional
+ When set to True, reuse the solution of the previous call to fit as
+ initialization, otherwise, just erase the previous solution.
+ See :term:`the Glossary <warm_start>`.
+
+ Repeatedly calling fit or partial_fit when warm_start is True can
+ result in a different solution than when calling fit a single time
+ because of the way the data is shuffled.
+ If a dynamic learning rate is used, the learning rate is adapted
+ depending on the number of samples already seen. Calling ``fit`` resets
+ this counter, while ``partial_fit`` will result in increasing the
+ existing counter.
+
+ average : bool or int, optional
+ When set to True, computes the averaged SGD weights and stores the
+ result in the ``coef_`` attribute. If set to an int greater than 1,
+ averaging will begin once the total number of samples seen reaches
+ average. So ``average=10`` will begin averaging after seeing 10
+ samples.
+
+ Attributes
+ ----------
+ coef_ : array, shape (1, n_features)
+ Weights assigned to the features.
+
+ offset_ : array, shape (1,)
+ Offset used to define the decision function from the raw scores.
+ We have the relation: decision_function = score_samples - offset.
+
+ n_iter_ : int
+ The actual number of iterations to reach the stopping criterion.
+
+ t_ : int
+ Number of weight updates performed during training.
+ Same as ``(n_iter_ * n_samples)``.
+
+ loss_function_ : concrete ``LossFunction``
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from sklearn import linear_model
+ >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
+ >>> clf = linear_model.SGDOneClassSVM(random_state=42)
+ >>> clf.fit(X)
+ SGDOneClassSVM(random_state=42)
+
+ >>> print(clf.predict([[4, 4]]))
+ [1]
+
+ See also
+ --------
+ sklearn.svm.OneClassSVM
+
+ Notes
+ -----
+ This estimator has a linear complexity in the number of training samples
+ and is thus better suited than the `sklearn.svm.OneClassSVM`
+ implementation for datasets with a large number of training samples (say
+ > 10,000).
+ """
+
+ loss_functions = {"hinge": (Hinge, 1.0)}
+
+ def __init__(self, nu=0.5, fit_intercept=True, max_iter=1000, tol=1e-3,
+ shuffle=True, verbose=0, random_state=None,
+ learning_rate="optimal", eta0=0.0, power_t=0.5,
+ warm_start=False, average=False):
+
+ alpha = nu / 2
+ self.nu = nu
+ super(SGDOneClassSVM, self).__init__(
+ loss="hinge", penalty='l2', alpha=alpha, C=1.0, l1_ratio=0,
+ fit_intercept=fit_intercept, max_iter=max_iter, tol=tol,
+ shuffle=shuffle, verbose=verbose, epsilon=DEFAULT_EPSILON,
+ random_state=random_state, learning_rate=learning_rate,
+ eta0=eta0, power_t=power_t, early_stopping=False,
+ validation_fraction=0.1, n_iter_no_change=5,
+ warm_start=warm_start, average=average)
+
+ def _validate_params(self, for_partial_fit=False):
+ """Validate input params. """
+ if not(0 < self.nu <= 1):
+ raise ValueError("nu must be in (0, 1], got nu=%f" % self.nu)
+
+ super(SGDOneClassSVM, self)._validate_params(
+ for_partial_fit=for_partial_fit)
+
+ def _fit_one_class(self, X, alpha, C, sample_weight,
+ learning_rate, max_iter):
+ """Uses SGD implementation with X and y=np.ones(n_samples)."""
+
+ # The One-Class SVM uses the SGD implementation with
+ # y=np.ones(n_samples).
+ n_samples = X.shape[0]
+ y = np.ones(n_samples, dtype=np.float64, order="C")
+
+ dataset, offset_decay = make_dataset(X, y, sample_weight)
+
+ penalty_type = self._get_penalty_type(self.penalty)
+ learning_rate_type = self._get_learning_rate_type(learning_rate)
+
+ # early stopping is set to False for the One-Class SVM. thus
+ # validation_mask and validation_score_cb will be set to values
+ # associated to early_stopping=False in _make_validation_split and
+ # _make_validation_score_cb respectively.
+ validation_mask = self._make_validation_split(y)
+ validation_score_cb = self._make_validation_score_cb(
+ validation_mask, X, y, sample_weight)
+
+ random_state = check_random_state(self.random_state)
+ # numpy mtrand expects a C long which is a signed 32 bit integer under
+ # Windows
+ seed = random_state.randint(0, np.iinfo(np.int32).max)
+
+ tol = self.tol if self.tol is not None else -np.inf
+
+ one_class = 1
+ # There are no class weights for the One-Class SVM and they are
+ # therefore set to 1.
+ pos_weight = 1
+ neg_weight = 1
+
+ if self.average:
+ coef = self._standard_coef
+ intercept = self._standard_intercept
+ average_coef = self._average_coef
+ average_intercept = self._average_intercept
+ else:
+ coef = self.coef_
+ intercept = 1 - self.offset_
+ average_coef = None # Not used
+ average_intercept = [0] # Not used
+
+ coef, intercept, average_coef, average_intercept, self.n_iter_ = \
+ _plain_sgd(coef,
+ intercept[0],
+ average_coef,
+ average_intercept[0],
+ self.loss_function_,
+ penalty_type,
+ alpha, C,
+ self.l1_ratio,
+ dataset,
+ validation_mask, self.early_stopping,
+ validation_score_cb,
+ int(self.n_iter_no_change),
+ max_iter, tol,
+ int(self.fit_intercept),
+ int(self.verbose),
+ int(self.shuffle),
+ seed,
+ neg_weight, pos_weight,
+ learning_rate_type,
+ self.eta0, self.power_t,
+ one_class, self.t_,
+ offset_decay, self.average)
+
+ self.t_ += self.n_iter_ * n_samples
+
+ if self.average > 0:
+
+ self._average_intercept = np.atleast_1d(average_intercept)
+ self._standard_intercept = np.atleast_1d(intercept)
+
+ if self.average <= self.t_ - 1.0:
+ # made enough updates for averaging to be taken into account
+ self.coef_ = average_coef
+ self.offset_ = 1 - np.atleast_1d(average_intercept)
+ else:
+ self.coef_ = coef
+ self.offset_ = 1 - np.atleast_1d(intercept)
+
+ else:
+ self.offset_ = 1 - np.atleast_1d(intercept)
+
+ def _partial_fit(self, X, alpha, C, loss, learning_rate, max_iter,
+ sample_weight, coef_init, offset_init):
+ first_call = getattr(self, "coef_", None) is None
+ X = self._validate_data(
+ X, None, accept_sparse='csr', dtype=np.float64,
+ order="C", accept_large_sparse=False,
+ reset=first_call)
+
+ n_features = X.shape[1]
+
+ # Allocate datastructures from input arguments
+ sample_weight = _check_sample_weight(sample_weight, X)
+
+ # We use intercept = 1 - offset where intercept is the intercept of
+ # the SGD implementation and offset is the offset of the One-Class SVM
+ # optimization problem.
+ if getattr(self, "coef_", None) is None or coef_init is not None:
+ self._allocate_parameter_mem(1, n_features,
+ coef_init, offset_init, 1)
+ elif n_features != self.coef_.shape[-1]:
+ raise ValueError("Number of features %d does not match previous "
+ "data %d." % (n_features, self.coef_.shape[-1]))
+
+ if self.average and getattr(self, "_average_coef", None) is None:
+ self._average_coef = np.zeros(n_features, dtype=np.float64,
+ order="C")
+ self._average_intercept = np.zeros(1, dtype=np.float64, order="C")
+
+ self.loss_function_ = self._get_loss_function(loss)
+ if not hasattr(self, "t_"):
+ self.t_ = 1.0
+
+ # delegate to concrete training procedure
+ self._fit_one_class(X, alpha=alpha, C=C,
+ learning_rate=learning_rate,
+ sample_weight=sample_weight,
+ max_iter=max_iter)
+
+ return self
+
+ def partial_fit(self, X, y=None, sample_weight=None):
+ """Fit linear One-Class SVM with Stochastic Gradient Descent.
+
+ Parameters
+ ----------
+ X : {array-like, sparse matrix}, shape (n_samples, n_features)
+ Subset of the training data.
+
+ sample_weight : array-like, shape (n_samples,), optional
+ Weights applied to individual samples.
+ If not provided, uniform weights are assumed.
+
+ Returns
+ -------
+ self : returns an instance of self.
+ """
+
+ alpha = self.nu / 2
+ self._validate_params(for_partial_fit=True)
+
+ return self._partial_fit(X, alpha, C=1.0, loss=self.loss,
+ learning_rate=self.learning_rate,
+ max_iter=1,
+ sample_weight=sample_weight,
+ coef_init=None, offset_init=None)
+
+ def _fit(self, X, alpha, C, loss, learning_rate, coef_init=None,
+ offset_init=None, sample_weight=None):
+ self._validate_params()
+
+ if self.warm_start and hasattr(self, "coef_"):
+ if coef_init is None:
+ coef_init = self.coef_
+ if offset_init is None:
+ offset_init = self.offset_
+ else:
+ self.coef_ = None
+ self.offset_ = None
+
+ # Clear iteration count for multiple call to fit.
+ self.t_ = 1.0
+
+ self._partial_fit(X, alpha, C, loss, learning_rate, self.max_iter,
+ sample_weight, coef_init, offset_init)
+
+ if (self.tol is not None and self.tol > -np.inf
+ and self.n_iter_ == self.max_iter):
+ warnings.warn("Maximum number of iteration reached before "
+ "convergence. Consider increasing max_iter to "
+ "improve the fit.",
+ ConvergenceWarning)
+
+ return self
+
+ def fit(self, X, y=None, coef_init=None, offset_init=None,
+ sample_weight=None):
+ """Fit linear One-Class SVM with Stochastic Gradient Descent.
+
+ This solves an equivalent optimization problem of the
+ One-Class SVM primal optimization problem and returns a weight vector
+ w and an offset rho such that the decision function is given by
+ <w, x> - rho.
+
+ Parameters
+ ----------
+ X : {array-like, sparse matrix}, shape (n_samples, n_features)
+ Training data.
+
+ coef_init : array, shape (n_classes, n_features)
+ The initial coefficients to warm-start the optimization.
+
+ offset_init : array, shape (n_classes,)
+ The initial offset to warm-start the optimization.
+
+ sample_weight : array-like, shape (n_samples,), optional
+ Weights applied to individual samples.
+ If not provided, uniform weights are assumed. These weights will
+ be multiplied with class_weight (passed through the
+ constructor) if class_weight is specified.
+
+ Returns
+ -------
+ self : returns an instance of self.
+ """
+
+ alpha = self.nu / 2
+ self._fit(X, alpha=alpha, C=1.0,
+ loss=self.loss, learning_rate=self.learning_rate,
+ coef_init=coef_init, offset_init=offset_init,
+ sample_weight=sample_weight)
+
+ return self
+
+ def decision_function(self, X):
+ """Signed distance to the separating hyperplane.
+
+ Signed distance is positive for an inlier and negative for an
+ outlier.
+
+ Parameters
+ ----------
+ X : {array-like, sparse matrix}, shape (n_samples, n_features)
+ Testing data.
+
+ Returns
+ -------
+ dec : array-like, shape (n_samples,)
+ Decision function values of the samples.
+ """
+
+ check_is_fitted(self, "coef_")
+
+ X = self._validate_data(X, accept_sparse='csr', reset=False)
+ decisions = safe_sparse_dot(X, self.coef_.T,
+ dense_output=True) - self.offset_
+
+ return decisions.ravel()
+
+ def score_samples(self, X):
+ """Raw scoring function of the samples.
+
+ Parameters
+ ----------
+ X : {array-like, sparse matrix}, shape (n_samples, n_features)
+ Testing data.
+
+ Returns
+ -------
+ score_samples : array-like, shape (n_samples,)
+ Unshiffted scoring function values of the samples.
+ """
+ score_samples = self.decision_function(X) + self.offset_
+ return score_samples
+
+ def predict(self, X):
+ """Return labels (1 inlier, -1 outlier) of the samples.
+
+ Parameters
+ ----------
+ X : {array-like, sparse matrix}, shape (n_samples, n_features)
+ Testing data.
+
+ Returns
+ -------
+ y : array, shape (n_samples,)
+ Labels of the samples.
+ """
+ y = (self.decision_function(X) >= 0).astype(np.int32)
+ y[y == 0] = -1 # for consistency with outlier detectors
+ return y
+
+ def _more_tags(self):
+ return {
+ '_xfail_checks': {
+ 'check_sample_weights_invariance':
+ 'zero sample_weight is not equivalent to removing samples',
+ }
+ }
diff --git a/sklearn/svm/_classes.py b/sklearn/svm/_classes.py
index 908ece408bb1d..c402779f4eeb6 100644
--- a/sklearn/svm/_classes.py
+++ b/sklearn/svm/_classes.py
@@ -1334,6 +1334,10 @@ class OneClassSVM(OutlierMixin, BaseLibSVM):
array([-1, 1, 1, 1, -1])
>>> clf.score_samples(X)
array([1.7798..., 2.0547..., 2.0556..., 2.0561..., 1.7332...])
+
+ See also
+ --------
+ sklearn.linear_model.SGDOneClassSVM
"""
_impl = 'one_class'
|
diff --git a/sklearn/linear_model/tests/test_sgd.py b/sklearn/linear_model/tests/test_sgd.py
index aba043024fea3..f943592c02005 100644
--- a/sklearn/linear_model/tests/test_sgd.py
+++ b/sklearn/linear_model/tests/test_sgd.py
@@ -9,14 +9,16 @@
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
-from sklearn.utils._testing import assert_raises_regexp
from sklearn.utils._testing import ignore_warnings
from sklearn.utils.fixes import parse_version
from sklearn import linear_model, datasets, metrics
from sklearn.base import clone, is_classifier
+from sklearn.svm import OneClassSVM
from sklearn.preprocessing import LabelEncoder, scale, MinMaxScaler
from sklearn.preprocessing import StandardScaler
+from sklearn.kernel_approximation import Nystroem
+from sklearn.pipeline import make_pipeline
from sklearn.exceptions import ConvergenceWarning
from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit
from sklearn.linear_model import _sgd_fast as sgd_fast
@@ -67,6 +69,21 @@ def decision_function(self, X, *args, **kw):
**kw)
+class _SparseSGDOneClassSVM(linear_model.SGDOneClassSVM):
+ def fit(self, X, *args, **kw):
+ X = sp.csr_matrix(X)
+ return linear_model.SGDOneClassSVM.fit(self, X, *args, **kw)
+
+ def partial_fit(self, X, *args, **kw):
+ X = sp.csr_matrix(X)
+ return linear_model.SGDOneClassSVM.partial_fit(self, X, *args, **kw)
+
+ def decision_function(self, X, *args, **kw):
+ X = sp.csr_matrix(X)
+ return linear_model.SGDOneClassSVM.decision_function(self, X, *args,
+ **kw)
+
+
def SGDClassifier(**kwargs):
_update_kwargs(kwargs)
return linear_model.SGDClassifier(**kwargs)
@@ -77,6 +94,11 @@ def SGDRegressor(**kwargs):
return linear_model.SGDRegressor(**kwargs)
+def SGDOneClassSVM(**kwargs):
+ _update_kwargs(kwargs)
+ return linear_model.SGDOneClassSVM(**kwargs)
+
+
def SparseSGDClassifier(**kwargs):
_update_kwargs(kwargs)
return _SparseSGDClassifier(**kwargs)
@@ -87,6 +109,11 @@ def SparseSGDRegressor(**kwargs):
return _SparseSGDRegressor(**kwargs)
+def SparseSGDOneClassSVM(**kwargs):
+ _update_kwargs(kwargs)
+ return _SparseSGDOneClassSVM(**kwargs)
+
+
# Test Data
# test sample 1
@@ -252,7 +279,8 @@ def test_clone(klass):
@pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier,
- SGDRegressor, SparseSGDRegressor])
+ SGDRegressor, SparseSGDRegressor,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_plain_has_no_average_attr(klass):
clf = klass(average=True, eta0=.01)
clf.fit(X, Y)
@@ -285,7 +313,8 @@ def test_sgd_deprecated_attr(klass):
@pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier,
- SGDRegressor, SparseSGDRegressor])
+ SGDRegressor, SparseSGDRegressor,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_late_onset_averaging_not_reached(klass):
clf1 = klass(average=600)
clf2 = klass()
@@ -298,7 +327,11 @@ def test_late_onset_averaging_not_reached(klass):
clf2.partial_fit(X, Y)
assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16)
- assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16)
+ if klass in [SGDClassifier, SparseSGDClassifier, SGDRegressor,
+ SparseSGDRegressor]:
+ assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16)
+ elif klass in [SGDOneClassSVM, SparseSGDOneClassSVM]:
+ assert_allclose(clf1.offset_, clf2.offset_)
@pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier,
@@ -444,28 +477,32 @@ def test_sgd_bad_l1_ratio(klass):
klass(l1_ratio=1.1)
[email protected]('klass', [SGDClassifier, SparseSGDClassifier])
[email protected]('klass', [SGDClassifier, SparseSGDClassifier,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_sgd_bad_learning_rate_schedule(klass):
# Check whether expected ValueError on bad learning_rate
with pytest.raises(ValueError):
klass(learning_rate="<unknown>")
[email protected]('klass', [SGDClassifier, SparseSGDClassifier])
[email protected]('klass', [SGDClassifier, SparseSGDClassifier,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_sgd_bad_eta0(klass):
# Check whether expected ValueError on bad eta0
with pytest.raises(ValueError):
klass(eta0=0, learning_rate="constant")
[email protected]('klass', [SGDClassifier, SparseSGDClassifier])
[email protected]('klass', [SGDClassifier, SparseSGDClassifier,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_sgd_max_iter_param(klass):
# Test parameter validity check
with pytest.raises(ValueError):
klass(max_iter=-10000)
[email protected]('klass', [SGDClassifier, SparseSGDClassifier])
[email protected]('klass', [SGDClassifier, SparseSGDClassifier,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_sgd_shuffle_param(klass):
# Test parameter validity check
with pytest.raises(ValueError):
@@ -493,7 +530,8 @@ def test_sgd_n_iter_no_change(klass):
klass(n_iter_no_change=0)
[email protected]('klass', [SGDClassifier, SparseSGDClassifier])
[email protected]('klass', [SGDClassifier, SparseSGDClassifier,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_argument_coef(klass):
# Checks coef_init not allowed as model argument (only fit)
# Provided coef_ does not match dataset
@@ -501,7 +539,8 @@ def test_argument_coef(klass):
klass(coef_init=np.zeros((3,)))
[email protected]('klass', [SGDClassifier, SparseSGDClassifier])
[email protected]('klass', [SGDClassifier, SparseSGDClassifier,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_provide_coef(klass):
# Checks coef_init shape for the warm starts
# Provided coef_ does not match dataset.
@@ -509,12 +548,17 @@ def test_provide_coef(klass):
klass().fit(X, Y, coef_init=np.zeros((3,)))
[email protected]('klass', [SGDClassifier, SparseSGDClassifier])
[email protected]('klass', [SGDClassifier, SparseSGDClassifier,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_set_intercept(klass):
# Checks intercept_ shape for the warm starts
# Provided intercept_ does not match dataset.
- with pytest.raises(ValueError):
- klass().fit(X, Y, intercept_init=np.zeros((3,)))
+ if klass in [SGDClassifier, SparseSGDClassifier]:
+ with pytest.raises(ValueError):
+ klass().fit(X, Y, intercept_init=np.zeros((3,)))
+ elif klass in [SGDOneClassSVM, SparseSGDOneClassSVM]:
+ with pytest.raises(ValueError):
+ klass().fit(X, Y, offset_init=np.zeros((3,)))
@pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier])
@@ -590,10 +634,8 @@ def test_partial_fit_weight_class_balanced(klass):
r"estimate the class frequency distributions\. "
r"Pass the resulting weights as the class_weight "
r"parameter\.")
- assert_raises_regexp(ValueError,
- regex,
- klass(class_weight='balanced').partial_fit,
- X, Y, classes=np.unique(Y))
+ with pytest.raises(ValueError, match=regex):
+ klass(class_weight='balanced').partial_fit(X, Y, classes=np.unique(Y))
@pytest.mark.parametrize('klass', [SGDClassifier, SparseSGDClassifier])
@@ -947,10 +989,14 @@ def test_sample_weights(klass):
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
[email protected]('klass', [SGDClassifier, SparseSGDClassifier])
[email protected]('klass', [SGDClassifier, SparseSGDClassifier,
+ SGDOneClassSVM, SparseSGDOneClassSVM])
def test_wrong_sample_weights(klass):
# Test if ValueError is raised if sample_weight has wrong shape
- clf = klass(alpha=0.1, max_iter=1000, fit_intercept=False)
+ if klass in [SGDClassifier, SparseSGDClassifier]:
+ clf = klass(alpha=0.1, max_iter=1000, fit_intercept=False)
+ elif klass in [SGDOneClassSVM, SparseSGDOneClassSVM]:
+ clf = klass(nu=0.1, max_iter=1000, fit_intercept=False)
# provided sample_weight too long
with pytest.raises(ValueError):
clf.fit(X, Y, sample_weight=np.arange(7))
@@ -1341,6 +1387,303 @@ def test_loss_function_epsilon(klass):
assert clf.loss_functions['huber'][1] == 0.1
+###############################################################################
+# SGD One Class SVM Test Case
+
+# a simple implementation of ASGD to use for testing SGDOneClassSVM
+def asgd_oneclass(klass, X, eta, nu, coef_init=None, offset_init=0.0):
+ if coef_init is None:
+ coef = np.zeros(X.shape[1])
+ else:
+ coef = coef_init
+
+ average_coef = np.zeros(X.shape[1])
+ offset = offset_init
+ intercept = 1 - offset
+ average_intercept = 0.0
+ decay = 1.0
+
+ # sparse data has a fixed decay of .01
+ if klass == SparseSGDOneClassSVM:
+ decay = .01
+
+ for i, entry in enumerate(X):
+ p = np.dot(entry, coef)
+ p += intercept
+ if p <= 1.0:
+ gradient = -1
+ else:
+ gradient = 0
+ coef *= max(0, 1.0 - (eta * nu / 2))
+ coef += -(eta * gradient * entry)
+ intercept += -(eta * (nu + gradient)) * decay
+
+ average_coef *= i
+ average_coef += coef
+ average_coef /= i + 1.0
+
+ average_intercept *= i
+ average_intercept += intercept
+ average_intercept /= i + 1.0
+
+ return average_coef, 1 - average_intercept
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
[email protected]('nu', [-0.5, 2])
+def test_bad_nu_values(klass, nu):
+ msg = r"nu must be in \(0, 1]"
+ with pytest.raises(ValueError, match=msg):
+ klass(nu=nu)
+
+ clf = klass(nu=0.05)
+ clf2 = clone(clf)
+ with pytest.raises(ValueError, match=msg):
+ clf2.set_params(nu=nu)
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
+def _test_warm_start_oneclass(klass, X, lr):
+ # Test that explicit warm restart...
+ clf = klass(nu=0.5, eta0=0.01, shuffle=False,
+ learning_rate=lr)
+ clf.fit(X)
+
+ clf2 = klass(nu=0.1, eta0=0.01, shuffle=False,
+ learning_rate=lr)
+ clf2.fit(X, coef_init=clf.coef_.copy(),
+ offset_init=clf.offset_.copy())
+
+ # ... and implicit warm restart are equivalent.
+ clf3 = klass(nu=0.5, eta0=0.01, shuffle=False,
+ warm_start=True, learning_rate=lr)
+ clf3.fit(X)
+
+ assert clf3.t_ == clf.t_
+ assert_allclose(clf3.coef_, clf.coef_)
+
+ clf3.set_params(nu=0.1)
+ clf3.fit(X)
+
+ assert clf3.t_ == clf2.t_
+ assert_allclose(clf3.coef_, clf2.coef_)
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
[email protected]('lr',
+ ["constant", "optimal", "invscaling", "adaptive"])
+def test_warm_start_oneclass(klass, lr):
+ _test_warm_start_oneclass(klass, X, lr)
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
+def test_clone_oneclass(klass):
+ # Test whether clone works ok.
+ clf = klass(nu=0.5)
+ clf = clone(clf)
+ clf.set_params(nu=0.1)
+ clf.fit(X)
+
+ clf2 = klass(nu=0.1)
+ clf2.fit(X)
+
+ assert_array_equal(clf.coef_, clf2.coef_)
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
+def test_partial_fit_oneclass(klass):
+ third = X.shape[0] // 3
+ clf = klass(nu=0.1)
+
+ clf.partial_fit(X[:third])
+ assert clf.coef_.shape == (X.shape[1], )
+ assert clf.offset_.shape == (1,)
+ assert clf.predict([[0, 0]]).shape == (1, )
+ id1 = id(clf.coef_.data)
+
+ clf.partial_fit(X[third:])
+ id2 = id(clf.coef_.data)
+ # check that coef_ haven't been re-allocated
+ assert id1 == id2
+
+ # raises ValueError if number of features does not match previous data
+ with pytest.raises(ValueError):
+ clf.partial_fit(X[:, 1])
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
[email protected]('lr',
+ ["constant", "optimal", "invscaling", "adaptive"])
+def test_partial_fit_equal_fit_oneclass(klass, lr):
+ clf = klass(nu=0.05, max_iter=2, eta0=0.01,
+ learning_rate=lr, shuffle=False)
+ clf.fit(X)
+ y_scores = clf.decision_function(T)
+ t = clf.t_
+ coef = clf.coef_
+ offset = clf.offset_
+
+ clf = klass(nu=0.05, eta0=0.01, max_iter=1,
+ learning_rate=lr, shuffle=False)
+ for _ in range(2):
+ clf.partial_fit(X)
+ y_scores2 = clf.decision_function(T)
+
+ assert clf.t_ == t
+ assert_allclose(y_scores, y_scores2)
+ assert_allclose(clf.coef_, coef)
+ assert_allclose(clf.offset_, offset)
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
+def test_late_onset_averaging_reached_oneclass(klass):
+ # Test average
+ eta0 = .001
+ nu = .05
+
+ # 2 passes over the training set but average only at second pass
+ clf1 = klass(average=7, learning_rate="constant", eta0=eta0,
+ nu=nu, max_iter=2, shuffle=False)
+ # 1 pass over the training set with no averaging
+ clf2 = klass(average=0, learning_rate="constant", eta0=eta0,
+ nu=nu, max_iter=1, shuffle=False)
+
+ clf1.fit(X)
+ clf2.fit(X)
+
+ # Start from clf2 solution, compute averaging using asgd function and
+ # compare with clf1 solution
+ average_coef, average_offset = \
+ asgd_oneclass(klass, X, eta0, nu,
+ coef_init=clf2.coef_.ravel(),
+ offset_init=clf2.offset_)
+
+ assert_allclose(clf1.coef_.ravel(), average_coef.ravel())
+ assert_allclose(clf1.offset_, average_offset)
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
+def test_sgd_averaged_computed_correctly_oneclass(klass):
+ # Tests the average SGD One-Class SVM matches the naive implementation
+ eta = .001
+ nu = .05
+ n_samples = 20
+ n_features = 10
+ rng = np.random.RandomState(0)
+ X = rng.normal(size=(n_samples, n_features))
+
+ clf = klass(learning_rate='constant',
+ eta0=eta, nu=nu,
+ fit_intercept=True,
+ max_iter=1, average=True, shuffle=False)
+
+ clf.fit(X)
+ average_coef, average_offset = asgd_oneclass(klass, X, eta, nu)
+
+ assert_allclose(clf.coef_, average_coef)
+ assert_allclose(clf.offset_, average_offset)
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
+def test_sgd_averaged_partial_fit_oneclass(klass):
+ # Tests whether the partial fit yields the same average as the fit
+ eta = .001
+ nu = .05
+ n_samples = 20
+ n_features = 10
+ rng = np.random.RandomState(0)
+ X = rng.normal(size=(n_samples, n_features))
+
+ clf = klass(learning_rate='constant',
+ eta0=eta, nu=nu,
+ fit_intercept=True,
+ max_iter=1, average=True, shuffle=False)
+
+ clf.partial_fit(X[:int(n_samples / 2)][:])
+ clf.partial_fit(X[int(n_samples / 2):][:])
+ average_coef, average_offset = asgd_oneclass(klass, X, eta, nu)
+
+ assert_allclose(clf.coef_, average_coef)
+ assert_allclose(clf.offset_, average_offset)
+
+
[email protected]('klass', [SGDOneClassSVM, SparseSGDOneClassSVM])
+def test_average_sparse_oneclass(klass):
+ # Checks the average coef on data with 0s
+ eta = .001
+ nu = .01
+ clf = klass(learning_rate='constant',
+ eta0=eta, nu=nu,
+ fit_intercept=True,
+ max_iter=1, average=True, shuffle=False)
+
+ n_samples = X3.shape[0]
+
+ clf.partial_fit(X3[:int(n_samples / 2)])
+ clf.partial_fit(X3[int(n_samples / 2):])
+ average_coef, average_offset = asgd_oneclass(klass, X3, eta, nu)
+
+ assert_allclose(clf.coef_, average_coef)
+ assert_allclose(clf.offset_, average_offset)
+
+
+def test_sgd_oneclass():
+ # Test fit, decision_function, predict and score_samples on a toy
+ # dataset
+ X_train = np.array([[-2, -1], [-1, -1], [1, 1]])
+ X_test = np.array([[0.5, -2], [2, 2]])
+ clf = SGDOneClassSVM(nu=0.5, eta0=1, learning_rate='constant',
+ shuffle=False, max_iter=1)
+ clf.fit(X_train)
+ assert_allclose(clf.coef_, np.array([-0.125, 0.4375]))
+ assert clf.offset_[0] == -0.5
+
+ scores = clf.score_samples(X_test)
+ assert_allclose(scores, np.array([-0.9375, 0.625]))
+
+ dec = clf.score_samples(X_test) - clf.offset_
+ assert_allclose(clf.decision_function(X_test), dec)
+
+ pred = clf.predict(X_test)
+ assert_array_equal(pred, np.array([-1, 1]))
+
+
+def test_ocsvm_vs_sgdocsvm():
+ # Checks SGDOneClass SVM gives a good approximation of kernelized
+ # One-Class SVM
+ nu = 0.05
+ gamma = 2.
+ random_state = 42
+
+ # Generate train and test data
+ rng = np.random.RandomState(random_state)
+ X = 0.3 * rng.randn(500, 2)
+ X_train = np.r_[X + 2, X - 2]
+ X = 0.3 * rng.randn(100, 2)
+ X_test = np.r_[X + 2, X - 2]
+
+ # One-Class SVM
+ clf = OneClassSVM(gamma=gamma, kernel='rbf', nu=nu)
+ clf.fit(X_train)
+ y_pred_ocsvm = clf.predict(X_test)
+ dec_ocsvm = clf.decision_function(X_test).reshape(1, -1)
+
+ # SGDOneClassSVM using kernel approximation
+ max_iter = 15
+ transform = Nystroem(gamma=gamma, random_state=random_state)
+ clf_sgd = SGDOneClassSVM(nu=nu, shuffle=True, fit_intercept=True,
+ max_iter=max_iter, random_state=random_state,
+ tol=-np.inf)
+ pipe_sgd = make_pipeline(transform, clf_sgd)
+ pipe_sgd.fit(X_train)
+ y_pred_sgdocsvm = pipe_sgd.predict(X_test)
+ dec_sgdocsvm = pipe_sgd.decision_function(X_test).reshape(1, -1)
+
+ assert np.mean(y_pred_sgdocsvm == y_pred_ocsvm) >= 0.99
+ corrcoef = np.corrcoef(np.concatenate((dec_ocsvm, dec_sgdocsvm)))[0, 1]
+ assert corrcoef >= 0.9
+
+
def test_l1_ratio():
# Test if l1 ratio extremes match L1 and L2 penalty settings.
X, y = datasets.make_classification(n_samples=1000,
@@ -1396,7 +1739,8 @@ def test_underflow_or_overlow():
msg_regxp = (r"Floating-point under-/overflow occurred at epoch #.*"
" Scaling input data with StandardScaler or MinMaxScaler"
" might help.")
- assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y)
+ with pytest.raises(ValueError, match=msg_regxp):
+ model.fit(X, y)
def test_numerical_stability_large_gradient():
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex ceebfc337352a..45195dcedec64 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -762,6 +762,7 @@ Linear classifiers\n linear_model.RidgeClassifier\n linear_model.RidgeClassifierCV\n linear_model.SGDClassifier\n+ linear_model.SGDOneClassSVM\n \n Classical linear regressors\n ---------------------------\n"
},
{
"path": "doc/modules/outlier_detection.rst",
"old_path": "a/doc/modules/outlier_detection.rst",
"new_path": "b/doc/modules/outlier_detection.rst",
"metadata": "diff --git a/doc/modules/outlier_detection.rst b/doc/modules/outlier_detection.rst\nindex 5d2008f3c3f58..14495bc558dab 100644\n--- a/doc/modules/outlier_detection.rst\n+++ b/doc/modules/outlier_detection.rst\n@@ -110,9 +110,14 @@ does not perform very well for outlier detection. That being said, outlier\n detection in high-dimension, or without any assumptions on the distribution\n of the inlying data is very challenging. :class:`svm.OneClassSVM` may still\n be used with outlier detection but requires fine-tuning of its hyperparameter\n-`nu` to handle outliers and prevent overfitting. Finally,\n-:class:`covariance.EllipticEnvelope` assumes the data is Gaussian and learns\n-an ellipse. For more details on the different estimators refer to the example\n+`nu` to handle outliers and prevent overfitting.\n+:class:`linear_model.SGDOneClassSVM` provides an implementation of a\n+linear One-Class SVM with a linear complexity in the number of samples. This\n+implementation is here used with a kernel approximation technique to obtain\n+results similar to :class:`svm.OneClassSVM` which uses a Gaussian kernel\n+by default. Finally, :class:`covariance.EllipticEnvelope` assumes the data is\n+Gaussian and learns an ellipse. For more details on the different estimators\n+refer to the example\n :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` and the\n sections hereunder.\n \n@@ -173,6 +178,23 @@ but regular, observation outside the frontier.\n :scale: 75%\n \n \n+Scaling up the One-Class SVM\n+----------------------------\n+\n+An online linear version of the One-Class SVM is implemented in\n+:class:`linear_model.SGDOneClassSVM`. This implementation scales linearly with\n+the number of samples and can be used with a kernel approximation to\n+approximate the solution of a kernelized :class:`svm.OneClassSVM` whose\n+complexity is at best quadratic in the number of samples. See section\n+:ref:`sgd_online_one_class_svm` for more details.\n+\n+.. topic:: Examples:\n+\n+ * See :ref:`sphx_glr_auto_examples_linear_model_plot_sgdocsvm_vs_ocsvm.py`\n+ for an illustration of the approximation of a kernelized One-Class SVM\n+ with the `linear_model.SGDOneClassSVM` combined with kernel approximation.\n+\n+\n Outlier Detection\n =================\n \n@@ -278,8 +300,8 @@ allows you to add more trees to an already fitted model::\n for a comparison of :class:`ensemble.IsolationForest` with\n :class:`neighbors.LocalOutlierFactor`,\n :class:`svm.OneClassSVM` (tuned to perform like an outlier detection\n- method) and a covariance-based outlier detection with\n- :class:`covariance.EllipticEnvelope`.\n+ method), :class:`linear_model.SGDOneClassSVM`, and a covariance-based\n+ outlier detection with :class:`covariance.EllipticEnvelope`.\n \n .. topic:: References:\n \n"
},
{
"path": "doc/modules/sgd.rst",
"old_path": "a/doc/modules/sgd.rst",
"new_path": "b/doc/modules/sgd.rst",
"metadata": "diff --git a/doc/modules/sgd.rst b/doc/modules/sgd.rst\nindex 1376947540e78..0a1d8407e64ae 100644\n--- a/doc/modules/sgd.rst\n+++ b/doc/modules/sgd.rst\n@@ -232,6 +232,58 @@ For regression with a squared loss and a l2 penalty, another variant of\n SGD with an averaging strategy is available with Stochastic Average\n Gradient (SAG) algorithm, available as a solver in :class:`Ridge`.\n \n+.. _sgd_online_one_class_svm:\n+\n+Online One-Class SVM\n+====================\n+\n+The class :class:`sklearn.linear_model.SGDOneClassSVM` implements an online\n+linear version of the One-Class SVM using a stochastic gradient descent.\n+Combined with kernel approximation techniques,\n+:class:`sklearn.linear_model.SGDOneClassSVM` can be used to approximate the\n+solution of a kernelized One-Class SVM, implemented in\n+:class:`sklearn.svm.OneClassSVM`, with a linear complexity in the number of\n+samples. Note that the complexity of a kernelized One-Class SVM is at best\n+quadratic in the number of samples.\n+:class:`sklearn.linear_model.SGDOneClassSVM` is thus well suited for datasets\n+with a large number of training samples (> 10,000) for which the SGD\n+variant can be several orders of magnitude faster.\n+\n+Its implementation is based on the implementation of the stochastic\n+gradient descent. Indeed, the original optimization problem of the One-Class\n+SVM is given by\n+\n+.. math::\n+\n+ \\begin{aligned}\n+ \\min_{w, \\rho, \\xi} & \\quad \\frac{1}{2}\\Vert w \\Vert^2 - \\rho + \\frac{1}{\\nu n} \\sum_{i=1}^n \\xi_i \\\\\n+ \\text{s.t.} & \\quad \\langle w, x_i \\rangle \\geq \\rho - \\xi_i \\quad 1 \\leq i \\leq n \\\\\n+ & \\quad \\xi_i \\geq 0 \\quad 1 \\leq i \\leq n\n+ \\end{aligned}\n+\n+where :math:`\\nu \\in (0, 1]` is the user-specified parameter controlling the\n+proportion of outliers and the proportion of support vectors. Getting rid of\n+the slack variables :math:`\\xi_i` this problem is equivalent to\n+\n+.. math::\n+\n+ \\min_{w, \\rho} \\frac{1}{2}\\Vert w \\Vert^2 - \\rho + \\frac{1}{\\nu n} \\sum_{i=1}^n \\max(0, \\rho - \\langle w, x_i \\rangle) \\, .\n+\n+Multiplying by the constant :math:`\\nu` and introducing the intercept\n+:math:`b = 1 - \\rho` we obtain the following equivalent optimization problem\n+\n+.. math::\n+\n+ \\min_{w, b} \\frac{\\nu}{2}\\Vert w \\Vert^2 + b\\nu + \\frac{1}{n} \\sum_{i=1}^n \\max(0, 1 - (\\langle w, x_i \\rangle + b)) \\, .\n+\n+This is similar to the optimization problems studied in section\n+:ref:`sgd_mathematical_formulation` with :math:`y_i = 1, 1 \\leq i \\leq n` and\n+:math:`\\alpha = \\nu/2`, :math:`L` being the hinge loss function and :math:`R`\n+being the L2 norm. We just need to add the term :math:`b\\nu` in the\n+optimization loop.\n+\n+As :class:`SGDClassifier` and :class:`SGDRegressor`, :class:`SGDOneClassSVM`\n+supports averaged SGD. Averaging can be enabled by setting ``average=True``.\n \n Stochastic Gradient Descent for sparse data\n ===========================================\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 521e358ac2f02..c252f5df1074e 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -147,6 +147,13 @@ Changelog\n :mod:`sklearn.linear_model`\n ...........................\n \n+- |Feature| The new :class:`linear_model.SGDOneClassSVM` provides an SGD\n+ implementation of the linear One-Class SVM. Combined with kernel\n+ approximation techniques, this implementation approximates the solution of\n+ a kernelized One Class SVM while benefitting from a linear \n+ complexity in the number of samples.\n+ :pr:`10027` by :user:`Albert Thomas <albertcthomas>`.\n+\n - |Efficiency| The implementation of :class:`linear_model.LogisticRegression`\n has been optimised for dense matrices when using `solver='newton-cg'` and\n `multi_class!='multinomial'`.\n"
}
] |
1.00
|
81102146e35c81d7aab16d448f1c2b66d8a67ed9
|
[] |
[
"sklearn/linear_model/tests/test_sgd.py::test_elasticnet_convergence[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_multi_thread_multi_class_and_early_stopping",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[optimal-SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_equal_class_weight[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_loss[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_bad_nu_values[-0.5-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_adaptive_longer_than_constant[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_early_stopping_with_partial_fit[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_predict_proba_method_access[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_exception[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_huber_fit[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_n_iter_no_change[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_njobs[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_partial_fit[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_computed_correctly[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_function_epsilon[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_alpha[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_adaptive_longer_than_constant[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_oneclass[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached_oneclass[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_large_regularization[elasticnet]",
"sklearn/linear_model/tests/test_sgd.py::test_provide_coef[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[optimal-SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_average_binary_computed_correctly[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_average_binary_computed_correctly[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_clf[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_deprecated_attr[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_clf[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_penalty[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_average[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[optimal-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[constant-SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_wrong_sample_weights[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_argument_coef[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_gradient_squared_hinge",
"sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_alpha_for_optimal_learning_rate[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[invscaling-SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_average_sparse_oneclass[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_provide_coef[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_bad_nu_values[-0.5-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_multi_core_gridsearch_and_early_stopping",
"sklearn/linear_model/tests/test_sgd.py::test_provide_coef[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_fit_then_partial_fit[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[constant-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_tol_parameter",
"sklearn/linear_model/tests/test_sgd.py::test_adaptive_longer_than_constant[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached_oneclass[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_l1[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_weights_multiplied[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_set_intercept_to_intercept[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[adaptive-SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[invscaling-SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_computed_correctly_oneclass[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_learning_rate_schedule[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_weight_class_balanced[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_penalty[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[adaptive-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[adaptive-SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_multiclass_average[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_alpha_for_optimal_learning_rate[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_penalty[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_equal_class_weight[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sample_weights[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_reg[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_input_format[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_reg[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[constant-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_wrong_class_weight_label[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[invscaling-SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_average[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_regression_losses[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_clone[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[constant-SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_numerical_stability_large_gradient",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_eta0[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_set_intercept_binary[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[optimal-SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_alpha[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_weight_class_balanced[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[invscaling-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[adaptive-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_deprecated_attr[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_predict_proba_method_access[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[constant-SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[invscaling-SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_early_stopping_with_partial_fit[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_wrong_class_weight_label[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_at_least_two_labels[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_set_coef_multiclass[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_penalty[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_multiclass[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_n_iter_no_change[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_hinge",
"sklearn/linear_model/tests/test_sgd.py::test_fit_then_partial_fit[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_least_squares_fit[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[optimal-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_clone_oneclass[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_epsilon_insensitive",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_max_iter_param[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_huber_fit[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_input_format[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_eta0[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[constant-SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_multiclass_average[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_squared_loss",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[adaptive-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_SGDClassifier_fit_for_all_backends[loky]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_learning_rate_schedule[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[constant-SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_weights_multiplied[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_function_epsilon[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_partial_fit_oneclass[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_epsilon_insensitive[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_huber",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_loss[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_shuffle_param[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_bad_nu_values[2-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_oneclass[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_alpha[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_alpha_for_optimal_learning_rate[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_bad_nu_values[2-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_input_format[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_input_format[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_validation_set_not_used_for_training[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_multiple_fit[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_alpha[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[adaptive-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_provide_coef[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_njobs[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_not_reached[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_argument_coef[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_set_intercept_to_intercept[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_average_sparse[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_with_init_coef[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[optimal-SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[invscaling-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_oneclass",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_max_iter_param[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_clone_oneclass[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_at_least_two_labels[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_balanced_weight[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_alpha_for_optimal_learning_rate[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_clone[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_loss[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[adaptive-SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[optimal-SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[adaptive-SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_squared_loss_deprecated[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_set_intercept[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_SGDClassifier_fit_for_all_backends[threading]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_eta0[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_proba[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_computed_correctly_oneclass[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_modified_huber",
"sklearn/linear_model/tests/test_sgd.py::test_loss_squared_loss_deprecated[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_set_intercept[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_large_regularization[l2]",
"sklearn/linear_model/tests/test_sgd.py::test_class_weights[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_learning_rate_schedule[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_loss[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_argument_coef[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_epsilon_insensitive[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_shuffle_param[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_early_stopping_param[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_balanced_weight[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[optimal-SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_set_coef_multiclass[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_class_weights[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_binary[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_regression_losses[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_computed_correctly[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_adaptive_longer_than_constant[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_proba[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[invscaling-SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_validation_fraction[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[constant-SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[adaptive-SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_set_intercept[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_wrong_sample_weights[SGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_not_enough_sample_for_early_stopping[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_early_stopping_param[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[constant-SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[adaptive-SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_clone[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[optimal-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_ocsvm_vs_sgdocsvm",
"sklearn/linear_model/tests/test_sgd.py::test_multiple_fit[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[constant-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_underflow_or_overlow",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_max_iter_param[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_l1_ratio[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_argument_coef[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_multiclass_with_init_coef[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_exception[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_multiclass[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_l1[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_binary[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_log",
"sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sample_weights[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[adaptive-SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_eta0[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_wrong_sample_weights[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_loss_squared_epsilon_insensitive",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_classif[adaptive-SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[constant-SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_validation_fraction[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_multiclass[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_learning_rate_schedule[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_multiclass[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_average_sparse[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_partial_fit[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_wrong_sample_weights[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[optimal-SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[invscaling-SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_plain_has_no_average_attr[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_max_iter_param[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_shuffle_param[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit[optimal-SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[invscaling-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_SGDClassifier_fit_for_all_backends[multiprocessing]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start_oneclass[invscaling-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_partial_fit_equal_fit_oneclass[optimal-SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_least_squares_fit[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[invscaling-SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_bad_l1_ratio[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[constant-SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_warm_start[invscaling-SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_set_intercept_binary[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_late_onset_averaging_reached[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_wrong_class_weight_format[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_wrong_class_weight_format[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_average_sparse_oneclass[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_large_regularization[l1]",
"sklearn/linear_model/tests/test_sgd.py::test_early_stopping[SGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_shuffle_param[SparseSGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_elasticnet_convergence[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_l1_ratio",
"sklearn/linear_model/tests/test_sgd.py::test_set_intercept[SGDClassifier]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_averaged_partial_fit_oneclass[SparseSGDOneClassSVM]",
"sklearn/linear_model/tests/test_sgd.py::test_clone[SparseSGDRegressor]",
"sklearn/linear_model/tests/test_sgd.py::test_sgd_n_iter_no_change[SGDClassifier]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "benchmarks/bench_online_ocsvm.py"
},
{
"type": "file",
"name": "examples/linear_model/plot_sgdocsvm_vs_ocsvm.py"
}
]
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex ceebfc337352a..45195dcedec64 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -762,6 +762,7 @@ Linear classifiers\n linear_model.RidgeClassifier\n linear_model.RidgeClassifierCV\n linear_model.SGDClassifier\n+ linear_model.SGDOneClassSVM\n \n Classical linear regressors\n ---------------------------\n"
},
{
"path": "doc/modules/outlier_detection.rst",
"old_path": "a/doc/modules/outlier_detection.rst",
"new_path": "b/doc/modules/outlier_detection.rst",
"metadata": "diff --git a/doc/modules/outlier_detection.rst b/doc/modules/outlier_detection.rst\nindex 5d2008f3c3f58..14495bc558dab 100644\n--- a/doc/modules/outlier_detection.rst\n+++ b/doc/modules/outlier_detection.rst\n@@ -110,9 +110,14 @@ does not perform very well for outlier detection. That being said, outlier\n detection in high-dimension, or without any assumptions on the distribution\n of the inlying data is very challenging. :class:`svm.OneClassSVM` may still\n be used with outlier detection but requires fine-tuning of its hyperparameter\n-`nu` to handle outliers and prevent overfitting. Finally,\n-:class:`covariance.EllipticEnvelope` assumes the data is Gaussian and learns\n-an ellipse. For more details on the different estimators refer to the example\n+`nu` to handle outliers and prevent overfitting.\n+:class:`linear_model.SGDOneClassSVM` provides an implementation of a\n+linear One-Class SVM with a linear complexity in the number of samples. This\n+implementation is here used with a kernel approximation technique to obtain\n+results similar to :class:`svm.OneClassSVM` which uses a Gaussian kernel\n+by default. Finally, :class:`covariance.EllipticEnvelope` assumes the data is\n+Gaussian and learns an ellipse. For more details on the different estimators\n+refer to the example\n :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` and the\n sections hereunder.\n \n@@ -173,6 +178,23 @@ but regular, observation outside the frontier.\n :scale: 75%\n \n \n+Scaling up the One-Class SVM\n+----------------------------\n+\n+An online linear version of the One-Class SVM is implemented in\n+:class:`linear_model.SGDOneClassSVM`. This implementation scales linearly with\n+the number of samples and can be used with a kernel approximation to\n+approximate the solution of a kernelized :class:`svm.OneClassSVM` whose\n+complexity is at best quadratic in the number of samples. See section\n+:ref:`sgd_online_one_class_svm` for more details.\n+\n+.. topic:: Examples:\n+\n+ * See :ref:`sphx_glr_auto_examples_linear_model_plot_sgdocsvm_vs_ocsvm.py`\n+ for an illustration of the approximation of a kernelized One-Class SVM\n+ with the `linear_model.SGDOneClassSVM` combined with kernel approximation.\n+\n+\n Outlier Detection\n =================\n \n@@ -278,8 +300,8 @@ allows you to add more trees to an already fitted model::\n for a comparison of :class:`ensemble.IsolationForest` with\n :class:`neighbors.LocalOutlierFactor`,\n :class:`svm.OneClassSVM` (tuned to perform like an outlier detection\n- method) and a covariance-based outlier detection with\n- :class:`covariance.EllipticEnvelope`.\n+ method), :class:`linear_model.SGDOneClassSVM`, and a covariance-based\n+ outlier detection with :class:`covariance.EllipticEnvelope`.\n \n .. topic:: References:\n \n"
},
{
"path": "doc/modules/sgd.rst",
"old_path": "a/doc/modules/sgd.rst",
"new_path": "b/doc/modules/sgd.rst",
"metadata": "diff --git a/doc/modules/sgd.rst b/doc/modules/sgd.rst\nindex 1376947540e78..0a1d8407e64ae 100644\n--- a/doc/modules/sgd.rst\n+++ b/doc/modules/sgd.rst\n@@ -232,6 +232,58 @@ For regression with a squared loss and a l2 penalty, another variant of\n SGD with an averaging strategy is available with Stochastic Average\n Gradient (SAG) algorithm, available as a solver in :class:`Ridge`.\n \n+.. _sgd_online_one_class_svm:\n+\n+Online One-Class SVM\n+====================\n+\n+The class :class:`sklearn.linear_model.SGDOneClassSVM` implements an online\n+linear version of the One-Class SVM using a stochastic gradient descent.\n+Combined with kernel approximation techniques,\n+:class:`sklearn.linear_model.SGDOneClassSVM` can be used to approximate the\n+solution of a kernelized One-Class SVM, implemented in\n+:class:`sklearn.svm.OneClassSVM`, with a linear complexity in the number of\n+samples. Note that the complexity of a kernelized One-Class SVM is at best\n+quadratic in the number of samples.\n+:class:`sklearn.linear_model.SGDOneClassSVM` is thus well suited for datasets\n+with a large number of training samples (> 10,000) for which the SGD\n+variant can be several orders of magnitude faster.\n+\n+Its implementation is based on the implementation of the stochastic\n+gradient descent. Indeed, the original optimization problem of the One-Class\n+SVM is given by\n+\n+.. math::\n+\n+ \\begin{aligned}\n+ \\min_{w, \\rho, \\xi} & \\quad \\frac{1}{2}\\Vert w \\Vert^2 - \\rho + \\frac{1}{\\nu n} \\sum_{i=1}^n \\xi_i \\\\\n+ \\text{s.t.} & \\quad \\langle w, x_i \\rangle \\geq \\rho - \\xi_i \\quad 1 \\leq i \\leq n \\\\\n+ & \\quad \\xi_i \\geq 0 \\quad 1 \\leq i \\leq n\n+ \\end{aligned}\n+\n+where :math:`\\nu \\in (0, 1]` is the user-specified parameter controlling the\n+proportion of outliers and the proportion of support vectors. Getting rid of\n+the slack variables :math:`\\xi_i` this problem is equivalent to\n+\n+.. math::\n+\n+ \\min_{w, \\rho} \\frac{1}{2}\\Vert w \\Vert^2 - \\rho + \\frac{1}{\\nu n} \\sum_{i=1}^n \\max(0, \\rho - \\langle w, x_i \\rangle) \\, .\n+\n+Multiplying by the constant :math:`\\nu` and introducing the intercept\n+:math:`b = 1 - \\rho` we obtain the following equivalent optimization problem\n+\n+.. math::\n+\n+ \\min_{w, b} \\frac{\\nu}{2}\\Vert w \\Vert^2 + b\\nu + \\frac{1}{n} \\sum_{i=1}^n \\max(0, 1 - (\\langle w, x_i \\rangle + b)) \\, .\n+\n+This is similar to the optimization problems studied in section\n+:ref:`sgd_mathematical_formulation` with :math:`y_i = 1, 1 \\leq i \\leq n` and\n+:math:`\\alpha = \\nu/2`, :math:`L` being the hinge loss function and :math:`R`\n+being the L2 norm. We just need to add the term :math:`b\\nu` in the\n+optimization loop.\n+\n+As :class:`SGDClassifier` and :class:`SGDRegressor`, :class:`SGDOneClassSVM`\n+supports averaged SGD. Averaging can be enabled by setting ``average=True``.\n \n Stochastic Gradient Descent for sparse data\n ===========================================\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 521e358ac2f02..c252f5df1074e 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -147,6 +147,13 @@ Changelog\n :mod:`sklearn.linear_model`\n ...........................\n \n+- |Feature| The new :class:`linear_model.SGDOneClassSVM` provides an SGD\n+ implementation of the linear One-Class SVM. Combined with kernel\n+ approximation techniques, this implementation approximates the solution of\n+ a kernelized One Class SVM while benefitting from a linear \n+ complexity in the number of samples.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Efficiency| The implementation of :class:`linear_model.LogisticRegression`\n has been optimised for dense matrices when using `solver='newton-cg'` and\n `multi_class!='multinomial'`.\n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index ceebfc337352a..45195dcedec64 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -762,6 +762,7 @@ Linear classifiers
linear_model.RidgeClassifier
linear_model.RidgeClassifierCV
linear_model.SGDClassifier
+ linear_model.SGDOneClassSVM
Classical linear regressors
---------------------------
diff --git a/doc/modules/outlier_detection.rst b/doc/modules/outlier_detection.rst
index 5d2008f3c3f58..14495bc558dab 100644
--- a/doc/modules/outlier_detection.rst
+++ b/doc/modules/outlier_detection.rst
@@ -110,9 +110,14 @@ does not perform very well for outlier detection. That being said, outlier
detection in high-dimension, or without any assumptions on the distribution
of the inlying data is very challenging. :class:`svm.OneClassSVM` may still
be used with outlier detection but requires fine-tuning of its hyperparameter
-`nu` to handle outliers and prevent overfitting. Finally,
-:class:`covariance.EllipticEnvelope` assumes the data is Gaussian and learns
-an ellipse. For more details on the different estimators refer to the example
+`nu` to handle outliers and prevent overfitting.
+:class:`linear_model.SGDOneClassSVM` provides an implementation of a
+linear One-Class SVM with a linear complexity in the number of samples. This
+implementation is here used with a kernel approximation technique to obtain
+results similar to :class:`svm.OneClassSVM` which uses a Gaussian kernel
+by default. Finally, :class:`covariance.EllipticEnvelope` assumes the data is
+Gaussian and learns an ellipse. For more details on the different estimators
+refer to the example
:ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` and the
sections hereunder.
@@ -173,6 +178,23 @@ but regular, observation outside the frontier.
:scale: 75%
+Scaling up the One-Class SVM
+----------------------------
+
+An online linear version of the One-Class SVM is implemented in
+:class:`linear_model.SGDOneClassSVM`. This implementation scales linearly with
+the number of samples and can be used with a kernel approximation to
+approximate the solution of a kernelized :class:`svm.OneClassSVM` whose
+complexity is at best quadratic in the number of samples. See section
+:ref:`sgd_online_one_class_svm` for more details.
+
+.. topic:: Examples:
+
+ * See :ref:`sphx_glr_auto_examples_linear_model_plot_sgdocsvm_vs_ocsvm.py`
+ for an illustration of the approximation of a kernelized One-Class SVM
+ with the `linear_model.SGDOneClassSVM` combined with kernel approximation.
+
+
Outlier Detection
=================
@@ -278,8 +300,8 @@ allows you to add more trees to an already fitted model::
for a comparison of :class:`ensemble.IsolationForest` with
:class:`neighbors.LocalOutlierFactor`,
:class:`svm.OneClassSVM` (tuned to perform like an outlier detection
- method) and a covariance-based outlier detection with
- :class:`covariance.EllipticEnvelope`.
+ method), :class:`linear_model.SGDOneClassSVM`, and a covariance-based
+ outlier detection with :class:`covariance.EllipticEnvelope`.
.. topic:: References:
diff --git a/doc/modules/sgd.rst b/doc/modules/sgd.rst
index 1376947540e78..0a1d8407e64ae 100644
--- a/doc/modules/sgd.rst
+++ b/doc/modules/sgd.rst
@@ -232,6 +232,58 @@ For regression with a squared loss and a l2 penalty, another variant of
SGD with an averaging strategy is available with Stochastic Average
Gradient (SAG) algorithm, available as a solver in :class:`Ridge`.
+.. _sgd_online_one_class_svm:
+
+Online One-Class SVM
+====================
+
+The class :class:`sklearn.linear_model.SGDOneClassSVM` implements an online
+linear version of the One-Class SVM using a stochastic gradient descent.
+Combined with kernel approximation techniques,
+:class:`sklearn.linear_model.SGDOneClassSVM` can be used to approximate the
+solution of a kernelized One-Class SVM, implemented in
+:class:`sklearn.svm.OneClassSVM`, with a linear complexity in the number of
+samples. Note that the complexity of a kernelized One-Class SVM is at best
+quadratic in the number of samples.
+:class:`sklearn.linear_model.SGDOneClassSVM` is thus well suited for datasets
+with a large number of training samples (> 10,000) for which the SGD
+variant can be several orders of magnitude faster.
+
+Its implementation is based on the implementation of the stochastic
+gradient descent. Indeed, the original optimization problem of the One-Class
+SVM is given by
+
+.. math::
+
+ \begin{aligned}
+ \min_{w, \rho, \xi} & \quad \frac{1}{2}\Vert w \Vert^2 - \rho + \frac{1}{\nu n} \sum_{i=1}^n \xi_i \\
+ \text{s.t.} & \quad \langle w, x_i \rangle \geq \rho - \xi_i \quad 1 \leq i \leq n \\
+ & \quad \xi_i \geq 0 \quad 1 \leq i \leq n
+ \end{aligned}
+
+where :math:`\nu \in (0, 1]` is the user-specified parameter controlling the
+proportion of outliers and the proportion of support vectors. Getting rid of
+the slack variables :math:`\xi_i` this problem is equivalent to
+
+.. math::
+
+ \min_{w, \rho} \frac{1}{2}\Vert w \Vert^2 - \rho + \frac{1}{\nu n} \sum_{i=1}^n \max(0, \rho - \langle w, x_i \rangle) \, .
+
+Multiplying by the constant :math:`\nu` and introducing the intercept
+:math:`b = 1 - \rho` we obtain the following equivalent optimization problem
+
+.. math::
+
+ \min_{w, b} \frac{\nu}{2}\Vert w \Vert^2 + b\nu + \frac{1}{n} \sum_{i=1}^n \max(0, 1 - (\langle w, x_i \rangle + b)) \, .
+
+This is similar to the optimization problems studied in section
+:ref:`sgd_mathematical_formulation` with :math:`y_i = 1, 1 \leq i \leq n` and
+:math:`\alpha = \nu/2`, :math:`L` being the hinge loss function and :math:`R`
+being the L2 norm. We just need to add the term :math:`b\nu` in the
+optimization loop.
+
+As :class:`SGDClassifier` and :class:`SGDRegressor`, :class:`SGDOneClassSVM`
+supports averaged SGD. Averaging can be enabled by setting ``average=True``.
Stochastic Gradient Descent for sparse data
===========================================
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 521e358ac2f02..c252f5df1074e 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -147,6 +147,13 @@ Changelog
:mod:`sklearn.linear_model`
...........................
+- |Feature| The new :class:`linear_model.SGDOneClassSVM` provides an SGD
+ implementation of the linear One-Class SVM. Combined with kernel
+ approximation techniques, this implementation approximates the solution of
+ a kernelized One Class SVM while benefitting from a linear
+ complexity in the number of samples.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Efficiency| The implementation of :class:`linear_model.LogisticRegression`
has been optimised for dense matrices when using `solver='newton-cg'` and
`multi_class!='multinomial'`.
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'benchmarks/bench_online_ocsvm.py'}, {'type': 'file', 'name': 'examples/linear_model/plot_sgdocsvm_vs_ocsvm.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-21330
|
https://github.com/scikit-learn/scikit-learn/pull/21330
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 542636b1642f7..208c950c6e43d 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -162,6 +162,15 @@ Changelog
ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension
array with `pd.NA`. :pr:`21278` by `Thomas Fan`_.
+:mod:`sklearn.random_projection`
+................................
+
+- |API| Adds :term:`get_feature_names_out` to all transformers in the
+ :mod:`~sklearn.random_projection` module:
+ :class:`~sklearn.random_projection.GaussianRandomProjection` and
+ :class:`~sklearn.random_projection.SparseRandomProjection`. :pr:`21330` by
+ :user:`Loïc Estève <lesteve>`.
+
Code and Documentation Contributors
-----------------------------------
diff --git a/sklearn/random_projection.py b/sklearn/random_projection.py
index 6b2c9217713e0..3ddbecb677710 100644
--- a/sklearn/random_projection.py
+++ b/sklearn/random_projection.py
@@ -34,6 +34,7 @@
import scipy.sparse as sp
from .base import BaseEstimator, TransformerMixin
+from .base import _ClassNamePrefixFeaturesOutMixin
from .utils import check_random_state
from .utils.extmath import safe_sparse_dot
@@ -290,7 +291,9 @@ def _sparse_random_matrix(n_components, n_features, density="auto", random_state
return np.sqrt(1 / density) / np.sqrt(n_components) * components
-class BaseRandomProjection(TransformerMixin, BaseEstimator, metaclass=ABCMeta):
+class BaseRandomProjection(
+ TransformerMixin, BaseEstimator, _ClassNamePrefixFeaturesOutMixin, metaclass=ABCMeta
+):
"""Base class for random projections.
Warning: This class should not be used directly.
@@ -420,6 +423,14 @@ def transform(self, X):
X_new = safe_sparse_dot(X, self.components_.T, dense_output=self.dense_output)
return X_new
+ @property
+ def _n_features_out(self):
+ """Number of transformed output features.
+
+ Used by _ClassNamePrefixFeaturesOutMixin.get_feature_names_out.
+ """
+ return self.n_components
+
class GaussianRandomProjection(BaseRandomProjection):
"""Reduce dimensionality through Gaussian random projection.
|
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index a476ba7dc8da5..c3eade24be412 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -371,7 +371,6 @@ def test_pandas_column_name_consistency(estimator):
"manifold",
"neighbors",
"neural_network",
- "random_projection",
]
diff --git a/sklearn/tests/test_random_projection.py b/sklearn/tests/test_random_projection.py
index 5866fde29d73b..1e894d906a3ad 100644
--- a/sklearn/tests/test_random_projection.py
+++ b/sklearn/tests/test_random_projection.py
@@ -24,7 +24,7 @@
all_SparseRandomProjection: List[Any] = [SparseRandomProjection]
all_DenseRandomProjection: List[Any] = [GaussianRandomProjection]
-all_RandomProjection = set(all_SparseRandomProjection + all_DenseRandomProjection)
+all_RandomProjection = all_SparseRandomProjection + all_DenseRandomProjection
# Make some random data with uniformly located non zero entries with
@@ -359,3 +359,17 @@ def test_johnson_lindenstrauss_min_dim():
Regression test for #17111: before #19374, 32-bit systems would fail.
"""
assert johnson_lindenstrauss_min_dim(100, eps=1e-5) == 368416070986
+
+
[email protected]("random_projection_cls", all_RandomProjection)
+def test_random_projection_feature_names_out(random_projection_cls):
+ random_projection = random_projection_cls(n_components=2)
+ random_projection.fit(data)
+ names_out = random_projection.get_feature_names_out()
+ class_name_lower = random_projection_cls.__name__.lower()
+ expected_names_out = np.array(
+ [f"{class_name_lower}{i}" for i in range(random_projection.n_components_)],
+ dtype=object,
+ )
+
+ assert_array_equal(names_out, expected_names_out)
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 542636b1642f7..208c950c6e43d 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -162,6 +162,15 @@ Changelog\n ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension\n array with `pd.NA`. :pr:`21278` by `Thomas Fan`_.\n \n+:mod:`sklearn.random_projection`\n+................................\n+\n+- |API| Adds :term:`get_feature_names_out` to all transformers in the\n+ :mod:`~sklearn.random_projection` module:\n+ :class:`~sklearn.random_projection.GaussianRandomProjection` and\n+ :class:`~sklearn.random_projection.SparseRandomProjection`. :pr:`21330` by\n+ :user:`Loïc Estève <lesteve>`.\n+\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
1.01
|
8cfbc38ab8864b68f9a504f96857bb2e527c9bbb
|
[
"sklearn/tests/test_random_projection.py::test_johnson_lindenstrauss_min_dim",
"sklearn/tests/test_random_projection.py::test_sparse_random_projection_transformer_invalid_density[0]",
"sklearn/tests/test_random_projection.py::test_sparse_random_projection_transformer_invalid_density[1.1]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[0-0.5]",
"sklearn/tests/test_random_projection.py::test_basic_property_of_random_matrix[_gaussian_random_matrix]",
"sklearn/tests/test_random_projection.py::test_try_to_transform_before_fit",
"sklearn/tests/test_random_projection.py::test_random_projection_transformer_invalid_input[-10-fit_data1]",
"sklearn/tests/test_random_projection.py::test_warning_n_components_greater_than_n_features",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[100-1.1]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[100--0.1]",
"sklearn/tests/test_random_projection.py::test_basic_property_of_sparse_random_matrix[_sparse_random_matrix]",
"sklearn/tests/test_random_projection.py::test_input_size_jl_min_dim",
"sklearn/tests/test_random_projection.py::test_works_with_sparse_data",
"sklearn/tests/test_random_projection.py::test_random_projection_embedding_quality",
"sklearn/tests/test_random_projection.py::test_random_projection_transformer_invalid_input[auto-fit_data0]",
"sklearn/tests/test_random_projection.py::test_sparse_random_matrix",
"sklearn/tests/test_random_projection.py::test_SparseRandomProj_output_representation",
"sklearn/tests/test_random_projection.py::test_sparse_random_projection_transformer_invalid_density[-0.1]",
"sklearn/tests/test_random_projection.py::test_gaussian_random_matrix",
"sklearn/tests/test_random_projection.py::test_basic_property_of_random_matrix[_sparse_random_matrix]",
"sklearn/tests/test_random_projection.py::test_invalid_jl_domain[100-0.0]",
"sklearn/tests/test_random_projection.py::test_too_many_samples_to_find_a_safe_embedding",
"sklearn/tests/test_random_projection.py::test_correct_RandomProjection_dimensions_embedding"
] |
[
"sklearn/tests/test_random_projection.py::test_random_projection_feature_names_out[GaussianRandomProjection]",
"sklearn/tests/test_random_projection.py::test_random_projection_feature_names_out[SparseRandomProjection]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 542636b1642f7..208c950c6e43d 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -162,6 +162,15 @@ Changelog\n ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension\n array with `pd.NA`. :pr:`<PRID>` by `<NAME>`_.\n \n+:mod:`sklearn.random_projection`\n+................................\n+\n+- |API| Adds :term:`get_feature_names_out` to all transformers in the\n+ :mod:`~sklearn.random_projection` module:\n+ :class:`~sklearn.random_projection.GaussianRandomProjection` and\n+ :class:`~sklearn.random_projection.SparseRandomProjection`. :pr:`<PRID>` by\n+ :user:`<NAME>`.\n+\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 542636b1642f7..208c950c6e43d 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -162,6 +162,15 @@ Changelog
ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension
array with `pd.NA`. :pr:`<PRID>` by `<NAME>`_.
+:mod:`sklearn.random_projection`
+................................
+
+- |API| Adds :term:`get_feature_names_out` to all transformers in the
+ :mod:`~sklearn.random_projection` module:
+ :class:`~sklearn.random_projection.GaussianRandomProjection` and
+ :class:`~sklearn.random_projection.SparseRandomProjection`. :pr:`<PRID>` by
+ :user:`<NAME>`.
+
Code and Documentation Contributors
-----------------------------------
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-22218
|
https://github.com/scikit-learn/scikit-learn/pull/22218
|
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 39f8e405ebf7c..2b53301c40b99 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -617,6 +617,9 @@ Changelog
left corner of the HTML representation to show how the elements are
clickable. :pr:`21298` by `Thomas Fan`_.
+- |Enhancement| :func:`utils.validation.check_scalar` now has better messages
+ when displaying the type. :pr:`22218` by `Thomas Fan`_.
+
- |Fix| :func:`check_scalar` raises an error when `include_boundaries={"left", "right"}`
and the boundaries are not set.
:pr:`22027` by `Marie Lanternier <mlant>`.
diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py
index 8f0459b0d8760..cf2265d5b21cd 100644
--- a/sklearn/utils/validation.py
+++ b/sklearn/utils/validation.py
@@ -1406,8 +1406,29 @@ def check_scalar(
If `min_val`, `max_val` and `include_boundaries` are inconsistent.
"""
+ def type_name(t):
+ """Convert type into humman readable string."""
+ module = t.__module__
+ qualname = t.__qualname__
+ if module == "builtins":
+ return qualname
+ elif t == numbers.Real:
+ return "float"
+ elif t == numbers.Integral:
+ return "int"
+ return f"{module}.{qualname}"
+
if not isinstance(x, target_type):
- raise TypeError(f"{name} must be an instance of {target_type}, not {type(x)}.")
+ if isinstance(target_type, tuple):
+ types_str = ", ".join(type_name(t) for t in target_type)
+ target_type_str = f"{{{types_str}}}"
+ else:
+ target_type_str = type_name(target_type)
+
+ raise TypeError(
+ f"{name} must be an instance of {target_type_str}, not"
+ f" {type(x).__qualname__}."
+ )
expected_include_boundaries = ("left", "right", "both", "neither")
if include_boundaries not in expected_include_boundaries:
|
diff --git a/sklearn/cluster/tests/test_birch.py b/sklearn/cluster/tests/test_birch.py
index 4e64524e2cb11..e0051704653ae 100644
--- a/sklearn/cluster/tests/test_birch.py
+++ b/sklearn/cluster/tests/test_birch.py
@@ -195,16 +195,14 @@ def test_birch_fit_attributes_deprecated(attribute):
(
{"branching_factor": 1.5},
TypeError,
- "branching_factor must be an instance of <class 'numbers.Integral'>, not"
- " <class 'float'>.",
+ "branching_factor must be an instance of int, not float.",
),
({"branching_factor": -2}, ValueError, "branching_factor == -2, must be > 1."),
({"n_clusters": 0}, ValueError, "n_clusters == 0, must be >= 1."),
(
{"n_clusters": 2.5},
TypeError,
- "n_clusters must be an instance of <class 'numbers.Integral'>, not <class"
- " 'float'>.",
+ "n_clusters must be an instance of int, not float.",
),
(
{"n_clusters": "whatever"},
diff --git a/sklearn/cluster/tests/test_dbscan.py b/sklearn/cluster/tests/test_dbscan.py
index 08ca937d3e25f..b3b58b7a79b4b 100644
--- a/sklearn/cluster/tests/test_dbscan.py
+++ b/sklearn/cluster/tests/test_dbscan.py
@@ -436,24 +436,21 @@ def test_dbscan_precomputed_metric_with_initial_rows_zero():
(
{"min_samples": 1.5},
TypeError,
- "min_samples must be an instance of <class 'numbers.Integral'>, not <class"
- " 'float'>.",
+ "min_samples must be an instance of int, not float.",
),
({"min_samples": -2}, ValueError, "min_samples == -2, must be >= 1."),
({"leaf_size": 0}, ValueError, "leaf_size == 0, must be >= 1."),
(
{"leaf_size": 2.5},
TypeError,
- "leaf_size must be an instance of <class 'numbers.Integral'>, not <class"
- " 'float'>.",
+ "leaf_size must be an instance of int, not float.",
),
({"leaf_size": -3}, ValueError, "leaf_size == -3, must be >= 1."),
({"p": -2}, ValueError, "p == -2, must be >= 0.0."),
(
{"n_jobs": 2.5},
TypeError,
- "n_jobs must be an instance of <class 'numbers.Integral'>, not <class"
- " 'float'>.",
+ "n_jobs must be an instance of int, not float.",
),
],
)
diff --git a/sklearn/cluster/tests/test_spectral.py b/sklearn/cluster/tests/test_spectral.py
index 8ea26b36de2d7..c3249b1917582 100644
--- a/sklearn/cluster/tests/test_spectral.py
+++ b/sklearn/cluster/tests/test_spectral.py
@@ -121,8 +121,7 @@ def test_spectral_unknown_assign_labels():
X,
{"n_clusters": 1.5},
TypeError,
- "n_clusters must be an instance of <class 'numbers.Integral'>,"
- " not <class 'float'>",
+ "n_clusters must be an instance of int, not float",
),
(X, {"n_init": -1}, ValueError, "n_init == -1, must be >= 1"),
(X, {"n_init": 0}, ValueError, "n_init == 0, must be >= 1"),
@@ -130,8 +129,7 @@ def test_spectral_unknown_assign_labels():
X,
{"n_init": 1.5},
TypeError,
- "n_init must be an instance of <class 'numbers.Integral'>,"
- " not <class 'float'>",
+ "n_init must be an instance of int, not float",
),
(X, {"gamma": -1}, ValueError, "gamma == -1, must be >= 1"),
(X, {"gamma": 0}, ValueError, "gamma == 0, must be >= 1"),
diff --git a/sklearn/cross_decomposition/tests/test_pls.py b/sklearn/cross_decomposition/tests/test_pls.py
index 1118e8c33a9c0..7e704ced0f2af 100644
--- a/sklearn/cross_decomposition/tests/test_pls.py
+++ b/sklearn/cross_decomposition/tests/test_pls.py
@@ -476,7 +476,7 @@ def test_scale_and_stability(Est, X, Y):
(
2.0,
TypeError,
- "n_components must be an instance of <class 'numbers.Integral'>",
+ "n_components must be an instance of int",
),
],
)
@@ -498,7 +498,7 @@ def test_n_components_bounds(Est, n_components, err_type, err_msg):
(
2.0,
TypeError,
- "n_components must be an instance of <class 'numbers.Integral'>",
+ "n_components must be an instance of int",
),
],
)
diff --git a/sklearn/decomposition/tests/test_pca.py b/sklearn/decomposition/tests/test_pca.py
index 83b8b166597a6..1715bcefe96e8 100644
--- a/sklearn/decomposition/tests/test_pca.py
+++ b/sklearn/decomposition/tests/test_pca.py
@@ -702,7 +702,7 @@ def test_pca_randomized_svd_n_oversamples():
(
{"n_oversamples": 1.5},
TypeError,
- "n_oversamples must be an instance of <class 'numbers.Integral'>",
+ "n_oversamples must be an instance of int",
),
],
)
diff --git a/sklearn/ensemble/tests/test_gradient_boosting.py b/sklearn/ensemble/tests/test_gradient_boosting.py
index 88e77751c2013..f18893b5d5744 100644
--- a/sklearn/ensemble/tests/test_gradient_boosting.py
+++ b/sklearn/ensemble/tests/test_gradient_boosting.py
@@ -84,13 +84,13 @@ def test_classification_toy(loss):
(
{"learning_rate": "foo"},
TypeError,
- "learning_rate must be an instance of <class 'numbers.Real'>",
+ "learning_rate must be an instance of float",
),
({"n_estimators": 0}, ValueError, "n_estimators == 0, must be >= 1"),
(
{"n_estimators": 1.5},
TypeError,
- "n_estimators must be an instance of <class 'numbers.Integral'>,",
+ "n_estimators must be an instance of int,",
),
({"loss": "foobar"}, ValueError, "Loss 'foobar' not supported"),
({"subsample": 0.0}, ValueError, "subsample == 0.0, must be > 0.0"),
@@ -98,7 +98,7 @@ def test_classification_toy(loss):
(
{"subsample": "foo"},
TypeError,
- "subsample must be an instance of <class 'numbers.Real'>",
+ "subsample must be an instance of float",
),
({"init": {}}, ValueError, "The init parameter must be an estimator or 'zero'"),
({"max_features": 0}, ValueError, "max_features == 0, must be >= 1"),
@@ -125,19 +125,19 @@ def test_classification_toy(loss):
(
{"validation_fraction": "foo"},
TypeError,
- "validation_fraction must be an instance of <class 'numbers.Real'>",
+ "validation_fraction must be an instance of float",
),
({"n_iter_no_change": 0}, ValueError, "n_iter_no_change == 0, must be >= 1"),
(
{"n_iter_no_change": 1.5},
TypeError,
- "n_iter_no_change must be an instance of <class 'numbers.Integral'>,",
+ "n_iter_no_change must be an instance of int,",
),
({"tol": 0.0}, ValueError, "tol == 0.0, must be > 0.0"),
(
{"tol": "foo"},
TypeError,
- "tol must be an instance of <class 'numbers.Real'>,",
+ "tol must be an instance of float,",
),
# The following parameters are checked in BaseDecisionTree
({"min_samples_leaf": 0}, ValueError, "min_samples_leaf == 0, must be >= 1"),
@@ -145,7 +145,7 @@ def test_classification_toy(loss):
(
{"min_samples_leaf": "foo"},
TypeError,
- "min_samples_leaf must be an instance of <class 'numbers.Real'>",
+ "min_samples_leaf must be an instance of float",
),
({"min_samples_split": 1}, ValueError, "min_samples_split == 1, must be >= 2"),
(
@@ -161,7 +161,7 @@ def test_classification_toy(loss):
(
{"min_samples_split": "foo"},
TypeError,
- "min_samples_split must be an instance of <class 'numbers.Real'>",
+ "min_samples_split must be an instance of float",
),
(
{"min_weight_fraction_leaf": -1},
@@ -176,19 +176,19 @@ def test_classification_toy(loss):
(
{"min_weight_fraction_leaf": "foo"},
TypeError,
- "min_weight_fraction_leaf must be an instance of <class 'numbers.Real'>",
+ "min_weight_fraction_leaf must be an instance of float",
),
({"max_leaf_nodes": 0}, ValueError, "max_leaf_nodes == 0, must be >= 2"),
(
{"max_leaf_nodes": 1.5},
TypeError,
- "max_leaf_nodes must be an instance of <class 'numbers.Integral'>",
+ "max_leaf_nodes must be an instance of int",
),
({"max_depth": -1}, ValueError, "max_depth == -1, must be >= 1"),
(
{"max_depth": 1.1},
TypeError,
- "max_depth must be an instance of <class 'numbers.Integral'>",
+ "max_depth must be an instance of int",
),
(
{"min_impurity_decrease": -1},
@@ -198,13 +198,13 @@ def test_classification_toy(loss):
(
{"min_impurity_decrease": "foo"},
TypeError,
- "min_impurity_decrease must be an instance of <class 'numbers.Real'>",
+ "min_impurity_decrease must be an instance of float",
),
({"ccp_alpha": -1.0}, ValueError, "ccp_alpha == -1.0, must be >= 0.0"),
(
{"ccp_alpha": "foo"},
TypeError,
- "ccp_alpha must be an instance of <class 'numbers.Real'>",
+ "ccp_alpha must be an instance of float",
),
({"criterion": "mae"}, ValueError, "criterion='mae' is not supported."),
],
diff --git a/sklearn/ensemble/tests/test_weight_boosting.py b/sklearn/ensemble/tests/test_weight_boosting.py
index 5027dbd02c859..0348641d39453 100755
--- a/sklearn/ensemble/tests/test_weight_boosting.py
+++ b/sklearn/ensemble/tests/test_weight_boosting.py
@@ -564,8 +564,7 @@ def test_adaboostregressor_sample_weight():
(
{"n_estimators": 1.5},
TypeError,
- "n_estimators must be an instance of <class 'numbers.Integral'>,"
- " not <class 'float'>",
+ "n_estimators must be an instance of int, not float",
),
({"learning_rate": -1}, ValueError, "learning_rate == -1, must be > 0."),
({"learning_rate": 0}, ValueError, "learning_rate == 0, must be > 0."),
diff --git a/sklearn/feature_extraction/tests/test_text.py b/sklearn/feature_extraction/tests/test_text.py
index 4930debd8350f..acc1a93f1a16f 100644
--- a/sklearn/feature_extraction/tests/test_text.py
+++ b/sklearn/feature_extraction/tests/test_text.py
@@ -869,8 +869,7 @@ def test_vectorizer_min_df():
(
{"max_features": 3.5},
TypeError,
- "max_features must be an instance of <class 'numbers.Integral'>, not <class"
- " 'float'>",
+ "max_features must be an instance of int, not float",
),
),
)
diff --git a/sklearn/linear_model/_glm/tests/test_glm.py b/sklearn/linear_model/_glm/tests/test_glm.py
index b90e273cbd246..87fe2b51f4d28 100644
--- a/sklearn/linear_model/_glm/tests/test_glm.py
+++ b/sklearn/linear_model/_glm/tests/test_glm.py
@@ -142,26 +142,23 @@ def test_glm_solver_argument(solver):
(
{"max_iter": "not a number"},
TypeError,
- "max_iter must be an instance of <class 'numbers.Integral'>, not <class"
- " 'str'>",
+ "max_iter must be an instance of int, not str",
),
(
{"max_iter": [1]},
TypeError,
- "max_iter must be an instance of <class 'numbers.Integral'>,"
- " not <class 'list'>",
+ "max_iter must be an instance of int, not list",
),
(
{"max_iter": 5.5},
TypeError,
- "max_iter must be an instance of <class 'numbers.Integral'>,"
- " not <class 'float'>",
+ "max_iter must be an instance of int, not float",
),
({"alpha": -1}, ValueError, "alpha == -1, must be >= 0.0"),
(
{"alpha": "1"},
TypeError,
- "alpha must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ "alpha must be an instance of float, not str",
),
({"tol": -1.0}, ValueError, "tol == -1.0, must be > 0."),
({"tol": 0.0}, ValueError, "tol == 0.0, must be > 0.0"),
@@ -169,25 +166,23 @@ def test_glm_solver_argument(solver):
(
{"tol": "1"},
TypeError,
- "tol must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ "tol must be an instance of float, not str",
),
(
{"tol": [1e-3]},
TypeError,
- "tol must be an instance of <class 'numbers.Real'>, not <class 'list'>",
+ "tol must be an instance of float, not list",
),
({"verbose": -1}, ValueError, "verbose == -1, must be >= 0."),
(
{"verbose": "1"},
TypeError,
- "verbose must be an instance of <class 'numbers.Integral'>, not <class"
- " 'str'>",
+ "verbose must be an instance of int, not str",
),
(
{"verbose": 1.0},
TypeError,
- "verbose must be an instance of <class 'numbers.Integral'>, not <class"
- " 'float'>",
+ "verbose must be an instance of int, not float",
),
],
)
diff --git a/sklearn/linear_model/tests/test_coordinate_descent.py b/sklearn/linear_model/tests/test_coordinate_descent.py
index de3c9b164a350..78193518e131e 100644
--- a/sklearn/linear_model/tests/test_coordinate_descent.py
+++ b/sklearn/linear_model/tests/test_coordinate_descent.py
@@ -115,20 +115,19 @@ def test_assure_warning_when_normalize(CoordinateDescentModel, normalize, n_warn
(
{"l1_ratio": "1"},
TypeError,
- "l1_ratio must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ "l1_ratio must be an instance of float, not str",
),
({"tol": -1.0}, ValueError, "tol == -1.0, must be >= 0."),
(
{"tol": "1"},
TypeError,
- "tol must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ "tol must be an instance of float, not str",
),
({"max_iter": 0}, ValueError, "max_iter == 0, must be >= 1."),
(
{"max_iter": "1"},
TypeError,
- "max_iter must be an instance of <class 'numbers.Integral'>, not <class"
- " 'str'>",
+ "max_iter must be an instance of int, not str",
),
],
)
diff --git a/sklearn/linear_model/tests/test_ridge.py b/sklearn/linear_model/tests/test_ridge.py
index eb76814da8b17..60e437e4e0420 100644
--- a/sklearn/linear_model/tests/test_ridge.py
+++ b/sklearn/linear_model/tests/test_ridge.py
@@ -342,20 +342,19 @@ def test_ridge_individual_penalties():
(
{"alpha": "1"},
TypeError,
- "alpha must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ "alpha must be an instance of float, not str",
),
({"max_iter": 0}, ValueError, "max_iter == 0, must be >= 1."),
(
{"max_iter": "1"},
TypeError,
- "max_iter must be an instance of <class 'numbers.Integral'>, not <class"
- " 'str'>",
+ "max_iter must be an instance of int, not str",
),
({"tol": -1.0}, ValueError, "tol == -1.0, must be >= 0."),
(
{"tol": "1"},
TypeError,
- "tol must be an instance of <class 'numbers.Real'>, not <class 'str'>",
+ "tol must be an instance of float, not str",
),
],
)
@@ -1283,8 +1282,7 @@ def test_ridgecv_int_alphas():
(
{"alphas": (1, 1.0, "1")},
TypeError,
- r"alphas\[2\] must be an instance of <class 'numbers.Real'>, not <class"
- r" 'str'>",
+ r"alphas\[2\] must be an instance of float, not str",
),
],
)
diff --git a/sklearn/preprocessing/tests/test_discretization.py b/sklearn/preprocessing/tests/test_discretization.py
index fa8240893f7c3..51e854eba40b1 100644
--- a/sklearn/preprocessing/tests/test_discretization.py
+++ b/sklearn/preprocessing/tests/test_discretization.py
@@ -395,10 +395,7 @@ def test_kbinsdiscretizer_subsample_invalid_type():
n_bins=10, encode="ordinal", strategy="quantile", subsample="full"
)
- msg = (
- "subsample must be an instance of <class 'numbers.Integral'>, not "
- "<class 'str'>."
- )
+ msg = "subsample must be an instance of int, not str."
with pytest.raises(TypeError, match=msg):
kbd.fit(X)
diff --git a/sklearn/tree/tests/test_tree.py b/sklearn/tree/tests/test_tree.py
index e8c08e0fba05f..a2064383b86b0 100644
--- a/sklearn/tree/tests/test_tree.py
+++ b/sklearn/tree/tests/test_tree.py
@@ -621,14 +621,14 @@ def test_error():
(
{"max_depth": 1.1},
TypeError,
- "max_depth must be an instance of <class 'numbers.Integral'>",
+ "max_depth must be an instance of int",
),
({"min_samples_leaf": 0}, ValueError, "min_samples_leaf == 0, must be >= 1"),
({"min_samples_leaf": 0.0}, ValueError, "min_samples_leaf == 0.0, must be > 0"),
(
{"min_samples_leaf": "foo"},
TypeError,
- "min_samples_leaf must be an instance of <class 'numbers.Real'>",
+ "min_samples_leaf must be an instance of float",
),
({"min_samples_split": 1}, ValueError, "min_samples_split == 1, must be >= 2"),
(
@@ -644,7 +644,7 @@ def test_error():
(
{"min_samples_split": "foo"},
TypeError,
- "min_samples_split must be an instance of <class 'numbers.Real'>",
+ "min_samples_split must be an instance of float",
),
(
{"min_weight_fraction_leaf": -1},
@@ -659,7 +659,7 @@ def test_error():
(
{"min_weight_fraction_leaf": "foo"},
TypeError,
- "min_weight_fraction_leaf must be an instance of <class 'numbers.Real'>",
+ "min_weight_fraction_leaf must be an instance of float",
),
({"max_features": 0}, ValueError, "max_features == 0, must be >= 1"),
({"max_features": 0.0}, ValueError, "max_features == 0.0, must be > 0.0"),
@@ -669,7 +669,7 @@ def test_error():
(
{"max_leaf_nodes": 1.5},
TypeError,
- "max_leaf_nodes must be an instance of <class 'numbers.Integral'>",
+ "max_leaf_nodes must be an instance of int",
),
(
{"min_impurity_decrease": -1},
@@ -679,13 +679,13 @@ def test_error():
(
{"min_impurity_decrease": "foo"},
TypeError,
- "min_impurity_decrease must be an instance of <class 'numbers.Real'>",
+ "min_impurity_decrease must be an instance of float",
),
({"ccp_alpha": -1.0}, ValueError, "ccp_alpha == -1.0, must be >= 0.0"),
(
{"ccp_alpha": "foo"},
TypeError,
- "ccp_alpha must be an instance of <class 'numbers.Real'>",
+ "ccp_alpha must be an instance of float",
),
],
)
diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py
index 89666c8840748..b104d1721090b 100644
--- a/sklearn/utils/tests/test_validation.py
+++ b/sklearn/utils/tests/test_validation.py
@@ -1106,9 +1106,34 @@ def test_check_scalar_valid(x):
2,
4,
"neither",
- TypeError(
- "test_name1 must be an instance of <class 'float'>, not <class 'int'>."
- ),
+ TypeError("test_name1 must be an instance of float, not int."),
+ ),
+ (
+ None,
+ "test_name1",
+ numbers.Real,
+ 2,
+ 4,
+ "neither",
+ TypeError("test_name1 must be an instance of float, not NoneType."),
+ ),
+ (
+ None,
+ "test_name1",
+ numbers.Integral,
+ 2,
+ 4,
+ "neither",
+ TypeError("test_name1 must be an instance of int, not NoneType."),
+ ),
+ (
+ 1,
+ "test_name1",
+ (float, bool),
+ 2,
+ 4,
+ "neither",
+ TypeError("test_name1 must be an instance of {float, bool}, not int."),
),
(
1,
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 39f8e405ebf7c..2b53301c40b99 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -617,6 +617,9 @@ Changelog\n left corner of the HTML representation to show how the elements are\n clickable. :pr:`21298` by `Thomas Fan`_.\n \n+- |Enhancement| :func:`utils.validation.check_scalar` now has better messages\n+ when displaying the type. :pr:`22218` by `Thomas Fan`_.\n+\n - |Fix| :func:`check_scalar` raises an error when `include_boundaries={\"left\", \"right\"}`\n and the boundaries are not set.\n :pr:`22027` by `Marie Lanternier <mlant>`.\n"
}
] |
1.01
|
39c341ad91b545c895ede9c6240a04659b82defb
|
[
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-Lasso-params0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[neg_mean_squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-eigen]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params0-ValueError-max_depth == -1, must be >= 1-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int64-longlong-integer]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input8-params8-ValueError-n_neighbors == -1, must be >= 1]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_mem_layout",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-zeros-gini]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[linear]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[2-100-10]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params0-ValueError-threshold == -1.0, must be > 0.0.]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingRegressor]",
"sklearn/tree/tests/test_tree.py::test_diabetes_overfit[absolute_error-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params8-ValueError-tol == 0.0, must be > 0.0-GeneralizedLinearRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskLasso-params11]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-None]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params21-ValueError-tol == 0.0]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params3-ValueError-min_samples_leaf == 0.0, must be > 0-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_with_some_model_selection",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[8-100-10]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sparse_input[auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score[randomized]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-toy-gini]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X2-Y2-CCA]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family1-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params33-ValueError-max_leaf_n]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_gram_weighted_samples",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-ExtraTreeRegressor]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score[arpack]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_base_estimator",
"sklearn/linear_model/_glm/tests/test_glm.py::test_tags[estimator3-False]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_max_df",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-auto]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params7-ValueError-leaf_size == -3, must be >= 1.]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-lsqr-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params8-ValueError-The init p]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int8]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-toy-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-True]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sanity_noise_variance[full]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-True]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_is_fitted",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_individual_penalties",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_check_inputs_predict_stages",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_fit_attribute",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-cholesky-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[coo]",
"sklearn/preprocessing/tests/test_discretization.py::test_invalid_n_bins",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[filename-<lambda>0-TfidfVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-True]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds_pls_regression[6-ValueError-n_components == 6, must be <= 5.]",
"sklearn/cluster/tests/test_birch.py::test_branching_factor",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-cholesky-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params11-ValueError-max_featur]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params0-ValueError-max_iter == 0, must be >= 1-TweedieRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_more_verbose_output",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params9-ValueError-min_weight_fraction_leaf == -1, must be >= 0.0-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sag]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidfvectorizer_binary",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-svd]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params6-ValueError-n_clusters == 0, must be >= 1.]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_vs_lstsq",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-multilabel-gini]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-lsqr-False]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[discretize-arpack]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-pos-squared_error]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_dense_descent_paths",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-X-allow-nan-Input X contains infinity]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params6-ValueError-min_samples_split == 0.0, must be > 0.0-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[DecisionTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_poisson_glmnet",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-svd]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data1-randomized-4]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name2-int-2-4-neither-err_msg4]",
"sklearn/tree/tests/test_tree.py::test_arrayrepr",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-True]",
"sklearn/tree/tests/test_tree.py::test_balance_property[ExtraTreeRegressor-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-auto]",
"sklearn/decomposition/tests/test_pca.py::test_small_eigenvalues_mle",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_tolerance]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-False]",
"sklearn/tree/tests/test_tree.py::test_max_features",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-svd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection[auto]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float16-float64]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_link_auto[gamma-LogLink]",
"sklearn/tree/tests/test_tree.py::test_memory_layout",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[deviance]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[exponential]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-0.1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params10]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params23-ValueError-min_sample]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[GradientBoostingClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-None-None-ngram_range4-None-<lambda>-'ngram_range'-'analyzer'-is callable-HashingVectorizer]",
"sklearn/cross_decomposition/tests/test_pls.py::test_copy[CCA]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-False]",
"sklearn/cross_decomposition/tests/test_pls.py::test_univariate_equivalence[PLSRegression]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float32]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params9]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_core_samples_toy[ball_tree]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params41-ValueError-criterion=]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-lsqr-False]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_mle_error[arpack]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float16-float64]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-True]",
"sklearn/cluster/tests/test_birch.py::test_threshold",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_precomputed_metric_with_degenerate_input_arrays",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[bsr]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-multilabel-gini]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int8-byte-integer]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_loss_deprecated[ls-squared_error]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostClassifier-X0-y0-params4-ValueError-learning_rate == 0, must be > 0.]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_multilcass_iris",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params0-ValueError-max_depth == -1, must be >= 1-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-True]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-toy-poisson]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_error[file-AttributeError-'str' object has no attribute 'read'-HashingVectorizer]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Ridge-params5]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds[4-ValueError-n_components == 4, must be <= 3.-PLSSVD]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_loss_alpha_error[params3-alpha == 1.2, must be < 1.0]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-reg_small-friedman_mse]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape4]",
"sklearn/tree/tests/test_tree.py::test_n_features_deprecated[ExtraTreeRegressor]",
"sklearn/decomposition/tests/test_pca.py::test_assess_dimesion_rank_one",
"sklearn/tree/tests/test_tree.py::test_criterion_deprecated[mae-absolute_error-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[2-100-200]",
"sklearn/decomposition/tests/test_pca.py::test_pca[3-auto]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-bool]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_zero",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sparse_cg]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_fit_intercept_argument[not bool]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params5-ValueError-alpha == -1, must be >= 0.0-GammaRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params28-ValueError-min_sample]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[GradientBoostingClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family2-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_unknown_parameter[enet_path]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant_imag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[accuracy]",
"sklearn/cross_decomposition/tests/test_pls.py::test_copy[PLSRegression]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-Ridge-params4]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-diabetes-squared_error]",
"sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[ExtraTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_error[filename-FileNotFoundError--CountVectorizer]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params7-ValueError-tol == -1.0, must be > 0.-PoissonRegressor]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[int-str]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[randomized-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt16]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-clf_small-absolute_error]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME.R]",
"sklearn/preprocessing/tests/test_discretization.py::test_encode_options",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan--True-Input contains NaN]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection[full]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X2-Y2-PLSCanonical]",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csc]",
"sklearn/tree/tests/test_tree.py::test_min_samples_leaf",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-svd]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_warm_start_argument[not bool]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-True]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X3-cannot convert float NaN to integer]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-diabetes-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence",
"sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[quantile-expected_2bins2-expected_3bins2-expected_5bins2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]",
"sklearn/tree/tests/test_tree.py::test_min_samples_split",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-iris-squared_error]",
"sklearn/feature_extraction/tests/test_text.py::test_sublinear_tf",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float16]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-False]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_by_explained_variance[X1-0.01-1]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-multilabel-entropy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[None]",
"sklearn/cluster/tests/test_spectral.py::test_affinities",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params9-ValueError-max_featur]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-svd]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-pos-DecisionTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_iris",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int16]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[ExtraTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_link_auto[inverse-gaussian-LogLink]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-pos-DecisionTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_sample_weights_validation",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint16-ushort-unsignedinteger]",
"sklearn/feature_extraction/tests/test_text.py::test_pickling_built_processors[build_analyzer]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_fit_intercept_argument[0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_path_return_models_vs_new_return_gives_same_coefficients",
"sklearn/tree/tests/test_tree.py::test_sample_weight",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[DecisionTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[bool]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params41-ValueError-criterion=]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params14-ValueError-max_features == 1.1, must be <= 1.0-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/cluster/tests/test_birch.py::test_partial_fit",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-False]",
"sklearn/utils/tests/test_validation.py::test_check_memory",
"sklearn/tree/tests/test_tree.py::test_class_weights[DecisionTreeClassifier]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X4-Y4-CCA]",
"sklearn/tree/tests/test_tree.py::test_diabetes_overfit[absolute_error-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X2-Input contains infinity or a value too large for.*int]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[GradientBoostingClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-zeros-entropy]",
"sklearn/tree/tests/test_tree.py::test_importances_gini_equal_squared_error",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dok_matrix]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_oneclass_adaboost_proba",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-True]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_identity_regression[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_random_descent",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params0-ValueError-alphas\\\\[1\\\\] == -1, must be > 0.0-RidgeClassifierCV]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-sparse-neg-gini]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sag-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-iris-squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csc]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-mix-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params9-ValueError-max_featur]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params4]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape3]",
"sklearn/cluster/tests/test_birch.py::test_partial_fit_second_call_error_checks",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_classifiers]",
"sklearn/cluster/tests/test_spectral.py::test_precomputed_nearest_neighbors_filtering",
"sklearn/cluster/tests/test_birch.py::test_n_clusters",
"sklearn/tree/tests/test_tree.py::test_huge_allocations",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_negative_weight_error[model0-X0-y0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_sample_weight",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X4]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float64]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-float]",
"sklearn/tree/tests/test_tree.py::test_decision_path[ExtraTreeClassifier]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params2-ValueError-min_samples == 0, must be >= 1.]",
"sklearn/decomposition/tests/test_pca.py::test_pca[3-randomized]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params8-ValueError-tol == 0.0, must be > 0.0-PoissonRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-mix-poisson]",
"sklearn/feature_extraction/tests/test_text.py::test_n_features_in[HashingVectorizer-X0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-False]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params2-ValueError-max_iter == 0, must be >= 1.]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-False]",
"sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistentcy[friedman_mse]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto-3-n_components={}L? must be between {}L? and min\\\\(n_samples, n_features\\\\)={}L? with svd_solver=\\\\'{}\\\\'-data0]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params5-ValueError-subsample ]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params18-ValueError-min_impurity_decrease == -1, must be >= 0.0-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_regression",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params1-ValueError-l1_ratio == -1, must be >= 0.0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params0-ValueError-alphas\\\\[1\\\\] == -1, must be > 0.0-RidgeCV]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function_version",
"sklearn/ensemble/tests/test_weight_boosting.py::test_importances",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeCV-params6]",
"sklearn/tree/tests/test_tree.py::test_different_endianness_pickle",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.001]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params5-ValueError-min_samples_split == 1, must be >= 2-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params3-ValueError-min_samples_leaf == 0.0, must be > 0-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME.R]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family2-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sag]",
"sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-iris-gini]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params1-ValueError-max_iter == -1, must be >= 1-PoissonRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-clf_small-squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dia_matrix]",
"sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[DecisionTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params5-ValueError-alpha == -1, must be >= 0.0-TweedieRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape3]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-digits-absolute_error]",
"sklearn/utils/tests/test_validation.py::test_np_matrix",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintc-uint32-unsignedinteger]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params0-ValueError-max_iter == 0, must be >= 1-GeneralizedLinearRegressor]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X1-Y1-PLSRegression]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[7-100-200]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-mix-squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col1]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-neg-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[saga]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params30-ValueError-min_weight]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_nonfinite_params",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-sparse-mix-entropy]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-sparse-mix-entropy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-auto]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Float32]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params12-ValueError-verbose == -1, must be >= 0.-TweedieRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-C]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge0-make_regression]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingRegressor]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X3-Y3-PLSSVD]",
"sklearn/utils/tests/test_validation.py::test_check_array_complex_data_error",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingRegressor]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[arpack-random-data]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sag_with_X_fortran",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-cholesky-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-X]",
"sklearn/tree/tests/test_tree.py::test_classification_toy",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-zeros-ExtraTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[7]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_cv_individual_penalties",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_readonly_data",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostRegressor-X1-y1-params1-ValueError-n_estimators == 0, must be >= 1]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X0]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-sparse-pos-entropy]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params6-ValueError-min_samples_split == 0.0, must be > 0.0-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[svd]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-eigen]",
"sklearn/decomposition/tests/test_pca.py::test_pca[1-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[True-True]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[exponential]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-multilabel-absolute_error]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-digits-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_singular",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[saga-False]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-Ridge-params4]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[2-test_name4-int-2-4-right-err_msg6]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params20-ValueError-ccp_alpha == -1.0, must be >= 0.0-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_pickling_built_processors[build_tokenizer]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sanity_noise_variance[randomized]",
"sklearn/cross_decomposition/tests/test_pls.py::test_univariate_equivalence[PLSCanonical]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[3-100-200]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs0]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-diabetes-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col0]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X3-Y3-PLSCanonical]",
"sklearn/cluster/tests/test_birch.py::test_feature_names_out",
"sklearn/decomposition/tests/test_pca.py::test_pca_n_components_mostly_explained_variance_ratio",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X1]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-True]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_solver_argument[solver2]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[full-correlated-data]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[arpack-0-must be between 1 and min\\\\(n_samples, n_features\\\\)-data0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-saga-False]",
"sklearn/tree/tests/test_tree.py::test_mae",
"sklearn/linear_model/_glm/tests/test_glm.py::test_convergence_warning",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[file-<lambda>1-TfidfVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-clf_small-friedman_mse]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingClassifier]",
"sklearn/cluster/tests/test_spectral.py::test_discretize[150]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-clf_small-gini]",
"sklearn/tree/tests/test_tree.py::test_realloc",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params2-ValueError-n_estimato]",
"sklearn/preprocessing/tests/test_discretization.py::test_transform_1d_behavior",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-1.0]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params15-ValueError-Invalid value for max_features.-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-lobpcg]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-1.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_sparse[ElasticNet]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-neg-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[toy-DecisionTreeRegressor]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_np_matrix_raises",
"sklearn/utils/tests/test_validation.py::test_num_features[dataframe]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_check_input_false",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params3-ValueError-branching_factor == 1, must be > 1.]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-iris-entropy]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeClassifier-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_positive_constraint",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-sample_weight-True-Input sample_weight contains infinity]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[DecisionTreeClassifier]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[auto-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-True]",
"sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[DecisionTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_valid_n_bins",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-False]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidf_transformer_type[float64]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[cholesky]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_family_argument[normal-instance0]",
"sklearn/preprocessing/tests/test_discretization.py::test_invalid_strategy_option",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-zeros-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_intercept",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params13-ValueError-verbose ==]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_degenerate_targets",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params31-ValueError-min_weight]",
"sklearn/tree/tests/test_tree.py::test_public_apply_all_trees[DecisionTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_hashing_vectorizer",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[9-100-200]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-True]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params15-ValueError-Invalid value for max_features.-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-svd]",
"sklearn/feature_extraction/tests/test_text.py::test_pickling_transformer",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[gamma-1.0-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[svd]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X0-Y0-CCA]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name7-int-None-4-left-err_msg9]",
"sklearn/tree/tests/test_tree.py::test_error",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_type_exception",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[normal-1.0-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Ridge-params6]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params16-ValueError-max_leaf_nodes == 0, must be >= 2-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[1-0.5]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data1-full-4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_shapes",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params12-ValueError-verbose == -1, must be >= 0.-GeneralizedLinearRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-multilabel-poisson]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-saga-False]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingRegressor]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data0-arpack-3]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_custom_vocabulary_gap_index",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_wrong_type_loss_function[GradientBoostingClassifier-quantile]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-uniform-expected_inv0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path",
"sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_diabetes_overfit[friedman_mse-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[arpack-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-True]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-neg-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[5]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params35-ValueError-max_depth ]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant_imag]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params37-ValueError-min_impuri]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params39-ValueError-ccp_alpha ]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-1-True]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csr_matrix]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-neg-friedman_mse]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-sample_weight-True-Input sample_weight contains infinity]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[ExtraTreeRegressor]",
"sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[randomized]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-lsqr-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-digits-gini]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-Ridge-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLars-params1]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-ExtraTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizers_invalid_ngram_range[vec2]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-svd]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params0-ValueError-max_depth == -1, must be >= 1-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/cluster/tests/test_spectral.py::test_discretize[500]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-<lambda>-None-ngram_range1-None-char-'tokenizer'-'analyzer'-!= 'word'-TfidfVectorizer]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params18-ValueError-min_impurity_decrease == -1, must be >= 0.0-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/cluster/tests/test_spectral.py::test_verbose[discretize]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-lbfgs]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_uniform_targets",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0.5-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int8]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-int]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-True]",
"sklearn/tree/tests/test_tree.py::test_weighted_classification_toy",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-saga-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_wo_nestimators_change",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params7-ValueError-tol == -1.0, must be > 0.-GammaRegressor]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[cluster_qr-arpack]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params8-ValueError-p == -2, must be >= 0.0.]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-digits-poisson]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params39-ValueError-ccp_alpha ]",
"sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[uniform]",
"sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[uniform]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLarsIC-params14]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape2]",
"sklearn/cross_decomposition/tests/test_pls.py::test_pls_feature_names_out[PLSRegression]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_pandas",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sag-False]",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_values[200000]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[6-100-10]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]",
"sklearn/feature_extraction/tests/test_text.py::test_fit_countvectorizer_twice",
"sklearn/tree/tests/test_tree.py::test_1d_input[DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-digits-squared_error]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-ExtraTreeClassifier]",
"sklearn/cluster/tests/test_spectral.py::test_discretize[100]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-cholesky-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[GradientBoostingRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt8]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-False]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float64]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_wrong_type_loss_function[GradientBoostingClassifier-absolute_error]",
"sklearn/tree/tests/test_tree.py::test_sample_weight_invalid",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[tuple]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[longdouble-float16]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs3]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_synthetic",
"sklearn/tree/tests/test_tree.py::test_n_features_deprecated[DecisionTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-False-10-100]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params6-ValueError-subsample ]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_criterion_mse_deprecated[GradientBoostingRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[file-<lambda>0-HashingVectorizer]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-<lambda>-None-ngram_range2-\\\\w+-word-'token_pattern'-'tokenizer'-is not None-HashingVectorizer]",
"sklearn/cluster/tests/test_spectral.py::test_cluster_qr_permutation_invariance",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-clf_small-gini]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_sparse[ElasticNetCV]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params37-ValueError-min_impuri]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params9-ValueError-tol == 0, must be > 0.0-PoissonRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sag-False]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[digits-ExtraTreeClassifier]",
"sklearn/cluster/tests/test_birch.py::test_sparse_X",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-neg-squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-False]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-arpack]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeCV-params8]",
"sklearn/cross_decomposition/tests/test_pls.py::test_pls_feature_names_out[PLSSVD]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-None-None-ngram_range5-\\\\w+-char-'token_pattern'-'analyzer'-!= 'word'-TfidfVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-True]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-zeros-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-True]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params16-ValueError-max_leaf_nodes == 0, must be >= 2-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Float32]",
"sklearn/tree/tests/test_tree.py::test_max_leaf_nodes_max_depth",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float16]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X1-Y1-CCA]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_probability_exponential",
"sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[full]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[1.0-huber]",
"sklearn/decomposition/tests/test_pca.py::test_mle_redundant_data",
"sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca_bad_solver",
"sklearn/tree/tests/test_tree.py::test_balance_property[DecisionTreeRegressor-poisson]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-mix-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-_accuracy_callable]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_error[filename-FileNotFoundError--TfidfVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[lsqr]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[lil_matrix]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-True-100-10]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-True]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float64]",
"sklearn/cross_decomposition/tests/test_pls.py::test_sanity_check_pls_canonical_random",
"sklearn/tree/tests/test_tree.py::test_diabetes_underfit[friedman_mse-15-mean_squared_error-60-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement_raise",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-<lambda>-None-ngram_range2-\\\\w+-word-'token_pattern'-'tokenizer'-is not None-CountVectorizer]",
"sklearn/tree/tests/test_tree.py::test_decision_path[DecisionTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_vocab_sets_when_pickling[get_feature_names]",
"sklearn/decomposition/tests/test_pca.py::test_pca_dtype_preservation[auto]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_loo]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[GradientBoostingRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-kmeans-expected_inv1]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params5-ValueError-min_samples_split == 1, must be >= 2-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[5-100-10]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[byte-uint16]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params15-ValueError-Invalid value for max_features.-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lbfgs]",
"sklearn/utils/tests/test_validation.py::test_check_array_min_samples_and_features_messages",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[GradientBoostingRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingClassifier]",
"sklearn/tree/tests/test_tree.py::test_1d_input[ExtraTreeClassifier]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_unknown_mode",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in_pandas",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[svd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[False-arpack]",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values_consistency[randomized]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-None-None-ngram_range5-\\\\w+-char-'token_pattern'-'analyzer'-!= 'word'-CountVectorizer]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-sparse-neg-gini]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float32]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[ElasticNet]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostregressor_sample_weight",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape0]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]",
"sklearn/tree/tests/test_tree.py::test_balance_property[ExtraTreeRegressor-friedman_mse]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_params_validation[params1-ValueError-min_df == 1.5, must be <= 1.0.]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params6-ValueError-subsample ]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan--allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sparse_input[full]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_params_validation[params0-ValueError-max_df == 2.0, must be <= 1.0.]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X0-Y0-PLSRegression]",
"sklearn/tree/tests/test_tree.py::test_sparse_input_reg_trees[diabetes-DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_different_bitness_joblib_pickle",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_sort_features_64bit_sparse_indices",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[intc-int32-integer]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-zeros-DecisionTreeClassifier]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[6]",
"sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[kmeans-expected_bin_edges1]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifier-params0]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_params_validation[params5-ValueError-min_df == 1.5, must be <= 1.0.]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-False]",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_invalid_dtypes_warns[list-str]",
"sklearn/decomposition/tests/test_pca.py::test_pca_dtype_preservation[randomized]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-False]",
"sklearn/preprocessing/tests/test_discretization.py::test_invalid_n_bins_array",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[file-<lambda>1-CountVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-False]",
"sklearn/cross_decomposition/tests/test_pls.py::test_copy[PLSCanonical]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-cholesky-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[auto]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[DecisionTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-X-True-Input X contains infinity]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_samme_proba",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeClassifier-params3]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csc_matrix]",
"sklearn/tree/tests/test_tree.py::test_n_features_deprecated[ExtraTreeClassifier]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[randomized-0-must be between 1 and min\\\\(n_samples, n_features\\\\)-data0]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-X]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sparse_svd",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_positive_constraint",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingRegressor-X0-y0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-False]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-<lambda>-None-ngram_range1-None-char-'tokenizer'-'analyzer'-!= 'word'-CountVectorizer]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-diabetes-squared_error]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto-1.0-must be of type int-data1]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[binary classification]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params5-ValueError-subsample ]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sag-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_randomized_svd_n_oversamples",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float64]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params7-ValueError-tol == -1.0, must be > 0.-GeneralizedLinearRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params1-ValueError-max_iter == -1, must be >= 1-GammaRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeCV-params6]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_mle_error[randomized]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_metric_params",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-lsqr-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection[arpack]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-DecisionTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-bool]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-False]",
"sklearn/utils/tests/test_validation.py::test_check_sample_weight",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-lsqr-False]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint32-uint64]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_single_class_with_sample_weight",
"sklearn/cross_decomposition/tests/test_pls.py::test_univariate_equivalence[CCA]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-ExtraTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[True]",
"sklearn/feature_extraction/tests/test_text.py::test_char_ngram_analyzer",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-False]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X0-Y0-PLSSVD]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-True]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[uniform-expected0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeClassifierCV-params9]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-mix-absolute_error]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-zeros-DecisionTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float64]",
"sklearn/tree/tests/test_tree.py::test_regression_toy[friedman_mse-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[0.5-absolute_error]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[6-100-200]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeClassifier-params1]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintp-ulonglong-unsignedinteger]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_incorrect_gram",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params8-ValueError-tol == 0.0, must be > 0.0-GammaRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-digits-entropy]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[3]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-diabetes-absolute_error]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[0-100-200]",
"sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[uniform-expected_2bins0-expected_3bins0-expected_5bins0]",
"sklearn/feature_extraction/tests/test_text.py::test_hashed_binary_occurrences",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_solver_argument[not a solver]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[ExtraTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-True-100-10]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score3",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection[randomized]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params12-ValueError-verbose == -1, must be >= 0.-PoissonRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[bsr]",
"sklearn/cluster/tests/test_dbscan.py::test_boundaries",
"sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_regression_family",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-diabetes-friedman_mse]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[normal-0.0-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_loo_cv_asym_scoring",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-auto]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[minkowski-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X2]",
"sklearn/utils/tests/test_validation.py::test_num_features[list]",
"sklearn/tree/tests/test_tree.py::test_balance_property[DecisionTreeRegressor-friedman_mse]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_wrong_type_loss_function[GradientBoostingRegressor-deviance]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_False_check_input_False",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-True]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data0-full-4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeClassifier-params1]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[digits-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-False]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_warm_start_argument[1]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[filename-<lambda>1-HashingVectorizer]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_toy",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[cholesky]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sparse_input[randomized]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-True]",
"sklearn/cross_decomposition/tests/test_pls.py::test_attibutes_shapes[PLSSVD]",
"sklearn/tree/tests/test_tree.py::test_min_impurity_decrease",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params1]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_similarity",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_reraise_error[TfidfVectorizer]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-toy-squared_error]",
"sklearn/cluster/tests/test_dbscan.py::test_pickle",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-iris-absolute_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_object_conversion",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-allow-nan]",
"sklearn/utils/tests/test_validation.py::test_check_consistent_length",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[arpack-0-must be between 1 and min\\\\(n_samples, n_features\\\\)-data1]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params1-ValueError-alphas\\\\[0\\\\] == -0.1, must be > 0.0-RidgeCV]",
"sklearn/decomposition/tests/test_pca.py::test_pca[3-full]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-svd]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-None-None-ngram_range5-\\\\w+-char-'token_pattern'-'analyzer'-!= 'word'-HashingVectorizer]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family4-False]",
"sklearn/tree/tests/test_tree.py::test_max_leaf_nodes",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input4-params4-ValueError-n_init == 0, must be >= 1]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[False]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-None-<lambda>-ngram_range3-\\\\w+-<lambda>-'preprocessor'-'analyzer'-is callable-TfidfVectorizer]",
"sklearn/decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data1-5-full]",
"sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[kmeans]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_enet_and_lasso_cv",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_classification",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params0-ValueError-max_iter == 0, must be >= 1-GammaRegressor]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input[DecisionTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint-uint64-unsignedinteger]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X2-Y2-PLSRegression]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float32]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_vocab_dicts_when_pickling[get_feature_names]",
"sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_max_features[get_feature_names]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_multitask_lasso",
"sklearn/linear_model/tests/test_ridge.py::test_n_iter",
"sklearn/tree/tests/test_tree.py::test_regression_toy[squared_error-DecisionTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_stop_words",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_l1_ratio",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params0-ValueError-max_depth == -1, must be >= 1-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[int]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params24-ValueError-min_sample]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[randomized-0-must be between 1 and min\\\\(n_samples, n_features\\\\)-data1]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-reg_small-poisson]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params2-ValueError-min_samples_leaf == 0, must be >= 1-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params7-ValueError-tol == -1.0, must be > 0.-TweedieRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_strip_accents",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sag-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params17-ValueError-validation]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[cholesky]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params9-ValueError-min_weight_fraction_leaf == -1, must be >= 0.0-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[4-100-10]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_dual_gap",
"sklearn/tree/tests/test_tree.py::test_sparse_input[digits-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv_normalize]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-lbfgs]",
"sklearn/feature_extraction/tests/test_text.py::test_nonnegative_hashing_vectorizer_result_indices",
"sklearn/decomposition/tests/test_pca.py::test_pca_sparse_input[arpack]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_custom_token_pattern[get_feature_names_out]",
"sklearn/feature_extraction/tests/test_text.py::test_n_features_in[CountVectorizer-X1]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[None-1.0]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-multilabel-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-lbfgs]",
"sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[True-randomized]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csc]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-clf_small-friedman_mse]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-True-10-100]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[gcv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-False]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-dict]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float32]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]",
"sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistentcy[squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-None]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float16-float16]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-False-10-100]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-auto]",
"sklearn/tree/tests/test_tree.py::test_check_node_ndarray",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.01]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_warm_start_argument[0]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_empty_vocabulary",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csr_matrix]",
"sklearn/tree/tests/test_tree.py::test_poisson_zero_nodes[1]",
"sklearn/tree/tests/test_tree.py::test_diabetes_underfit[absolute_error-20-mean_squared_error-60-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-DecisionTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-False]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input3-params3-ValueError-n_init == -1, must be >= 1]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape4]",
"sklearn/feature_extraction/tests/test_text.py::test_word_ngram_analyzer",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds[0-ValueError-n_components == 0, must be >= 1.-PLSSVD]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data1-arpack-3]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidf_vectorizer_setters",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sag-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto-3-n_components={}L? must be between {}L? and min\\\\(n_samples, n_features\\\\)={}L? with svd_solver=\\\\'{}\\\\'-data1]",
"sklearn/cross_decomposition/tests/test_pls.py::test_copy[PLSSVD]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params14-TypeError-verbose mu]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-ElasticNet-params2]",
"sklearn/tree/tests/test_tree.py::test_pure_set",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-True]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params1-ValueError-max_iter == -1, must be >= 1-GeneralizedLinearRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float32]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family5-True]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifier]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeClassifierCV-params7]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params19-ValueError-n_iter_no_]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params11-ValueError-max_featur]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs1]",
"sklearn/decomposition/tests/test_pca.py::test_fit_mle_too_few_samples",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-iris-poisson]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[multiclass classification]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-DecisionTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[1]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params18-ValueError-min_impurity_decrease == -1, must be >= 0.0-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[full-random-data]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sag-False]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float16]",
"sklearn/tree/tests/test_tree.py::test_criterion_deprecated[mae-absolute_error-DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_empty_leaf_infinite_threshold",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params13-ValueError-verbose ==]",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_default[None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-svd]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-True]",
"sklearn/tree/tests/test_tree.py::test_arrays_persist",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Lasso-params0]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params2-ValueError-min_samples_leaf == 0, must be >= 1-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[stop_words0-None-None-ngram_range0-None-char-'stop_words'-'analyzer'-!= 'word'-HashingVectorizer]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-allow-nan]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-sample_weight]",
"sklearn/tree/tests/test_tree.py::test_decision_path[ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape1]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_identity_regression[False]",
"sklearn/cluster/tests/test_spectral.py::test_verbose[cluster_qr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-True]",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[full]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lsqr]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params6-ValueError-max_iter == 0, must be >= 1.]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params15-TypeError-warm_start]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params12-ValueError-verbose == -1, must be >= 0.-GammaRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-True]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float32]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_equivalence_solver[randomized]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int16-int32]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_loss_deprecated[lad-absolute_error]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[discretize]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-None-<lambda>-ngram_range3-\\\\w+-<lambda>-'preprocessor'-'analyzer'-is callable-HashingVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-lbfgs]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params6-ValueError-min_samples_split == 0.0, must be > 0.0-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_overwrite",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_not_infinite_loop",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[indices1]",
"sklearn/feature_extraction/tests/test_text.py::test_count_binary_occurrences[get_feature_names_out]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params10-ValueError-min_weight_fraction_leaf == 0.6, must be <= 0.5-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-saga-False]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-mix-DecisionTreeRegressor]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME.R]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params9-ValueError-tol == 0, must be > 0.0-TweedieRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-False]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[precomputed-True]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params5-ValueError-alpha == -1, must be >= 0.0-GeneralizedLinearRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[gamma-1.0-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca[2-arpack]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sanity_noise_variance[arpack]",
"sklearn/cluster/tests/test_dbscan.py::test_input_validation",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_string_object_as_input[CountVectorizer]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_shape_y",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-zeros-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-reg_small-friedman_mse]",
"sklearn/tree/tests/test_tree.py::test_unbalanced_iris",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[bsr_matrix]",
"sklearn/tree/tests/test_tree.py::test_only_constant_features",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-False]",
"sklearn/tree/tests/test_tree.py::test_regression_toy[squared_error-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params26-ValueError-min_sample]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-True]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[full]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input[ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-reg_small-squared_error]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params12-ValueError-max_features == 0, must be >= 1-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_loss_alpha_error[params0-alpha == 0.0, must be > 0.0]",
"sklearn/tree/tests/test_tree.py::test_numerical_stability",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sparse_cg]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-F]",
"sklearn/decomposition/tests/test_pca.py::test_pca[2-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-pos-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement",
"sklearn/ensemble/tests/test_weight_boosting.py::test_iris",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-reg_small-squared_error]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params5]",
"sklearn/utils/tests/test_validation.py::test_check_array_series",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-cholesky-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_wrong_type_loss_function[GradientBoostingClassifier-ls]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_fit_intercept_argument[fit_intercept3]",
"sklearn/tree/tests/test_tree.py::test_regression_toy[absolute_error-DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-DecisionTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/decomposition/tests/test_pca.py::test_feature_names_out",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params3-ValueError-min_samples_leaf == 0.0, must be > 0-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float16]",
"sklearn/feature_extraction/tests/test_text.py::test_char_wb_ngram_analyzer",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0-True]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[full-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params26-ValueError-min_sample]",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[arpack]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_inverse_transform[CountVectorizer]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan--allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/utils/tests/test_validation.py::test_check_symmetric",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.001]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_alpha_warning",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-svd]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[precomputed-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-X-True-Input X contains NaN]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int8]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.01]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[auto]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[bsr]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-mix-DecisionTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_solver_argument[1]",
"sklearn/linear_model/tests/test_ridge.py::test_toy_ridge_object",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params5-ValueError-min_samples_split == 1, must be >= 2-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidfvectorizer_invalid_idf_attr",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[ExtraTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-str]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-True]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_custom_token_pattern[get_feature_names]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params2-ValueError-branching_factor == 0, must be > 1.]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-lsqr-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-sparse-pos-gini]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X2-Input contains infinity or a value too large for.*int]",
"sklearn/tree/tests/test_tree.py::test_regression_toy[poisson-ExtraTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_link_auto[normal-IdentityLink]",
"sklearn/tree/tests/test_tree.py::test_regression_toy[absolute_error-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[ExtraTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csr]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-saga-False]",
"sklearn/cross_decomposition/tests/test_pls.py::test_pls_constant_y",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-bool]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float16-float32]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params12-ValueError-max_features == 0, must be >= 1-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X0-Input contains NaN.]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-True]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[filename-<lambda>1-TfidfVectorizer]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params17-ValueError-validation]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[poisson-0.0-False]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params7-ValueError-min_samples_split == 1.1, must be <= 1.0-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict_proba",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params31-ValueError-min_weight]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-False]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-neg-DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-multilabel-entropy]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-int]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params1-ValueError-max_iter == -1, must be >= 1-TweedieRegressor]",
"sklearn/tree/tests/test_tree.py::test_diabetes_overfit[squared_error-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-LinearRegression-params5]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-False]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params13-ValueError-max_features == 0.0, must be > 0.0-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-sparse-pos-entropy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-lbfgs]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params9-ValueError-min_weight_fraction_leaf == -1, must be >= 0.0-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params16-ValueError-max_leaf_nodes == 0, must be >= 2-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params0-ValueError-learning_r]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostClassifier-X0-y0-params0-ValueError-n_estimators == -1, must be >= 1]",
"sklearn/tree/tests/test_tree.py::test_diabetes_underfit[squared_error-15-mean_squared_error-60-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeClassifier-params1]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-digits-absolute_error]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_class",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-pos-ExtraTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-<lambda>-None-ngram_range2-\\\\w+-word-'token_pattern'-'tokenizer'-is not None-TfidfVectorizer]",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_default[warn]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[arpack-False]",
"sklearn/tree/tests/test_tree.py::test_behaviour_constant_feature_after_splits",
"sklearn/tree/tests/test_tree.py::test_decision_path[DecisionTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_diabetes]",
"sklearn/tree/tests/test_tree.py::test_probability",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float32]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multioutput_enetcv_error",
"sklearn/decomposition/tests/test_pca.py::test_pca[1-randomized]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-None-None-ngram_range4-None-<lambda>-'ngram_range'-'analyzer'-is callable-CountVectorizer]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_badargs[args0]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan--1-Input contains NaN]",
"sklearn/feature_extraction/tests/test_text.py::test_word_analyzer_unigrams_and_bigrams",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_equivalence_solver[arpack]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float16-float16]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-True]",
"sklearn/tree/tests/test_tree.py::test_diabetes_overfit[poisson-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-str]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_loss_alpha_error[params2-alpha == 1.2, must be < 1.0]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[kmeans]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds_pls_regression[0-ValueError-n_components == 0, must be >= 1.]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sag-False]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float16]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_error",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params9-ValueError-min_weight_fraction_leaf == -1, must be >= 0.0-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params5-ValueError-min_samples_split == 1, must be >= 2-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csc_matrix]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[svd]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X1-Input contains NaN.]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-zeros-absolute_error]",
"sklearn/cross_decomposition/tests/test_pls.py::test_sanity_check_pls_regression",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Float64]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[discretize-lobpcg]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_classification",
"sklearn/decomposition/tests/test_pca.py::test_pca_params_validation[params0-ValueError-n_oversamples == 0, must be >= 1.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[OrthogonalMatchingPursuit-params8]",
"sklearn/cluster/tests/test_birch.py::test_n_samples_leaves_roots",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csr]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-RidgeCV-params6]",
"sklearn/tree/tests/test_tree.py::test_balance_property[ExtraTreeRegressor-squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-accuracy]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params13-ValueError-max_features == 0.0, must be > 0.0-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_1d_input[ExtraTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[poisson-1.0-True]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-mix-ExtraTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[stop_words0-None-None-ngram_range0-None-char-'stop_words'-'analyzer'-!= 'word'-TfidfVectorizer]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Float64]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-<lambda>-None-ngram_range1-None-char-'tokenizer'-'analyzer'-!= 'word'-HashingVectorizer]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected1]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input11-params11-ValueError-degree == -1, must be >= 1]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params12-ValueError-Invalid va]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_overrided_gram_matrix",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-reg_small-absolute_error]",
"sklearn/tree/tests/test_tree.py::test_multioutput",
"sklearn/decomposition/tests/test_pca.py::test_pca_score[full]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-pos-friedman_mse]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-zeros-DecisionTreeRegressor]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X4-Y4-PLSRegression]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[GradientBoostingRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[BayesianRidge-params6]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-float]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params33-ValueError-max_leaf_n]",
"sklearn/decomposition/tests/test_pca.py::test_pca[1-arpack]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-sparse-pos-gini]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse_precomputed_different_eps",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-multilabel-friedman_mse]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[arpack-correlated-data]",
"sklearn/tree/tests/test_tree.py::test_prune_single_node_tree",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[exponential]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params4-ValueError-min_samples == -2, must be >= 1.]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params10-ValueError-min_weight_fraction_leaf == 0.6, must be <= 0.5-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-eigen]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-float]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingRegressor]",
"sklearn/tree/tests/test_tree.py::test_class_weight_errors[ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-zeros-absolute_error]",
"sklearn/tree/tests/test_tree.py::test_diabetes_overfit[squared_error-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-True]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-mix-friedman_mse]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_validation_fraction",
"sklearn/tree/tests/test_tree.py::test_poisson_zero_nodes[2]",
"sklearn/feature_extraction/tests/test_text.py::test_pickling_vectorizer",
"sklearn/feature_extraction/tests/test_text.py::test_non_unique_vocab",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_family_argument[inverse-gaussian-instance3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[True-arpack]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[8]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_reg",
"sklearn/utils/tests/test_validation.py::test_get_feature_names_numpy",
"sklearn/feature_extraction/tests/test_text.py::test_get_feature_names_deprecated",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds[0-ValueError-n_components == 0, must be >= 1.-CCA]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[arpack-2-must be strictly less than min-data0]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[toy-DecisionTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_array_on_mock_dataframe",
"sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-ExtraTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int16]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[gamma-0.0-False]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X1]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[False-randomized]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LassoCV-params1]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[True]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[cluster_qr-lobpcg]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_string_object_as_input[HashingVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape0]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input6-params6-ValueError-gamma == -1, must be >= 1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-svd]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[True-full]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostclassifier_without_sample_weight[SAMME.R]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params5-ValueError-branching_factor == -2, must be > 1.]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csr]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sparse_cg]",
"sklearn/tree/tests/test_tree.py::test_check_value_ndarray",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-uniform-expected_inv0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params0-ValueError-alpha == -1, must be >= 0.0]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match_cholesky",
"sklearn/linear_model/_glm/tests/test_glm.py::test_tags[estimator1-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_early_stopping_stratified",
"sklearn/tree/tests/test_tree.py::test_regression_toy[poisson-DecisionTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_num_features[array]",
"sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[toy-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-neg-absolute_error]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params8-ValueError-tol == 0.0, must be > 0.0-TweedieRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-pos-squared_error]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float64]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_warning",
"sklearn/decomposition/tests/test_pca.py::test_pca_score[auto]",
"sklearn/utils/tests/test_validation.py::test_as_float_array",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-cv1]",
"sklearn/tree/tests/test_tree.py::test_criterion_deprecated[mse-squared_error-DecisionTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_error[filename-FileNotFoundError--HashingVectorizer]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_readonly_data",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-eigen]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csr_matrix]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-svd]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-multilabel-squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-False]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[1-100-10]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_sparse_regression",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-True]",
"sklearn/tree/tests/test_tree.py::test_public_apply_all_trees[DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]",
"sklearn/tree/tests/test_tree.py::test_public_apply_all_trees[ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape1]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-y-True-Input y contains NaN]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape0]",
"sklearn/tree/tests/test_tree.py::test_sparse_input_reg_trees[diabetes-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-False]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params0-ValueError-eps == -1.0, must be > 0.0.]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_no_exception",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-zeros-ExtraTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sag-False]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[auto-random-data]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float16-float64]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_symbol_labels",
"sklearn/decomposition/tests/test_pca.py::test_pca_dim",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X0-Y0-PLSCanonical]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-kmeans-expected_inv1]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float32]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-zeros-entropy]",
"sklearn/linear_model/tests/test_ridge.py::test_primal_dual_relationship",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name5-int-2-4-left-err_msg7]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[float16-float32]",
"sklearn/tree/tests/test_tree.py::test_criterion_deprecated[mse-squared_error-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params10-ValueError-max_featur]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[LassoCV]",
"sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistentcy[poisson]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_max_features[TfidfVectorizer]",
"sklearn/feature_extraction/tests/test_text.py::test_feature_names[get_feature_names_out]",
"sklearn/cross_decomposition/tests/test_pls.py::test_convergence_fail",
"sklearn/decomposition/tests/test_pca.py::test_n_components_none[data0-randomized-4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-False]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[uniform-expected0]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[1.0]",
"sklearn/tree/tests/test_tree.py::test_balance_property[DecisionTreeRegressor-squared_error]",
"sklearn/utils/tests/test_validation.py::test_num_features[tuple]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-reg_small-absolute_error]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path_positive",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_float_class_labels",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0.5-False]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_regression_toy",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float16-float16]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-neg-DecisionTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_tags[estimator2-True]",
"sklearn/feature_extraction/tests/test_text.py::test_unicode_decode_error",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_unicode",
"sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[quantile]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[poisson-0.0-True]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[True]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-multilabel-squared_error]",
"sklearn/tree/tests/test_tree.py::test_regression_toy[friedman_mse-DecisionTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-quantile-expected_inv2]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-iris-friedman_mse]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_float_precision",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name6-int-2-4-bad parameter value-err_msg8]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-False]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-DecisionTreeRegressor]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[1-100-200]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_quantile_loss",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_custom_vocabulary_pipeline",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[auto-correlated-data]",
"sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[DecisionTreeClassifier]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_unknown_assign_labels",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int16]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[toy-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params13-ValueError-max_features == 0.0, must be > 0.0-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params5-ValueError-leaf_size == 0, must be >= 1.]",
"sklearn/tree/tests/test_tree.py::test_importances",
"sklearn/feature_extraction/tests/test_text.py::test_tfidf_transformer_sparse",
"sklearn/decomposition/tests/test_pca.py::test_whitening[randomized-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[None]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_poisson_regression_family",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params4-ValueError-tol == -1.0, must be >= 0.]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_core_samples_toy[brute]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score_consistency_solvers[randomized]",
"sklearn/decomposition/tests/test_pca.py::test_pca_zero_noise_variance_edge_cases[full]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-True]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_gridsearch",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto--1-n_components={}L? must be between {}L? and min\\\\(n_samples, n_features\\\\)={}L? with svd_solver=\\\\'{}\\\\'-data1]",
"sklearn/feature_extraction/tests/test_text.py::test_to_ascii",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-saga]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[4]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-lbfgs]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-inf-False]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_tags[estimator0-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float16]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[GradientBoostingRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sag]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[randomized]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-cholesky-False]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float64]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca[2-full]",
"sklearn/tree/tests/test_tree.py::test_decision_path_hardcoded",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sag-False]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params20-ValueError-ccp_alpha == -1.0, must be >= 0.0-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float32]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LinearRegression-params7]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params10-ValueError-min_weight_fraction_leaf == 0.6, must be <= 0.5-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidf_vectorizer_type[int64-float64-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lbfgs]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-neg-squared_error]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-True]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float16]",
"sklearn/tree/tests/test_tree.py::test_diabetes_underfit[friedman_mse-15-mean_squared_error-60-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-quantile-expected_inv2]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-pos-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-_accuracy_callable]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params12-ValueError-Invalid va]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[normal-0.0-True]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_fit_intercept_argument[1]",
"sklearn/feature_extraction/tests/test_text.py::test_transformer_idf_setter",
"sklearn/tree/tests/test_tree.py::test_different_endianness_joblib_pickle",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params14-TypeError-verbose mu]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_coef_shape_not_zero",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-neg-DecisionTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-toy-entropy]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto-1.0-must be of type int-data0]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-neg-ExtraTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidf_no_smoothing",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt8]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-True]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[short-int16-integer]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-eigen]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params13-ValueError-max_features == 0.0, must be > 0.0-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_max_feature_auto",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-C]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbr_degenerate_feature_importances",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-False]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params12-ValueError-max_features == 0, must be >= 1-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_inverse_transform[TfidfVectorizer]",
"sklearn/decomposition/tests/test_pca.py::test_pca_sanity_noise_variance[auto]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X4-Y4-PLSCanonical]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params24-ValueError-min_sample]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_n_features_deprecation[GradientBoostingRegressor]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds[0-ValueError-n_components == 0, must be >= 1.-PLSCanonical]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostRegressor-X1-y1-params3-ValueError-learning_rate == -1, must be > 0.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-ElasticNet-params2]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_criterion_mse_deprecated[GradientBoostingClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sparse_cg]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingClassifier]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-str]",
"sklearn/utils/tests/test_validation.py::test_check_feature_names_in",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_wrong_type_loss_function[GradientBoostingClassifier-huber]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_stability",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape0]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_attributes",
"sklearn/utils/tests/test_validation.py::test_suppress_validation",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params1-ValueError-alphas\\\\[0\\\\] == -0.1, must be > 0.0-RidgeClassifierCV]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_params_validation[params4-ValueError-max_df == 2.0, must be <= 1.0.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence_with_regularizer_decrement",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_vocab_clone",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float16]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_init_wrong_methods[estimator0-predict_proba]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-saga-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_score_consistency_solvers[arpack]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_parameters",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params8-TypeError-n_clusters should be an instance of ClusterMixin or an int]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params16-ValueError-validation]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-toy-friedman_mse]",
"sklearn/cross_decomposition/tests/test_pls.py::test_sanity_check_pls_canonical",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-lbfgs]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant pos]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_3",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-True]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_2",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0.5-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[_mean_squared_error_callable]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME]",
"sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[5]",
"sklearn/tree/tests/test_tree.py::test_public_apply_all_trees[ExtraTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-True]",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_values[0]",
"sklearn/tree/tests/test_tree.py::test_criterion_copy",
"sklearn/ensemble/tests/test_weight_boosting.py::test_sample_weights_infinite",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-clf_small-entropy]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params2-ValueError-min_samples_leaf == 0, must be >= 1-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init_pipeline",
"sklearn/tree/tests/test_tree.py::test_diabetes_underfit[poisson-15-mean_poisson_deviance-30-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-pos-poisson]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_and_enet",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int_-intp-integer]",
"sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[quantile-expected_bin_edges0]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[None]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[all negative]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input9-params9-ValueError-n_neighbors == 0, must be >= 1]",
"sklearn/decomposition/tests/test_pca.py::test_pca_zero_noise_variance_edge_cases[randomized]",
"sklearn/cross_decomposition/tests/test_pls.py::test_attibutes_shapes[PLSRegression]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[stop_words0-None-None-ngram_range0-None-char-'stop_words'-'analyzer'-!= 'word'-CountVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-True]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[asarray]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-X-allow-nan-Input X contains infinity]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X4-Y4-PLSSVD]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostClassifier-X0-y0-params1-ValueError-n_estimators == 0, must be >= 1]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-y-True-Input y contains NaN]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse_precomputed[True]",
"sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-iris-friedman_mse]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[Lasso]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge0-make_regression]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[GradientBoostingClassifier]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-C]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_family_argument[poisson-instance1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-svd]",
"sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[kmeans]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params12-ValueError-max_features == 0, must be >= 1-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[4-test_name8-int-2-None-right-err_msg10]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params14-ValueError-max_features == 1.1, must be <= 1.0-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params4-ValueError-Loss 'foob]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[str]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-sample_weight]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-True]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float32]",
"sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[ExtraTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-X-True-Input X contains infinity]",
"sklearn/feature_extraction/tests/test_text.py::test_tf_transformer_feature_names_out",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input10-params10-ValueError-eigen_tol == -1, must be >= 0]",
"sklearn/cross_decomposition/tests/test_pls.py::test_attibutes_shapes[PLSCanonical]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-clf_small-poisson]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-svd]",
"sklearn/tree/tests/test_tree.py::test_with_only_one_non_constant_features",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X2]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params20-ValueError-ccp_alpha == -1.0, must be >= 0.0-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_precomputed_metric_with_initial_rows_zero",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values[randomized]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[auto-False]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[ubyte-uint8-unsignedinteger]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_mle[auto]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_cross_validation",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-ElasticNet-params3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params21-ValueError-tol == 0.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_toy",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-mix-friedman_mse]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[auto--1-n_components={}L? must be between {}L? and min\\\\(n_samples, n_features\\\\)={}L? with svd_solver=\\\\'{}\\\\'-data0]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME]",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[randomized-random-data]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sag]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-neg-absolute_error]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params4-ValueError-tol == -1.0, must be >= 0.]",
"sklearn/preprocessing/tests/test_discretization.py::test_invalid_encode_option",
"sklearn/decomposition/tests/test_pca.py::test_pca_singular_values_consistency[arpack]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[7-100-10]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[None-0.5]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float16-float32]",
"sklearn/utils/tests/test_validation.py::test_check_array",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-saga-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-y]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingClassifier]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X3-Y3-CCA]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-mix-DecisionTreeClassifier]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostRegressor-X1-y1-params4-ValueError-learning_rate == 0, must be > 0.]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-True]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-diabetes-absolute_error]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-saga-False]",
"sklearn/tree/tests/test_tree.py::test_poisson_zero_nodes[0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-0.1]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-toy-friedman_mse]",
"sklearn/decomposition/tests/test_pca.py::test_pca_inverse[False-full]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[False-1000000.0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[False]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizers_invalid_ngram_range[vec0]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_max_feature_regression",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[bad]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds[4-ValueError-n_components == 4, must be <= 3.-PLSCanonical]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds[4-ValueError-n_components == 4, must be <= 3.-CCA]",
"sklearn/decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data2-50-full]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-auto]",
"sklearn/feature_extraction/tests/test_text.py::test_pickling_built_processors[build_preprocessor]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape4]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-iris-absolute_error]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family4-True]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_link_argument[identity-instance0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-True]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X1-Y1-PLSSVD]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params27-ValueError-min_sample]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidfvectorizer_export_idf",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-float]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family0-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[GradientBoostingClassifier]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_multitarget",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[file-<lambda>0-TfidfVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_link_argument[log-instance1]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float16-float32]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-digits-squared_error]",
"sklearn/decomposition/tests/test_pca.py::test_pca_deterministic_output[arpack]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[True-1000000.0]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_multidimensional_X",
"sklearn/cross_decomposition/tests/test_pls.py::test_one_component_equivalence",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params2-ValueError-n_estimato]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan--True-Input contains NaN]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input[DecisionTreeClassifier]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_no_core_samples",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params20-ValueError-ccp_alpha == -1.0, must be >= 0.0-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[0.5-huber]",
"sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[quantile]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params0-ValueError-alpha == -1, must be >= 0.0]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params7-ValueError-min_samples_split == 1.1, must be <= 1.0-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input0-params0-ValueError-n_clusters == -1, must be >= 1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-True]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[file-<lambda>0-CountVectorizer]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-neg-friedman_mse]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape3]",
"sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistentcy[absolute_error]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-toy-absolute_error]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[False-0-True]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params14-ValueError-max_features == 1.1, must be <= 1.0-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_wrong_type_loss_function[GradientBoostingRegressor-exponential]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-True]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_casting",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-neg-ExtraTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_grid_selection",
"sklearn/cross_decomposition/tests/test_pls.py::test_sanity_check_pls_regression_constant_column_Y",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_feature",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params10-ValueError-max_featur]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidf_vectorizer_type[int32-float64-True]",
"sklearn/utils/tests/test_validation.py::test_ordering",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-F]",
"sklearn/cluster/tests/test_spectral.py::test_discretize[50]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-iris-gini]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-digits-friedman_mse]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-zeros-poisson]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_convergence_fail",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.1]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_n_features_deprecation[GradientBoostingClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_gamma_regression_family",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_callable",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float64]",
"sklearn/tree/tests/test_tree.py::test_sparse_input_reg_trees[reg_small-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-zeros-friedman_mse]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_reraise_error[CountVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params2-ValueError-l1_ratio == 2, must be <= 1.0]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col2]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-mix-ExtraTreeClassifier]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-quantile-expected_inv2]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family0-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-0.5-True]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float64]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params2-ValueError-min_samples_leaf == 0, must be >= 1-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_unknown_parameter[lasso_path]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-False]",
"sklearn/decomposition/tests/test_pca.py::test_n_components_mle[full]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-zeros-squared_error]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostclassifier_without_sample_weight[SAMME]",
"sklearn/tree/tests/test_tree.py::test_poisson_vs_mse",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_family_argument[gamma-instance2]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-mix-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-False]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[full-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_precompute_invalid_argument",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params9-ValueError-n_clusters == -3, must be >= 1.]",
"sklearn/tree/tests/test_tree.py::test_diabetes_overfit[friedman_mse-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-pos-poisson]",
"sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_deprecated_matrix",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_warn",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params16-ValueError-validation]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-toy-gini]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X1]",
"sklearn/cross_decomposition/tests/test_pls.py::test_pls_canonical_basics",
"sklearn/preprocessing/tests/test_discretization.py::test_percentile_numeric_stability",
"sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-toy-entropy]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params7-ValueError-min_samples_split == 1.1, must be <= 1.0-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-diabetes-friedman_mse]",
"sklearn/feature_extraction/tests/test_text.py::test_count_binary_occurrences[get_feature_names]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X2-Y2-PLSSVD]",
"sklearn/tree/tests/test_tree.py::test_n_features_deprecated[DecisionTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_string_object_as_input[TfidfVectorizer]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_positive_constraint",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_multi_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_int_alphas",
"sklearn/cluster/tests/test_spectral.py::test_n_components",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float16]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[saga]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X3-Y3-PLSRegression]",
"sklearn/feature_extraction/tests/test_text.py::test_tf_idf_smoothing",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-lsqr-False]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int-long-integer]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted",
"sklearn/tree/tests/test_tree.py::test_diabetes_underfit[squared_error-15-mean_squared_error-60-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params16-ValueError-max_leaf_nodes == 0, must be >= 2-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-clf_small-poisson]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidf_vectorizer_setter",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[minkowski-True]",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input[ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-DecisionTreeRegressor]",
"sklearn/decomposition/tests/test_pca.py::test_assess_dimension_bad_rank",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-svd]",
"sklearn/tree/tests/test_tree.py::test_diabetes_underfit[absolute_error-20-mean_squared_error-60-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_custom_token_pattern_with_several_group",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[gamma-0.0-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LinearRegression-params13]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-C]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_warm_start_argument[warm_start3]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params0-ValueError-max_iter == 0, must be >= 1-PoissonRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-digits-entropy]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-True]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-neg-poisson]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_error",
"sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params2]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_error[file-AttributeError-'str' object has no attribute 'read'-TfidfVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-True]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-int]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidf_transformer_type[float32]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params9-ValueError-tol == 0, must be > 0.0-GeneralizedLinearRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_clf",
"sklearn/tree/tests/test_tree.py::test_1d_input[DecisionTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[ExtraTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizers_invalid_ngram_range[vec1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[ElasticNetCV]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-reg_small-poisson]",
"sklearn/decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data0-0.5-full]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-False]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-DecisionTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-clf_small-entropy]",
"sklearn/tree/tests/test_tree.py::test_diabetes_underfit[poisson-15-mean_poisson_deviance-30-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-False]",
"sklearn/tree/tests/test_tree.py::test_different_bitness_pickle",
"sklearn/decomposition/tests/test_pca.py::test_pca[1-full]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[list]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params23-ValueError-min_sample]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-cholesky-False]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[filename-<lambda>0-CountVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-True]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[5-test_name3-int-2-4-neither-err_msg5]",
"sklearn/cluster/tests/test_spectral.py::test_verbose[kmeans]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[filename-<lambda>1-CountVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-cholesky-False]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params3-ValueError-min_samples_leaf == 0.0, must be > 0-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-svd]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[regression]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input1-params1-ValueError-n_clusters == 0, must be >= 1]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csr_matrix]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lasso-params0]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_loss_alpha_error[params1-alpha == 0.0, must be > 0.0]",
"sklearn/feature_extraction/tests/test_text.py::test_stop_word_validation_custom_preprocessor[TfidfVectorizer]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params19-ValueError-n_iter_no_]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[0.5-squared_error]",
"sklearn/decomposition/tests/test_pca.py::test_mle_simple_case",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-dict]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_serialization",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-kmeans-expected_inv1]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[single-float32-floating]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-iris-entropy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[False-False]",
"sklearn/feature_extraction/tests/test_text.py::test_stop_word_validation_custom_preprocessor[CountVectorizer]",
"sklearn/cluster/tests/test_birch.py::test_birch_n_clusters_long_int",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostClassifier-X0-y0-params3-ValueError-learning_rate == -1, must be > 0.]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-multilabel-friedman_mse]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-DecisionTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-y]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[9-100-10]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_1",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNetCV-params2]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_init_wrong_methods[estimator1-predict]",
"sklearn/tree/tests/test_tree.py::test_big_input",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-digits-gini]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params10-ValueError-min_weight_fraction_leaf == 0.6, must be <= 0.5-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_lasso_and_multitask_lasso_cv",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_by_explained_variance[X0-0.95-2]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params4-ValueError-Loss 'foob]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params8-ValueError-The init p]",
"sklearn/utils/tests/test_validation.py::test_retrieve_samples_from_non_standard_shape",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-pos-ExtraTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_pipeline_grid_selection",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float32]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[array]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[float]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-True]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[5-100-200]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sag-False]",
"sklearn/utils/tests/test_validation.py::test_memmap",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-int]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingClassifier]",
"sklearn/decomposition/tests/test_pca.py::test_whitening[auto-True]",
"sklearn/tree/tests/test_tree.py::test_class_weights[ExtraTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_error[file-AttributeError-'str' object has no attribute 'read'-CountVectorizer]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-RidgeClassifierCV-params7]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-False]",
"sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[ExtraTreeClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_max_features[get_feature_names_out]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_badargs[args1]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-toy-absolute_error]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[3-100-10]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[1.0-squared_error]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-sparse-mix-gini]",
"sklearn/feature_extraction/tests/test_text.py::test_feature_names[get_feature_names]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[coo]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params15-TypeError-warm_start]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostRegressor-X1-y1-params0-ValueError-n_estimators == -1, must be >= 1]",
"sklearn/cluster/tests/test_birch.py::test_birch_predict",
"sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[ExtraTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-svd]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-sparse-pos-ExtraTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X3]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[float32-double]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint8-int8]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_criterion-zeros-DecisionTreeClassifier]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float64]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-None-None-ngram_range4-None-<lambda>-'ngram_range'-'analyzer'-is callable-TfidfVectorizer]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input7-params7-ValueError-gamma == 0, must be >= 1]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-cholesky-False]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params6-ValueError-min_samples_split == 0.0, must be > 0.0-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-mix-absolute_error]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float32]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_vocab_sets_when_pickling[get_feature_names_out]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[double-float64-floating]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[auto]",
"sklearn/tree/tests/test_tree.py::test_classes_shape",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-auto]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-sparse-neg-entropy]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-inf-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-sparse-neg-entropy]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float64]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_probability_log",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X0]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[poisson-1.0-False]",
"sklearn/feature_extraction/tests/test_text.py::test_word_analyzer_unigrams[CountVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]",
"sklearn/cross_decomposition/tests/test_pls.py::test_svd_flip_1d",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[float16-half-floating]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_dtype_enet_and_lassocv",
"sklearn/decomposition/tests/test_pca.py::test_pca_explained_variance_empirical[randomized-correlated-data]",
"sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-uniform-expected_inv0]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistentcy[normal-1.0-True]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-toy-squared_error]",
"sklearn/cross_decomposition/tests/test_pls.py::test_pls_feature_names_out[PLSCanonical]",
"sklearn/feature_extraction/tests/test_text.py::test_tie_breaking_sample_order_invariance",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_vocab_dicts_when_pickling[get_feature_names_out]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-iris-poisson]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params7-ValueError-min_samples_split == 1.1, must be <= 1.0-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[DecisionTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[single]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-None]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_negative_weight_error[model1-X1-y1]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_clf",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_reraise_error[HashingVectorizer]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_sparse[Lasso]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_params_validation[params2-ValueError-max_df == -2, must be >= 0.]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int0-long-integer]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_early_stopping_n_classes",
"sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[ExtraTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]",
"sklearn/tree/tests/test_tree.py::test_importances_raises",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family3-True]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[coo_matrix]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[file-<lambda>1-HashingVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_cg_max_iter",
"sklearn/utils/tests/test_validation.py::test_check_X_y_informative_error",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-ExtraTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_stop_words_removal",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_enet_and_multitask_enet_cv",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lars-params12]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-saga-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-pos-absolute_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf--True-Input contains infinity]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-False]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csc]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-zeros-friedman_mse]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingClassifier-X1-y1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-True]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-dict]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[cluster_qr]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_params_validation[params6-ValueError-max_features == -10, must be >= 0.]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-pos-DecisionTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csc_matrix]",
"sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[DecisionTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeCV]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-mix-DecisionTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ARDRegression-params7]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-True-10-100]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-pos-absolute_error]",
"sklearn/cluster/tests/test_birch.py::test_birch_fit_attributes_deprecated[partial_fit_]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-F]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-clf_small-squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[coo]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_params_validation[params3-ValueError-min_df == -10, must be >= 0.]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X1-Input contains NaN.]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params0-ValueError-learning_r]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_cv_dtype",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-zeros-squared_error]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan--1-Input contains NaN]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-svd]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf--True-Input contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Float64]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weights",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float16]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[4-100-200]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-str]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-svd]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params1-ValueError-eps == 0.0, must be > 0.0.]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-sparse-mix-gini]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeClassifierCV]",
"sklearn/cross_decomposition/tests/test_pls.py::test_scale_and_stability[X1-Y1-PLSCanonical]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[True]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params28-ValueError-min_sample]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-False-100-10]",
"sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[DecisionTreeClassifier]",
"sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[kmeans-expected_2bins1-expected_3bins1-expected_5bins1]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_custom_vocabulary",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-False]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input12-params12-ValueError-degree == 0, must be >= 1]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[8-100-200]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[digits-DecisionTreeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge1-make_classification]",
"sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[ExtraTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[ushort-uint32]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[1]",
"sklearn/cluster/tests/test_dbscan.py::test_weighted_dbscan",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_positive_constraint",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-saga-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-ElasticNet-params3]",
"sklearn/tree/tests/test_tree.py::test_sparse_input_reg_trees[reg_small-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_sparse[check_sparse_parameters-sparse-neg-DecisionTreeRegressor]",
"sklearn/cross_decomposition/tests/test_pls.py::test_pls_feature_names_out[CCA]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params3]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-None]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float32]",
"sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[filename-<lambda>0-HashingVectorizer]",
"sklearn/feature_extraction/tests/test_text.py::test_stop_word_validation_custom_preprocessor[HashingVectorizer]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-DecisionTreeRegressor]",
"sklearn/feature_extraction/tests/test_text.py::test_unused_parameters_warn[None-None-<lambda>-ngram_range3-\\\\w+-<lambda>-'preprocessor'-'analyzer'-is callable-CountVectorizer]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_pickle",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-eigen]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_with_arpack_amg_solvers",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-X-True-Input X contains NaN]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[deviance]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-multilabel-absolute_error]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family5-False]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-dict]",
"sklearn/decomposition/tests/test_pca.py::test_pca_dtype_preservation[full]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_sample_weight_adaboost_regressor",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-False]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[longfloat-longdouble-floating]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-lbfgs]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeClassifierCV-params16]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float16]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_zero_n_estimators[GradientBoostingRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-mix-squared_error]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[True]",
"sklearn/cluster/tests/test_birch.py::test_birch_fit_attributes_deprecated[fit_]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[True-1-False]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params15-ValueError-Invalid value for max_features.-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/decomposition/tests/test_pca.py::test_pca_dtype_preservation[arpack]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-svd]",
"sklearn/tree/tests/test_tree.py::test_check_n_classes",
"sklearn/decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data3-10-randomized]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-False]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-DecisionTreeClassifier]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float16]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_zero_n_estimators[GradientBoostingClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[lsqr]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-True-LinearRegression-params5]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params1-ValueError-threshold == 0.0, must be > 0.0.]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int32-long]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-False]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-ExtraTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params5-ValueError-alpha == -1, must be >= 0.0-PoissonRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[1-1.0]",
"sklearn/decomposition/tests/test_pca.py::test_pca[3-arpack]",
"sklearn/decomposition/tests/test_pca.py::test_infer_dim_by_explained_variance[X2-0.5-2]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-clf_small-absolute_error]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[family3-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_sparse[LassoCV]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[square]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params27-ValueError-min_sample]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_balltree",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeCV-params15]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-F]",
"sklearn/feature_extraction/tests/test_text.py::test_hashingvectorizer_nan_in_docs",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X0-Input contains NaN.]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[True]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-digits-friedman_mse]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X3-cannot convert float NaN to integer]",
"sklearn/utils/tests/test_validation.py::test_has_fit_parameter",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_verbose_output",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[1.0-absolute_error]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_link_auto[poisson-LogLink]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[True-False-LinearRegression-params5]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-eigen]",
"sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float64]",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_invalid_strategy",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params9-ValueError-tol == 0, must be > 0.0-GammaRegressor]",
"sklearn/tree/tests/test_tree.py::test_class_weight_errors[DecisionTreeClassifier]",
"sklearn/cross_decomposition/tests/test_pls.py::test_singular_value_helpers[0-100-10]",
"sklearn/tree/tests/test_tree.py::test_xor",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_min_df",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[1.0]",
"sklearn/feature_extraction/tests/test_text.py::test_word_analyzer_unigrams[HashingVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-lsqr-False]",
"sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[DecisionTreeClassifier]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingClassifier]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_model_sample_weights_normalize_in_pipeline[False-False-Lasso-params0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-cholesky-False]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-zeros-gini]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-svd]",
"sklearn/feature_extraction/tests/test_text.py::test_tfidf_vectorizer_with_fixed_vocabulary",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params14-ValueError-max_features == 1.1, must be <= 1.0-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_diabetes_overfit[poisson-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-pos-friedman_mse]",
"sklearn/feature_extraction/tests/test_text.py::test_countvectorizer_custom_vocabulary_repeated_indices",
"sklearn/cluster/tests/test_spectral.py::test_cluster_qr",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-None]",
"sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-ExtraTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-False-100-10]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params18-ValueError-min_impurity_decrease == -1, must be >= 0.0-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float64]",
"sklearn/decomposition/tests/test_pca.py::test_pca_validation[arpack-2-must be strictly less than min-data1]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_core_samples_toy[kd_tree]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_solver_not_supported",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-bool]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[array]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-accuracy]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt16]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params35-ValueError-max_depth ]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params30-ValueError-min_weight]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-False]",
"sklearn/decomposition/tests/test_pca.py::test_pca_check_projection_list[arpack]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse_precomputed[False]",
"sklearn/decomposition/tests/test_pca.py::test_pca[2-randomized]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingClassifier]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_max_features[CountVectorizer]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeCV]"
] |
[
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params1-TypeError-learning_r]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params10-TypeError-tol must be an instance of float, not str-GammaRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params1-TypeError-max_depth must be an instance of int-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[None-test_name1-Integral-2-4-neither-err_msg2]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params4-TypeError-max_iter must be an instance of int, not float-GeneralizedLinearRegressor]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostClassifier-X0-y0-params2-TypeError-n_estimators must be an instance of int, not float]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params25-TypeError-min_sample]",
"sklearn/decomposition/tests/test_pca.py::test_pca_params_validation[params1-TypeError-n_oversamples must be an instance of int]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params17-TypeError-max_leaf_nodes must be an instance of int-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params14-TypeError-verbose must be an instance of int, not float-TweedieRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params5-TypeError-tol must be an instance of float, not str]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params7-TypeError-n_clusters must be an instance of int, not float.]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params6-TypeError-alpha must be an instance of float, not str-GeneralizedLinearRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params2-TypeError-max_iter must be an instance of int, not str-GeneralizedLinearRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params22-TypeError-tol must b]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params11-TypeError-min_weight_fraction_leaf must be an instance of float-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params7-TypeError-max_iter must be an instance of int, not str]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params6-TypeError-alpha must be an instance of float, not str-TweedieRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params32-TypeError-min_weight]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params14-TypeError-verbose must be an instance of int, not float-PoissonRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params3-TypeError-l1_ratio must be an instance of float, not str]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params14-TypeError-verbose must be an instance of int, not float-GammaRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params32-TypeError-min_weight]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params4-TypeError-min_samples_leaf must be an instance of float-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_params_validation[AdaBoostRegressor-X1-y1-params2-TypeError-n_estimators must be an instance of int, not float]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params13-TypeError-verbose must be an instance of int, not str-PoissonRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params1-TypeError-learning_r]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params3-TypeError-max_iter must be an instance of int, not list-GammaRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params2-TypeError-alphas\\\\[2\\\\] must be an instance of float, not str-RidgeCV]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds[2.0-TypeError-n_components must be an instance of int-PLSCanonical]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params11-TypeError-tol must be an instance of float, not list-TweedieRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params3-TypeError-n_estimato]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params3-TypeError-n_estimato]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params13-TypeError-verbose must be an instance of int, not str-GeneralizedLinearRegressor]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_param_invalid[params5-TypeError-tol must be an instance of float, not str]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds_pls_regression[2.0-TypeError-n_components must be an instance of int]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params1-TypeError-max_depth must be an instance of int-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params2-TypeError-max_iter must be an instance of int, not str-GammaRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params10-TypeError-tol must be an instance of float, not str-GeneralizedLinearRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params34-TypeError-max_leaf_n]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params17-TypeError-max_leaf_nodes must be an instance of int-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params11-TypeError-tol must be an instance of float, not list-GammaRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params4-TypeError-min_samples_leaf must be an instance of float-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params11-TypeError-min_weight_fraction_leaf must be an instance of float-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params10-TypeError-tol must be an instance of float, not str-TweedieRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params1-TypeError-alpha must be an instance of float, not str]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params3-TypeError-min_samples must be an instance of int, not float.]",
"sklearn/feature_extraction/tests/test_text.py::test_vectorizer_params_validation[params7-TypeError-max_features must be an instance of int, not float]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params17-TypeError-max_leaf_nodes must be an instance of int-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params36-TypeError-max_depth ]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params21-TypeError-ccp_alpha must be an instance of float-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params4-TypeError-max_iter must be an instance of int, not float-PoissonRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params8-TypeError-min_samples_split must be an instance of float-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_params_validation[params3-TypeError-max_iter must be an instance of int, not str]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params38-TypeError-min_impuri]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params6-TypeError-leaf_size must be an instance of int, not float.]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params11-TypeError-tol must be an instance of float, not list-GeneralizedLinearRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params8-TypeError-min_samples_split must be an instance of float-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params11-TypeError-min_weight_fraction_leaf must be an instance of float-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params19-TypeError-min_impurity_decrease must be an instance of float-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params40-TypeError-ccp_alpha ]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params21-TypeError-ccp_alpha must be an instance of float-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params3-TypeError-max_iter must be an instance of int, not list-TweedieRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params3-TypeError-max_iter must be an instance of int, not list-GeneralizedLinearRegressor]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input2-params2-TypeError-n_clusters must be an instance of int, not float]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params4-TypeError-max_iter must be an instance of int, not float-GammaRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params21-TypeError-ccp_alpha must be an instance of float-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params1-TypeError-max_depth must be an instance of int-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_invalid_type",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params19-TypeError-min_impurity_decrease must be an instance of float-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params14-TypeError-verbose must be an instance of int, not float-GeneralizedLinearRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params19-TypeError-min_impurity_decrease must be an instance of float-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params1-TypeError-max_depth must be an instance of int-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params11-TypeError-min_weight_fraction_leaf must be an instance of float-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds[2.0-TypeError-n_components must be an instance of int-PLSSVD]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_params_validation[input5-params5-TypeError-n_init must be an instance of int, not float]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params29-TypeError-min_sample]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params22-TypeError-tol must b]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name1-float-2-4-neither-err_msg0]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params20-TypeError-n_iter_no_]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params4-TypeError-min_samples_leaf must be an instance of float-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params18-TypeError-validation]",
"sklearn/cluster/tests/test_birch.py::test_birch_params_validation[params4-TypeError-branching_factor must be an instance of int, not float.]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name1-target_type3-2-4-neither-err_msg3]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params11-TypeError-tol must be an instance of float, not list-PoissonRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params18-TypeError-validation]",
"sklearn/cross_decomposition/tests/test_pls.py::test_n_components_bounds[2.0-TypeError-n_components must be an instance of int-CCA]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params29-TypeError-min_sample]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params36-TypeError-max_depth ]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params2-TypeError-alphas\\\\[2\\\\] must be an instance of float, not str-RidgeClassifierCV]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params20-TypeError-n_iter_no_]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params4-TypeError-max_iter must be an instance of int, not float-TweedieRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params3-TypeError-max_iter must be an instance of int, not list-PoissonRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params19-TypeError-min_impurity_decrease must be an instance of float-DecisionTreeRegressor-DecisionTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params34-TypeError-max_leaf_n]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params6-TypeError-alpha must be an instance of float, not str-GammaRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingClassifier-X1-y1-params7-TypeError-subsample ]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params7-TypeError-subsample ]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params38-TypeError-min_impuri]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params40-TypeError-ccp_alpha ]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params2-TypeError-max_iter must be an instance of int, not str-TweedieRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params13-TypeError-verbose must be an instance of int, not str-GammaRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params17-TypeError-max_leaf_nodes must be an instance of int-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[None-test_name1-Real-2-4-neither-err_msg1]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params2-TypeError-max_iter must be an instance of int, not str-PoissonRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params6-TypeError-alpha must be an instance of float, not str-PoissonRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params21-TypeError-ccp_alpha must be an instance of float-DecisionTreeClassifier-DecisionTreeClassifier]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params13-TypeError-verbose must be an instance of int, not str-TweedieRegressor]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params8-TypeError-min_samples_split must be an instance of float-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/ensemble/tests/test_gradient_boosting.py::test_gbdt_parameter_checks[GradientBoostingRegressor-X0-y0-params25-TypeError-min_sample]",
"sklearn/cluster/tests/test_dbscan.py::test_dbscan_params_validation[params9-TypeError-n_jobs must be an instance of int, not float.]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params8-TypeError-min_samples_split must be an instance of float-ExtraTreeClassifier-ExtraTreeClassifier]",
"sklearn/tree/tests/test_tree.py::test_tree_params_validation[params4-TypeError-min_samples_leaf must be an instance of float-ExtraTreeRegressor-ExtraTreeRegressor]",
"sklearn/linear_model/_glm/tests/test_glm.py::test_glm_scalar_argument[params10-TypeError-tol must be an instance of float, not str-PoissonRegressor]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.1.rst",
"old_path": "a/doc/whats_new/v1.1.rst",
"new_path": "b/doc/whats_new/v1.1.rst",
"metadata": "diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst\nindex 39f8e405ebf7c..2b53301c40b99 100644\n--- a/doc/whats_new/v1.1.rst\n+++ b/doc/whats_new/v1.1.rst\n@@ -617,6 +617,9 @@ Changelog\n left corner of the HTML representation to show how the elements are\n clickable. :pr:`<PRID>` by `<NAME>`_.\n \n+- |Enhancement| :func:`utils.validation.check_scalar` now has better messages\n+ when displaying the type. :pr:`<PRID>` by `<NAME>`_.\n+\n - |Fix| :func:`check_scalar` raises an error when `include_boundaries={\"left\", \"right\"}`\n and the boundaries are not set.\n :pr:`<PRID>` by `Marie Lanternier <mlant>`.\n"
}
] |
diff --git a/doc/whats_new/v1.1.rst b/doc/whats_new/v1.1.rst
index 39f8e405ebf7c..2b53301c40b99 100644
--- a/doc/whats_new/v1.1.rst
+++ b/doc/whats_new/v1.1.rst
@@ -617,6 +617,9 @@ Changelog
left corner of the HTML representation to show how the elements are
clickable. :pr:`<PRID>` by `<NAME>`_.
+- |Enhancement| :func:`utils.validation.check_scalar` now has better messages
+ when displaying the type. :pr:`<PRID>` by `<NAME>`_.
+
- |Fix| :func:`check_scalar` raises an error when `include_boundaries={"left", "right"}`
and the boundaries are not set.
:pr:`<PRID>` by `Marie Lanternier <mlant>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20155
|
https://github.com/scikit-learn/scikit-learn/pull/20155
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 7255fe82ff628..525f3439860ef 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -344,6 +344,10 @@ Changelog
is now faster. This is especially noticeable on large sparse input.
:pr:`19734` by :user:`Fred Robinson <frrad>`.
+- |Enhancement| `fit` method preserves dtype for numpy.float32 in
+ :class:`Lars`, :class:`LassoLars`, :class:`LassoLars`, :class:`LarsCV` and
+ :class:`LassoLarsCV`. :pr:`20155` by :user:`Takeshi Oura <takoika>`.
+
:mod:`sklearn.manifold`
.......................
diff --git a/sklearn/linear_model/_least_angle.py b/sklearn/linear_model/_least_angle.py
index 0932d0bd1aee3..3485344b99e02 100644
--- a/sklearn/linear_model/_least_angle.py
+++ b/sklearn/linear_model/_least_angle.py
@@ -476,12 +476,23 @@ def _lars_path_solver(
max_features = min(max_iter, n_features)
+ dtypes = set(a.dtype for a in (X, y, Xy, Gram) if a is not None)
+ if len(dtypes) == 1:
+ # use the precision level of input data if it is consistent
+ return_dtype = next(iter(dtypes))
+ else:
+ # fallback to double precision otherwise
+ return_dtype = np.float64
+
if return_path:
- coefs = np.zeros((max_features + 1, n_features))
- alphas = np.zeros(max_features + 1)
+ coefs = np.zeros((max_features + 1, n_features), dtype=return_dtype)
+ alphas = np.zeros(max_features + 1, dtype=return_dtype)
else:
- coef, prev_coef = np.zeros(n_features), np.zeros(n_features)
- alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas?
+ coef, prev_coef = (np.zeros(n_features, dtype=return_dtype),
+ np.zeros(n_features, dtype=return_dtype))
+ alpha, prev_alpha = (np.array([0.], dtype=return_dtype),
+ np.array([0.], dtype=return_dtype))
+ # above better ideas?
n_iter, n_active = 0, 0
active, indices = list(), np.arange(n_features)
@@ -948,7 +959,7 @@ def _fit(self, X, y, max_iter, alpha, fit_path, Xy=None):
self.alphas_ = []
self.n_iter_ = []
- self.coef_ = np.empty((n_targets, n_features))
+ self.coef_ = np.empty((n_targets, n_features), dtype=X.dtype)
if fit_path:
self.active_ = []
|
diff --git a/sklearn/linear_model/tests/test_least_angle.py b/sklearn/linear_model/tests/test_least_angle.py
index 4321c39b45e92..656b7e3fef718 100644
--- a/sklearn/linear_model/tests/test_least_angle.py
+++ b/sklearn/linear_model/tests/test_least_angle.py
@@ -14,7 +14,7 @@
from sklearn import linear_model, datasets
from sklearn.linear_model._least_angle import _lars_path_residues
from sklearn.linear_model import LassoLarsIC, lars_path
-from sklearn.linear_model import Lars, LassoLars
+from sklearn.linear_model import Lars, LassoLars, LarsCV, LassoLarsCV
# TODO: use another dataset that has multiple drops
diabetes = datasets.load_diabetes()
@@ -777,3 +777,54 @@ def test_copy_X_with_auto_gram():
linear_model.lars_path(X, y, Gram='auto', copy_X=True, method='lasso')
# X did not change
assert_allclose(X, X_before)
+
+
[email protected]("LARS, has_coef_path, args",
+ ((Lars, True, {}),
+ (LassoLars, True, {}),
+ (LassoLarsIC, False, {}),
+ (LarsCV, True, {}),
+ # max_iter=5 is for avoiding ConvergenceWarning
+ (LassoLarsCV, True, {"max_iter": 5})))
[email protected]("dtype", (np.float32, np.float64))
+def test_lars_dtype_match(LARS, has_coef_path, args, dtype):
+ # The test ensures that the fit method preserves input dtype
+ rng = np.random.RandomState(0)
+ X = rng.rand(6, 6).astype(dtype)
+ y = rng.rand(6).astype(dtype)
+
+ model = LARS(**args)
+ model.fit(X, y)
+ assert model.coef_.dtype == dtype
+ if has_coef_path:
+ assert model.coef_path_.dtype == dtype
+ assert model.intercept_.dtype == dtype
+
+
[email protected]("LARS, has_coef_path, args",
+ ((Lars, True, {}),
+ (LassoLars, True, {}),
+ (LassoLarsIC, False, {}),
+ (LarsCV, True, {}),
+ # max_iter=5 is for avoiding ConvergenceWarning
+ (LassoLarsCV, True, {"max_iter": 5})))
+def test_lars_numeric_consistency(LARS, has_coef_path, args):
+ # The test ensures numerical consistency between trained coefficients
+ # of float32 and float64.
+ rtol = 1e-5
+ atol = 1e-5
+
+ rng = np.random.RandomState(0)
+ X_64 = rng.rand(6, 6)
+ y_64 = rng.rand(6)
+
+ model_64 = LARS(**args).fit(X_64, y_64)
+ model_32 = LARS(**args).fit(X_64.astype(np.float32),
+ y_64.astype(np.float32))
+
+ assert_allclose(model_64.coef_, model_32.coef_, rtol=rtol, atol=atol)
+ if has_coef_path:
+ assert_allclose(model_64.coef_path_, model_32.coef_path_,
+ rtol=rtol, atol=atol)
+ assert_allclose(model_64.intercept_, model_32.intercept_,
+ rtol=rtol, atol=atol)
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 7255fe82ff628..525f3439860ef 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -344,6 +344,10 @@ Changelog\n is now faster. This is especially noticeable on large sparse input.\n :pr:`19734` by :user:`Fred Robinson <frrad>`.\n \n+- |Enhancement| `fit` method preserves dtype for numpy.float32 in\n+ :class:`Lars`, :class:`LassoLars`, :class:`LassoLars`, :class:`LarsCV` and\n+ :class:`LassoLarsCV`. :pr:`20155` by :user:`Takeshi Oura <takoika>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
1.00
|
eea26e7e81bc4120ed00d8bb39f58100747cecdc
|
[
"sklearn/linear_model/tests/test_least_angle.py::test_collinearity",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_cv",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_numeric_consistency[LassoLarsIC-False-args2]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_copyX_behaviour[True]",
"sklearn/linear_model/tests/test_least_angle.py::test_no_path_precomputed",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_path_gram_equivalent[False-lar]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_R_implementation",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_path_positive_constraint",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float64-LassoLarsIC-False-args2]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_path_length",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float64-LassoLars-True-args1]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_lasso_cd_ill_conditioned",
"sklearn/linear_model/tests/test_least_angle.py::test_no_path_all_precomputed",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_numeric_consistency[LassoLars-True-args1]",
"sklearn/linear_model/tests/test_least_angle.py::test_copy_X_with_auto_gram",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float64-LassoLarsCV-True-args4]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_gives_lstsq_solution",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_path_gram_equivalent[True-lar]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_cv_max_iter",
"sklearn/linear_model/tests/test_least_angle.py::test_estimatorclasses_positive_constraint",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_numeric_consistency[LarsCV-True-args3]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float64-LarsCV-True-args3]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_lasso_cd_ill_conditioned2",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_numeric_consistency[LassoLarsCV-True-args4]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_ic",
"sklearn/linear_model/tests/test_least_angle.py::test_simple",
"sklearn/linear_model/tests/test_least_angle.py::test_x_none_gram_none_raises_value_error",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_lasso_cd_positive",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_n_nonzero_coefs",
"sklearn/linear_model/tests/test_least_angle.py::test_all_precomputed",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_precompute[LassoLarsIC]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_add_features",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_path_gram_equivalent[False-lasso]",
"sklearn/linear_model/tests/test_least_angle.py::test_multitarget",
"sklearn/linear_model/tests/test_least_angle.py::test_singular_matrix",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_fit_copyX_behaviour[False]",
"sklearn/linear_model/tests/test_least_angle.py::test_rank_deficient_design",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_lasso_cd",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_with_jitter[est0]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_copyX_behaviour[False]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float64-Lars-True-args0]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_numeric_consistency[Lars-True-args0]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_fit_copyX_behaviour[True]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_precompute[LarsCV]",
"sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_lasso_cd_early_stopping",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_path_readonly_data",
"sklearn/linear_model/tests/test_least_angle.py::test_no_path",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_with_jitter[est1]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_path_gram_equivalent[True-lasso]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_lstsq",
"sklearn/linear_model/tests/test_least_angle.py::test_simple_precomputed",
"sklearn/linear_model/tests/test_least_angle.py::test_X_none_gram_not_none",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_precompute[Lars]"
] |
[
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float32-LassoLarsCV-True-args4]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float32-LassoLars-True-args1]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float32-Lars-True-args0]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float32-LassoLarsIC-False-args2]",
"sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float32-LarsCV-True-args3]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 7255fe82ff628..525f3439860ef 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -344,6 +344,10 @@ Changelog\n is now faster. This is especially noticeable on large sparse input.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| `fit` method preserves dtype for numpy.float32 in\n+ :class:`Lars`, :class:`LassoLars`, :class:`LassoLars`, :class:`LarsCV` and\n+ :class:`LassoLarsCV`. :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 7255fe82ff628..525f3439860ef 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -344,6 +344,10 @@ Changelog
is now faster. This is especially noticeable on large sparse input.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| `fit` method preserves dtype for numpy.float32 in
+ :class:`Lars`, :class:`LassoLars`, :class:`LassoLars`, :class:`LarsCV` and
+ :class:`LassoLarsCV`. :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.manifold`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19415
|
https://github.com/scikit-learn/scikit-learn/pull/19415
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 65d555f978df0..c658bc6b12452 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -991,6 +991,7 @@ details.
metrics.mean_poisson_deviance
metrics.mean_gamma_deviance
metrics.mean_tweedie_deviance
+ metrics.mean_pinball_loss
Multilabel ranking metrics
--------------------------
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index 86e64f997cdd8..c807af982e277 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -416,7 +416,7 @@ defined as
.. math::
- \texttt{accuracy}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i = y_i)
+ \texttt{accuracy}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i = y_i)
where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_.
@@ -1960,8 +1960,8 @@ Regression metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure regression performance. Some of those have been enhanced
to handle the multioutput case: :func:`mean_squared_error`,
-:func:`mean_absolute_error`, :func:`explained_variance_score` and
-:func:`r2_score`.
+:func:`mean_absolute_error`, :func:`explained_variance_score`,
+:func:`r2_score` and :func:`mean_pinball_loss`.
These functions have an ``multioutput`` keyword argument which specifies the
@@ -2354,6 +2354,71 @@ the difference in errors decreases. Finally, by setting, ``power=2``::
we would get identical errors. The deviance when ``power=2`` is thus only
sensitive to relative errors.
+.. _pinball_loss:
+
+Pinball loss
+------------
+
+The :func:`mean_pinball_loss` function is used to evaluate the predictive
+performance of quantile regression models. The `pinball loss
+<https://en.wikipedia.org/wiki/Quantile_regression#Computation>`_ is equivalent
+to :func:`mean_absolute_error` when the quantile parameter ``alpha`` is set to
+0.5.
+
+.. math::
+
+ \text{pinball}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \alpha \max(y_i - \hat{y}_i, 0) + (1 - \alpha) \max(\hat{y}_i - y_i, 0)
+
+Here is a small example of usage of the :func:`mean_pinball_loss` function::
+
+ >>> from sklearn.metrics import mean_pinball_loss
+ >>> y_true = [1, 2, 3]
+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1)
+ 0.03...
+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1)
+ 0.3...
+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9)
+ 0.3...
+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9)
+ 0.03...
+ >>> mean_pinball_loss(y_true, y_true, alpha=0.1)
+ 0.0
+ >>> mean_pinball_loss(y_true, y_true, alpha=0.9)
+ 0.0
+
+It is possible to build a scorer object with a specific choice of alpha::
+
+ >>> from sklearn.metrics import make_scorer
+ >>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)
+
+Such a scorer can be used to evaluate the generalization performance of a
+quantile regressor via cross-validation:
+
+ >>> from sklearn.datasets import make_regression
+ >>> from sklearn.model_selection import cross_val_score
+ >>> from sklearn.ensemble import GradientBoostingRegressor
+ >>>
+ >>> X, y = make_regression(n_samples=100, random_state=0)
+ >>> estimator = GradientBoostingRegressor(
+ ... loss="quantile",
+ ... alpha=0.95,
+ ... random_state=0,
+ ... )
+ >>> cross_val_score(estimator, X, y, cv=5, scoring=mean_pinball_loss_95p)
+ array([11.1..., 10.4... , 24.4..., 9.2..., 12.9...])
+
+It is also possible to build scorer objects for hyper-parameter tuning. The
+sign of the loss must be switched to ensure that greater means better as
+explained in the example linked below.
+
+.. topic:: Example:
+
+ * See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`
+ for an example of using a the pinball loss to evaluate and tune the
+ hyper-parameters of quantile regression models on data with non-symmetric
+ noise and outliers.
+
+
.. _clustering_metrics:
Clustering metrics
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 3086d91b28f5d..582d6872f59cb 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -134,6 +134,10 @@ Changelog
class methods and will be removed in 1.2.
:pr:`18543` by `Guillaume Lemaitre`_.
+- |Feature| :func:`metrics.mean_pinball_loss` exposes the pinball loss for
+ quantile regression. :pr:`19415` by :user:`Xavier Dupré <sdpython>`
+ and :user:`Oliver Grisel <ogrisel>`.
+
:mod:`sklearn.naive_bayes`
..........................
diff --git a/examples/ensemble/plot_gradient_boosting_quantile.py b/examples/ensemble/plot_gradient_boosting_quantile.py
index ef40a2247bcc5..f29a87fe6cff7 100644
--- a/examples/ensemble/plot_gradient_boosting_quantile.py
+++ b/examples/ensemble/plot_gradient_boosting_quantile.py
@@ -3,77 +3,330 @@
Prediction Intervals for Gradient Boosting Regression
=====================================================
-This example shows how quantile regression can be used
-to create prediction intervals.
+This example shows how quantile regression can be used to create prediction
+intervals.
"""
-
+# %%
+# Generate some data for a synthetic regression problem by applying the
+# function f to uniformly sampled random inputs.
import numpy as np
-import matplotlib.pyplot as plt
-
-from sklearn.ensemble import GradientBoostingRegressor
-
-np.random.seed(1)
+from sklearn.model_selection import train_test_split
def f(x):
"""The function to predict."""
return x * np.sin(x)
-#----------------------------------------------------------------------
-# First the noiseless case
-X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T
-X = X.astype(np.float32)
-# Observations
-y = f(X).ravel()
+rng = np.random.RandomState(42)
+X = np.atleast_2d(rng.uniform(0, 10.0, size=1000)).T
+expected_y = f(X).ravel()
+
+# %%
+# To make the problem interesting, we generate observations of the target y as
+# the sum of a deterministic term computed by the function f and a random noise
+# term that follows a centered `log-normal
+# <https://en.wikipedia.org/wiki/Log-normal_distribution>`_. To make this even
+# more interesting we consider the case where the amplitude of the noise
+# depends on the input variable x (heteroscedastic noise).
+#
+# The lognormal distribution is non-symmetric and long tailed: observing large
+# outliers is likely but it is impossible to observe small outliers.
+sigma = 0.5 + X.ravel() / 10
+noise = rng.lognormal(sigma=sigma) - np.exp(sigma ** 2 / 2)
+y = expected_y + noise
+
+# %%
+# Split into train, test datasets:
+X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
+
+# %%
+# Fitting non-linear quantile and least squares regressors
+# --------------------------------------------------------
+#
+# Fit gradient boosting models trained with the quantile loss and
+# alpha=0.05, 0.5, 0.95.
+#
+# The models obtained for alpha=0.05 and alpha=0.95 produce a 90% confidence
+# interval (95% - 5% = 90%).
+#
+# The model trained with alpha=0.5 produces a regression of the median: on
+# average, there should be the same number of target observations above and
+# below the predicted values.
+from sklearn.ensemble import GradientBoostingRegressor
+from sklearn.metrics import mean_pinball_loss, mean_squared_error
+
-dy = 1.5 + 1.0 * np.random.random(y.shape)
-noise = np.random.normal(0, dy)
-y += noise
-y = y.astype(np.float32)
+all_models = {}
+common_params = dict(
+ learning_rate=0.05,
+ n_estimators=250,
+ max_depth=2,
+ min_samples_leaf=9,
+ min_samples_split=9,
+)
+for alpha in [0.05, 0.5, 0.95]:
+ gbr = GradientBoostingRegressor(loss='quantile', alpha=alpha,
+ **common_params)
+ all_models["q %1.2f" % alpha] = gbr.fit(X_train, y_train)
-# Mesh the input space for evaluations of the real function, the prediction and
-# its MSE
+# %%
+# For the sake of comparison, also fit a baseline model trained with the usual
+# least squares loss (ls), also known as the mean squared error (MSE).
+gbr_ls = GradientBoostingRegressor(loss='ls', **common_params)
+all_models["ls"] = gbr_ls.fit(X_train, y_train)
+
+# %%
+# Create an evenly spaced evaluation set of input values spanning the [0, 10]
+# range.
xx = np.atleast_2d(np.linspace(0, 10, 1000)).T
-xx = xx.astype(np.float32)
-alpha = 0.95
+# %%
+# Plot the true conditional mean function f, the prediction of the conditional
+# mean (least squares loss), the conditional median and the conditional 90%
+# interval (from 5th to 95th conditional percentiles).
+import matplotlib.pyplot as plt
+
+
+y_pred = all_models['ls'].predict(xx)
+y_lower = all_models['q 0.05'].predict(xx)
+y_upper = all_models['q 0.95'].predict(xx)
+y_med = all_models['q 0.50'].predict(xx)
+
+fig = plt.figure(figsize=(10, 10))
+plt.plot(xx, f(xx), 'g:', linewidth=3, label=r'$f(x) = x\,\sin(x)$')
+plt.plot(X_test, y_test, 'b.', markersize=10, label='Test observations')
+plt.plot(xx, y_med, 'r-', label='Predicted median', color="orange")
+plt.plot(xx, y_pred, 'r-', label='Predicted mean')
+plt.plot(xx, y_upper, 'k-')
+plt.plot(xx, y_lower, 'k-')
+plt.fill_between(xx.ravel(), y_lower, y_upper, alpha=0.4,
+ label='Predicted 90% interval')
+plt.xlabel('$x$')
+plt.ylabel('$f(x)$')
+plt.ylim(-10, 25)
+plt.legend(loc='upper left')
+plt.show()
+
+# %%
+# Comparing the predicted median with the predicted mean, we note that the
+# median is on average below the mean as the noise is skewed towards high
+# values (large outliers). The median estimate also seems to be smoother
+# because of its natural robustness to outliers.
+#
+# Also observe that the inductive bias of gradient boosting trees is
+# unfortunately preventing our 0.05 quantile to fully capture the sinoisoidal
+# shape of the signal, in particular around x=8. Tuning hyper-parameters can
+# reduce this effect as shown in the last part of this notebook.
+#
+# Analysis of the error metrics
+# -----------------------------
+#
+# Measure the models with :func:`mean_squared_error` and
+# :func:`mean_pinball_loss` metrics on the training dataset.
+import pandas as pd
+
+
+def highlight_min(x):
+ x_min = x.min()
+ return ['font-weight: bold' if v == x_min else ''
+ for v in x]
+
+
+results = []
+for name, gbr in sorted(all_models.items()):
+ metrics = {'model': name}
+ y_pred = gbr.predict(X_train)
+ for alpha in [0.05, 0.5, 0.95]:
+ metrics["pbl=%1.2f" % alpha] = mean_pinball_loss(
+ y_train, y_pred, alpha=alpha)
+ metrics['MSE'] = mean_squared_error(y_train, y_pred)
+ results.append(metrics)
+
+pd.DataFrame(results).set_index('model').style.apply(highlight_min)
+
+# %%
+# One column shows all models evaluated by the same metric. The minimum number
+# on a column should be obtained when the model is trained and measured with
+# the same metric. This should be always the case on the training set if the
+# training converged.
+#
+# Note that because the target distribution is asymmetric, the expected
+# conditional mean and conditional median are signficiantly different and
+# therefore one could not use the least squares model get a good estimation of
+# the conditional median nor the converse.
+#
+# If the target distribution were symmetric and had no outliers (e.g. with a
+# Gaussian noise), then median estimator and the least squares estimator would
+# have yielded similar predictions.
+#
+# We then do the same on the test set.
+results = []
+for name, gbr in sorted(all_models.items()):
+ metrics = {'model': name}
+ y_pred = gbr.predict(X_test)
+ for alpha in [0.05, 0.5, 0.95]:
+ metrics["pbl=%1.2f" % alpha] = mean_pinball_loss(
+ y_test, y_pred, alpha=alpha)
+ metrics['MSE'] = mean_squared_error(y_test, y_pred)
+ results.append(metrics)
-clf = GradientBoostingRegressor(loss='quantile', alpha=alpha,
- n_estimators=250, max_depth=3,
- learning_rate=.1, min_samples_leaf=9,
- min_samples_split=9)
+pd.DataFrame(results).set_index('model').style.apply(highlight_min)
-clf.fit(X, y)
-# Make the prediction on the meshed x-axis
-y_upper = clf.predict(xx)
+# %%
+# Errors are higher meaning the models slightly overfitted the data. It still
+# shows that the best test metric is obtained when the model is trained by
+# minimizing this same metric.
+#
+# Note that the conditional median estimator is competitive with the least
+# squares estimator in terms of MSE on the test set: this can be explained by
+# the fact the least squares estimator is very sensitive to large outliers
+# which can cause significant overfitting. This can be seen on the right hand
+# side of the previous plot. The conditional median estimator is biased
+# (underestimation for this asymetric noise) but is also naturally robust to
+# outliers and overfits less.
+#
+# Calibration of the confidence interval
+# --------------------------------------
+#
+# We can also evaluate the ability of the two extreme quantile estimators at
+# producing a well-calibrated conditational 90%-confidence interval.
+#
+# To do this we can compute the fraction of observations that fall between the
+# predictions:
+def coverage_fraction(y, y_low, y_high):
+ return np.mean(np.logical_and(y >= y_low, y <= y_high))
-clf.set_params(alpha=1.0 - alpha)
-clf.fit(X, y)
-# Make the prediction on the meshed x-axis
-y_lower = clf.predict(xx)
+coverage_fraction(y_train,
+ all_models['q 0.05'].predict(X_train),
+ all_models['q 0.95'].predict(X_train))
-clf.set_params(loss='ls')
-clf.fit(X, y)
+# %%
+# On the training set the calibration is very close to the expected coverage
+# value for a 90% confidence interval.
+coverage_fraction(y_test,
+ all_models['q 0.05'].predict(X_test),
+ all_models['q 0.95'].predict(X_test))
-# Make the prediction on the meshed x-axis
-y_pred = clf.predict(xx)
-# Plot the function, the prediction and the 95% confidence interval based on
-# the MSE
-fig = plt.figure()
-plt.plot(xx, f(xx), 'g:', label=r'$f(x) = x\,\sin(x)$')
-plt.plot(X, y, 'b.', markersize=10, label=u'Observations')
-plt.plot(xx, y_pred, 'r-', label=u'Prediction')
+# %%
+# On the test set, the estimated confidence interval is slightly too narrow.
+# Note, however, that we would need to wrap those metrics in a cross-validation
+# loop to assess their variability under data resampling.
+#
+# Tuning the hyper-parameters of the quantile regressors
+# ------------------------------------------------------
+#
+# In the plot above, we observed that the 5th percentile regressor seems to
+# underfit and could not adapt to sinusoidal shape of the signal.
+#
+# The hyper-parameters of the model were approximately hand-tuned for the
+# median regressor and there is no reason than the same hyper-parameters are
+# suitable for the 5th percentile regressor.
+#
+# To confirm this hypothesis, we tune the hyper-parameters of a new regressor
+# of the 5th percentile by selecting the best model parameters by
+# cross-validation on the pinball loss with alpha=0.05:
+
+# %%
+from sklearn.model_selection import RandomizedSearchCV
+from sklearn.metrics import make_scorer
+from pprint import pprint
+
+
+param_grid = dict(
+ learning_rate=[0.01, 0.05, 0.1],
+ n_estimators=[100, 150, 200, 250, 300],
+ max_depth=[2, 5, 10, 15, 20],
+ min_samples_leaf=[1, 5, 10, 20, 30, 50],
+ min_samples_split=[2, 5, 10, 20, 30, 50],
+)
+alpha = 0.05
+neg_mean_pinball_loss_05p_scorer = make_scorer(
+ mean_pinball_loss,
+ alpha=alpha,
+ greater_is_better=False, # maximize the negative loss
+)
+gbr = GradientBoostingRegressor(loss="quantile", alpha=alpha, random_state=0)
+search_05p = RandomizedSearchCV(
+ gbr,
+ param_grid,
+ n_iter=10, # increase this if computational budget allows
+ scoring=neg_mean_pinball_loss_05p_scorer,
+ n_jobs=2,
+ random_state=0,
+).fit(X_train, y_train)
+pprint(search_05p.best_params_)
+
+# %%
+# We observe that the search procedure identifies that deeper trees are needed
+# to get a good fit for the 5th percentile regressor. Deeper trees are more
+# expressive and less likely to underfit.
+#
+# Let's now tune the hyper-parameters for the 95th percentile regressor. We
+# need to redefine the `scoring` metric used to select the best model, along
+# with adjusting the alpha parameter of the inner gradient boosting estimator
+# itself:
+from sklearn.base import clone
+
+alpha = 0.95
+neg_mean_pinball_loss_95p_scorer = make_scorer(
+ mean_pinball_loss,
+ alpha=alpha,
+ greater_is_better=False, # maximize the negative loss
+)
+search_95p = clone(search_05p).set_params(
+ estimator__alpha=alpha,
+ scoring=neg_mean_pinball_loss_95p_scorer,
+)
+search_95p.fit(X_train, y_train)
+pprint(search_95p.best_params_)
+
+# %%
+# This time, shallower trees are selected and lead to a more constant piecewise
+# and therefore more robust estimation of the 95th percentile. This is
+# beneficial as it avoids overfitting the large outliers of the log-normal
+# additive noise.
+#
+# We can confirm this intuition by displaying the predicted 90% confidence
+# interval comprised by the predictions of those two tuned quantile regressors:
+# the prediction of the upper 95th percentile has a much coarser shape than the
+# prediction of the lower 5th percentile:
+y_lower = search_05p.predict(xx)
+y_upper = search_95p.predict(xx)
+
+fig = plt.figure(figsize=(10, 10))
+plt.plot(xx, f(xx), 'g:', linewidth=3, label=r'$f(x) = x\,\sin(x)$')
+plt.plot(X_test, y_test, 'b.', markersize=10, label='Test observations')
plt.plot(xx, y_upper, 'k-')
plt.plot(xx, y_lower, 'k-')
-plt.fill(np.concatenate([xx, xx[::-1]]),
- np.concatenate([y_upper, y_lower[::-1]]),
- alpha=.5, fc='b', ec='None', label='95% prediction interval')
+plt.fill_between(xx.ravel(), y_lower, y_upper, alpha=0.4,
+ label='Predicted 90% interval')
plt.xlabel('$x$')
plt.ylabel('$f(x)$')
-plt.ylim(-10, 20)
+plt.ylim(-10, 25)
plt.legend(loc='upper left')
+plt.title("Prediction with tuned hyper-parameters")
plt.show()
+
+# %%
+# The plot looks qualitatively better than for the untuned models, especially
+# for the shape of the of lower quantile.
+#
+# We now quantitatively evaluate the joint-calibration of the pair of
+# estimators:
+coverage_fraction(y_train,
+ search_05p.predict(X_train),
+ search_95p.predict(X_train))
+# %%
+coverage_fraction(y_test,
+ search_05p.predict(X_test),
+ search_95p.predict(X_test))
+# %%
+# The calibration of the tuned pair is sadly not better on the test set: the
+# width of the estimated confidence interval is still too narrow.
+#
+# Again, we would need to wrap this study in a cross-validation loop to
+# better assess the variability of those estimates.
diff --git a/sklearn/metrics/__init__.py b/sklearn/metrics/__init__.py
index 84e7c98e29324..bca22e3916c61 100644
--- a/sklearn/metrics/__init__.py
+++ b/sklearn/metrics/__init__.py
@@ -69,6 +69,7 @@
from ._regression import mean_squared_log_error
from ._regression import median_absolute_error
from ._regression import mean_absolute_percentage_error
+from ._regression import mean_pinball_loss
from ._regression import r2_score
from ._regression import mean_tweedie_deviance
from ._regression import mean_poisson_deviance
@@ -133,6 +134,7 @@
'mean_absolute_error',
'mean_squared_error',
'mean_squared_log_error',
+ 'mean_pinball_loss',
'mean_poisson_deviance',
'mean_gamma_deviance',
'mean_tweedie_deviance',
diff --git a/sklearn/metrics/_regression.py b/sklearn/metrics/_regression.py
index 0d8fddd0ba24e..7edf7924e50e1 100644
--- a/sklearn/metrics/_regression.py
+++ b/sklearn/metrics/_regression.py
@@ -43,6 +43,7 @@
"mean_squared_log_error",
"median_absolute_error",
"mean_absolute_percentage_error",
+ "mean_pinball_loss",
"r2_score",
"explained_variance_score",
"mean_tweedie_deviance",
@@ -194,6 +195,88 @@ def mean_absolute_error(y_true, y_pred, *,
return np.average(output_errors, weights=multioutput)
+def mean_pinball_loss(y_true, y_pred, *,
+ sample_weight=None,
+ alpha=0.5,
+ multioutput='uniform_average'):
+ """Pinball loss for quantile regression.
+
+ Read more in the :ref:`User Guide <pinball_loss>`.
+
+ Parameters
+ ----------
+ y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
+ Ground truth (correct) target values.
+
+ y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
+ Estimated target values.
+
+ sample_weight : array-like of shape (n_samples,), default=None
+ Sample weights.
+
+ alpha: double, slope of the pinball loss, default=0.5,
+ this loss is equivalent to :ref:`mean_absolute_error` when `alpha=0.5`,
+ `alpha=0.95` is minimized by estimators of the 95th percentile.
+
+ multioutput : {'raw_values', 'uniform_average'} or array-like of shape \
+ (n_outputs,), default='uniform_average'
+ Defines aggregating of multiple output values.
+ Array-like value defines weights used to average errors.
+
+ 'raw_values' :
+ Returns a full set of errors in case of multioutput input.
+
+ 'uniform_average' :
+ Errors of all outputs are averaged with uniform weight.
+ Returns
+ -------
+ loss : float or ndarray of floats
+ If multioutput is 'raw_values', then mean absolute error is returned
+ for each output separately.
+ If multioutput is 'uniform_average' or an ndarray of weights, then the
+ weighted average of all output errors is returned.
+
+ The pinball loss output is a non-negative floating point. The best
+ value is 0.0.
+
+ Examples
+ --------
+ >>> from sklearn.metrics import mean_pinball_loss
+ >>> y_true = [1, 2, 3]
+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1)
+ 0.03...
+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1)
+ 0.3...
+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9)
+ 0.3...
+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9)
+ 0.03...
+ >>> mean_pinball_loss(y_true, y_true, alpha=0.1)
+ 0.0
+ >>> mean_pinball_loss(y_true, y_true, alpha=0.9)
+ 0.0
+ """
+ y_type, y_true, y_pred, multioutput = _check_reg_targets(
+ y_true, y_pred, multioutput)
+ check_consistent_length(y_true, y_pred, sample_weight)
+ diff = y_true - y_pred
+ sign = (diff >= 0).astype(diff.dtype)
+ loss = alpha * sign * diff - (1 - alpha) * (1 - sign) * diff
+ output_errors = np.average(loss, weights=sample_weight, axis=0)
+ if isinstance(multioutput, str):
+ if multioutput == 'raw_values':
+ return output_errors
+ elif multioutput == 'uniform_average':
+ # pass None as weights to np.average: uniform mean
+ multioutput = None
+ else:
+ raise ValueError("multioutput is expected to be 'raw_values' "
+ "or 'uniform_average' but we got %r"
+ " instead." % multioutput)
+
+ return np.average(output_errors, weights=multioutput)
+
+
def mean_absolute_percentage_error(y_true, y_pred,
sample_weight=None,
multioutput='uniform_average'):
|
diff --git a/sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py b/sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
index d0300ddc371c7..4d7ea9bfe9bb3 100644
--- a/sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
+++ b/sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
@@ -8,6 +8,7 @@
from pytest import approx
from sklearn.utils import check_random_state
+from sklearn.metrics import mean_pinball_loss
from sklearn.ensemble._gb_losses import RegressionLossFunction
from sklearn.ensemble._gb_losses import LeastSquaresError
from sklearn.ensemble._gb_losses import LeastAbsoluteError
@@ -115,6 +116,8 @@ def test_quantile_loss_function():
y_found = QuantileLossFunction(0.9)(x, np.zeros_like(x))
y_expected = np.asarray([0.1, 0.0, 0.9]).mean()
np.testing.assert_allclose(y_found, y_expected)
+ y_found_p = mean_pinball_loss(x, np.zeros_like(x), alpha=0.9)
+ np.testing.assert_allclose(y_found, y_found_p)
def test_sample_weight_deviance():
@@ -293,10 +296,11 @@ def test_init_raw_predictions_values():
@pytest.mark.parametrize('seed', range(5))
-def test_lad_equals_quantile_50(seed):
[email protected]('alpha', [0.4, 0.5, 0.6])
+def test_lad_equals_quantiles(seed, alpha):
# Make sure quantile loss with alpha = .5 is equivalent to LAD
lad = LeastAbsoluteError()
- ql = QuantileLossFunction(alpha=0.5)
+ ql = QuantileLossFunction(alpha=alpha)
n_samples = 50
rng = np.random.RandomState(seed)
@@ -305,9 +309,15 @@ def test_lad_equals_quantile_50(seed):
lad_loss = lad(y_true, raw_predictions)
ql_loss = ql(y_true, raw_predictions)
- assert lad_loss == approx(2 * ql_loss)
+ if alpha == 0.5:
+ assert lad_loss == approx(2 * ql_loss)
weights = np.linspace(0, 1, n_samples) ** 2
lad_weighted_loss = lad(y_true, raw_predictions, sample_weight=weights)
ql_weighted_loss = ql(y_true, raw_predictions, sample_weight=weights)
- assert lad_weighted_loss == approx(2 * ql_weighted_loss)
+ if alpha == 0.5:
+ assert lad_weighted_loss == approx(2 * ql_weighted_loss)
+ pbl_weighted_loss = mean_pinball_loss(y_true, raw_predictions,
+ sample_weight=weights,
+ alpha=alpha)
+ assert pbl_weighted_loss == approx(ql_weighted_loss)
diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py
index 181baf19de3c2..dbf1bdd458f1a 100644
--- a/sklearn/metrics/tests/test_common.py
+++ b/sklearn/metrics/tests/test_common.py
@@ -50,6 +50,7 @@
from sklearn.metrics import mean_gamma_deviance
from sklearn.metrics import median_absolute_error
from sklearn.metrics import multilabel_confusion_matrix
+from sklearn.metrics import mean_pinball_loss
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import precision_score
from sklearn.metrics import r2_score
@@ -101,6 +102,7 @@
"max_error": max_error,
"mean_absolute_error": mean_absolute_error,
"mean_squared_error": mean_squared_error,
+ "mean_pinball_loss": mean_pinball_loss,
"median_absolute_error": median_absolute_error,
"mean_absolute_percentage_error": mean_absolute_percentage_error,
"explained_variance_score": explained_variance_score,
@@ -437,7 +439,8 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
# Regression metrics with "multioutput-continuous" format support
MULTIOUTPUT_METRICS = {
"mean_absolute_error", "median_absolute_error", "mean_squared_error",
- "r2_score", "explained_variance_score", "mean_absolute_percentage_error"
+ "r2_score", "explained_variance_score", "mean_absolute_percentage_error",
+ "mean_pinball_loss"
}
# Symmetric with respect to their input arguments y_true and y_pred
@@ -460,6 +463,9 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"matthews_corrcoef_score", "mean_absolute_error", "mean_squared_error",
"median_absolute_error", "max_error",
+ # Pinball loss is only symmetric for alpha=0.5 which is the default.
+ "mean_pinball_loss",
+
"cohen_kappa_score", "mean_normal_deviance"
}
diff --git a/sklearn/metrics/tests/test_regression.py b/sklearn/metrics/tests/test_regression.py
index 5b8406cf7a61f..8e935173d3319 100644
--- a/sklearn/metrics/tests/test_regression.py
+++ b/sklearn/metrics/tests/test_regression.py
@@ -1,5 +1,6 @@
import numpy as np
+from scipy import optimize
from numpy.testing import assert_allclose
from itertools import product
import pytest
@@ -7,6 +8,8 @@
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
+from sklearn.dummy import DummyRegressor
+from sklearn.model_selection import GridSearchCV
from sklearn.metrics import explained_variance_score
from sklearn.metrics import mean_absolute_error
@@ -15,23 +18,30 @@
from sklearn.metrics import median_absolute_error
from sklearn.metrics import mean_absolute_percentage_error
from sklearn.metrics import max_error
+from sklearn.metrics import mean_pinball_loss
from sklearn.metrics import r2_score
from sklearn.metrics import mean_tweedie_deviance
+from sklearn.metrics import make_scorer
from sklearn.metrics._regression import _check_reg_targets
-from ...exceptions import UndefinedMetricWarning
+from sklearn.exceptions import UndefinedMetricWarning
def test_regression_metrics(n_samples=50):
y_true = np.arange(n_samples)
y_pred = y_true + 1
+ y_pred_2 = y_true - 1
assert_almost_equal(mean_squared_error(y_true, y_pred), 1.)
assert_almost_equal(mean_squared_log_error(y_true, y_pred),
mean_squared_error(np.log(1 + y_true),
np.log(1 + y_pred)))
assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.)
+ assert_almost_equal(mean_pinball_loss(y_true, y_pred), 0.5)
+ assert_almost_equal(mean_pinball_loss(y_true, y_pred_2), 0.5)
+ assert_almost_equal(mean_pinball_loss(y_true, y_pred, alpha=0.4), 0.6)
+ assert_almost_equal(mean_pinball_loss(y_true, y_pred_2, alpha=0.4), 0.4)
assert_almost_equal(median_absolute_error(y_true, y_pred), 1.)
mape = mean_absolute_percentage_error(y_true, y_pred)
assert np.isfinite(mape)
@@ -90,6 +100,9 @@ def test_multioutput_regression():
error = mean_absolute_error(y_true, y_pred)
assert_almost_equal(error, (1. + 2. / 3) / 4.)
+ error = mean_pinball_loss(y_true, y_pred)
+ assert_almost_equal(error, (1. + 2. / 3) / 8.)
+
error = np.around(mean_absolute_percentage_error(y_true, y_pred),
decimals=2)
assert np.isfinite(error)
@@ -104,15 +117,16 @@ def test_multioutput_regression():
def test_regression_metrics_at_limits():
- assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2)
- assert_almost_equal(mean_squared_error([0.], [0.], squared=False), 0.00, 2)
- assert_almost_equal(mean_squared_log_error([0.], [0.]), 0.00, 2)
- assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2)
- assert_almost_equal(mean_absolute_percentage_error([0.], [0.]), 0.00, 2)
- assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2)
- assert_almost_equal(max_error([0.], [0.]), 0.00, 2)
- assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2)
- assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2)
+ assert_almost_equal(mean_squared_error([0.], [0.]), 0.0)
+ assert_almost_equal(mean_squared_error([0.], [0.], squared=False), 0.0)
+ assert_almost_equal(mean_squared_log_error([0.], [0.]), 0.0)
+ assert_almost_equal(mean_absolute_error([0.], [0.]), 0.0)
+ assert_almost_equal(mean_pinball_loss([0.], [0.]), 0.0)
+ assert_almost_equal(mean_absolute_percentage_error([0.], [0.]), 0.0)
+ assert_almost_equal(median_absolute_error([0.], [0.]), 0.0)
+ assert_almost_equal(max_error([0.], [0.]), 0.0)
+ assert_almost_equal(explained_variance_score([0.], [0.]), 1.0)
+ assert_almost_equal(r2_score([0., 1], [0., 1]), 1.0)
err_msg = ("Mean Squared Logarithmic Error cannot be used when targets "
"contain negative values.")
with pytest.raises(ValueError, match=err_msg):
@@ -207,6 +221,11 @@ def test_regression_multioutput_array():
mse = mean_squared_error(y_true, y_pred, multioutput='raw_values')
mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values')
+ err_msg = ("multioutput is expected to be 'raw_values' "
+ "or 'uniform_average' but we got 'variance_weighted' instead.")
+ with pytest.raises(ValueError, match=err_msg):
+ mean_pinball_loss(y_true, y_pred, multioutput='variance_weighted')
+ pbl = mean_pinball_loss(y_true, y_pred, multioutput='raw_values')
mape = mean_absolute_percentage_error(y_true, y_pred,
multioutput='raw_values')
r = r2_score(y_true, y_pred, multioutput='raw_values')
@@ -214,6 +233,7 @@ def test_regression_multioutput_array():
assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2)
assert_array_almost_equal(mae, [0.25, 0.625], decimal=2)
+ assert_array_almost_equal(pbl, [0.25/2, 0.625/2], decimal=2)
assert_array_almost_equal(mape, [0.0778, 0.2262], decimal=2)
assert_array_almost_equal(r, [0.95, 0.93], decimal=2)
assert_array_almost_equal(evs, [0.95, 0.93], decimal=2)
@@ -224,9 +244,11 @@ def test_regression_multioutput_array():
y_pred = [[1, 1]]*4
mse = mean_squared_error(y_true, y_pred, multioutput='raw_values')
mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values')
+ pbl = mean_pinball_loss(y_true, y_pred, multioutput='raw_values')
r = r2_score(y_true, y_pred, multioutput='raw_values')
assert_array_almost_equal(mse, [1., 1.], decimal=2)
assert_array_almost_equal(mae, [1., 1.], decimal=2)
+ assert_array_almost_equal(pbl, [0.5, 0.5], decimal=2)
assert_array_almost_equal(r, [0., 0.], decimal=2)
r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values')
@@ -330,3 +352,87 @@ def test_mean_absolute_percentage_error():
y_true = random_number_generator.exponential(size=100)
y_pred = 1.2 * y_true
assert mean_absolute_percentage_error(y_true, y_pred) == pytest.approx(0.2)
+
+
[email protected]("distribution",
+ ["normal", "lognormal", "exponential", "uniform"])
[email protected]("target_quantile", [0.05, 0.5, 0.75])
+def test_mean_pinball_loss_on_constant_predictions(
+ distribution,
+ target_quantile
+):
+ if not hasattr(np, "quantile"):
+ pytest.skip("This test requires a more recent version of numpy "
+ "with support for np.quantile.")
+
+ # Check that the pinball loss is minimized by the empirical quantile.
+ n_samples = 3000
+ rng = np.random.RandomState(42)
+ data = getattr(rng, distribution)(size=n_samples)
+
+ # Compute the best possible pinball loss for any constant predictor:
+ best_pred = np.quantile(data, target_quantile)
+ best_constant_pred = np.full(n_samples, fill_value=best_pred)
+ best_pbl = mean_pinball_loss(data, best_constant_pred,
+ alpha=target_quantile)
+
+ # Evaluate the loss on a grid of quantiles
+ candidate_predictions = np.quantile(data, np.linspace(0, 1, 100))
+ for pred in candidate_predictions:
+ # Compute the pinball loss of a constant predictor:
+ constant_pred = np.full(n_samples, fill_value=pred)
+ pbl = mean_pinball_loss(data, constant_pred, alpha=target_quantile)
+
+ # Check that the loss of this constant predictor is greater or equal
+ # than the loss of using the optimal quantile (up to machine
+ # precision):
+ assert pbl >= best_pbl - np.finfo(best_pbl.dtype).eps
+
+ # Check that the value of the pinball loss matches the analytical
+ # formula.
+ expected_pbl = (
+ (pred - data[data < pred]).sum() * (1 - target_quantile) +
+ (data[data >= pred] - pred).sum() * target_quantile
+ )
+ expected_pbl /= n_samples
+ assert_almost_equal(expected_pbl, pbl)
+
+ # Check that we can actually recover the target_quantile by minimizing the
+ # pinball loss w.r.t. the constant prediction quantile.
+ def objective_func(x):
+ constant_pred = np.full(n_samples, fill_value=x)
+ return mean_pinball_loss(data, constant_pred, alpha=target_quantile)
+
+ result = optimize.minimize(objective_func, data.mean(),
+ method="Nelder-Mead")
+ assert result.success
+ # The minimum is not unique with limited data, hence the large tolerance.
+ assert result.x == pytest.approx(best_pred, rel=1e-2)
+ assert result.fun == pytest.approx(best_pbl)
+
+
+def test_dummy_quantile_parameter_tuning():
+ # Integration test to check that it is possible to use the pinball loss to
+ # tune the hyperparameter of a quantile regressor. This is conceptually
+ # similar to the previous test but using the scikit-learn estimator and
+ # scoring API instead.
+ n_samples = 1000
+ rng = np.random.RandomState(0)
+ X = rng.normal(size=(n_samples, 5)) # Ignored
+ y = rng.exponential(size=n_samples)
+
+ all_quantiles = [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95]
+ for alpha in all_quantiles:
+ neg_mean_pinball_loss = make_scorer(
+ mean_pinball_loss,
+ alpha=alpha,
+ greater_is_better=False,
+ )
+ regressor = DummyRegressor(strategy="quantile", quantile=0.25)
+ grid_search = GridSearchCV(
+ regressor,
+ param_grid=dict(quantile=all_quantiles),
+ scoring=neg_mean_pinball_loss,
+ ).fit(X, y)
+
+ assert grid_search.best_params_["quantile"] == pytest.approx(alpha)
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 65d555f978df0..c658bc6b12452 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -991,6 +991,7 @@ details.\n metrics.mean_poisson_deviance\n metrics.mean_gamma_deviance\n metrics.mean_tweedie_deviance\n+ metrics.mean_pinball_loss\n \n Multilabel ranking metrics\n --------------------------\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex 86e64f997cdd8..c807af982e277 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -416,7 +416,7 @@ defined as\n \n .. math::\n \n- \\texttt{accuracy}(y, \\hat{y}) = \\frac{1}{n_\\text{samples}} \\sum_{i=0}^{n_\\text{samples}-1} 1(\\hat{y}_i = y_i)\n+ \\texttt{accuracy}(y, \\hat{y}) = \\frac{1}{n_\\text{samples}} \\sum_{i=0}^{n_\\text{samples}-1} 1(\\hat{y}_i = y_i)\n \n where :math:`1(x)` is the `indicator function\n <https://en.wikipedia.org/wiki/Indicator_function>`_.\n@@ -1960,8 +1960,8 @@ Regression metrics\n The :mod:`sklearn.metrics` module implements several loss, score, and utility\n functions to measure regression performance. Some of those have been enhanced\n to handle the multioutput case: :func:`mean_squared_error`,\n-:func:`mean_absolute_error`, :func:`explained_variance_score` and\n-:func:`r2_score`.\n+:func:`mean_absolute_error`, :func:`explained_variance_score`,\n+:func:`r2_score` and :func:`mean_pinball_loss`.\n \n \n These functions have an ``multioutput`` keyword argument which specifies the\n@@ -2354,6 +2354,71 @@ the difference in errors decreases. Finally, by setting, ``power=2``::\n we would get identical errors. The deviance when ``power=2`` is thus only\n sensitive to relative errors.\n \n+.. _pinball_loss:\n+\n+Pinball loss\n+------------\n+\n+The :func:`mean_pinball_loss` function is used to evaluate the predictive\n+performance of quantile regression models. The `pinball loss\n+<https://en.wikipedia.org/wiki/Quantile_regression#Computation>`_ is equivalent\n+to :func:`mean_absolute_error` when the quantile parameter ``alpha`` is set to\n+0.5.\n+\n+.. math::\n+\n+ \\text{pinball}(y, \\hat{y}) = \\frac{1}{n_{\\text{samples}}} \\sum_{i=0}^{n_{\\text{samples}}-1} \\alpha \\max(y_i - \\hat{y}_i, 0) + (1 - \\alpha) \\max(\\hat{y}_i - y_i, 0)\n+\n+Here is a small example of usage of the :func:`mean_pinball_loss` function::\n+\n+ >>> from sklearn.metrics import mean_pinball_loss\n+ >>> y_true = [1, 2, 3]\n+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1)\n+ 0.03...\n+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1)\n+ 0.3...\n+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9)\n+ 0.3...\n+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9)\n+ 0.03...\n+ >>> mean_pinball_loss(y_true, y_true, alpha=0.1)\n+ 0.0\n+ >>> mean_pinball_loss(y_true, y_true, alpha=0.9)\n+ 0.0\n+\n+It is possible to build a scorer object with a specific choice of alpha::\n+\n+ >>> from sklearn.metrics import make_scorer\n+ >>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)\n+\n+Such a scorer can be used to evaluate the generalization performance of a\n+quantile regressor via cross-validation:\n+\n+ >>> from sklearn.datasets import make_regression\n+ >>> from sklearn.model_selection import cross_val_score\n+ >>> from sklearn.ensemble import GradientBoostingRegressor\n+ >>>\n+ >>> X, y = make_regression(n_samples=100, random_state=0)\n+ >>> estimator = GradientBoostingRegressor(\n+ ... loss=\"quantile\",\n+ ... alpha=0.95,\n+ ... random_state=0,\n+ ... )\n+ >>> cross_val_score(estimator, X, y, cv=5, scoring=mean_pinball_loss_95p)\n+ array([11.1..., 10.4... , 24.4..., 9.2..., 12.9...])\n+\n+It is also possible to build scorer objects for hyper-parameter tuning. The\n+sign of the loss must be switched to ensure that greater means better as\n+explained in the example linked below.\n+\n+.. topic:: Example:\n+\n+ * See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`\n+ for an example of using a the pinball loss to evaluate and tune the\n+ hyper-parameters of quantile regression models on data with non-symmetric\n+ noise and outliers.\n+\n+\n .. _clustering_metrics:\n \n Clustering metrics\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 3086d91b28f5d..582d6872f59cb 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -134,6 +134,10 @@ Changelog\n class methods and will be removed in 1.2.\n :pr:`18543` by `Guillaume Lemaitre`_.\n \n+- |Feature| :func:`metrics.mean_pinball_loss` exposes the pinball loss for\n+ quantile regression. :pr:`19415` by :user:`Xavier Dupré <sdpython>`\n+ and :user:`Oliver Grisel <ogrisel>`.\n+\n :mod:`sklearn.naive_bayes`\n ..........................\n \n"
}
] |
1.00
|
5403e9fdaee6d4982c887ce2ae9a62ccd3955fbb
|
[] |
[
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric18]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric21]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric37]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_regression.py::test__check_reg_targets_exception",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-uniform]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric29]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric29]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric15]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_sample_weight_init_estimators",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-explained_variance_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_mdl_exception[2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric3]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric38]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric33]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-f1_score-False]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric8]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-uniform]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric28]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric34]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric38]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric9]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric17]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric38]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric30]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-exponential]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric23]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric27]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.4-0]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric19]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric18]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_error]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.5-0]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f1_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.5-4]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[r2_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_squared_error_multioutput_raw_value_squared",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric16]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-max_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric39]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric13]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric18]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric18]",
"sklearn/metrics/tests/test_common.py::test_single_sample[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[max_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric18]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-precision_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.6-1]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric3]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_representation_invariance",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-exponential]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric7]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-jaccard_score-False]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric23]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric41]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric40]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric27]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric11]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric36]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[r2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric40]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric29]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric27]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric17]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric18]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric39]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric32]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric12]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric30]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric27]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric21]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_recall_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_init_raw_predictions_shapes",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric14]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric8]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_binomial_deviance",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric32]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric22]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric33]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-max_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric11]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric40]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric20]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric19]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric17]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric25]",
"sklearn/metrics/tests/test_regression.py::test_regression_metrics_at_limits",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric31]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric31]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric10]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric9]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric13]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_multinomial_deviance[3-100]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric24]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric20]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric34]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric24]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric2]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric28]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric20]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric23]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_log_loss]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_multinomial_deviance[7-13]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric19]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric30]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-f1_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric31]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric18]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_multinomial_deviance[5-57]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric31]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric12]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric8]",
"sklearn/metrics/tests/test_common.py::test_single_sample[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric30]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric33]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric2]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric3]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-jaccard_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric14]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f1_score]",
"sklearn/metrics/tests/test_regression.py::test__check_reg_targets",
"sklearn/metrics/tests/test_common.py::test_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric18]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric30]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_mdl_computation_weighted",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric23]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric22]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric32]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-normal]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric19]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-average_precision_score-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric9]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric2]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetry_consistency",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric25]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric12]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric16]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric28]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric36]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_init_raw_predictions_values",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_average_precision_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.5-3]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric31]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_score-False]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric34]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric19]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric10]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric36]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric9]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric3]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric23]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric41]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric3]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric39]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric26]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric20]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-multilabel_confusion_matrix]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.5-1]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric38]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric13]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric40]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric22]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric18]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric14]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric28]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[det_curve]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric11]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric34]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric16]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_jaccard_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_sample_weight_deviance",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric25]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric15]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric32]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric16]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric7]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.6-0]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric31]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-normal]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_jaccard_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-uniform]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric22]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric37]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-metric3-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric37]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric21]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric21]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_error]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-exponential]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric17]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric3]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[partial_roc_auc]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-normal]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-max_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric26]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric16]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-average_precision_score-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric20]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric32]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric31]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_pinball_loss]",
"sklearn/metrics/tests/test_regression.py::test_regression_custom_weights",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric34]",
"sklearn/metrics/tests/test_regression.py::test_regression_metrics",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric27]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric33]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[matthews_corrcoef_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.6-3]",
"sklearn/metrics/tests/test_common.py::test_single_sample[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-recall_score-False]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric14]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_binary_multilabel_all_zeroes",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric28]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[ndcg_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_sample_weight_smoke",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric3]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-brier_score_loss]",
"sklearn/metrics/tests/test_regression.py::test_regression_multioutput_array",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric32]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-log_loss]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric23]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_regression.py::test_tweedie_deviance_continuity",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric41]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric34]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-ndcg_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.4-1]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric7]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[det_curve]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric34]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric7]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric3]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-recall_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric3]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric7]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric40]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric25]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric27]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric24]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[hamming_loss]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-lognormal]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric8]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric12]",
"sklearn/metrics/tests/test_common.py::test_single_sample[max_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric29]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric23]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric22]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric11]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-lognormal]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[<lambda>]",
"sklearn/metrics/tests/test_common.py::test_single_sample[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric2]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric9]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-hamming_loss]",
"sklearn/metrics/tests/test_regression.py::test_mean_absolute_percentage_error",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric29]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-metric3-False]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric33]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric19]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric7]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.5-2]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric24]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[r2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric41]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric32]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_normal_deviance]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.6-4]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric26]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric2]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric38]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric16]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric38]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric29]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix_sample]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric16]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric37]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f1_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_mdl_exception[0]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric39]",
"sklearn/metrics/tests/test_regression.py::test_dummy_quantile_parameter_tuning",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric34]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric31]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric19]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric20]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_mdl_exception[1]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f1_score]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.4-2]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric8]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric20]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f0.5_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-lognormal]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric15]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[r2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric11]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric27]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric14]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric12]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[max_error]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.4-4]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric26]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric36]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_quantile_loss_function",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_no_averaging_labels",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[log_loss]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.4-3]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_regression.py::test_regression_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric38]",
"sklearn/metrics/tests/test_common.py::test_single_sample[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric10]",
"sklearn/metrics/tests/test_regression.py::test_multioutput_regression",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric17]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[hamming_loss]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantiles[0.6-2]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric13]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric33]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric35]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric13]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 65d555f978df0..c658bc6b12452 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -991,6 +991,7 @@ details.\n metrics.mean_poisson_deviance\n metrics.mean_gamma_deviance\n metrics.mean_tweedie_deviance\n+ metrics.mean_pinball_loss\n \n Multilabel ranking metrics\n --------------------------\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex 86e64f997cdd8..c807af982e277 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -416,7 +416,7 @@ defined as\n \n .. math::\n \n- \\texttt{accuracy}(y, \\hat{y}) = \\frac{1}{n_\\text{samples}} \\sum_{i=0}^{n_\\text{samples}-1} 1(\\hat{y}_i = y_i)\n+ \\texttt{accuracy}(y, \\hat{y}) = \\frac{1}{n_\\text{samples}} \\sum_{i=0}^{n_\\text{samples}-1} 1(\\hat{y}_i = y_i)\n \n where :math:`1(x)` is the `indicator function\n <https://en.wikipedia.org/wiki/Indicator_function>`_.\n@@ -1960,8 +1960,8 @@ Regression metrics\n The :mod:`sklearn.metrics` module implements several loss, score, and utility\n functions to measure regression performance. Some of those have been enhanced\n to handle the multioutput case: :func:`mean_squared_error`,\n-:func:`mean_absolute_error`, :func:`explained_variance_score` and\n-:func:`r2_score`.\n+:func:`mean_absolute_error`, :func:`explained_variance_score`,\n+:func:`r2_score` and :func:`mean_pinball_loss`.\n \n \n These functions have an ``multioutput`` keyword argument which specifies the\n@@ -2354,6 +2354,71 @@ the difference in errors decreases. Finally, by setting, ``power=2``::\n we would get identical errors. The deviance when ``power=2`` is thus only\n sensitive to relative errors.\n \n+.. _pinball_loss:\n+\n+Pinball loss\n+------------\n+\n+The :func:`mean_pinball_loss` function is used to evaluate the predictive\n+performance of quantile regression models. The `pinball loss\n+<https://en.wikipedia.org/wiki/Quantile_regression#Computation>`_ is equivalent\n+to :func:`mean_absolute_error` when the quantile parameter ``alpha`` is set to\n+0.5.\n+\n+.. math::\n+\n+ \\text{pinball}(y, \\hat{y}) = \\frac{1}{n_{\\text{samples}}} \\sum_{i=0}^{n_{\\text{samples}}-1} \\alpha \\max(y_i - \\hat{y}_i, 0) + (1 - \\alpha) \\max(\\hat{y}_i - y_i, 0)\n+\n+Here is a small example of usage of the :func:`mean_pinball_loss` function::\n+\n+ >>> from sklearn.metrics import mean_pinball_loss\n+ >>> y_true = [1, 2, 3]\n+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1)\n+ 0.03...\n+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1)\n+ 0.3...\n+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9)\n+ 0.3...\n+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9)\n+ 0.03...\n+ >>> mean_pinball_loss(y_true, y_true, alpha=0.1)\n+ 0.0\n+ >>> mean_pinball_loss(y_true, y_true, alpha=0.9)\n+ 0.0\n+\n+It is possible to build a scorer object with a specific choice of alpha::\n+\n+ >>> from sklearn.metrics import make_scorer\n+ >>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)\n+\n+Such a scorer can be used to evaluate the generalization performance of a\n+quantile regressor via cross-validation:\n+\n+ >>> from sklearn.datasets import make_regression\n+ >>> from sklearn.model_selection import cross_val_score\n+ >>> from sklearn.ensemble import GradientBoostingRegressor\n+ >>>\n+ >>> X, y = make_regression(n_samples=100, random_state=0)\n+ >>> estimator = GradientBoostingRegressor(\n+ ... loss=\"quantile\",\n+ ... alpha=0.95,\n+ ... random_state=0,\n+ ... )\n+ >>> cross_val_score(estimator, X, y, cv=5, scoring=mean_pinball_loss_95p)\n+ array([11.1..., 10.4... , 24.4..., 9.2..., 12.9...])\n+\n+It is also possible to build scorer objects for hyper-parameter tuning. The\n+sign of the loss must be switched to ensure that greater means better as\n+explained in the example linked below.\n+\n+.. topic:: Example:\n+\n+ * See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`\n+ for an example of using a the pinball loss to evaluate and tune the\n+ hyper-parameters of quantile regression models on data with non-symmetric\n+ noise and outliers.\n+\n+\n .. _clustering_metrics:\n \n Clustering metrics\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 3086d91b28f5d..582d6872f59cb 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -134,6 +134,10 @@ Changelog\n class methods and will be removed in 1.2.\n :pr:`<PRID>` by `<NAME>`_.\n \n+- |Feature| :func:`metrics.mean_pinball_loss` exposes the pinball loss for\n+ quantile regression. :pr:`<PRID>` by :user:`<NAME>`\n+ and :user:`<NAME>`.\n+\n :mod:`sklearn.naive_bayes`\n ..........................\n \n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 65d555f978df0..c658bc6b12452 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -991,6 +991,7 @@ details.
metrics.mean_poisson_deviance
metrics.mean_gamma_deviance
metrics.mean_tweedie_deviance
+ metrics.mean_pinball_loss
Multilabel ranking metrics
--------------------------
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index 86e64f997cdd8..c807af982e277 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -416,7 +416,7 @@ defined as
.. math::
- \texttt{accuracy}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i = y_i)
+ \texttt{accuracy}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i = y_i)
where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_.
@@ -1960,8 +1960,8 @@ Regression metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure regression performance. Some of those have been enhanced
to handle the multioutput case: :func:`mean_squared_error`,
-:func:`mean_absolute_error`, :func:`explained_variance_score` and
-:func:`r2_score`.
+:func:`mean_absolute_error`, :func:`explained_variance_score`,
+:func:`r2_score` and :func:`mean_pinball_loss`.
These functions have an ``multioutput`` keyword argument which specifies the
@@ -2354,6 +2354,71 @@ the difference in errors decreases. Finally, by setting, ``power=2``::
we would get identical errors. The deviance when ``power=2`` is thus only
sensitive to relative errors.
+.. _pinball_loss:
+
+Pinball loss
+------------
+
+The :func:`mean_pinball_loss` function is used to evaluate the predictive
+performance of quantile regression models. The `pinball loss
+<https://en.wikipedia.org/wiki/Quantile_regression#Computation>`_ is equivalent
+to :func:`mean_absolute_error` when the quantile parameter ``alpha`` is set to
+0.5.
+
+.. math::
+
+ \text{pinball}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \alpha \max(y_i - \hat{y}_i, 0) + (1 - \alpha) \max(\hat{y}_i - y_i, 0)
+
+Here is a small example of usage of the :func:`mean_pinball_loss` function::
+
+ >>> from sklearn.metrics import mean_pinball_loss
+ >>> y_true = [1, 2, 3]
+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1)
+ 0.03...
+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1)
+ 0.3...
+ >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9)
+ 0.3...
+ >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9)
+ 0.03...
+ >>> mean_pinball_loss(y_true, y_true, alpha=0.1)
+ 0.0
+ >>> mean_pinball_loss(y_true, y_true, alpha=0.9)
+ 0.0
+
+It is possible to build a scorer object with a specific choice of alpha::
+
+ >>> from sklearn.metrics import make_scorer
+ >>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)
+
+Such a scorer can be used to evaluate the generalization performance of a
+quantile regressor via cross-validation:
+
+ >>> from sklearn.datasets import make_regression
+ >>> from sklearn.model_selection import cross_val_score
+ >>> from sklearn.ensemble import GradientBoostingRegressor
+ >>>
+ >>> X, y = make_regression(n_samples=100, random_state=0)
+ >>> estimator = GradientBoostingRegressor(
+ ... loss="quantile",
+ ... alpha=0.95,
+ ... random_state=0,
+ ... )
+ >>> cross_val_score(estimator, X, y, cv=5, scoring=mean_pinball_loss_95p)
+ array([11.1..., 10.4... , 24.4..., 9.2..., 12.9...])
+
+It is also possible to build scorer objects for hyper-parameter tuning. The
+sign of the loss must be switched to ensure that greater means better as
+explained in the example linked below.
+
+.. topic:: Example:
+
+ * See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`
+ for an example of using a the pinball loss to evaluate and tune the
+ hyper-parameters of quantile regression models on data with non-symmetric
+ noise and outliers.
+
+
.. _clustering_metrics:
Clustering metrics
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 3086d91b28f5d..582d6872f59cb 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -134,6 +134,10 @@ Changelog
class methods and will be removed in 1.2.
:pr:`<PRID>` by `<NAME>`_.
+- |Feature| :func:`metrics.mean_pinball_loss` exposes the pinball loss for
+ quantile regression. :pr:`<PRID>` by :user:`<NAME>`
+ and :user:`<NAME>`.
+
:mod:`sklearn.naive_bayes`
..........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20231
|
https://github.com/scikit-learn/scikit-learn/pull/20231
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 9689cd8789a7a..4f952758691f7 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -405,6 +405,12 @@ Changelog
:user:`Oliver Grisel <ogrisel>` and
:user:`Christian Lorentzen <lorentzenchr>`.
+- |Feature| Added new solver `lbfgs` (available with `solver="lbfgs")
+ and `positive` argument to class:`linear_model.Ridge`.
+ When `positive` is set to True, forces the coefficients to be positive
+ (only supported by `lbfgs`).
+ :pr:`20231` by :user:`Toshihiro Nakae <tnakae>`.
+
:mod:`sklearn.manifold`
.......................
diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py
index b47276d7787e7..18cdead844f43 100644
--- a/sklearn/linear_model/_ridge.py
+++ b/sklearn/linear_model/_ridge.py
@@ -15,6 +15,7 @@
import numpy as np
from scipy import linalg
from scipy import sparse
+from scipy import optimize
from scipy.sparse import linalg as sp_linalg
from ._base import LinearClassifierMixin, LinearModel
@@ -235,6 +236,64 @@ def _solve_svd(X, y, alpha):
return np.dot(Vt.T, d_UT_y).T
+def _solve_lbfgs(
+ X, y, alpha, positive=True, max_iter=None, tol=1e-3, X_offset=None, X_scale=None
+):
+ """Solve ridge regression with LBFGS.
+
+ The main purpose is fitting with forcing coefficients to be positive.
+ For unconstrained ridge regression, there are faster dedicated solver methods.
+ Note that with positive bounds on the coefficients, LBFGS seems faster
+ than scipy.optimize.lsq_linear.
+ """
+ n_samples, n_features = X.shape
+
+ options = {}
+ if max_iter is not None:
+ options["maxiter"] = max_iter
+ config = {
+ "method": "L-BFGS-B",
+ "tol": tol,
+ "jac": True,
+ "options": options,
+ }
+ if positive:
+ config["bounds"] = [(0, np.inf)] * n_features
+
+ if X_offset is not None and X_scale is not None:
+ X_offset_scale = X_offset / X_scale
+ else:
+ X_offset_scale = None
+
+ coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
+
+ for i in range(y.shape[1]):
+ x0 = np.zeros((n_features,))
+ y_column = y[:, i]
+
+ def func(w):
+ residual = X.dot(w) - y_column
+ if X_offset_scale is not None:
+ residual -= w.dot(X_offset_scale)
+ f = 0.5 * residual.dot(residual) + 0.5 * alpha[i] * w.dot(w)
+ grad = X.T @ residual + alpha[i] * w
+ if X_offset_scale is not None:
+ grad -= X_offset_scale * np.sum(residual)
+
+ return f, grad
+
+ result = optimize.minimize(func, x0, **config)
+ if not result["success"]:
+ warnings.warn(
+ "The lbfgs solver did not converge. Try increasing max_iter "
+ f"or tol. Currently: max_iter={max_iter} and tol={tol}",
+ ConvergenceWarning,
+ )
+ coefs[i] = result["x"]
+
+ return coefs
+
+
def _get_valid_accept_sparse(is_X_sparse, solver):
if is_X_sparse and solver in ["auto", "sag", "saga"]:
return "csr"
@@ -252,6 +311,7 @@ def ridge_regression(
max_iter=None,
tol=1e-3,
verbose=0,
+ positive=False,
random_state=None,
return_n_iter=False,
return_intercept=False,
@@ -287,8 +347,8 @@ def ridge_regression(
.. versionadded:: 0.17
- solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
- default='auto'
+ solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
+ 'sag', 'saga', 'lbfgs'}, default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
@@ -317,10 +377,13 @@ def ridge_regression(
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
+ - 'lbfgs' uses L-BFGS-B algorithm implemented in
+ `scipy.optimize.minimize`. It can be used only when `positive`
+ is True.
- All last five solvers support both dense and sparse data. However, only
- 'sag' and 'sparse_cg' supports sparse input when `fit_intercept` is
- True.
+ All last six solvers support both dense and sparse data. However, only
+ 'sag', 'sparse_cg', and 'lbfgs' support sparse input when `fit_intercept`
+ is True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
@@ -331,7 +394,7 @@ def ridge_regression(
Maximum number of iterations for conjugate gradient solver.
For the 'sparse_cg' and 'lsqr' solvers, the default value is determined
by scipy.sparse.linalg. For 'sag' and saga solver, the default value is
- 1000.
+ 1000. For 'lbfgs' solver, the default value is 15000.
tol : float, default=1e-3
Precision of the solution.
@@ -340,6 +403,10 @@ def ridge_regression(
Verbosity level. Setting verbose > 0 will display additional
information depending on the solver used.
+ positive : bool, default=False
+ When set to ``True``, forces the coefficients to be positive.
+ Only 'lbfgs' solver is supported in this case.
+
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
@@ -389,6 +456,7 @@ def ridge_regression(
max_iter=max_iter,
tol=tol,
verbose=verbose,
+ positive=positive,
random_state=random_state,
return_n_iter=return_n_iter,
return_intercept=return_intercept,
@@ -407,6 +475,7 @@ def _ridge_regression(
max_iter=None,
tol=1e-3,
verbose=0,
+ positive=False,
random_state=None,
return_n_iter=False,
return_intercept=False,
@@ -418,18 +487,33 @@ def _ridge_regression(
has_sw = sample_weight is not None
if solver == "auto":
- if return_intercept:
- # only sag supports fitting intercept directly
+ if positive:
+ solver = "lbfgs"
+ elif return_intercept:
+ # sag supports fitting intercept directly
solver = "sag"
elif not sparse.issparse(X):
solver = "cholesky"
else:
solver = "sparse_cg"
- if solver not in ("sparse_cg", "cholesky", "svd", "lsqr", "sag", "saga"):
+ if solver not in ("sparse_cg", "cholesky", "svd", "lsqr", "sag", "saga", "lbfgs"):
raise ValueError(
"Known solvers are 'sparse_cg', 'cholesky', 'svd'"
- " 'lsqr', 'sag' or 'saga'. Got %s." % solver
+ " 'lsqr', 'sag', 'saga' or 'lbfgs'. Got %s." % solver
+ )
+
+ if positive and solver != "lbfgs":
+ raise ValueError(
+ "When positive=True, only 'lbfgs' solver can be used. "
+ f"Please change solver {solver} to 'lbfgs' "
+ "or set positive=False."
+ )
+
+ if solver == "lbfgs" and not positive:
+ raise ValueError(
+ "'lbfgs' solver can be used only when positive=True. "
+ "Please use another solver."
)
if return_intercept and solver != "sag":
@@ -554,6 +638,18 @@ def _ridge_regression(
intercept = intercept[0]
coef = np.asarray(coef)
+ elif solver == "lbfgs":
+ coef = _solve_lbfgs(
+ X,
+ y,
+ alpha,
+ positive=positive,
+ tol=tol,
+ max_iter=max_iter,
+ X_offset=X_offset,
+ X_scale=X_scale,
+ )
+
if solver == "svd":
if sparse.issparse(X):
raise TypeError("SVD solver does not support sparse inputs currently")
@@ -585,6 +681,7 @@ def __init__(
max_iter=None,
tol=1e-3,
solver="auto",
+ positive=False,
random_state=None,
):
self.alpha = alpha
@@ -594,6 +691,7 @@ def __init__(
self.max_iter = max_iter
self.tol = tol
self.solver = solver
+ self.positive = positive
self.random_state = random_state
def fit(self, X, y, sample_weight=None):
@@ -612,16 +710,31 @@ def fit(self, X, y, sample_weight=None):
multi_output=True,
y_numeric=True,
)
- if sparse.issparse(X) and self.fit_intercept:
- if self.solver not in ["auto", "sparse_cg", "sag"]:
+ if self.solver == "lbfgs" and not self.positive:
+ raise ValueError(
+ "'lbfgs' solver can be used only when positive=True. "
+ "Please use another solver."
+ )
+
+ if self.positive:
+ if self.solver not in ["auto", "lbfgs"]:
+ raise ValueError(
+ f"solver='{self.solver}' does not support positive fitting. Please"
+ " set the solver to 'auto' or 'lbfgs', or set `positive=False`"
+ )
+ else:
+ solver = self.solver
+ elif sparse.issparse(X) and self.fit_intercept:
+ if self.solver not in ["auto", "sparse_cg", "sag", "lbfgs"]:
raise ValueError(
"solver='{}' does not support fitting the intercept "
"on sparse data. Please set the solver to 'auto' or "
- "'sparse_cg', 'sag', or set `fit_intercept=False`".format(
- self.solver
- )
+ "'sparse_cg', 'sag', 'lbfgs' "
+ "or set `fit_intercept=False`".format(self.solver)
)
- if self.solver == "sag" and self.max_iter is None and self.tol > 1e-4:
+ if self.solver == "lbfgs":
+ solver = "lbfgs"
+ elif self.solver == "sag" and self.max_iter is None and self.tol > 1e-4:
warnings.warn(
'"sag" solver requires many iterations to fit '
"an intercept with sparse inputs. Either set the "
@@ -658,6 +771,7 @@ def fit(self, X, y, sample_weight=None):
max_iter=self.max_iter,
tol=self.tol,
solver="sag",
+ positive=self.positive,
random_state=self.random_state,
return_n_iter=True,
return_intercept=True,
@@ -682,6 +796,7 @@ def fit(self, X, y, sample_weight=None):
max_iter=self.max_iter,
tol=self.tol,
solver=solver,
+ positive=self.positive,
random_state=self.random_state,
return_n_iter=True,
return_intercept=False,
@@ -744,12 +859,13 @@ class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
Maximum number of iterations for conjugate gradient solver.
For 'sparse_cg' and 'lsqr' solvers, the default value is determined
by scipy.sparse.linalg. For 'sag' solver, the default value is 1000.
+ For 'lbfgs' solver, the default value is 15000.
tol : float, default=1e-3
Precision of the solution.
- solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
- default='auto'
+ solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
+ 'sag', 'saga', 'lbfgs'}, default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
@@ -777,15 +893,23 @@ class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
- All last five solvers support both dense and sparse data. However, only
- 'sag' and 'sparse_cg' supports sparse input when `fit_intercept` is
- True.
+ - 'lbfgs' uses L-BFGS-B algorithm implemented in
+ `scipy.optimize.minimize`. It can be used only when `positive`
+ is True.
+
+ All last six solvers support both dense and sparse data. However, only
+ 'sag', 'sparse_cg', and 'lbfgs' support sparse input when `fit_intercept`
+ is True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
+ positive : bool, default=False
+ When set to ``True``, forces the coefficients to be positive.
+ Only 'lbfgs' solver is supported in this case.
+
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
@@ -843,6 +967,7 @@ def __init__(
max_iter=None,
tol=1e-3,
solver="auto",
+ positive=False,
random_state=None,
):
super().__init__(
@@ -853,6 +978,7 @@ def __init__(
max_iter=max_iter,
tol=tol,
solver=solver,
+ positive=positive,
random_state=random_state,
)
@@ -932,8 +1058,8 @@ class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``.
- solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
- default='auto'
+ solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
+ 'sag', 'saga', 'lbfgs'}, default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
@@ -966,6 +1092,14 @@ class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
.. versionadded:: 0.19
SAGA solver.
+ - 'lbfgs' uses L-BFGS-B algorithm implemented in
+ `scipy.optimize.minimize`. It can be used only when `positive`
+ is True.
+
+ positive : bool, default=False
+ When set to ``True``, forces the coefficients to be positive.
+ Only 'lbfgs' solver is supported in this case.
+
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
@@ -1025,6 +1159,7 @@ def __init__(
tol=1e-3,
class_weight=None,
solver="auto",
+ positive=False,
random_state=None,
):
super().__init__(
@@ -1035,6 +1170,7 @@ def __init__(
max_iter=max_iter,
tol=tol,
solver=solver,
+ positive=positive,
random_state=random_state,
)
self.class_weight = class_weight
|
diff --git a/sklearn/linear_model/tests/test_ridge.py b/sklearn/linear_model/tests/test_ridge.py
index b933cf54964c9..bfc6722737bd8 100644
--- a/sklearn/linear_model/tests/test_ridge.py
+++ b/sklearn/linear_model/tests/test_ridge.py
@@ -29,6 +29,8 @@
from sklearn.linear_model import RidgeClassifierCV
from sklearn.linear_model._ridge import _solve_cholesky
from sklearn.linear_model._ridge import _solve_cholesky_kernel
+from sklearn.linear_model._ridge import _solve_svd
+from sklearn.linear_model._ridge import _solve_lbfgs
from sklearn.linear_model._ridge import _check_gcv_mode
from sklearn.linear_model._ridge import _X_CenterStackOp
from sklearn.datasets import make_regression
@@ -189,7 +191,7 @@ def test_ridge_sample_weights():
for (alpha, intercept, solver) in param_grid:
# Ridge with explicit sample_weight
- est = Ridge(alpha=alpha, fit_intercept=intercept, solver=solver, tol=1e-6)
+ est = Ridge(alpha=alpha, fit_intercept=intercept, solver=solver, tol=1e-12)
est.fit(X, y, sample_weight=sample_weight)
coefs = est.coef_
inter = est.intercept_
@@ -321,7 +323,7 @@ def test_ridge_individual_penalties():
)
coefs_indiv_pen = [
- Ridge(alpha=penalties, solver=solver, tol=1e-8).fit(X, y).coef_
+ Ridge(alpha=penalties, solver=solver, tol=1e-12).fit(X, y).coef_
for solver in ["svd", "sparse_cg", "lsqr", "cholesky", "sag", "saga"]
]
for coef_indiv_pen in coefs_indiv_pen:
@@ -398,6 +400,7 @@ def _make_sparse_offset_regression(
noise=30.0,
shuffle=True,
coef=False,
+ positive=False,
random_state=None,
):
X, y, c = make_regression(
@@ -421,6 +424,9 @@ def _make_sparse_offset_regression(
X[~mask] = 0.0
removed_X[mask] = 0.0
y -= removed_X.dot(c)
+ if positive:
+ y += X.dot(np.abs(c) + 1 - c)
+ c = np.abs(c) + 1
if n_features == 1:
c = c[0]
if coef:
@@ -435,7 +441,8 @@ def _make_sparse_offset_regression(
(
(solver, sparse_X)
for (solver, sparse_X) in product(
- ["cholesky", "sag", "sparse_cg", "lsqr", "saga", "ridgecv"], [False, True]
+ ["cholesky", "sag", "sparse_cg", "lsqr", "saga", "ridgecv"],
+ [False, True],
)
if not (sparse_X and solver not in ["sparse_cg", "ridgecv"])
),
@@ -1267,13 +1274,16 @@ def test_n_iter():
assert reg.n_iter_ is None
[email protected]("solver", ["sparse_cg", "auto"])
[email protected]("solver", ["sparse_cg", "lbfgs", "auto"])
def test_ridge_fit_intercept_sparse(solver):
- X, y = _make_sparse_offset_regression(n_features=20, random_state=0)
+ positive = solver == "lbfgs"
+ X, y = _make_sparse_offset_regression(
+ n_features=20, random_state=0, positive=positive
+ )
X_csr = sp.csr_matrix(X)
- # for now only sparse_cg can correctly fit an intercept with sparse X with
- # default tol and max_iter.
+ # for now only sparse_cg and lbfgs can correctly fit an intercept
+ # with sparse X with default tol and max_iter.
# sag is tested separately in test_ridge_fit_intercept_sparse_sag
# because it requires more iterations and should raise a warning if default
# max_iter is used.
@@ -1284,8 +1294,8 @@ def test_ridge_fit_intercept_sparse(solver):
# so the reference we use for both ("auto" and "sparse_cg") is
# Ridge(solver="sparse_cg"), fitted using the dense representation (note
# that "sparse_cg" can fit sparse or dense data)
- dense_ridge = Ridge(solver="sparse_cg")
- sparse_ridge = Ridge(solver=solver)
+ dense_ridge = Ridge(solver="sparse_cg", tol=1e-12)
+ sparse_ridge = Ridge(solver=solver, tol=1e-12, positive=positive)
dense_ridge.fit(X, y)
with pytest.warns(None) as record:
sparse_ridge.fit(X_csr, y)
@@ -1329,7 +1339,7 @@ def test_ridge_fit_intercept_sparse_sag():
@pytest.mark.parametrize("sample_weight", [None, np.ones(1000)])
@pytest.mark.parametrize("arr_type", [np.array, sp.csr_matrix])
@pytest.mark.parametrize(
- "solver", ["auto", "sparse_cg", "cholesky", "lsqr", "sag", "saga"]
+ "solver", ["auto", "sparse_cg", "cholesky", "lsqr", "sag", "saga", "lbfgs"]
)
def test_ridge_regression_check_arguments_validity(
return_intercept, sample_weight, arr_type, solver
@@ -1351,6 +1361,8 @@ def test_ridge_regression_check_arguments_validity(
alpha, tol = 1e-3, 1e-6
atol = 1e-3 if _IS_32BIT else 1e-4
+ positive = solver == "lbfgs"
+
if solver not in ["sag", "auto"] and return_intercept:
with pytest.raises(ValueError, match="In Ridge, only 'sag' solver"):
ridge_regression(
@@ -1360,6 +1372,7 @@ def test_ridge_regression_check_arguments_validity(
solver=solver,
sample_weight=sample_weight,
return_intercept=return_intercept,
+ positive=positive,
tol=tol,
)
return
@@ -1370,6 +1383,7 @@ def test_ridge_regression_check_arguments_validity(
alpha=alpha,
solver=solver,
sample_weight=sample_weight,
+ positive=positive,
return_intercept=return_intercept,
tol=tol,
)
@@ -1389,11 +1403,12 @@ def test_ridge_classifier_no_support_multilabel():
@pytest.mark.parametrize(
- "solver", ["svd", "sparse_cg", "cholesky", "lsqr", "sag", "saga"]
+ "solver", ["svd", "sparse_cg", "cholesky", "lsqr", "sag", "saga", "lbfgs"]
)
def test_dtype_match(solver):
rng = np.random.RandomState(0)
alpha = 1.0
+ positive = solver == "lbfgs"
n_samples, n_features = 6, 5
X_64 = rng.randn(n_samples, n_features)
@@ -1403,12 +1418,16 @@ def test_dtype_match(solver):
tol = 2 * np.finfo(np.float32).resolution
# Check type consistency 32bits
- ridge_32 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=tol)
+ ridge_32 = Ridge(
+ alpha=alpha, solver=solver, max_iter=500, tol=tol, positive=positive
+ )
ridge_32.fit(X_32, y_32)
coef_32 = ridge_32.coef_
# Check type consistency 64 bits
- ridge_64 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=tol)
+ ridge_64 = Ridge(
+ alpha=alpha, solver=solver, max_iter=500, tol=tol, positive=positive
+ )
ridge_64.fit(X_64, y_64)
coef_64 = ridge_64.coef_
@@ -1451,7 +1470,7 @@ def test_dtype_match_cholesky():
@pytest.mark.parametrize(
- "solver", ["svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga"]
+ "solver", ["svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"]
)
@pytest.mark.parametrize("seed", range(1))
def test_ridge_regression_dtype_stability(solver, seed):
@@ -1461,6 +1480,7 @@ def test_ridge_regression_dtype_stability(solver, seed):
coef = random_state.randn(n_features)
y = np.dot(X, coef) + 0.01 * random_state.randn(n_samples)
alpha = 1.0
+ positive = solver == "lbfgs"
results = dict()
# XXX: Sparse CG seems to be far less numerically stable than the
# others, maybe we should not enable float32 for this one.
@@ -1473,6 +1493,7 @@ def test_ridge_regression_dtype_stability(solver, seed):
solver=solver,
random_state=random_state,
sample_weight=None,
+ positive=positive,
max_iter=500,
tol=1e-10,
return_n_iter=False,
@@ -1494,11 +1515,150 @@ def test_ridge_sag_with_X_fortran():
Ridge(solver="sag").fit(X, y)
[email protected]("solver", ["auto", "lbfgs"])
[email protected]("fit_intercept", [True, False])
[email protected]("alpha", [1e-3, 1e-2, 0.1, 1.0])
+def test_ridge_positive_regression_test(solver, fit_intercept, alpha):
+ """Test that positive Ridge finds true positive coefficients."""
+ X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
+ coef = np.array([1, -10])
+ if fit_intercept:
+ intercept = 20
+ y = X.dot(coef) + intercept
+ else:
+ y = X.dot(coef)
+
+ model = Ridge(
+ alpha=alpha, positive=True, solver=solver, fit_intercept=fit_intercept
+ )
+ model.fit(X, y)
+ assert np.all(model.coef_ >= 0)
+
+
[email protected]("fit_intercept", [True, False])
[email protected]("alpha", [1e-3, 1e-2, 0.1, 1.0])
+def test_ridge_ground_truth_positive_test(fit_intercept, alpha):
+ """Test that Ridge w/wo positive converges to the same solution.
+
+ Ridge with positive=True and positive=False must give the same
+ when the ground truth coefs are all positive.
+ """
+ rng = np.random.RandomState(42)
+ X = rng.randn(300, 100)
+ coef = rng.uniform(0.1, 1.0, size=X.shape[1])
+ if fit_intercept:
+ intercept = 1
+ y = X @ coef + intercept
+ else:
+ y = X @ coef
+ y += rng.normal(size=X.shape[0]) * 0.01
+
+ results = []
+ for positive in [True, False]:
+ model = Ridge(
+ alpha=alpha, positive=positive, fit_intercept=fit_intercept, tol=1e-10
+ )
+ results.append(model.fit(X, y).coef_)
+ assert_allclose(*results, atol=1e-6, rtol=0)
+
+
[email protected](
+ "solver", ["svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga"]
+)
+def test_ridge_positive_error_test(solver):
+ """Test input validation for positive argument in Ridge."""
+ alpha = 0.1
+ X = np.array([[1, 2], [3, 4]])
+ coef = np.array([1, -1])
+ y = X @ coef
+
+ model = Ridge(alpha=alpha, positive=True, solver=solver, fit_intercept=False)
+ with pytest.raises(ValueError, match="does not support positive"):
+ model.fit(X, y)
+
+ with pytest.raises(ValueError, match="only 'lbfgs' solver can be used"):
+ _, _ = ridge_regression(
+ X, y, alpha, positive=True, solver=solver, return_intercept=False
+ )
+
+
[email protected]("alpha", [1e-3, 1e-2, 0.1, 1.0])
+def test_positive_ridge_loss(alpha):
+ """Check ridge loss consistency when positive argument is enabled."""
+ X, y = make_regression(n_samples=300, n_features=300, random_state=42)
+ alpha = 0.10
+ n_checks = 100
+
+ def ridge_loss(model, random_state=None, noise_scale=1e-8):
+ intercept = model.intercept_
+ if random_state is not None:
+ rng = np.random.RandomState(random_state)
+ coef = model.coef_ + rng.uniform(0, noise_scale, size=model.coef_.shape)
+ else:
+ coef = model.coef_
+
+ return 0.5 * np.sum((y - X @ coef - intercept) ** 2) + 0.5 * alpha * np.sum(
+ coef ** 2
+ )
+
+ model = Ridge(alpha=alpha).fit(X, y)
+ model_positive = Ridge(alpha=alpha, positive=True).fit(X, y)
+
+ # Check 1:
+ # Loss for solution found by Ridge(positive=False)
+ # is lower than that for solution found by Ridge(positive=True)
+ loss = ridge_loss(model)
+ loss_positive = ridge_loss(model_positive)
+ assert loss <= loss_positive
+
+ # Check 2:
+ # Loss for solution found by Ridge(positive=True)
+ # is lower than that for small random positive perturbation
+ # of the positive solution.
+ for random_state in range(n_checks):
+ loss_perturbed = ridge_loss(model_positive, random_state=random_state)
+ assert loss_positive <= loss_perturbed
+
+
[email protected]("alpha", [1e-3, 1e-2, 0.1, 1.0])
+def test_lbfgs_solver_consistency(alpha):
+ """Test that LBGFS gets almost the same coef of svd when positive=False."""
+ X, y = make_regression(n_samples=300, n_features=300, random_state=42)
+ y = np.expand_dims(y, 1)
+ alpha = np.asarray([alpha])
+ config = {
+ "positive": False,
+ "tol": 1e-16,
+ "max_iter": 500000,
+ }
+
+ coef_lbfgs = _solve_lbfgs(X, y, alpha, **config)
+ coef_cholesky = _solve_svd(X, y, alpha)
+ assert_allclose(coef_lbfgs, coef_cholesky, atol=1e-4, rtol=0)
+
+
+def test_lbfgs_solver_error():
+ """Test that LBFGS solver raises ConvergenceWarning."""
+ X = np.array([[1, -1], [1, 1]])
+ y = np.array([-1e10, 1e10])
+
+ model = Ridge(
+ alpha=0.01,
+ solver="lbfgs",
+ fit_intercept=False,
+ tol=1e-12,
+ positive=True,
+ max_iter=1,
+ )
+ with pytest.warns(ConvergenceWarning, match="lbfgs solver did not converge"):
+ model.fit(X, y)
+
+
# FIXME: 'normalize' to be removed in 1.2
@pytest.mark.filterwarnings("ignore:'normalize' was deprecated")
@pytest.mark.parametrize("normalize", [True, False])
@pytest.mark.parametrize(
- "solver", ["cholesky", "lsqr", "sparse_cg", "svd", "sag", "saga"]
+ "solver", ["cholesky", "lsqr", "sparse_cg", "svd", "sag", "saga", "lbfgs"]
)
def test_ridge_sample_weight_invariance(normalize, solver):
"""Test that Ridge fulfils sample weight invariance.
@@ -1511,6 +1671,7 @@ def test_ridge_sample_weight_invariance(normalize, solver):
normalize=normalize,
solver=solver,
tol=1e-12,
+ positive=(solver == "lbfgs"),
)
reg = Ridge(**params)
name = reg.__class__.__name__
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 9689cd8789a7a..4f952758691f7 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -405,6 +405,12 @@ Changelog\n :user:`Oliver Grisel <ogrisel>` and\n :user:`Christian Lorentzen <lorentzenchr>`.\n \n+- |Feature| Added new solver `lbfgs` (available with `solver=\"lbfgs\")\n+ and `positive` argument to class:`linear_model.Ridge`.\n+ When `positive` is set to True, forces the coefficients to be positive\n+ (only supported by `lbfgs`).\n+ :pr:`20231` by :user:`Toshihiro Nakae <tnakae>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
1.00
|
e4ef854d031854932b7165d55bfd04a400af6b85
|
[] |
[
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[gcv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_error",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_tolerance]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_no_support_multilabel",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_sample_weight",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_multi_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_shapes",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[5]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[1.0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.001]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_vs_lstsq",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_solver_not_supported",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_toy_ridge_object",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_primal_dual_relationship",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[neg_mean_squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_singular",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-True]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.01]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_loo]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lbfgs-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_n_iter",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.01]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_negative_alphas",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_classifiers]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_individual_penalties",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_cg_max_iter",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.001]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[1.0-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sparse_svd",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.001-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[SPARSE_FILTER-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_intercept",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights_cv",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.001-False-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[0.01-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[1.0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[svd-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.1-False-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sag_with_X_fortran",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-saga]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[bad]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_positive_ridge_loss[0.1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_loo_cv_asym_scoring",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-lbfgs]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_lbfgs_solver_consistency[0.1]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_int_alphas",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv_normalize]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_convergence_fail",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_regression_test[0.01-True-auto]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[SPARSE_FILTER-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[True]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[_mean_squared_error_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lbfgs-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match_cholesky",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_positive_error_test[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_cv_individual_penalties",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-False-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-False-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weight_invariance[sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-True-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-True-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-False-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-True-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_ground_truth_positive_test[1.0-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[DENSE_FILTER-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[DENSE_FILTER-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-False]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 9689cd8789a7a..4f952758691f7 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -405,6 +405,12 @@ Changelog\n :user:`<NAME>` and\n :user:`<NAME>`.\n \n+- |Feature| Added new solver `lbfgs` (available with `solver=\"lbfgs\")\n+ and `positive` argument to class:`linear_model.Ridge`.\n+ When `positive` is set to True, forces the coefficients to be positive\n+ (only supported by `lbfgs`).\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 9689cd8789a7a..4f952758691f7 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -405,6 +405,12 @@ Changelog
:user:`<NAME>` and
:user:`<NAME>`.
+- |Feature| Added new solver `lbfgs` (available with `solver="lbfgs")
+ and `positive` argument to class:`linear_model.Ridge`.
+ When `positive` is set to True, forces the coefficients to be positive
+ (only supported by `lbfgs`).
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.manifold`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19643
|
https://github.com/scikit-learn/scikit-learn/pull/19643
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 3e36438dda095..06764d2be6003 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -165,6 +165,11 @@ Changelog
class methods and will be removed in 1.2.
:pr:`18543` by `Guillaume Lemaitre`_.
+- |Enhancement| A fix to raise an error in :func:`metrics.hinge_loss` when
+ ``pred_decision`` is 1d whereas it is a multiclass classification or when
+ ``pred_decision`` parameter is not consistent with the ``labels`` parameter.
+ :pr:`19643` by :user:`Pierre Attard <PierreAttard>`.
+
- |Feature| :func:`metrics.mean_pinball_loss` exposes the pinball loss for
quantile regression. :pr:`19415` by :user:`Xavier Dupré <sdpython>`
and :user:`Oliver Grisel <ogrisel>`.
diff --git a/sklearn/metrics/_classification.py b/sklearn/metrics/_classification.py
index 708bde662e765..97ee5a2e01340 100644
--- a/sklearn/metrics/_classification.py
+++ b/sklearn/metrics/_classification.py
@@ -2370,11 +2370,29 @@ def hinge_loss(y_true, pred_decision, *, labels=None, sample_weight=None):
pred_decision = check_array(pred_decision, ensure_2d=False)
y_true = column_or_1d(y_true)
y_true_unique = np.unique(labels if labels is not None else y_true)
+
if y_true_unique.size > 2:
- if (labels is None and pred_decision.ndim > 1 and
- (np.size(y_true_unique) != pred_decision.shape[1])):
- raise ValueError("Please include all labels in y_true "
- "or pass labels as third argument")
+
+ if pred_decision.ndim <= 1:
+ raise ValueError("The shape of pred_decision cannot be 1d array"
+ "with a multiclass target. pred_decision shape "
+ "must be (n_samples, n_classes), that is "
+ f"({y_true.shape[0]}, {y_true_unique.size})."
+ f" Got: {pred_decision.shape}")
+
+ # pred_decision.ndim > 1 is true
+ if y_true_unique.size != pred_decision.shape[1]:
+ if labels is None:
+ raise ValueError("Please include all labels in y_true "
+ "or pass labels as third argument")
+ else:
+ raise ValueError("The shape of pred_decision is not "
+ "consistent with the number of classes. "
+ "With a multiclass target, pred_decision "
+ "shape must be "
+ "(n_samples, n_classes), that is "
+ f"({y_true.shape[0]}, {y_true_unique.size}). "
+ f"Got: {pred_decision.shape}")
if labels is None:
labels = y_true_unique
le = LabelEncoder()
|
diff --git a/sklearn/metrics/tests/test_classification.py b/sklearn/metrics/tests/test_classification.py
index c32e9c89ada47..7b634e88f2275 100644
--- a/sklearn/metrics/tests/test_classification.py
+++ b/sklearn/metrics/tests/test_classification.py
@@ -4,6 +4,7 @@
from itertools import chain
from itertools import permutations
import warnings
+import re
import numpy as np
from scipy import linalg
@@ -2135,6 +2136,31 @@ def test_hinge_loss_multiclass_missing_labels_with_labels_none():
hinge_loss(y_true, pred_decision)
+def test_hinge_loss_multiclass_no_consistent_pred_decision_shape():
+ # test for inconsistency between multiclass problem and pred_decision
+ # argument
+ y_true = np.array([2, 1, 0, 1, 0, 1, 1])
+ pred_decision = np.array([0, 1, 2, 1, 0, 2, 1])
+ error_message = ("The shape of pred_decision cannot be 1d array"
+ "with a multiclass target. pred_decision shape "
+ "must be (n_samples, n_classes), that is "
+ "(7, 3). Got: (7,)")
+ with pytest.raises(ValueError, match=re.escape(error_message)):
+ hinge_loss(y_true=y_true, pred_decision=pred_decision)
+
+ # test for inconsistency between pred_decision shape and labels number
+ pred_decision = np.array([[0, 1], [0, 1], [0, 1], [0, 1],
+ [2, 0], [0, 1], [1, 0]])
+ labels = [0, 1, 2]
+ error_message = ("The shape of pred_decision is not "
+ "consistent with the number of classes. "
+ "With a multiclass target, pred_decision "
+ "shape must be (n_samples, n_classes), that is "
+ "(7, 3). Got: (7, 2)")
+ with pytest.raises(ValueError, match=re.escape(error_message)):
+ hinge_loss(y_true=y_true, pred_decision=pred_decision, labels=labels)
+
+
def test_hinge_loss_multiclass_with_missing_labels():
pred_decision = np.array([
[+0.36, -0.17, -0.58, -0.99],
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 3e36438dda095..06764d2be6003 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -165,6 +165,11 @@ Changelog\n class methods and will be removed in 1.2.\n :pr:`18543` by `Guillaume Lemaitre`_.\n \n+- |Enhancement| A fix to raise an error in :func:`metrics.hinge_loss` when\n+ ``pred_decision`` is 1d whereas it is a multiclass classification or when\n+ ``pred_decision`` parameter is not consistent with the ``labels`` parameter.\n+ :pr:`19643` by :user:`Pierre Attard <PierreAttard>`.\n+\n - |Feature| :func:`metrics.mean_pinball_loss` exposes the pinball loss for\n quantile regression. :pr:`19415` by :user:`Xavier Dupré <sdpython>`\n and :user:`Oliver Grisel <ogrisel>`.\n"
}
] |
1.00
|
42e90e9ba28fb37c2c9bd3e8aed1ac2387f1d5d5
|
[
"sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_balanced",
"sklearn/metrics/tests/test_classification.py::test_fscore_warnings[1]",
"sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_overflow[10000]",
"sklearn/metrics/tests/test_classification.py::test_multiclass_jaccard_score",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f_binary_single_class",
"sklearn/metrics/tests/test_classification.py::test_average_precision_score_tied_values",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[1-weighted-1]",
"sklearn/metrics/tests/test_classification.py::test_log_loss",
"sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_digits",
"sklearn/metrics/tests/test_classification.py::test_fscore_warnings[0]",
"sklearn/metrics/tests/test_classification.py::test_log_loss_pandas_input",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_with_an_empty_prediction[0]",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_fscore_support_errors",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[1-samples-1]",
"sklearn/metrics/tests/test_classification.py::test_classification_report_output_dict_empty_input",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f_unused_pos_label",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[0-samples-1]",
"sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_binary",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_average_none[1]",
"sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_multilabel",
"sklearn/metrics/tests/test_classification.py::test_zero_precision_recall",
"sklearn/metrics/tests/test_classification.py::test_classification_report_labels_target_names_unequal_length",
"sklearn/metrics/tests/test_classification.py::test_jaccard_score_validation",
"sklearn/metrics/tests/test_classification.py::test_hinge_loss_multiclass_missing_labels_only_two_unq_in_y_true",
"sklearn/metrics/tests/test_classification.py::test_balanced_accuracy_score[y_true0-y_pred0]",
"sklearn/metrics/tests/test_classification.py::test_classification_report_zero_division_warning[warn]",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_average_none[0]",
"sklearn/metrics/tests/test_classification.py::test_precision_warnings[1]",
"sklearn/metrics/tests/test_classification.py::test_recall_warnings[1]",
"sklearn/metrics/tests/test_classification.py::test_prf_average_binary_data_non_binary",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_binary",
"sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[None]",
"sklearn/metrics/tests/test_classification.py::test_average_binary_jaccard_score",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_check_warnings[macro]",
"sklearn/metrics/tests/test_classification.py::test_hinge_loss_binary",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_with_an_empty_prediction[warn]",
"sklearn/metrics/tests/test_classification.py::test_prf_no_warnings_if_zero_division_set[1]",
"sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[micro]",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize[all-f-0.1111111111]",
"sklearn/metrics/tests/test_classification.py::test__check_targets",
"sklearn/metrics/tests/test_classification.py::test_multilabel_hamming_loss",
"sklearn/metrics/tests/test_classification.py::test_balanced_accuracy_score[y_true2-y_pred2]",
"sklearn/metrics/tests/test_classification.py::test_prf_warnings",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize[None-i-2]",
"sklearn/metrics/tests/test_classification.py::test_classification_report_dictionary_output",
"sklearn/metrics/tests/test_classification.py::test_multilabel_classification_report",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_check_warnings[weighted]",
"sklearn/metrics/tests/test_classification.py::test_jaccard_score_zero_division_warning",
"sklearn/metrics/tests/test_classification.py::test__check_targets_multiclass_with_both_y_true_and_y_pred_binary",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_multilabel_1",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_error[empty list]",
"sklearn/metrics/tests/test_classification.py::test_recall_warnings[0]",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f_ignored_labels",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_check_warnings[micro]",
"sklearn/metrics/tests/test_classification.py::test_hinge_loss_multiclass",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize[true-f-0.333333333]",
"sklearn/metrics/tests/test_classification.py::test_brier_score_loss",
"sklearn/metrics/tests/test_classification.py::test_multilabel_jaccard_score",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_on_zero_length_input[None]",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_binary",
"sklearn/metrics/tests/test_classification.py::test_precision_warnings[0]",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_with_an_empty_prediction[1]",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f_extra_labels",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_on_zero_length_input[binary]",
"sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_against_jurman",
"sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize_wrong_option",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[0-macro-1]",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_average_none_warn",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[1-macro-1]",
"sklearn/metrics/tests/test_classification.py::test_precision_warnings[warn]",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[0-weighted-1]",
"sklearn/metrics/tests/test_classification.py::test_fscore_warnings[warn]",
"sklearn/metrics/tests/test_classification.py::test_prf_no_warnings_if_zero_division_set[0]",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_binary_averaged",
"sklearn/metrics/tests/test_classification.py::test_classification_report_no_labels_target_names_unequal_length",
"sklearn/metrics/tests/test_classification.py::test_balanced_accuracy_score_unseen",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_error[unknown labels]",
"sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef",
"sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_multiclass",
"sklearn/metrics/tests/test_classification.py::test_recall_warnings[warn]",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_multiclass_subset_labels",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_multiclass",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_dtype",
"sklearn/metrics/tests/test_classification.py::test_cohen_kappa",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels_check_warnings[samples]",
"sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[weighted]",
"sklearn/metrics/tests/test_classification.py::test_hinge_loss_multiclass_with_missing_labels",
"sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_overflow[100]",
"sklearn/metrics/tests/test_classification.py::test_average_precision_score_duplicate_values",
"sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[samples]",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_score_multilabel_2",
"sklearn/metrics/tests/test_classification.py::test_classification_report_zero_division_warning[1]",
"sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_long_string_label",
"sklearn/metrics/tests/test_classification.py::test_balanced_accuracy_score[y_true1-y_pred1]",
"sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_errors",
"sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_nan",
"sklearn/metrics/tests/test_classification.py::test_multilabel_confusion_matrix_multiclass",
"sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_string_label",
"sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_unicode_label",
"sklearn/metrics/tests/test_classification.py::test_matthews_corrcoef_against_numpy_corrcoef",
"sklearn/metrics/tests/test_classification.py::test_average_precision_score_score_non_binary_class",
"sklearn/metrics/tests/test_classification.py::test_hinge_loss_multiclass_invariance_lists",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_normalize[pred-f-0.333333333]",
"sklearn/metrics/tests/test_classification.py::test_classification_report_multiclass_with_label_detection",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[1-micro-1]",
"sklearn/metrics/tests/test_classification.py::test_multilabel_zero_one_loss_subset",
"sklearn/metrics/tests/test_classification.py::test_precision_recall_f1_no_labels[0-micro-1]",
"sklearn/metrics/tests/test_classification.py::test_multilabel_accuracy_score_subset_accuracy",
"sklearn/metrics/tests/test_classification.py::test_precision_refcall_f1_score_multilabel_unordered_labels[macro]",
"sklearn/metrics/tests/test_classification.py::test_classification_report_zero_division_warning[0]",
"sklearn/metrics/tests/test_classification.py::test_confusion_matrix_on_zero_length_input[multiclass]",
"sklearn/metrics/tests/test_classification.py::test_hinge_loss_multiclass_missing_labels_with_labels_none"
] |
[
"sklearn/metrics/tests/test_classification.py::test_hinge_loss_multiclass_no_consistent_pred_decision_shape"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 3e36438dda095..06764d2be6003 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -165,6 +165,11 @@ Changelog\n class methods and will be removed in 1.2.\n :pr:`<PRID>` by `<NAME>`_.\n \n+- |Enhancement| A fix to raise an error in :func:`metrics.hinge_loss` when\n+ ``pred_decision`` is 1d whereas it is a multiclass classification or when\n+ ``pred_decision`` parameter is not consistent with the ``labels`` parameter.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Feature| :func:`metrics.mean_pinball_loss` exposes the pinball loss for\n quantile regression. :pr:`<PRID>` by :user:`<NAME>`\n and :user:`<NAME>`.\n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 3e36438dda095..06764d2be6003 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -165,6 +165,11 @@ Changelog
class methods and will be removed in 1.2.
:pr:`<PRID>` by `<NAME>`_.
+- |Enhancement| A fix to raise an error in :func:`metrics.hinge_loss` when
+ ``pred_decision`` is 1d whereas it is a multiclass classification or when
+ ``pred_decision`` parameter is not consistent with the ``labels`` parameter.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Feature| :func:`metrics.mean_pinball_loss` exposes the pinball loss for
quantile regression. :pr:`<PRID>` by :user:`<NAME>`
and :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17036
|
https://github.com/scikit-learn/scikit-learn/pull/17036
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 3edd8adee8191..d56c7b5d8eafe 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -994,6 +994,7 @@ details.
metrics.mean_poisson_deviance
metrics.mean_gamma_deviance
metrics.mean_tweedie_deviance
+ metrics.d2_tweedie_score
metrics.mean_pinball_loss
Multilabel ranking metrics
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index b1ef50dafbaa9..f5f447e118a8e 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -2354,6 +2354,34 @@ the difference in errors decreases. Finally, by setting, ``power=2``::
we would get identical errors. The deviance when ``power=2`` is thus only
sensitive to relative errors.
+.. _d2_tweedie_score:
+
+D² score, the coefficient of determination
+-------------------------------------------
+
+The :func:`d2_tweedie_score` function computes the percentage of deviance
+explained. It is a generalization of R², where the squared error is replaced by
+the Tweedie deviance. D², also known as McFadden's likelihood ratio index, is
+calculated as
+
+.. math::
+
+ D^2(y, \hat{y}) = 1 - \frac{\text{D}(y, \hat{y})}{\text{D}(y, \bar{y})} \,.
+
+The argument ``power`` defines the Tweedie power as for
+:func:`mean_tweedie_deviance`. Note that for `power=0`,
+:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).
+
+Like R², the best possible score is 1.0 and it can be negative (because the
+model can be arbitrarily worse). A constant model that always predicts the
+expected value of y, disregarding the input features, would get a D² score
+of 0.0.
+
+A scorer object with a specific choice of ``power`` can be built by::
+
+ >>> from sklearn.metrics import d2_tweedie_score, make_scorer
+ >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, pwoer=1.5)
+
.. _pinball_loss:
Pinball loss
@@ -2386,7 +2414,7 @@ Here is a small example of usage of the :func:`mean_pinball_loss` function::
>>> mean_pinball_loss(y_true, y_true, alpha=0.9)
0.0
-It is possible to build a scorer object with a specific choice of alpha::
+It is possible to build a scorer object with a specific choice of ``alpha``::
>>> from sklearn.metrics import make_scorer
>>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 7d8175a3b5046..205eacdc91443 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -602,6 +602,12 @@ Changelog
quantile regression. :pr:`19415` by :user:`Xavier Dupré <sdpython>`
and :user:`Oliver Grisel <ogrisel>`.
+- |Feature| :func:`metrics.d2_tweedie_score` calculates the D^2 regression
+ score for Tweedie deviances with power parameter ``power``. This is a
+ generalization of the `r2_score` and can be interpreted as percentage of
+ Tweedie deviance explained.
+ :pr:`17036` by :user:`Christian Lorentzen <lorentzenchr>`.
+
- |Feature| :func:`metrics.mean_squared_log_error` now supports
`squared=False`.
:pr:`20326` by :user:`Uttam kumar <helper-uttam>`.
@@ -683,7 +689,7 @@ Changelog
.............................
- |Fix| :class:`neural_network.MLPClassifier` and
- :class:`neural_network.MLPRegressor` now correct supports continued training
+ :class:`neural_network.MLPRegressor` now correctly support continued training
when loading from a pickled file. :pr:`19631` by `Thomas Fan`_.
:mod:`sklearn.pipeline`
diff --git a/sklearn/metrics/__init__.py b/sklearn/metrics/__init__.py
index a0b06a02ad6d1..46958ea4ef7f8 100644
--- a/sklearn/metrics/__init__.py
+++ b/sklearn/metrics/__init__.py
@@ -74,6 +74,7 @@
from ._regression import mean_tweedie_deviance
from ._regression import mean_poisson_deviance
from ._regression import mean_gamma_deviance
+from ._regression import d2_tweedie_score
from ._scorer import check_scoring
@@ -109,6 +110,7 @@
"confusion_matrix",
"consensus_score",
"coverage_error",
+ "d2_tweedie_score",
"dcg_score",
"davies_bouldin_score",
"DetCurveDisplay",
diff --git a/sklearn/metrics/_regression.py b/sklearn/metrics/_regression.py
index 525837aefc2dc..ed9da69b1261c 100644
--- a/sklearn/metrics/_regression.py
+++ b/sklearn/metrics/_regression.py
@@ -24,15 +24,16 @@
# Uttam kumar <[email protected]>
# License: BSD 3 clause
-import numpy as np
import warnings
+import numpy as np
+
from .._loss.glm_distribution import TweedieDistribution
+from ..exceptions import UndefinedMetricWarning
from ..utils.validation import check_array, check_consistent_length, _num_samples
from ..utils.validation import column_or_1d
from ..utils.validation import _check_sample_weight
from ..utils.stats import _weighted_percentile
-from ..exceptions import UndefinedMetricWarning
__ALL__ = [
@@ -986,3 +987,107 @@ def mean_gamma_deviance(y_true, y_pred, *, sample_weight=None):
1.0568...
"""
return mean_tweedie_deviance(y_true, y_pred, sample_weight=sample_weight, power=2)
+
+
+def d2_tweedie_score(y_true, y_pred, *, sample_weight=None, power=0):
+ """D^2 regression score function, percentage of Tweedie deviance explained.
+
+ Best possible score is 1.0 and it can be negative (because the model can be
+ arbitrarily worse). A model that always uses the empirical mean of `y_true` as
+ constant prediction, disregarding the input features, gets a D^2 score of 0.0.
+
+ Read more in the :ref:`User Guide <d2_tweedie_score>`.
+
+ .. versionadded:: 1.0
+
+ Parameters
+ ----------
+ y_true : array-like of shape (n_samples,)
+ Ground truth (correct) target values.
+
+ y_pred : array-like of shape (n_samples,)
+ Estimated target values.
+
+ sample_weight : array-like of shape (n_samples,), optional
+ Sample weights.
+
+ power : float, default=0
+ Tweedie power parameter. Either power <= 0 or power >= 1.
+
+ The higher `p` the less weight is given to extreme
+ deviations between true and predicted targets.
+
+ - power < 0: Extreme stable distribution. Requires: y_pred > 0.
+ - power = 0 : Normal distribution, output corresponds to r2_score.
+ y_true and y_pred can be any real numbers.
+ - power = 1 : Poisson distribution. Requires: y_true >= 0 and
+ y_pred > 0.
+ - 1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0
+ and y_pred > 0.
+ - power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.
+ - power = 3 : Inverse Gaussian distribution. Requires: y_true > 0
+ and y_pred > 0.
+ - otherwise : Positive stable distribution. Requires: y_true > 0
+ and y_pred > 0.
+
+ Returns
+ -------
+ z : float or ndarray of floats
+ The D^2 score.
+
+ Notes
+ -----
+ This is not a symmetric function.
+
+ Like R^2, D^2 score may be negative (it need not actually be the square of
+ a quantity D).
+
+ This metric is not well-defined for single samples and will return a NaN
+ value if n_samples is less than two.
+
+ References
+ ----------
+ .. [1] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J.
+ Wainwright. "Statistical Learning with Sparsity: The Lasso and
+ Generalizations." (2015). https://trevorhastie.github.io
+
+ Examples
+ --------
+ >>> from sklearn.metrics import d2_tweedie_score
+ >>> y_true = [0.5, 1, 2.5, 7]
+ >>> y_pred = [1, 1, 5, 3.5]
+ >>> d2_tweedie_score(y_true, y_pred)
+ 0.285...
+ >>> d2_tweedie_score(y_true, y_pred, power=1)
+ 0.487...
+ >>> d2_tweedie_score(y_true, y_pred, power=2)
+ 0.630...
+ >>> d2_tweedie_score(y_true, y_true, power=2)
+ 1.0
+ """
+ y_type, y_true, y_pred, _ = _check_reg_targets(
+ y_true, y_pred, None, dtype=[np.float64, np.float32]
+ )
+ if y_type == "continuous-multioutput":
+ raise ValueError("Multioutput not supported in d2_tweedie_score")
+ check_consistent_length(y_true, y_pred, sample_weight)
+
+ if _num_samples(y_pred) < 2:
+ msg = "D^2 score is not well-defined with less than two samples."
+ warnings.warn(msg, UndefinedMetricWarning)
+ return float("nan")
+
+ if sample_weight is not None:
+ sample_weight = column_or_1d(sample_weight)
+ sample_weight = sample_weight[:, np.newaxis]
+
+ dist = TweedieDistribution(power=power)
+
+ dev = dist.unit_deviance(y_true, y_pred, check_input=True)
+ numerator = np.average(dev, weights=sample_weight)
+
+ y_avg = np.average(y_true, weights=sample_weight)
+ dev = dist.unit_deviance(y_true, y_avg, check_input=True)
+ denominator = np.average(dev, weights=sample_weight)
+
+ return 1 - numerator / denominator
|
diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py
index 939371b01fc27..47e6bec38388f 100644
--- a/sklearn/metrics/tests/test_common.py
+++ b/sklearn/metrics/tests/test_common.py
@@ -29,6 +29,7 @@
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import coverage_error
+from sklearn.metrics import d2_tweedie_score
from sklearn.metrics import det_curve
from sklearn.metrics import explained_variance_score
from sklearn.metrics import f1_score
@@ -110,6 +111,7 @@
"mean_poisson_deviance": mean_poisson_deviance,
"mean_gamma_deviance": mean_gamma_deviance,
"mean_compound_poisson_deviance": partial(mean_tweedie_deviance, power=1.4),
+ "d2_tweedie_score": partial(d2_tweedie_score, power=1.4),
}
CLASSIFICATION_METRICS = {
@@ -510,6 +512,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"mean_gamma_deviance",
"mean_poisson_deviance",
"mean_compound_poisson_deviance",
+ "d2_tweedie_score",
"mean_absolute_percentage_error",
}
@@ -526,6 +529,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"mean_poisson_deviance",
"mean_gamma_deviance",
"mean_compound_poisson_deviance",
+ "d2_tweedie_score",
}
diff --git a/sklearn/metrics/tests/test_regression.py b/sklearn/metrics/tests/test_regression.py
index ed655a9fead3a..b66ce18ec8da4 100644
--- a/sklearn/metrics/tests/test_regression.py
+++ b/sklearn/metrics/tests/test_regression.py
@@ -1,6 +1,7 @@
import numpy as np
from scipy import optimize
from numpy.testing import assert_allclose
+from scipy.special import factorial, xlogy
from itertools import product
import pytest
@@ -20,6 +21,7 @@
from sklearn.metrics import mean_pinball_loss
from sklearn.metrics import r2_score
from sklearn.metrics import mean_tweedie_deviance
+from sklearn.metrics import d2_tweedie_score
from sklearn.metrics import make_scorer
from sklearn.metrics._regression import _check_reg_targets
@@ -53,6 +55,9 @@ def test_regression_metrics(n_samples=50):
mean_tweedie_deviance(y_true, y_pred, power=0),
mean_squared_error(y_true, y_pred),
)
+ assert_almost_equal(
+ d2_tweedie_score(y_true, y_pred, power=0), r2_score(y_true, y_pred)
+ )
# Tweedie deviance needs positive y_pred, except for p=0,
# p>=2 needs positive y_true
@@ -78,6 +83,17 @@ def test_regression_metrics(n_samples=50):
mean_tweedie_deviance(y_true, y_pred, power=3), np.sum(1 / y_true) / (4 * n)
)
+ dev_mean = 2 * np.mean(xlogy(y_true, 2 * y_true / (n + 1)))
+ assert_almost_equal(
+ d2_tweedie_score(y_true, y_pred, power=1),
+ 1 - (n + 1) * (1 - np.log(2)) / dev_mean,
+ )
+
+ dev_mean = 2 * np.log((n + 1) / 2) - 2 / n * np.log(factorial(n))
+ assert_almost_equal(
+ d2_tweedie_score(y_true, y_pred, power=2), 1 - (2 * np.log(2) - 1) / dev_mean
+ )
+
def test_mean_squared_error_multioutput_raw_value_squared():
# non-regression test for
@@ -131,23 +147,23 @@ def test_regression_metrics_at_limits():
assert_almost_equal(max_error([0.0], [0.0]), 0.0)
assert_almost_equal(explained_variance_score([0.0], [0.0]), 1.0)
assert_almost_equal(r2_score([0.0, 1], [0.0, 1]), 1.0)
- err_msg = (
+ msg = (
"Mean Squared Logarithmic Error cannot be used when targets "
"contain negative values."
)
- with pytest.raises(ValueError, match=err_msg):
+ with pytest.raises(ValueError, match=msg):
mean_squared_log_error([-1.0], [-1.0])
- err_msg = (
+ msg = (
"Mean Squared Logarithmic Error cannot be used when targets "
"contain negative values."
)
- with pytest.raises(ValueError, match=err_msg):
+ with pytest.raises(ValueError, match=msg):
mean_squared_log_error([1.0, 2.0, 3.0], [1.0, -2.0, 3.0])
- err_msg = (
+ msg = (
"Mean Squared Logarithmic Error cannot be used when targets "
"contain negative values."
)
- with pytest.raises(ValueError, match=err_msg):
+ with pytest.raises(ValueError, match=msg):
mean_squared_log_error([1.0, -2.0, 3.0], [1.0, 2.0, 3.0])
# Tweedie deviance error
@@ -155,35 +171,50 @@ def test_regression_metrics_at_limits():
assert_allclose(
mean_tweedie_deviance([0], [1.0], power=power), 2 / (2 - power), rtol=1e-3
)
- with pytest.raises(
- ValueError, match="can only be used on strictly positive y_pred."
- ):
+ msg = "can only be used on strictly positive y_pred."
+ with pytest.raises(ValueError, match=msg):
mean_tweedie_deviance([0.0], [0.0], power=power)
- assert_almost_equal(mean_tweedie_deviance([0.0], [0.0], power=0), 0.00, 2)
+ with pytest.raises(ValueError, match=msg):
+ d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
+ assert_almost_equal(mean_tweedie_deviance([0.0], [0.0], power=0), 0.0, 2)
+
+ power = 1.0
msg = "only be used on non-negative y and strictly positive y_pred."
with pytest.raises(ValueError, match=msg):
- mean_tweedie_deviance([0.0], [0.0], power=1.0)
+ mean_tweedie_deviance([0.0], [0.0], power=power)
+ with pytest.raises(ValueError, match=msg):
+ d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
power = 1.5
assert_allclose(mean_tweedie_deviance([0.0], [1.0], power=power), 2 / (2 - power))
msg = "only be used on non-negative y and strictly positive y_pred."
with pytest.raises(ValueError, match=msg):
mean_tweedie_deviance([0.0], [0.0], power=power)
+ with pytest.raises(ValueError, match=msg):
+ d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
+
power = 2.0
assert_allclose(mean_tweedie_deviance([1.0], [1.0], power=power), 0.00, atol=1e-8)
msg = "can only be used on strictly positive y and y_pred."
with pytest.raises(ValueError, match=msg):
mean_tweedie_deviance([0.0], [0.0], power=power)
+ with pytest.raises(ValueError, match=msg):
+ d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
+
power = 3.0
assert_allclose(mean_tweedie_deviance([1.0], [1.0], power=power), 0.00, atol=1e-8)
-
msg = "can only be used on strictly positive y and y_pred."
with pytest.raises(ValueError, match=msg):
mean_tweedie_deviance([0.0], [0.0], power=power)
+ with pytest.raises(ValueError, match=msg):
+ d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
+ power = 0.5
+ with pytest.raises(ValueError, match="is only defined for power<=0 and power>=1"):
+ mean_tweedie_deviance([0.0], [0.0], power=power)
with pytest.raises(ValueError, match="is only defined for power<=0 and power>=1"):
- mean_tweedie_deviance([0.0], [0.0], power=0.5)
+ d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
def test__check_reg_targets():
@@ -319,7 +350,7 @@ def test_regression_custom_weights():
assert_almost_equal(msle, msle2, decimal=2)
[email protected]("metric", [r2_score])
[email protected]("metric", [r2_score, d2_tweedie_score])
def test_regression_single_sample(metric):
y_true = [0]
y_pred = [1]
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 3edd8adee8191..d56c7b5d8eafe 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -994,6 +994,7 @@ details.\n metrics.mean_poisson_deviance\n metrics.mean_gamma_deviance\n metrics.mean_tweedie_deviance\n+ metrics.d2_tweedie_score\n metrics.mean_pinball_loss\n \n Multilabel ranking metrics\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex b1ef50dafbaa9..f5f447e118a8e 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -2354,6 +2354,34 @@ the difference in errors decreases. Finally, by setting, ``power=2``::\n we would get identical errors. The deviance when ``power=2`` is thus only\n sensitive to relative errors.\n \n+.. _d2_tweedie_score:\n+\n+D² score, the coefficient of determination\n+-------------------------------------------\n+\n+The :func:`d2_tweedie_score` function computes the percentage of deviance\n+explained. It is a generalization of R², where the squared error is replaced by\n+the Tweedie deviance. D², also known as McFadden's likelihood ratio index, is\n+calculated as\n+\n+.. math::\n+\n+ D^2(y, \\hat{y}) = 1 - \\frac{\\text{D}(y, \\hat{y})}{\\text{D}(y, \\bar{y})} \\,.\n+\n+The argument ``power`` defines the Tweedie power as for\n+:func:`mean_tweedie_deviance`. Note that for `power=0`,\n+:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).\n+\n+Like R², the best possible score is 1.0 and it can be negative (because the\n+model can be arbitrarily worse). A constant model that always predicts the\n+expected value of y, disregarding the input features, would get a D² score\n+of 0.0.\n+\n+A scorer object with a specific choice of ``power`` can be built by::\n+\n+ >>> from sklearn.metrics import d2_tweedie_score, make_scorer\n+ >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, pwoer=1.5)\n+\n .. _pinball_loss:\n \n Pinball loss\n@@ -2386,7 +2414,7 @@ Here is a small example of usage of the :func:`mean_pinball_loss` function::\n >>> mean_pinball_loss(y_true, y_true, alpha=0.9)\n 0.0\n \n-It is possible to build a scorer object with a specific choice of alpha::\n+It is possible to build a scorer object with a specific choice of ``alpha``::\n \n >>> from sklearn.metrics import make_scorer\n >>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 7d8175a3b5046..205eacdc91443 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -602,6 +602,12 @@ Changelog\n quantile regression. :pr:`19415` by :user:`Xavier Dupré <sdpython>`\n and :user:`Oliver Grisel <ogrisel>`.\n \n+- |Feature| :func:`metrics.d2_tweedie_score` calculates the D^2 regression\n+ score for Tweedie deviances with power parameter ``power``. This is a\n+ generalization of the `r2_score` and can be interpreted as percentage of\n+ Tweedie deviance explained.\n+ :pr:`17036` by :user:`Christian Lorentzen <lorentzenchr>`.\n+\n - |Feature| :func:`metrics.mean_squared_log_error` now supports\n `squared=False`.\n :pr:`20326` by :user:`Uttam kumar <helper-uttam>`.\n@@ -683,7 +689,7 @@ Changelog\n .............................\n \n - |Fix| :class:`neural_network.MLPClassifier` and\n- :class:`neural_network.MLPRegressor` now correct supports continued training\n+ :class:`neural_network.MLPRegressor` now correctly support continued training\n when loading from a pickled file. :pr:`19631` by `Thomas Fan`_.\n \n :mod:`sklearn.pipeline`\n"
}
] |
1.00
|
03245ee3afe5ee9e2ff626e2290f02748d95e497
|
[] |
[
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric18]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric21]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric37]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_regression.py::test__check_reg_targets_exception",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-uniform]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric29]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric29]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric35]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-metric3-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric3]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric38]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric33]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-f1_score-False]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric8]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-uniform]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric28]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric34]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric38]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric9]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric17]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric38]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric30]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-exponential]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric23]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric27]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric19]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric18]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[r2_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_squared_error_multioutput_raw_value_squared",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric16]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-max_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric39]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric13]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric18]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric18]",
"sklearn/metrics/tests/test_common.py::test_single_sample[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[max_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric18]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric3]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_representation_invariance",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-exponential]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric7]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-jaccard_score-False]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric23]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric41]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric40]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric27]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric11]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric36]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[r2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric40]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric29]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric27]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric17]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric18]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric39]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric32]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric12]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric30]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric18]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric27]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric21]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric14]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric8]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric32]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric22]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric33]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-max_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric11]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric40]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric20]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric19]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric17]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric25]",
"sklearn/metrics/tests/test_regression.py::test_regression_metrics_at_limits",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric40]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric31]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric31]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric10]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric9]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric13]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric24]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric20]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric34]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric24]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric2]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric28]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric20]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric23]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric16]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric19]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric30]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-f1_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric31]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric18]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric31]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric12]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric8]",
"sklearn/metrics/tests/test_common.py::test_single_sample[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric30]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric22]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric33]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric2]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric3]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-jaccard_score-False]",
"sklearn/metrics/tests/test_regression.py::test_regression_single_sample[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric14]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f1_score]",
"sklearn/metrics/tests/test_regression.py::test__check_reg_targets",
"sklearn/metrics/tests/test_common.py::test_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric18]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric35]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric30]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric23]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric22]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric32]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-normal]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric19]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-average_precision_score-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric9]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric2]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetry_consistency",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric25]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric12]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric16]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric28]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric36]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric31]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_score-False]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric34]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric19]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric10]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric36]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric9]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric3]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric39]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric23]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric41]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric3]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric39]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric26]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric20]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric38]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric13]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric40]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric22]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric18]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric14]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric28]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[det_curve]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric11]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric34]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric16]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric25]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric15]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric32]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric16]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric7]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric31]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-normal]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_jaccard_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-uniform]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric22]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric37]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-metric3-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric28]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric35]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric37]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric21]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric21]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_error]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-exponential]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric17]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric3]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[partial_roc_auc]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-normal]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-dcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-max_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric26]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric16]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-average_precision_score-True]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric37]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric20]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric32]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric31]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_pinball_loss]",
"sklearn/metrics/tests/test_regression.py::test_regression_custom_weights",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric34]",
"sklearn/metrics/tests/test_regression.py::test_regression_metrics",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric27]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric33]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-recall_score-False]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric14]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric24]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_binary_multilabel_all_zeroes",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric31]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric28]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric3]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-brier_score_loss]",
"sklearn/metrics/tests/test_regression.py::test_regression_multioutput_array",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric32]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-log_loss]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric2]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric23]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_regression.py::test_tweedie_deviance_continuity",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric41]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric34]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric7]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[det_curve]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric34]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric7]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric3]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-recall_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric3]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric7]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric40]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric25]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric18]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric27]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_score-False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric24]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[hamming_loss]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.75-lognormal]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric8]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric12]",
"sklearn/metrics/tests/test_common.py::test_single_sample[max_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric29]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric35]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric23]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric22]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric11]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.5-lognormal]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric10]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[<lambda>]",
"sklearn/metrics/tests/test_common.py::test_single_sample[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric2]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-metric9]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-hamming_loss]",
"sklearn/metrics/tests/test_regression.py::test_mean_absolute_percentage_error",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric29]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric25]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric33]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric19]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric7]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric16]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric24]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[r2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric41]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric32]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric26]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric2]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric38]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric16]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-metric38]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric29]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix_sample]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric16]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric30]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric37]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric39]",
"sklearn/metrics/tests/test_regression.py::test_dummy_quantile_parameter_tuning",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_pinball_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true5-y_score5-f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric34]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric31]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric26]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric41]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric19]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric20]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-max_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric8]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric3]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric20]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f0.5_score]",
"sklearn/metrics/tests/test_regression.py::test_mean_pinball_loss_on_constant_predictions[0.05-lognormal]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true4-y_score4-metric15]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[r2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric11]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric27]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric14]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric12]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[max_error]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric26]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[d2_tweedie_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric36]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_no_averaging_labels",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_regression.py::test_regression_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric34]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true0-y_score0-metric38]",
"sklearn/metrics/tests/test_common.py::test_single_sample[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-<lambda>]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true3-y_score3-metric10]",
"sklearn/metrics/tests/test_regression.py::test_multioutput_regression",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric17]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true1-y_score1-metric13]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true1-y_score1-metric15]",
"sklearn/metrics/tests/test_common.py::test_classification_binary_continuous_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true0-y_score0-metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric33]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true4-y_score4-log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true2-y_score2-metric35]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[y_true3-y_score3-cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[y_true2-y_score2-metric13]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 3edd8adee8191..d56c7b5d8eafe 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -994,6 +994,7 @@ details.\n metrics.mean_poisson_deviance\n metrics.mean_gamma_deviance\n metrics.mean_tweedie_deviance\n+ metrics.d2_tweedie_score\n metrics.mean_pinball_loss\n \n Multilabel ranking metrics\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex b1ef50dafbaa9..f5f447e118a8e 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -2354,6 +2354,34 @@ the difference in errors decreases. Finally, by setting, ``power=2``::\n we would get identical errors. The deviance when ``power=2`` is thus only\n sensitive to relative errors.\n \n+.. _d2_tweedie_score:\n+\n+D² score, the coefficient of determination\n+-------------------------------------------\n+\n+The :func:`d2_tweedie_score` function computes the percentage of deviance\n+explained. It is a generalization of R², where the squared error is replaced by\n+the Tweedie deviance. D², also known as McFadden's likelihood ratio index, is\n+calculated as\n+\n+.. math::\n+\n+ D^2(y, \\hat{y}) = 1 - \\frac{\\text{D}(y, \\hat{y})}{\\text{D}(y, \\bar{y})} \\,.\n+\n+The argument ``power`` defines the Tweedie power as for\n+:func:`mean_tweedie_deviance`. Note that for `power=0`,\n+:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).\n+\n+Like R², the best possible score is 1.0 and it can be negative (because the\n+model can be arbitrarily worse). A constant model that always predicts the\n+expected value of y, disregarding the input features, would get a D² score\n+of 0.0.\n+\n+A scorer object with a specific choice of ``power`` can be built by::\n+\n+ >>> from sklearn.metrics import d2_tweedie_score, make_scorer\n+ >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, pwoer=1.5)\n+\n .. _pinball_loss:\n \n Pinball loss\n@@ -2386,7 +2414,7 @@ Here is a small example of usage of the :func:`mean_pinball_loss` function::\n >>> mean_pinball_loss(y_true, y_true, alpha=0.9)\n 0.0\n \n-It is possible to build a scorer object with a specific choice of alpha::\n+It is possible to build a scorer object with a specific choice of ``alpha``::\n \n >>> from sklearn.metrics import make_scorer\n >>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 7d8175a3b5046..205eacdc91443 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -602,6 +602,12 @@ Changelog\n quantile regression. :pr:`<PRID>` by :user:`<NAME>`\n and :user:`<NAME>`.\n \n+- |Feature| :func:`metrics.d2_tweedie_score` calculates the D^2 regression\n+ score for Tweedie deviances with power parameter ``power``. This is a\n+ generalization of the `r2_score` and can be interpreted as percentage of\n+ Tweedie deviance explained.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Feature| :func:`metrics.mean_squared_log_error` now supports\n `squared=False`.\n :pr:`<PRID>` by :user:`<NAME>`.\n@@ -683,7 +689,7 @@ Changelog\n .............................\n \n - |Fix| :class:`neural_network.MLPClassifier` and\n- :class:`neural_network.MLPRegressor` now correct supports continued training\n+ :class:`neural_network.MLPRegressor` now correctly support continued training\n when loading from a pickled file. :pr:`<PRID>` by `<NAME>`_.\n \n :mod:`sklearn.pipeline`\n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 3edd8adee8191..d56c7b5d8eafe 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -994,6 +994,7 @@ details.
metrics.mean_poisson_deviance
metrics.mean_gamma_deviance
metrics.mean_tweedie_deviance
+ metrics.d2_tweedie_score
metrics.mean_pinball_loss
Multilabel ranking metrics
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index b1ef50dafbaa9..f5f447e118a8e 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -2354,6 +2354,34 @@ the difference in errors decreases. Finally, by setting, ``power=2``::
we would get identical errors. The deviance when ``power=2`` is thus only
sensitive to relative errors.
+.. _d2_tweedie_score:
+
+D² score, the coefficient of determination
+-------------------------------------------
+
+The :func:`d2_tweedie_score` function computes the percentage of deviance
+explained. It is a generalization of R², where the squared error is replaced by
+the Tweedie deviance. D², also known as McFadden's likelihood ratio index, is
+calculated as
+
+.. math::
+
+ D^2(y, \hat{y}) = 1 - \frac{\text{D}(y, \hat{y})}{\text{D}(y, \bar{y})} \,.
+
+The argument ``power`` defines the Tweedie power as for
+:func:`mean_tweedie_deviance`. Note that for `power=0`,
+:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).
+
+Like R², the best possible score is 1.0 and it can be negative (because the
+model can be arbitrarily worse). A constant model that always predicts the
+expected value of y, disregarding the input features, would get a D² score
+of 0.0.
+
+A scorer object with a specific choice of ``power`` can be built by::
+
+ >>> from sklearn.metrics import d2_tweedie_score, make_scorer
+ >>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, pwoer=1.5)
+
.. _pinball_loss:
Pinball loss
@@ -2386,7 +2414,7 @@ Here is a small example of usage of the :func:`mean_pinball_loss` function::
>>> mean_pinball_loss(y_true, y_true, alpha=0.9)
0.0
-It is possible to build a scorer object with a specific choice of alpha::
+It is possible to build a scorer object with a specific choice of ``alpha``::
>>> from sklearn.metrics import make_scorer
>>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 7d8175a3b5046..205eacdc91443 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -602,6 +602,12 @@ Changelog
quantile regression. :pr:`<PRID>` by :user:`<NAME>`
and :user:`<NAME>`.
+- |Feature| :func:`metrics.d2_tweedie_score` calculates the D^2 regression
+ score for Tweedie deviances with power parameter ``power``. This is a
+ generalization of the `r2_score` and can be interpreted as percentage of
+ Tweedie deviance explained.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Feature| :func:`metrics.mean_squared_log_error` now supports
`squared=False`.
:pr:`<PRID>` by :user:`<NAME>`.
@@ -683,7 +689,7 @@ Changelog
.............................
- |Fix| :class:`neural_network.MLPClassifier` and
- :class:`neural_network.MLPRegressor` now correct supports continued training
+ :class:`neural_network.MLPRegressor` now correctly support continued training
when loading from a pickled file. :pr:`<PRID>` by `<NAME>`_.
:mod:`sklearn.pipeline`
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-18649
|
https://github.com/scikit-learn/scikit-learn/pull/18649
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index c658bc6b12452..d019af3cfb1ff 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1176,6 +1176,7 @@ Splitter Classes
model_selection.ShuffleSplit
model_selection.StratifiedKFold
model_selection.StratifiedShuffleSplit
+ model_selection.StratifiedGroupKFold
model_selection.TimeSeriesSplit
Splitter Functions
diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst
index ae3d38f168f3f..0b090fd7385b6 100644
--- a/doc/modules/cross_validation.rst
+++ b/doc/modules/cross_validation.rst
@@ -353,7 +353,7 @@ Example of 2-fold cross-validation on a dataset with 4 samples::
Here is a visualization of the cross-validation behavior. Note that
:class:`KFold` is not affected by classes or groups.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_004.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_006.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -509,7 +509,7 @@ Here is a usage example::
Here is a visualization of the cross-validation behavior. Note that
:class:`ShuffleSplit` is not affected by classes or groups.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_006.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_008.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -566,7 +566,7 @@ We can see that :class:`StratifiedKFold` preserves the class ratios
Here is a visualization of the cross-validation behavior.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_007.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_009.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -585,7 +585,7 @@ percentage for each target class as in the complete set.
Here is a visualization of the cross-validation behavior.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_009.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_012.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -645,6 +645,58 @@ size due to the imbalance in the data.
Here is a visualization of the cross-validation behavior.
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_007.png
+ :target: ../auto_examples/model_selection/plot_cv_indices.html
+ :align: center
+ :scale: 75%
+
+.. _stratified_group_k_fold:
+
+StratifiedGroupKFold
+^^^^^^^^^^^^^^^^^^^^
+
+:class:`StratifiedGroupKFold` is a cross-validation scheme that combines both
+:class:`StratifiedKFold` and :class:`GroupKFold`. The idea is to try to
+preserve the distribution of classes in each split while keeping each group
+within a single split. That might be useful when you have an unbalanced
+dataset so that using just :class:`GroupKFold` might produce skewed splits.
+
+Example::
+
+ >>> from sklearn.model_selection import StratifiedGroupKFold
+ >>> X = list(range(18))
+ >>> y = [1] * 6 + [0] * 12
+ >>> groups = [1, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6]
+ >>> sgkf = StratifiedGroupKFold(n_splits=3)
+ >>> for train, test in sgkf.split(X, y, groups=groups):
+ ... print("%s %s" % (train, test))
+ [ 0 2 3 4 5 6 7 10 11 15 16 17] [ 1 8 9 12 13 14]
+ [ 0 1 4 5 6 7 8 9 11 12 13 14] [ 2 3 10 15 16 17]
+ [ 1 2 3 8 9 10 12 13 14 15 16 17] [ 0 4 5 6 7 11]
+
+Implementation notes:
+
+- With the current implementation full shuffle is not possible in most
+ scenarios. When shuffle=True, the following happens:
+
+ 1. All groups a shuffled.
+ 2. Groups are sorted by standard deviation of classes using stable sort.
+ 3. Sorted groups are iterated over and assigned to folds.
+
+ That means that only groups with the same standard deviation of class
+ distribution will be shuffled, which might be useful when each group has only
+ a single class.
+- The algorithm greedily assigns each group to one of n_splits test sets,
+ choosing the test set that minimises the variance in class distribution
+ across test sets. Group assignment proceeds from groups with highest to
+ lowest variance in class frequency, i.e. large groups peaked on one or few
+ classes are assigned first.
+- This split is suboptimal in a sense that it might produce imbalanced splits
+ even if perfect stratification is possible. If you have relatively close
+ distribution of classes in each group, using :class:`GroupKFold` is better.
+
+Here is a visualization of cross-validation behavior for uneven groups:
+
.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_005.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
@@ -733,7 +785,7 @@ Here is a usage example::
Here is a visualization of the cross-validation behavior.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_008.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_011.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -835,7 +887,7 @@ Example of 3-split time series cross-validation on a dataset with 6 samples::
Here is a visualization of the cross-validation behavior.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_010.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_013.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 34f39ca48f20a..985fe57164824 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -183,6 +183,16 @@ Changelog
are integral.
:pr:`9843` by :user:`Jon Crall <Erotemic>`.
+:mod:`sklearn.model_selection`
+..............................
+
+- |Feature| added :class:`model_selection.StratifiedGroupKFold`, that combines
+ :class:`model_selection.StratifiedKFold` and `model_selection.GroupKFold`,
+ providing an ability to split data preserving the distribution of classes in
+ each split while keeping each group within a single split.
+ :pr:`18649` by `Leandro Hermida <hermidalc>` and
+ `Rodion Martynov <marrodion>`.
+
:mod:`sklearn.naive_bayes`
..........................
diff --git a/examples/model_selection/plot_cv_indices.py b/examples/model_selection/plot_cv_indices.py
index 91f71b0451cb2..f07fa1595e860 100644
--- a/examples/model_selection/plot_cv_indices.py
+++ b/examples/model_selection/plot_cv_indices.py
@@ -13,7 +13,8 @@
from sklearn.model_selection import (TimeSeriesSplit, KFold, ShuffleSplit,
StratifiedKFold, GroupShuffleSplit,
- GroupKFold, StratifiedShuffleSplit)
+ GroupKFold, StratifiedShuffleSplit,
+ StratifiedGroupKFold)
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
@@ -113,16 +114,32 @@ def plot_cv_indices(cv, X, y, group, ax, n_splits, lw=10):
# %%
# As you can see, by default the KFold cross-validation iterator does not
# take either datapoint class or group into consideration. We can change this
-# by using the ``StratifiedKFold`` like so.
+# by using either:
+#
+# - ``StratifiedKFold`` to preserve the percentage of samples for each class.
+# - ``GroupKFold`` to ensure that the same group will not appear in two
+# different folds.
+# - ``StratifiedGroupKFold`` to keep the constraint of ``GroupKFold`` while
+# attempting to return stratified folds.
-fig, ax = plt.subplots()
-cv = StratifiedKFold(n_splits)
-plot_cv_indices(cv, X, y, groups, ax, n_splits)
+# To better demonstrate the difference, we will assign samples to groups
+# unevenly:
+
+uneven_groups = np.sort(np.random.randint(0, 10, n_points))
+
+cvs = [StratifiedKFold, GroupKFold, StratifiedGroupKFold]
+
+for cv in cvs:
+ fig, ax = plt.subplots(figsize=(6, 3))
+ plot_cv_indices(cv(n_splits), X, y, uneven_groups, ax, n_splits)
+ ax.legend([Patch(color=cmap_cv(.8)), Patch(color=cmap_cv(.02))],
+ ['Testing set', 'Training set'], loc=(1.02, .8))
+ # Make the legend fit
+ plt.tight_layout()
+ fig.subplots_adjust(right=.7)
# %%
-# In this case, the cross-validation retained the same ratio of classes across
-# each CV split. Next we'll visualize this behavior for a number of CV
-# iterators.
+# Next we'll visualize this behavior for a number of CV iterators.
#
# Visualize cross-validation indices for many CV objects
# ------------------------------------------------------
@@ -133,7 +150,7 @@ def plot_cv_indices(cv, X, y, group, ax, n_splits, lw=10):
#
# Note how some use the group/class information while others do not.
-cvs = [KFold, GroupKFold, ShuffleSplit, StratifiedKFold,
+cvs = [KFold, GroupKFold, ShuffleSplit, StratifiedKFold, StratifiedGroupKFold,
GroupShuffleSplit, StratifiedShuffleSplit, TimeSeriesSplit]
diff --git a/sklearn/model_selection/__init__.py b/sklearn/model_selection/__init__.py
index 897183414b5a6..f79db2a5acc17 100644
--- a/sklearn/model_selection/__init__.py
+++ b/sklearn/model_selection/__init__.py
@@ -14,6 +14,7 @@
from ._split import ShuffleSplit
from ._split import GroupShuffleSplit
from ._split import StratifiedShuffleSplit
+from ._split import StratifiedGroupKFold
from ._split import PredefinedSplit
from ._split import train_test_split
from ._split import check_cv
@@ -57,6 +58,7 @@
'RandomizedSearchCV',
'ShuffleSplit',
'StratifiedKFold',
+ 'StratifiedGroupKFold',
'StratifiedShuffleSplit',
'check_cv',
'cross_val_predict',
diff --git a/sklearn/model_selection/_split.py b/sklearn/model_selection/_split.py
index 244b2b63af449..13edbeef071f5 100644
--- a/sklearn/model_selection/_split.py
+++ b/sklearn/model_selection/_split.py
@@ -3,13 +3,16 @@
functions to split the data based on a preset strategy.
"""
-# Author: Alexandre Gramfort <[email protected]>,
-# Gael Varoquaux <[email protected]>,
+# Author: Alexandre Gramfort <[email protected]>
+# Gael Varoquaux <[email protected]>
# Olivier Grisel <[email protected]>
# Raghav RV <[email protected]>
+# Leandro Hermida <[email protected]>
+# Rodion Martynov <[email protected]>
# License: BSD 3 clause
from collections.abc import Iterable
+from collections import defaultdict
import warnings
from itertools import chain, combinations
from math import ceil, floor
@@ -40,6 +43,7 @@
'ShuffleSplit',
'GroupShuffleSplit',
'StratifiedKFold',
+ 'StratifiedGroupKFold',
'StratifiedShuffleSplit',
'PredefinedSplit',
'train_test_split',
@@ -732,6 +736,190 @@ def split(self, X, y, groups=None):
return super().split(X, y, groups)
+class StratifiedGroupKFold(_BaseKFold):
+ """Stratified K-Folds iterator variant with non-overlapping groups.
+
+ This cross-validation object is a variation of StratifiedKFold attempts to
+ return stratified folds with non-overlapping groups. The folds are made by
+ preserving the percentage of samples for each class.
+
+ The same group will not appear in two different folds (the number of
+ distinct groups has to be at least equal to the number of folds).
+
+ The difference between GroupKFold and StratifiedGroupKFold is that
+ the former attempts to create balanced folds such that the number of
+ distinct groups is approximately the same in each fold, whereas
+ StratifiedGroupKFold attempts to create folds which preserve the
+ percentage of samples for each class as much as possible given the
+ constraint of non-overlapping groups between splits.
+
+ Read more in the :ref:`User Guide <cross_validation>`.
+
+ Parameters
+ ----------
+ n_splits : int, default=5
+ Number of folds. Must be at least 2.
+
+ shuffle : bool, default=False
+ Whether to shuffle each class's samples before splitting into batches.
+ Note that the samples within each split will not be shuffled.
+ This implementation can only shuffle groups that have approximately the
+ same y distribution, no global shuffle will be performed.
+
+ random_state : int or RandomState instance, default=None
+ When `shuffle` is True, `random_state` affects the ordering of the
+ indices, which controls the randomness of each fold for each class.
+ Otherwise, leave `random_state` as `None`.
+ Pass an int for reproducible output across multiple function calls.
+ See :term:`Glossary <random_state>`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from sklearn.model_selection import StratifiedGroupKFold
+ >>> X = np.ones((17, 2))
+ >>> y = np.array([0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
+ >>> groups = np.array([1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8])
+ >>> cv = StratifiedGroupKFold(n_splits=3)
+ >>> for train_idxs, test_idxs in cv.split(X, y, groups):
+ ... print("TRAIN:", groups[train_idxs])
+ ... print(" ", y[train_idxs])
+ ... print(" TEST:", groups[test_idxs])
+ ... print(" ", y[test_idxs])
+ TRAIN: [1 1 2 2 4 5 5 5 5 8 8]
+ [0 0 1 1 1 0 0 0 0 0 0]
+ TEST: [3 3 3 6 6 7]
+ [1 1 1 0 0 0]
+ TRAIN: [3 3 3 4 5 5 5 5 6 6 7]
+ [1 1 1 1 0 0 0 0 0 0 0]
+ TEST: [1 1 2 2 8 8]
+ [0 0 1 1 0 0]
+ TRAIN: [1 1 2 2 3 3 3 6 6 7 8 8]
+ [0 0 1 1 1 1 1 0 0 0 0 0]
+ TEST: [4 5 5 5 5]
+ [1 0 0 0 0]
+
+ Notes
+ -----
+ The implementation is designed to:
+
+ * Mimic the behavior of StratifiedKFold as much as possible for trivial
+ groups (e.g. when each group contains only one sample).
+ * Be invariant to class label: relabelling ``y = ["Happy", "Sad"]`` to
+ ``y = [1, 0]`` should not change the indices generated.
+ * Stratify based on samples as much as possible while keeping
+ non-overlapping groups constraint. That means that in some cases when
+ there is a small number of groups containing a large number of samples
+ the stratification will not be possible and the behavior will be close
+ to GroupKFold.
+
+ See also
+ --------
+ StratifiedKFold: Takes class information into account to build folds which
+ retain class distributions (for binary or multiclass classification
+ tasks).
+
+ GroupKFold: K-fold iterator variant with non-overlapping groups.
+ """
+
+ def __init__(self, n_splits=5, shuffle=False, random_state=None):
+ super().__init__(n_splits=n_splits, shuffle=shuffle,
+ random_state=random_state)
+
+ def _iter_test_indices(self, X, y, groups):
+ # Implementation is based on this kaggle kernel:
+ # https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation
+ # and is a subject to Apache 2.0 License. You may obtain a copy of the
+ # License at http://www.apache.org/licenses/LICENSE-2.0
+ # Changelist:
+ # - Refactored function to a class following scikit-learn KFold
+ # interface.
+ # - Added heuristic for assigning group to the least populated fold in
+ # cases when all other criteria are equal
+ # - Swtch from using python ``Counter`` to ``np.unique`` to get class
+ # distribution
+ # - Added scikit-learn checks for input: checking that target is binary
+ # or multiclass, checking passed random state, checking that number
+ # of splits is less than number of members in each class, checking
+ # that least populated class has more members than there are splits.
+ rng = check_random_state(self.random_state)
+ y = np.asarray(y)
+ type_of_target_y = type_of_target(y)
+ allowed_target_types = ('binary', 'multiclass')
+ if type_of_target_y not in allowed_target_types:
+ raise ValueError(
+ 'Supported target types are: {}. Got {!r} instead.'.format(
+ allowed_target_types, type_of_target_y))
+
+ y = column_or_1d(y)
+ _, y_inv, y_cnt = np.unique(y, return_inverse=True, return_counts=True)
+ if np.all(self.n_splits > y_cnt):
+ raise ValueError("n_splits=%d cannot be greater than the"
+ " number of members in each class."
+ % (self.n_splits))
+ n_smallest_class = np.min(y_cnt)
+ if self.n_splits > n_smallest_class:
+ warnings.warn(("The least populated class in y has only %d"
+ " members, which is less than n_splits=%d."
+ % (n_smallest_class, self.n_splits)), UserWarning)
+ n_classes = len(y_cnt)
+
+ _, groups_inv, groups_cnt = np.unique(
+ groups, return_inverse=True, return_counts=True)
+ y_counts_per_group = np.zeros((len(groups_cnt), n_classes))
+ for class_idx, group_idx in zip(y_inv, groups_inv):
+ y_counts_per_group[group_idx, class_idx] += 1
+
+ y_counts_per_fold = np.zeros((self.n_splits, n_classes))
+ groups_per_fold = defaultdict(set)
+
+ if self.shuffle:
+ rng.shuffle(y_counts_per_group)
+
+ # Stable sort to keep shuffled order for groups with the same
+ # class distribution variance
+ sorted_groups_idx = np.argsort(-np.std(y_counts_per_group, axis=1),
+ kind='mergesort')
+
+ for group_idx in sorted_groups_idx:
+ group_y_counts = y_counts_per_group[group_idx]
+ best_fold = self._find_best_fold(
+ y_counts_per_fold=y_counts_per_fold, y_cnt=y_cnt,
+ group_y_counts=group_y_counts)
+ y_counts_per_fold[best_fold] += group_y_counts
+ groups_per_fold[best_fold].add(group_idx)
+
+ for i in range(self.n_splits):
+ test_indices = [idx for idx, group_idx in enumerate(groups_inv)
+ if group_idx in groups_per_fold[i]]
+ yield test_indices
+
+ def _find_best_fold(
+ self, y_counts_per_fold, y_cnt, group_y_counts):
+ best_fold = None
+ min_eval = np.inf
+ min_samples_in_fold = np.inf
+ for i in range(self.n_splits):
+ y_counts_per_fold[i] += group_y_counts
+ # Summarise the distribution over classes in each proposed fold
+ std_per_class = np.std(
+ y_counts_per_fold / y_cnt.reshape(1, -1),
+ axis=0)
+ y_counts_per_fold[i] -= group_y_counts
+ fold_eval = np.mean(std_per_class)
+ samples_in_fold = np.sum(y_counts_per_fold[i])
+ is_current_fold_better = (
+ fold_eval < min_eval or
+ np.isclose(fold_eval, min_eval)
+ and samples_in_fold < min_samples_in_fold
+ )
+ if is_current_fold_better:
+ min_eval = fold_eval
+ min_samples_in_fold = samples_in_fold
+ best_fold = i
+ return best_fold
+
+
class TimeSeriesSplit(_BaseKFold):
"""Time Series cross-validator
|
diff --git a/sklearn/model_selection/tests/test_split.py b/sklearn/model_selection/tests/test_split.py
index 80c19c7f2e08c..c66d8e1836ac9 100644
--- a/sklearn/model_selection/tests/test_split.py
+++ b/sklearn/model_selection/tests/test_split.py
@@ -35,6 +35,7 @@
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedKFold
from sklearn.model_selection import RepeatedStratifiedKFold
+from sklearn.model_selection import StratifiedGroupKFold
from sklearn.linear_model import Ridge
@@ -80,6 +81,7 @@ def test_cross_validator_with_default_params():
lopo = LeavePGroupsOut(p)
ss = ShuffleSplit(random_state=0)
ps = PredefinedSplit([1, 1, 2, 2]) # n_splits = np of unique folds = 2
+ sgkf = StratifiedGroupKFold(n_splits)
loo_repr = "LeaveOneOut()"
lpo_repr = "LeavePOut(p=2)"
@@ -90,15 +92,17 @@ def test_cross_validator_with_default_params():
ss_repr = ("ShuffleSplit(n_splits=10, random_state=0, "
"test_size=None, train_size=None)")
ps_repr = "PredefinedSplit(test_fold=array([1, 1, 2, 2]))"
+ sgkf_repr = ("StratifiedGroupKFold(n_splits=2, random_state=None, "
+ "shuffle=False)")
n_splits_expected = [n_samples, comb(n_samples, p), n_splits, n_splits,
n_unique_groups, comb(n_unique_groups, p),
- n_shuffle_splits, 2]
+ n_shuffle_splits, 2, n_splits]
for i, (cv, cv_repr) in enumerate(zip(
- [loo, lpo, kf, skf, lolo, lopo, ss, ps],
+ [loo, lpo, kf, skf, lolo, lopo, ss, ps, sgkf],
[loo_repr, lpo_repr, kf_repr, skf_repr, lolo_repr, lopo_repr,
- ss_repr, ps_repr])):
+ ss_repr, ps_repr, sgkf_repr])):
# Test if get_n_splits works correctly
assert n_splits_expected[i] == cv.get_n_splits(X, y, groups)
@@ -133,10 +137,11 @@ def test_2d_y():
groups = rng.randint(0, 3, size=(n_samples,))
splitters = [LeaveOneOut(), LeavePOut(p=2), KFold(), StratifiedKFold(),
RepeatedKFold(), RepeatedStratifiedKFold(),
- ShuffleSplit(), StratifiedShuffleSplit(test_size=.5),
- GroupShuffleSplit(), LeaveOneGroupOut(),
- LeavePGroupsOut(n_groups=2), GroupKFold(n_splits=3),
- TimeSeriesSplit(), PredefinedSplit(test_fold=groups)]
+ StratifiedGroupKFold(), ShuffleSplit(),
+ StratifiedShuffleSplit(test_size=.5), GroupShuffleSplit(),
+ LeaveOneGroupOut(), LeavePGroupsOut(n_groups=2),
+ GroupKFold(n_splits=3), TimeSeriesSplit(),
+ PredefinedSplit(test_fold=groups)]
for splitter in splitters:
list(splitter.split(X, y, groups))
list(splitter.split(X, y_2d, groups))
@@ -193,6 +198,11 @@ def test_kfold_valueerrors():
with pytest.warns(Warning, match="The least populated class"):
next(skf_3.split(X2, y))
+ sgkf_3 = StratifiedGroupKFold(3)
+ naive_groups = np.arange(len(y))
+ with pytest.warns(Warning, match="The least populated class"):
+ next(sgkf_3.split(X2, y, naive_groups))
+
# Check that despite the warning the folds are still computed even
# though all the classes are not necessarily represented at on each
# side of the split at each split
@@ -200,12 +210,20 @@ def test_kfold_valueerrors():
warnings.simplefilter("ignore")
check_cv_coverage(skf_3, X2, y, groups=None, expected_n_splits=3)
+ with warnings.catch_warnings():
+ warnings.simplefilter("ignore")
+ check_cv_coverage(
+ sgkf_3, X2, y, groups=naive_groups, expected_n_splits=3
+ )
+
# Check that errors are raised if all n_groups for individual
# classes are less than n_splits.
y = np.array([3, 3, -1, -1, 2])
with pytest.raises(ValueError):
next(skf_3.split(X2, y))
+ with pytest.raises(ValueError):
+ next(sgkf_3.split(X2, y))
# Error when number of folds is <= 1
with pytest.raises(ValueError):
@@ -218,6 +236,10 @@ def test_kfold_valueerrors():
StratifiedKFold(0)
with pytest.raises(ValueError, match=error_string):
StratifiedKFold(1)
+ with pytest.raises(ValueError, match=error_string):
+ StratifiedGroupKFold(0)
+ with pytest.raises(ValueError, match=error_string):
+ StratifiedGroupKFold(1)
# When n_splits is not integer:
with pytest.raises(ValueError):
@@ -228,6 +250,10 @@ def test_kfold_valueerrors():
StratifiedKFold(1.5)
with pytest.raises(ValueError):
StratifiedKFold(2.0)
+ with pytest.raises(ValueError):
+ StratifiedGroupKFold(1.5)
+ with pytest.raises(ValueError):
+ StratifiedGroupKFold(2.0)
# When shuffle is not a bool:
with pytest.raises(TypeError):
@@ -318,7 +344,8 @@ def test_stratified_kfold_no_shuffle():
@pytest.mark.parametrize('shuffle', [False, True])
@pytest.mark.parametrize('k', [4, 5, 6, 7, 8, 9, 10])
-def test_stratified_kfold_ratios(k, shuffle):
[email protected]('kfold', [StratifiedKFold, StratifiedGroupKFold])
+def test_stratified_kfold_ratios(k, shuffle, kfold):
# Check that stratified kfold preserves class ratios in individual splits
# Repeat with shuffling turned off and on
n_samples = 1000
@@ -326,12 +353,14 @@ def test_stratified_kfold_ratios(k, shuffle):
y = np.array([4] * int(0.10 * n_samples) +
[0] * int(0.89 * n_samples) +
[1] * int(0.01 * n_samples))
+ # ensure perfect stratification with StratifiedGroupKFold
+ groups = np.arange(len(y))
distr = np.bincount(y) / len(y)
test_sizes = []
random_state = None if not shuffle else 0
- skf = StratifiedKFold(k, random_state=random_state, shuffle=shuffle)
- for train, test in skf.split(X, y):
+ skf = kfold(k, random_state=random_state, shuffle=shuffle)
+ for train, test in skf.split(X, y, groups=groups):
assert_allclose(np.bincount(y[train]) / len(train), distr, atol=0.02)
assert_allclose(np.bincount(y[test]) / len(test), distr, atol=0.02)
test_sizes.append(len(test))
@@ -340,20 +369,23 @@ def test_stratified_kfold_ratios(k, shuffle):
@pytest.mark.parametrize('shuffle', [False, True])
@pytest.mark.parametrize('k', [4, 6, 7])
-def test_stratified_kfold_label_invariance(k, shuffle):
[email protected]('kfold', [StratifiedKFold, StratifiedGroupKFold])
+def test_stratified_kfold_label_invariance(k, shuffle, kfold):
# Check that stratified kfold gives the same indices regardless of labels
n_samples = 100
y = np.array([2] * int(0.10 * n_samples) +
[0] * int(0.89 * n_samples) +
[1] * int(0.01 * n_samples))
X = np.ones(len(y))
+ # ensure perfect stratification with StratifiedGroupKFold
+ groups = np.arange(len(y))
def get_splits(y):
random_state = None if not shuffle else 0
return [(list(train), list(test))
for train, test
- in StratifiedKFold(k, random_state=random_state,
- shuffle=shuffle).split(X, y)]
+ in kfold(k, random_state=random_state,
+ shuffle=shuffle).split(X, y, groups=groups)]
splits_base = get_splits(y)
for perm in permutations([0, 1, 2]):
@@ -372,17 +404,20 @@ def test_kfold_balance():
assert np.sum(sizes) == i
-def test_stratifiedkfold_balance():
[email protected]('kfold', [StratifiedKFold, StratifiedGroupKFold])
+def test_stratifiedkfold_balance(kfold):
# Check that KFold returns folds with balanced sizes (only when
# stratification is possible)
# Repeat with shuffling turned off and on
X = np.ones(17)
y = [0] * 3 + [1] * 14
+ # ensure perfect stratification with StratifiedGroupKFold
+ groups = np.arange(len(y))
for shuffle in (True, False):
- cv = StratifiedKFold(3, shuffle=shuffle)
+ cv = kfold(3, shuffle=shuffle)
for i in range(11, 17):
- skf = cv.split(X[:i], y[:i])
+ skf = cv.split(X[:i], y[:i], groups[:i])
sizes = [len(test) for _, test in skf]
assert (np.max(sizes) - np.min(sizes)) <= 1
@@ -411,39 +446,39 @@ def test_shuffle_kfold():
assert sum(all_folds) == 300
-def test_shuffle_kfold_stratifiedkfold_reproducibility():
[email protected]("kfold",
+ [KFold, StratifiedKFold, StratifiedGroupKFold])
+def test_shuffle_kfold_stratifiedkfold_reproducibility(kfold):
X = np.ones(15) # Divisible by 3
y = [0] * 7 + [1] * 8
+ groups_1 = np.arange(len(y))
X2 = np.ones(16) # Not divisible by 3
y2 = [0] * 8 + [1] * 8
+ groups_2 = np.arange(len(y2))
# Check that when the shuffle is True, multiple split calls produce the
# same split when random_state is int
- kf = KFold(3, shuffle=True, random_state=0)
- skf = StratifiedKFold(3, shuffle=True, random_state=0)
+ kf = kfold(3, shuffle=True, random_state=0)
- for cv in (kf, skf):
- np.testing.assert_equal(list(cv.split(X, y)), list(cv.split(X, y)))
- np.testing.assert_equal(list(cv.split(X2, y2)), list(cv.split(X2, y2)))
+ np.testing.assert_equal(
+ list(kf.split(X, y, groups_1)),
+ list(kf.split(X, y, groups_1))
+ )
# Check that when the shuffle is True, multiple split calls often
# (not always) produce different splits when random_state is
# RandomState instance or None
- kf = KFold(3, shuffle=True, random_state=np.random.RandomState(0))
- skf = StratifiedKFold(3, shuffle=True,
- random_state=np.random.RandomState(0))
-
- for cv in (kf, skf):
- for data in zip((X, X2), (y, y2)):
- # Test if the two splits are different cv
- for (_, test_a), (_, test_b) in zip(cv.split(*data),
- cv.split(*data)):
- # cv.split(...) returns an array of tuples, each tuple
- # consisting of an array with train indices and test indices
- # Ensure that the splits for data are not same
- # when random state is not set
- with pytest.raises(AssertionError):
- np.testing.assert_array_equal(test_a, test_b)
+ kf = kfold(3, shuffle=True, random_state=np.random.RandomState(0))
+ for data in zip((X, X2), (y, y2), (groups_1, groups_2)):
+ # Test if the two splits are different cv
+ for (_, test_a), (_, test_b) in zip(kf.split(*data),
+ kf.split(*data)):
+ # cv.split(...) returns an array of tuples, each tuple
+ # consisting of an array with train indices and test indices
+ # Ensure that the splits for data are not same
+ # when random state is not set
+ with pytest.raises(AssertionError):
+ np.testing.assert_array_equal(test_a, test_b)
def test_shuffle_stratifiedkfold():
@@ -514,6 +549,96 @@ def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372
assert mean_score > 0.80
+def test_stratified_group_kfold_trivial():
+ sgkf = StratifiedGroupKFold(n_splits=3)
+ # Trivial example - groups with the same distribution
+ y = np.array([1] * 6 + [0] * 12)
+ X = np.ones_like(y).reshape(-1, 1)
+ groups = np.asarray((1, 2, 3, 4, 5, 6, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6))
+ distr = np.bincount(y) / len(y)
+ test_sizes = []
+ for train, test in sgkf.split(X, y, groups):
+ # check group constraint
+ assert np.intersect1d(groups[train], groups[test]).size == 0
+ # check y distribution
+ assert_allclose(np.bincount(y[train]) / len(train), distr, atol=0.02)
+ assert_allclose(np.bincount(y[test]) / len(test), distr, atol=0.02)
+ test_sizes.append(len(test))
+ assert np.ptp(test_sizes) <= 1
+
+
+def test_stratified_group_kfold_approximate():
+ # Not perfect stratification (even though it is possible) because of
+ # iteration over groups
+ sgkf = StratifiedGroupKFold(n_splits=3)
+ y = np.array([1] * 6 + [0] * 12)
+ X = np.ones_like(y).reshape(-1, 1)
+ groups = np.array([1, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6])
+ expected = np.asarray([[0.833, 0.166], [0.666, 0.333], [0.5, 0.5]])
+ test_sizes = []
+ for (train, test), expect_dist in zip(sgkf.split(X, y, groups), expected):
+ # check group constraint
+ assert np.intersect1d(groups[train], groups[test]).size == 0
+ split_dist = np.bincount(y[test]) / len(test)
+ assert_allclose(split_dist, expect_dist, atol=0.001)
+ test_sizes.append(len(test))
+ assert np.ptp(test_sizes) <= 1
+
+
[email protected]('y, groups, expected',
+ [(np.array([0] * 6 + [1] * 6),
+ np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]),
+ np.asarray([[.5, .5],
+ [.5, .5],
+ [.5, .5]])),
+ (np.array([0] * 9 + [1] * 3),
+ np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 6]),
+ np.asarray([[.75, .25],
+ [.75, .25],
+ [.75, .25]]))])
+def test_stratified_group_kfold_homogeneous_groups(y, groups, expected):
+ sgkf = StratifiedGroupKFold(n_splits=3)
+ X = np.ones_like(y).reshape(-1, 1)
+ for (train, test), expect_dist in zip(sgkf.split(X, y, groups), expected):
+ # check group constraint
+ assert np.intersect1d(groups[train], groups[test]).size == 0
+ split_dist = np.bincount(y[test]) / len(test)
+ assert_allclose(split_dist, expect_dist, atol=0.001)
+
+
[email protected]('cls_distr',
+ [(0.4, 0.6),
+ (0.3, 0.7),
+ (0.2, 0.8),
+ (0.8, 0.2)])
[email protected]('n_groups', [5, 30, 70])
+def test_stratified_group_kfold_against_group_kfold(cls_distr, n_groups):
+ # Check that given sufficient amount of samples StratifiedGroupKFold
+ # produces better stratified folds than regular GroupKFold
+ n_splits = 5
+ sgkf = StratifiedGroupKFold(n_splits=n_splits)
+ gkf = GroupKFold(n_splits=n_splits)
+ rng = np.random.RandomState(0)
+ n_points = 1000
+ y = rng.choice(2, size=n_points, p=cls_distr)
+ X = np.ones_like(y).reshape(-1, 1)
+ g = rng.choice(n_groups, n_points)
+ sgkf_folds = sgkf.split(X, y, groups=g)
+ gkf_folds = gkf.split(X, y, groups=g)
+ sgkf_entr = 0
+ gkf_entr = 0
+ for (sgkf_train, sgkf_test), (_, gkf_test) in zip(sgkf_folds, gkf_folds):
+ # check group constraint
+ assert np.intersect1d(g[sgkf_train], g[sgkf_test]).size == 0
+ sgkf_distr = np.bincount(y[sgkf_test]) / len(sgkf_test)
+ gkf_distr = np.bincount(y[gkf_test]) / len(gkf_test)
+ sgkf_entr += stats.entropy(sgkf_distr, qk=cls_distr)
+ gkf_entr += stats.entropy(gkf_distr, qk=cls_distr)
+ sgkf_entr /= n_splits
+ gkf_entr /= n_splits
+ assert sgkf_entr <= gkf_entr
+
+
def test_shuffle_split():
ss1 = ShuffleSplit(test_size=0.2, random_state=0).split(X)
ss2 = ShuffleSplit(test_size=2, random_state=0).split(X)
@@ -1310,7 +1435,8 @@ def test_cv_iterable_wrapper():
"successive calls to split should yield different results")
-def test_group_kfold():
[email protected]('kfold', [GroupKFold, StratifiedGroupKFold])
+def test_group_kfold(kfold):
rng = np.random.RandomState(0)
# Parameters of the test
@@ -1329,7 +1455,7 @@ def test_group_kfold():
len(np.unique(groups))
# Get the test fold indices from the test set indices of each fold
folds = np.zeros(n_samples)
- lkf = GroupKFold(n_splits=n_splits)
+ lkf = kfold(n_splits=n_splits)
for i, (_, test) in enumerate(lkf.split(X, y, groups)):
folds[test] = i
@@ -1569,7 +1695,7 @@ def test_nested_cv():
groups = rng.randint(0, 5, 15)
cvs = [LeaveOneGroupOut(), LeaveOneOut(), GroupKFold(n_splits=3),
- StratifiedKFold(),
+ StratifiedKFold(), StratifiedGroupKFold(),
StratifiedShuffleSplit(n_splits=3, random_state=0)]
for inner_cv, outer_cv in combinations_with_replacement(cvs, 2):
@@ -1640,7 +1766,8 @@ def test_leave_p_out_empty_trainset():
next(cv.split(X, y, groups=[1, 2]))
[email protected]('Klass', (KFold, StratifiedKFold))
[email protected]('Klass',
+ (KFold, StratifiedKFold, StratifiedGroupKFold))
def test_random_state_shuffle_false(Klass):
# passing a non-default random_state when shuffle=False makes no sense
with pytest.raises(ValueError,
@@ -1653,6 +1780,8 @@ def test_random_state_shuffle_false(Klass):
(KFold(shuffle=True, random_state=123), True),
(StratifiedKFold(), True),
(StratifiedKFold(shuffle=True, random_state=123), True),
+ (StratifiedGroupKFold(shuffle=True, random_state=123), True),
+ (StratifiedGroupKFold(), True),
(RepeatedKFold(random_state=123), True),
(RepeatedStratifiedKFold(random_state=123), True),
(ShuffleSplit(random_state=123), True),
@@ -1664,7 +1793,6 @@ def test_random_state_shuffle_false(Klass):
(LeaveOneGroupOut(), True),
(LeavePGroupsOut(n_groups=2), True),
(LeavePOut(p=2), True),
-
(KFold(shuffle=True, random_state=None), False),
(KFold(shuffle=True, random_state=None), False),
(StratifiedKFold(shuffle=True, random_state=np.random.RandomState(0)),
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex c658bc6b12452..d019af3cfb1ff 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1176,6 +1176,7 @@ Splitter Classes\n model_selection.ShuffleSplit\n model_selection.StratifiedKFold\n model_selection.StratifiedShuffleSplit\n+ model_selection.StratifiedGroupKFold\n model_selection.TimeSeriesSplit\n \n Splitter Functions\n"
},
{
"path": "doc/modules/cross_validation.rst",
"old_path": "a/doc/modules/cross_validation.rst",
"new_path": "b/doc/modules/cross_validation.rst",
"metadata": "diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst\nindex ae3d38f168f3f..0b090fd7385b6 100644\n--- a/doc/modules/cross_validation.rst\n+++ b/doc/modules/cross_validation.rst\n@@ -353,7 +353,7 @@ Example of 2-fold cross-validation on a dataset with 4 samples::\n Here is a visualization of the cross-validation behavior. Note that\n :class:`KFold` is not affected by classes or groups.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_004.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_006.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -509,7 +509,7 @@ Here is a usage example::\n Here is a visualization of the cross-validation behavior. Note that\n :class:`ShuffleSplit` is not affected by classes or groups.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_006.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_008.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -566,7 +566,7 @@ We can see that :class:`StratifiedKFold` preserves the class ratios\n \n Here is a visualization of the cross-validation behavior.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_007.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_009.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -585,7 +585,7 @@ percentage for each target class as in the complete set.\n \n Here is a visualization of the cross-validation behavior.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_009.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_012.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -645,6 +645,58 @@ size due to the imbalance in the data.\n \n Here is a visualization of the cross-validation behavior.\n \n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_007.png\n+ :target: ../auto_examples/model_selection/plot_cv_indices.html\n+ :align: center\n+ :scale: 75%\n+\n+.. _stratified_group_k_fold:\n+\n+StratifiedGroupKFold\n+^^^^^^^^^^^^^^^^^^^^\n+\n+:class:`StratifiedGroupKFold` is a cross-validation scheme that combines both\n+:class:`StratifiedKFold` and :class:`GroupKFold`. The idea is to try to\n+preserve the distribution of classes in each split while keeping each group\n+within a single split. That might be useful when you have an unbalanced\n+dataset so that using just :class:`GroupKFold` might produce skewed splits.\n+\n+Example::\n+\n+ >>> from sklearn.model_selection import StratifiedGroupKFold\n+ >>> X = list(range(18))\n+ >>> y = [1] * 6 + [0] * 12\n+ >>> groups = [1, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6]\n+ >>> sgkf = StratifiedGroupKFold(n_splits=3)\n+ >>> for train, test in sgkf.split(X, y, groups=groups):\n+ ... print(\"%s %s\" % (train, test))\n+ [ 0 2 3 4 5 6 7 10 11 15 16 17] [ 1 8 9 12 13 14]\n+ [ 0 1 4 5 6 7 8 9 11 12 13 14] [ 2 3 10 15 16 17]\n+ [ 1 2 3 8 9 10 12 13 14 15 16 17] [ 0 4 5 6 7 11]\n+\n+Implementation notes:\n+\n+- With the current implementation full shuffle is not possible in most\n+ scenarios. When shuffle=True, the following happens:\n+\n+ 1. All groups a shuffled.\n+ 2. Groups are sorted by standard deviation of classes using stable sort.\n+ 3. Sorted groups are iterated over and assigned to folds.\n+\n+ That means that only groups with the same standard deviation of class\n+ distribution will be shuffled, which might be useful when each group has only\n+ a single class.\n+- The algorithm greedily assigns each group to one of n_splits test sets,\n+ choosing the test set that minimises the variance in class distribution\n+ across test sets. Group assignment proceeds from groups with highest to\n+ lowest variance in class frequency, i.e. large groups peaked on one or few\n+ classes are assigned first.\n+- This split is suboptimal in a sense that it might produce imbalanced splits\n+ even if perfect stratification is possible. If you have relatively close\n+ distribution of classes in each group, using :class:`GroupKFold` is better.\n+\n+Here is a visualization of cross-validation behavior for uneven groups:\n+\n .. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_005.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n@@ -733,7 +785,7 @@ Here is a usage example::\n \n Here is a visualization of the cross-validation behavior.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_008.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_011.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -835,7 +887,7 @@ Example of 3-split time series cross-validation on a dataset with 6 samples::\n \n Here is a visualization of the cross-validation behavior.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_010.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_013.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 34f39ca48f20a..985fe57164824 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -183,6 +183,16 @@ Changelog\n are integral.\n :pr:`9843` by :user:`Jon Crall <Erotemic>`.\n \n+:mod:`sklearn.model_selection`\n+..............................\n+\n+- |Feature| added :class:`model_selection.StratifiedGroupKFold`, that combines\n+ :class:`model_selection.StratifiedKFold` and `model_selection.GroupKFold`,\n+ providing an ability to split data preserving the distribution of classes in\n+ each split while keeping each group within a single split.\n+ :pr:`18649` by `Leandro Hermida <hermidalc>` and\n+ `Rodion Martynov <marrodion>`.\n+\n :mod:`sklearn.naive_bayes`\n ..........................\n \n"
}
] |
1.00
|
fe897c0ba0f00171333dcbdb483ca0d0346fed95
|
[] |
[
"sklearn/model_selection/tests/test_split.py::test_train_test_split_mock_pandas",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-5-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv25-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel_many_labels",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv8-True]",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_value_errors",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-8-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-6-False]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[0.8-8-2-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_kfold_indices",
"sklearn/model_selection/tests/test_split.py::test_predefinedsplit_with_kfold_split",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold_stratifiedkfold_reproducibility[StratifiedGroupKFold]",
"sklearn/model_selection/tests/test_split.py::test_stratifiedkfold_balance[StratifiedGroupKFold]",
"sklearn/model_selection/tests/test_split.py::test_time_series_test_size",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-9-True]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv23-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-6-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[8-8-2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[70-cls_distr0]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[None-7-3]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[GroupShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-4-False]",
"sklearn/model_selection/tests/test_split.py::test_leave_one_p_group_out",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-7-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-6-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-8-True]",
"sklearn/model_selection/tests/test_split.py::test_2d_y",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.0-0.8]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-6-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-7-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv12-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-10-True]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[None-9-1-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-6-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_pandas",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[8-3]",
"sklearn/model_selection/tests/test_split.py::test_leave_group_out_changing_groups",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_list_input",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-10-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[5-cls_distr0]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[1.0-0.8]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_no_shuffle",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_trivial",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[70-cls_distr3]",
"sklearn/model_selection/tests/test_split.py::test_cross_validator_with_default_params",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[5-cls_distr3]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-10-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-9-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv15-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-1.0]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[30-cls_distr0]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[5-cls_distr1]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv6-True]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv19-False]",
"sklearn/model_selection/tests/test_split.py::test_kfold_no_shuffle",
"sklearn/model_selection/tests/test_split.py::test_stratifiedshufflesplit_list_input",
"sklearn/model_selection/tests/test_split.py::test_repeated_stratified_kfold_determinstic_split",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8--10]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv3-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-5-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_respects_test_size",
"sklearn/model_selection/tests/test_split.py::test_time_series_gap",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-7-True]",
"sklearn/model_selection/tests/test_split.py::test_build_repr",
"sklearn/model_selection/tests/test_split.py::test_shuffle_stratifiedkfold",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-8-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[1.2-0.8]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-7-True]",
"sklearn/model_selection/tests/test_split.py::test_leave_one_out_empty_trainset",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv21-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv24-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv20-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-6-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-4-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_allow_nans",
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[StratifiedKFold]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8-11]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[2.0-None]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-4-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[70-cls_distr1]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv30-False]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-7-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-6-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedKFold-4-True]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[1.0-None]",
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[KFold]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv2-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_homogeneous_groups[y0-groups0-expected0]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split",
"sklearn/model_selection/tests/test_split.py::test_time_series_cv",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8--0.2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[30-cls_distr3]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[-10-0.8]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-10-False]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_homogeneous_groups[y1-groups1-expected1]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-4-True]",
"sklearn/model_selection/tests/test_split.py::test_cv_iterable_wrapper",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv11-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_sparse",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_reproducible",
"sklearn/model_selection/tests/test_split.py::test_group_kfold[GroupKFold]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[None-8-2]",
"sklearn/model_selection/tests/test_split.py::test_time_series_max_train_size",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv5-True]",
"sklearn/model_selection/tests/test_split.py::test_group_kfold[StratifiedGroupKFold]",
"sklearn/model_selection/tests/test_split.py::test_nested_cv",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv28-False]",
"sklearn/model_selection/tests/test_split.py::test_check_cv",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[5-cls_distr2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-4-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[0.8-8-2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_even",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv4-True]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[0.7-7-3]",
"sklearn/model_selection/tests/test_split.py::test_leave_one_p_group_out_error_on_fewer_number_of_groups",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[30-cls_distr2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-9-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_overlap_train_test_bug",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[None-9-1-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8-0]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv7-True]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv18-False]",
"sklearn/model_selection/tests/test_split.py::test_kfold_balance",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv16-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[30-cls_distr1]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[8-8-2-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[8-8-2-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_init",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_empty_trainset",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv29-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_errors",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-0.0]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-5-True]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv26-False]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[0.8-8-2-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[10-None]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[-0.2-0.8]",
"sklearn/model_selection/tests/test_split.py::test_get_n_splits_for_repeated_kfold",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[None-1j]",
"sklearn/model_selection/tests/test_split.py::test_get_n_splits_for_repeated_stratified_kfold",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_iter",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_repr[RepeatedStratifiedKFold]",
"sklearn/model_selection/tests/test_split.py::test_repeated_kfold_determinstic_split",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-7-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv9-True]",
"sklearn/model_selection/tests/test_split.py::test_kfold_can_detect_dependent_samples_on_digits",
"sklearn/model_selection/tests/test_split.py::test_stratifiedkfold_balance[StratifiedKFold]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-4-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-4-False]",
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[StratifiedGroupKFold]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-8-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedKFold-6-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[StratifiedGroupKFold-7-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[11-0.8]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold_stratifiedkfold_reproducibility[KFold]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-5-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-7-True]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv13-True]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold_stratifiedkfold_reproducibility[StratifiedKFold]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv17-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv22-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_approximate",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0-0.8]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[0.1-0.95]",
"sklearn/model_selection/tests/test_split.py::test_leave_p_out_empty_trainset",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv27-False]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[11-None]",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_repr[RepeatedKFold]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv14-True]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv10-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[StratifiedGroupKFold-9-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-1.2]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv0-True]",
"sklearn/model_selection/tests/test_split.py::test_kfold_valueerrors",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[7-7-3]",
"sklearn/model_selection/tests/test_split.py::test_stratified_group_kfold_against_group_kfold[70-cls_distr2]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv1-True]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex c658bc6b12452..d019af3cfb1ff 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1176,6 +1176,7 @@ Splitter Classes\n model_selection.ShuffleSplit\n model_selection.StratifiedKFold\n model_selection.StratifiedShuffleSplit\n+ model_selection.StratifiedGroupKFold\n model_selection.TimeSeriesSplit\n \n Splitter Functions\n"
},
{
"path": "doc/modules/cross_validation.rst",
"old_path": "a/doc/modules/cross_validation.rst",
"new_path": "b/doc/modules/cross_validation.rst",
"metadata": "diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst\nindex ae3d38f168f3f..0b090fd7385b6 100644\n--- a/doc/modules/cross_validation.rst\n+++ b/doc/modules/cross_validation.rst\n@@ -353,7 +353,7 @@ Example of 2-fold cross-validation on a dataset with 4 samples::\n Here is a visualization of the cross-validation behavior. Note that\n :class:`KFold` is not affected by classes or groups.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_004.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_006.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -509,7 +509,7 @@ Here is a usage example::\n Here is a visualization of the cross-validation behavior. Note that\n :class:`ShuffleSplit` is not affected by classes or groups.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_006.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_008.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -566,7 +566,7 @@ We can see that :class:`StratifiedKFold` preserves the class ratios\n \n Here is a visualization of the cross-validation behavior.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_007.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_009.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -585,7 +585,7 @@ percentage for each target class as in the complete set.\n \n Here is a visualization of the cross-validation behavior.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_009.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_012.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -645,6 +645,58 @@ size due to the imbalance in the data.\n \n Here is a visualization of the cross-validation behavior.\n \n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_007.png\n+ :target: ../auto_examples/model_selection/plot_cv_indices.html\n+ :align: center\n+ :scale: 75%\n+\n+.. _stratified_group_k_fold:\n+\n+StratifiedGroupKFold\n+^^^^^^^^^^^^^^^^^^^^\n+\n+:class:`StratifiedGroupKFold` is a cross-validation scheme that combines both\n+:class:`StratifiedKFold` and :class:`GroupKFold`. The idea is to try to\n+preserve the distribution of classes in each split while keeping each group\n+within a single split. That might be useful when you have an unbalanced\n+dataset so that using just :class:`GroupKFold` might produce skewed splits.\n+\n+Example::\n+\n+ >>> from sklearn.model_selection import StratifiedGroupKFold\n+ >>> X = list(range(18))\n+ >>> y = [1] * 6 + [0] * 12\n+ >>> groups = [1, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6]\n+ >>> sgkf = StratifiedGroupKFold(n_splits=3)\n+ >>> for train, test in sgkf.split(X, y, groups=groups):\n+ ... print(\"%s %s\" % (train, test))\n+ [ 0 2 3 4 5 6 7 10 11 15 16 17] [ 1 8 9 12 13 14]\n+ [ 0 1 4 5 6 7 8 9 11 12 13 14] [ 2 3 10 15 16 17]\n+ [ 1 2 3 8 9 10 12 13 14 15 16 17] [ 0 4 5 6 7 11]\n+\n+Implementation notes:\n+\n+- With the current implementation full shuffle is not possible in most\n+ scenarios. When shuffle=True, the following happens:\n+\n+ 1. All groups a shuffled.\n+ 2. Groups are sorted by standard deviation of classes using stable sort.\n+ 3. Sorted groups are iterated over and assigned to folds.\n+\n+ That means that only groups with the same standard deviation of class\n+ distribution will be shuffled, which might be useful when each group has only\n+ a single class.\n+- The algorithm greedily assigns each group to one of n_splits test sets,\n+ choosing the test set that minimises the variance in class distribution\n+ across test sets. Group assignment proceeds from groups with highest to\n+ lowest variance in class frequency, i.e. large groups peaked on one or few\n+ classes are assigned first.\n+- This split is suboptimal in a sense that it might produce imbalanced splits\n+ even if perfect stratification is possible. If you have relatively close\n+ distribution of classes in each group, using :class:`GroupKFold` is better.\n+\n+Here is a visualization of cross-validation behavior for uneven groups:\n+\n .. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_005.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n@@ -733,7 +785,7 @@ Here is a usage example::\n \n Here is a visualization of the cross-validation behavior.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_008.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_011.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n@@ -835,7 +887,7 @@ Example of 3-split time series cross-validation on a dataset with 6 samples::\n \n Here is a visualization of the cross-validation behavior.\n \n-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_010.png\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_013.png\n :target: ../auto_examples/model_selection/plot_cv_indices.html\n :align: center\n :scale: 75%\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 34f39ca48f20a..985fe57164824 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -183,6 +183,16 @@ Changelog\n are integral.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.model_selection`\n+..............................\n+\n+- |Feature| added :class:`model_selection.StratifiedGroupKFold`, that combines\n+ :class:`model_selection.StratifiedKFold` and `model_selection.GroupKFold`,\n+ providing an ability to split data preserving the distribution of classes in\n+ each split while keeping each group within a single split.\n+ :pr:`<PRID>` by `Leandro Hermida <hermidalc>` and\n+ `Rodion Martynov <marrodion>`.\n+\n :mod:`sklearn.naive_bayes`\n ..........................\n \n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index c658bc6b12452..d019af3cfb1ff 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1176,6 +1176,7 @@ Splitter Classes
model_selection.ShuffleSplit
model_selection.StratifiedKFold
model_selection.StratifiedShuffleSplit
+ model_selection.StratifiedGroupKFold
model_selection.TimeSeriesSplit
Splitter Functions
diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst
index ae3d38f168f3f..0b090fd7385b6 100644
--- a/doc/modules/cross_validation.rst
+++ b/doc/modules/cross_validation.rst
@@ -353,7 +353,7 @@ Example of 2-fold cross-validation on a dataset with 4 samples::
Here is a visualization of the cross-validation behavior. Note that
:class:`KFold` is not affected by classes or groups.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_004.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_006.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -509,7 +509,7 @@ Here is a usage example::
Here is a visualization of the cross-validation behavior. Note that
:class:`ShuffleSplit` is not affected by classes or groups.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_006.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_008.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -566,7 +566,7 @@ We can see that :class:`StratifiedKFold` preserves the class ratios
Here is a visualization of the cross-validation behavior.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_007.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_009.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -585,7 +585,7 @@ percentage for each target class as in the complete set.
Here is a visualization of the cross-validation behavior.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_009.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_012.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -645,6 +645,58 @@ size due to the imbalance in the data.
Here is a visualization of the cross-validation behavior.
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_007.png
+ :target: ../auto_examples/model_selection/plot_cv_indices.html
+ :align: center
+ :scale: 75%
+
+.. _stratified_group_k_fold:
+
+StratifiedGroupKFold
+^^^^^^^^^^^^^^^^^^^^
+
+:class:`StratifiedGroupKFold` is a cross-validation scheme that combines both
+:class:`StratifiedKFold` and :class:`GroupKFold`. The idea is to try to
+preserve the distribution of classes in each split while keeping each group
+within a single split. That might be useful when you have an unbalanced
+dataset so that using just :class:`GroupKFold` might produce skewed splits.
+
+Example::
+
+ >>> from sklearn.model_selection import StratifiedGroupKFold
+ >>> X = list(range(18))
+ >>> y = [1] * 6 + [0] * 12
+ >>> groups = [1, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6]
+ >>> sgkf = StratifiedGroupKFold(n_splits=3)
+ >>> for train, test in sgkf.split(X, y, groups=groups):
+ ... print("%s %s" % (train, test))
+ [ 0 2 3 4 5 6 7 10 11 15 16 17] [ 1 8 9 12 13 14]
+ [ 0 1 4 5 6 7 8 9 11 12 13 14] [ 2 3 10 15 16 17]
+ [ 1 2 3 8 9 10 12 13 14 15 16 17] [ 0 4 5 6 7 11]
+
+Implementation notes:
+
+- With the current implementation full shuffle is not possible in most
+ scenarios. When shuffle=True, the following happens:
+
+ 1. All groups a shuffled.
+ 2. Groups are sorted by standard deviation of classes using stable sort.
+ 3. Sorted groups are iterated over and assigned to folds.
+
+ That means that only groups with the same standard deviation of class
+ distribution will be shuffled, which might be useful when each group has only
+ a single class.
+- The algorithm greedily assigns each group to one of n_splits test sets,
+ choosing the test set that minimises the variance in class distribution
+ across test sets. Group assignment proceeds from groups with highest to
+ lowest variance in class frequency, i.e. large groups peaked on one or few
+ classes are assigned first.
+- This split is suboptimal in a sense that it might produce imbalanced splits
+ even if perfect stratification is possible. If you have relatively close
+ distribution of classes in each group, using :class:`GroupKFold` is better.
+
+Here is a visualization of cross-validation behavior for uneven groups:
+
.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_005.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
@@ -733,7 +785,7 @@ Here is a usage example::
Here is a visualization of the cross-validation behavior.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_008.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_011.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
@@ -835,7 +887,7 @@ Example of 3-split time series cross-validation on a dataset with 6 samples::
Here is a visualization of the cross-validation behavior.
-.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_010.png
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_indices_013.png
:target: ../auto_examples/model_selection/plot_cv_indices.html
:align: center
:scale: 75%
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 34f39ca48f20a..985fe57164824 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -183,6 +183,16 @@ Changelog
are integral.
:pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.model_selection`
+..............................
+
+- |Feature| added :class:`model_selection.StratifiedGroupKFold`, that combines
+ :class:`model_selection.StratifiedKFold` and `model_selection.GroupKFold`,
+ providing an ability to split data preserving the distribution of classes in
+ each split while keeping each group within a single split.
+ :pr:`<PRID>` by `Leandro Hermida <hermidalc>` and
+ `Rodion Martynov <marrodion>`.
+
:mod:`sklearn.naive_bayes`
..........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-18368
|
https://github.com/scikit-learn/scikit-learn/pull/18368
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 84f8097cbbe9d..65d555f978df0 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1414,6 +1414,7 @@ details.
preprocessing.PowerTransformer
preprocessing.QuantileTransformer
preprocessing.RobustScaler
+ preprocessing.SplineTransformer
preprocessing.StandardScaler
.. autosummary::
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index 801d9a98ed1f4..a339b4bfae4e2 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -624,7 +624,9 @@ of continuous attributes to one with only nominal attributes.
One-hot encoded discretized features can make a model more expressive, while
maintaining interpretability. For instance, pre-processing with a discretizer
-can introduce nonlinearity to linear models.
+can introduce nonlinearity to linear models. For more advanced possibilities,
+in particular smooth ones, see :ref:`generating_polynomial_features` further
+below.
K-bins discretization
---------------------
@@ -756,12 +758,24 @@ Imputation of missing values
Tools for imputing missing values are discussed at :ref:`impute`.
-.. _polynomial_features:
+.. _generating_polynomial_features:
Generating polynomial features
==============================
-Often it's useful to add complexity to the model by considering nonlinear features of the input data. A simple and common method to use is polynomial features, which can get features' high-order and interaction terms. It is implemented in :class:`PolynomialFeatures`::
+Often it's useful to add complexity to a model by considering nonlinear
+features of the input data. We show two possibilities that are both based on
+polynomials: The first one uses pure polynomials, the second one uses splines,
+i.e. piecewise polynomials.
+
+.. _polynomial_features:
+
+Polynomial features
+-------------------
+
+A simple and common method to use is polynomial features, which can get
+features' high-order and interaction terms. It is implemented in
+:class:`PolynomialFeatures`::
>>> import numpy as np
>>> from sklearn.preprocessing import PolynomialFeatures
@@ -776,9 +790,11 @@ Often it's useful to add complexity to the model by considering nonlinear featur
[ 1., 2., 3., 4., 6., 9.],
[ 1., 4., 5., 16., 20., 25.]])
-The features of X have been transformed from :math:`(X_1, X_2)` to :math:`(1, X_1, X_2, X_1^2, X_1X_2, X_2^2)`.
+The features of X have been transformed from :math:`(X_1, X_2)` to
+:math:`(1, X_1, X_2, X_1^2, X_1X_2, X_2^2)`.
-In some cases, only interaction terms among features are required, and it can be gotten with the setting ``interaction_only=True``::
+In some cases, only interaction terms among features are required, and it can
+be gotten with the setting ``interaction_only=True``::
>>> X = np.arange(9).reshape(3, 3)
>>> X
@@ -791,11 +807,94 @@ In some cases, only interaction terms among features are required, and it can be
[ 1., 3., 4., 5., 12., 15., 20., 60.],
[ 1., 6., 7., 8., 42., 48., 56., 336.]])
-The features of X have been transformed from :math:`(X_1, X_2, X_3)` to :math:`(1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3)`.
+The features of X have been transformed from :math:`(X_1, X_2, X_3)` to
+:math:`(1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3)`.
+
+Note that polynomial features are used implicitly in `kernel methods
+<https://en.wikipedia.org/wiki/Kernel_method>`_ (e.g., :class:`~sklearn.svm.SVC`,
+:class:`~sklearn.decomposition.KernelPCA`) when using polynomial :ref:`svm_kernels`.
+
+See :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py`
+for Ridge regression using created polynomial features.
+
+.. _spline_transformer:
+
+Spline transformer
+------------------
+
+Another way to add nonlinear terms instead of pure polynomials of features is
+to generate spline basis functions for each feature with the
+:class:`SplineTransformer`. Splines are piecewise polynomials, parametrized by
+their polynomial degree and the positions of the knots. The
+:class:`SplineTransformer` implements a B-spline basis, cf. the references
+below.
+
+.. note::
+
+ The :class:`SplineTransformer` treats each feature separately, i.e. it
+ won't give you interaction terms.
+
+Some of the advantages of splines over polynomials are:
+
+ - B-splines are very flexible and robust if you keep a fixed low degree,
+ usually 3, and parsimoniously adapt the number of knots. Polynomials
+ would need a higher degree, which leads to the next point.
+ - B-splines do not have oscillatory behaviour at the boundaries as have
+ polynomials (the higher the degree, the worse). This is known as `Runge's
+ phenomenon <https://en.wikipedia.org/wiki/Runge%27s_phenomenon>`_.
+ - B-splines provide good options for extrapolation beyond the boundaries,
+ i.e. beyond the range of fitted values. Have a look at the option
+ ``extrapolation``.
+ - B-splines generate a feature matrix with a banded structure. For a single
+ feature, every row contains only ``degree + 1`` non-zero elements, which
+ occur consecutively and are even positive. This results in a matrix with
+ good numerical properties, e.g. a low condition number, in sharp contrast
+ to a matrix of polynomials, which goes under the name
+ `Vandermonde matrix <https://en.wikipedia.org/wiki/Vandermonde_matrix>`_.
+ A low condition number is important for stable algorithms of linear
+ models.
+
+The following code snippet shows splines in action::
+
+ >>> import numpy as np
+ >>> from sklearn.preprocessing import SplineTransformer
+ >>> X = np.arange(5).reshape(5, 1)
+ >>> X
+ array([[0],
+ [1],
+ [2],
+ [3],
+ [4]])
+ >>> spline = SplineTransformer(degree=2, n_knots=3)
+ >>> spline.fit_transform(X)
+ array([[0.5 , 0.5 , 0. , 0. ],
+ [0.125, 0.75 , 0.125, 0. ],
+ [0. , 0.5 , 0.5 , 0. ],
+ [0. , 0.125, 0.75 , 0.125],
+ [0. , 0. , 0.5 , 0.5 ]])
+
+As the ``X`` is sorted, one can easily see the banded matrix output. Only the
+three middle diagonals are non-zero for ``degree=2``. The higher the degree,
+the more overlapping of the splines.
+
+Interestingly, a :class:`SplineTransformer` of ``degree=0`` is the same as
+:class:`~sklearn.preprocessing.KBinsDiscretizer` with ``encode='onehot-dense``
+and ``n_bins = n_knots - 1`` if ``knots = strategy``.
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py`
+
+.. topic:: References:
-Note that polynomial features are used implicitly in `kernel methods <https://en.wikipedia.org/wiki/Kernel_method>`_ (e.g., :class:`~sklearn.svm.SVC`, :class:`~sklearn.decomposition.KernelPCA`) when using polynomial :ref:`svm_kernels`.
+ * Eilers, P., & Marx, B. (1996). Flexible Smoothing with B-splines and
+ Penalties. Statist. Sci. 11 (1996), no. 2, 89--121.
+ `doi:10.1214/ss/1038425655 <https://doi.org/10.1214/ss/1038425655>`_
-See :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py` for Ridge regression using created polynomial features.
+ * Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. A review of
+ spline function procedures in R. BMC Med Res Methodol 19, 46 (2019).
+ `doi:10.1186/s12874-019-0666-3
+ <https://doi.org/10.1186/s12874-019-0666-3>`_
.. _function_transformer:
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 652eba896903b..177dab23b3e62 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -110,6 +110,15 @@ Changelog
Use ``var_`` instead.
:pr:`18842` by :user:`Hong Shao Yang <hongshaoyang>`.
+:mod:`sklearn.preprocessing`
+............................
+
+- |Feature| The new :class:`preprocessing.SplineTransformer` is a feature
+ preprocessing tool for the generation of B-splines, parametrized by the
+ polynomial ``degree`` of the splines, number of knots ``n_knots`` and knot
+ positioning strategy ``knots``.
+ :pr:`18368` by :user:`Christian Lorentzen <lorentzenchr>`.
+
:mod:`sklearn.tree`
...................
diff --git a/examples/linear_model/plot_polynomial_interpolation.py b/examples/linear_model/plot_polynomial_interpolation.py
index 6f2face73c83e..cfa684ffd79ca 100644
--- a/examples/linear_model/plot_polynomial_interpolation.py
+++ b/examples/linear_model/plot_polynomial_interpolation.py
@@ -1,72 +1,147 @@
-#!/usr/bin/env python
"""
-========================
-Polynomial interpolation
-========================
-
-This example demonstrates how to approximate a function with a polynomial of
-degree n_degree by using ridge regression. Concretely, from n_samples 1d
-points, it suffices to build the Vandermonde matrix, which is n_samples x
-n_degree+1 and has the following form:
-
-[[1, x_1, x_1 ** 2, x_1 ** 3, ...],
- [1, x_2, x_2 ** 2, x_2 ** 3, ...],
- ...]
-
-Intuitively, this matrix can be interpreted as a matrix of pseudo features (the
-points raised to some power). The matrix is akin to (but different from) the
-matrix induced by a polynomial kernel.
-
-This example shows that you can do non-linear regression with a linear model,
-using a pipeline to add non-linear features. Kernel methods extend this idea
-and can induce very high (even infinite) dimensional feature spaces.
+===================================
+Polynomial and Spline interpolation
+===================================
+
+This example demonstrates how to approximate a function with polynomials up to
+degree ``degree`` by using ridge regression. We show two different ways given
+``n_samples`` of 1d points ``x_i``:
+
+- :class:`~sklearn.preprocessing.PolynomialFeatures` generates all monomials
+ up to ``degree``. This gives us the so called Vandermonde matrix with
+ ``n_samples`` rows and ``degree + 1`` columns::
+
+ [[1, x_0, x_0 ** 2, x_0 ** 3, ..., x_0 ** degree],
+ [1, x_1, x_1 ** 2, x_1 ** 3, ..., x_1 ** degree],
+ ...]
+
+ Intuitively, this matrix can be interpreted as a matrix of pseudo features
+ (the points raised to some power). The matrix is akin to (but different from)
+ the matrix induced by a polynomial kernel.
+
+- :class:`~sklearn.preprocessing.SplineTransformer` generates B-spline basis
+ functions. A basis function of a B-spline is a piece-wise polynomial function
+ of degree ``degree`` that is non-zero only between ``degree+1`` consecutive
+ knots. Given ``n_knots`` number of knots, this results in matrix of
+ ``n_samples`` rows and ``n_knots + degree - 1`` columns::
+
+ [[basis_1(x_0), basis_2(x_0), ...],
+ [basis_1(x_1), basis_2(x_1), ...],
+ ...]
+
+This example shows that these two transformers are well suited to model
+non-linear effects with a linear model, using a pipeline to add non-linear
+features. Kernel methods extend this idea and can induce very high (even
+infinite) dimensional feature spaces.
"""
print(__doc__)
# Author: Mathieu Blondel
# Jake Vanderplas
+# Christian Lorentzen
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge
-from sklearn.preprocessing import PolynomialFeatures
+from sklearn.preprocessing import PolynomialFeatures, SplineTransformer
from sklearn.pipeline import make_pipeline
+# %%
+# We start by defining a function that we intent to approximate and prepare
+# plotting it.
+
def f(x):
- """ function to approximate by polynomial interpolation"""
+ """Function to be approximated by polynomial interpolation."""
return x * np.sin(x)
-# generate points used to plot
-x_plot = np.linspace(0, 10, 100)
+# whole range we want to plot
+x_plot = np.linspace(-1, 11, 100)
+
+# %%
+# To make it interesting, we only give a small subset of points to train on.
-# generate points and keep a subset of them
-x = np.linspace(0, 10, 100)
+x_train = np.linspace(0, 10, 100)
rng = np.random.RandomState(0)
-rng.shuffle(x)
-x = np.sort(x[:20])
-y = f(x)
+x_train = np.sort(rng.choice(x_train, size=20, replace=False))
+y_train = f(x_train)
-# create matrix versions of these arrays
-X = x[:, np.newaxis]
+# create 2D-array versions of these arrays to feed to transformers
+X_train = x_train[:, np.newaxis]
X_plot = x_plot[:, np.newaxis]
-colors = ['teal', 'yellowgreen', 'gold']
-lw = 2
-plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw,
- label="ground truth")
-plt.scatter(x, y, color='navy', s=30, marker='o', label="training points")
+# %%
+# Now we are ready to create polynomial features and splines, fit on the
+# training points and show how well they interpolate.
-for count, degree in enumerate([3, 4, 5]):
- model = make_pipeline(PolynomialFeatures(degree), Ridge())
- model.fit(X, y)
+# plot function
+lw = 2
+fig, ax = plt.subplots()
+ax.set_prop_cycle(color=[
+ "black", "teal", "yellowgreen", "gold", "darkorange", "tomato"
+])
+ax.plot(x_plot, f(x_plot), linewidth=lw, label="ground truth")
+
+# plot training points
+ax.scatter(x_train, y_train, label="training points")
+
+# polynomial features
+for degree in [3, 4, 5]:
+ model = make_pipeline(PolynomialFeatures(degree), Ridge(alpha=1e-3))
+ model.fit(X_train, y_train)
y_plot = model.predict(X_plot)
- plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw,
- label="degree %d" % degree)
+ ax.plot(x_plot, y_plot, label=f"degree {degree}")
-plt.legend(loc='lower left')
+# B-spline with 4 + 3 - 1 = 6 basis functions
+model = make_pipeline(SplineTransformer(n_knots=4, degree=3),
+ Ridge(alpha=1e-3))
+model.fit(X_train, y_train)
+y_plot = model.predict(X_plot)
+ax.plot(x_plot, y_plot, label="B-spline")
+ax.legend(loc='lower center')
+ax.set_ylim(-20, 10)
plt.show()
+
+# %%
+# This shows nicely that higher degree polynomials can fit the data better. But
+# at the same time, too high powers can show unwanted oscillatory behaviour
+# and are particularly dangerous for extrapolation beyond the range of fitted
+# data. This is an advantage of B-splines. They usually fit the data as well as
+# polynomials and show very nice and smooth behaviour. They have also good
+# options to control the extrapolation, which defaults to continue with a
+# constant. Note that most often, you would rather increase the number of knots
+# but keep ``degree=3``.
+#
+# In order to give more insights into the generated feature bases, we plot all
+# columns of both transformers separately.
+
+fig, axes = plt.subplots(ncols=2, figsize=(16, 5))
+pft = PolynomialFeatures(degree=3).fit(X_train)
+axes[0].plot(x_plot, pft.transform(X_plot))
+axes[0].legend(axes[0].lines, [f"degree {n}" for n in range(4)])
+axes[0].set_title("PolynomialFeatures")
+
+splt = SplineTransformer(n_knots=4, degree=3).fit(X_train)
+axes[1].plot(x_plot, splt.transform(X_plot))
+axes[1].legend(axes[1].lines, [f"spline {n}" for n in range(4)])
+axes[1].set_title("SplineTransformer")
+
+# plot knots of spline
+knots = splt.bsplines_[0].t
+axes[1].vlines(knots[3:-3], ymin=0, ymax=0.8, linestyles='dashed')
+plt.show()
+
+# %%
+# In the left plot, we recognize the lines corresponding to simple monomials
+# from ``x**0`` to ``x**3``. In the right figure, we see the four B-spline
+# basis functions of ``degree=3`` and also the four knot positions that were
+# chosen during ``fit``. Note that there are ``degree`` number of additional
+# knots each to the left and to the right of the fitted interval. These are
+# there for technical reasons, so we refrain from showing them. Every basis
+# function has local support and is continued as a constant beyond the fitted
+# range. This extrapolating behaviour could be changed by the argument
+# ``extrapolation``.
diff --git a/sklearn/preprocessing/__init__.py b/sklearn/preprocessing/__init__.py
index d048b30e1f3d0..076b9e85e1150 100644
--- a/sklearn/preprocessing/__init__.py
+++ b/sklearn/preprocessing/__init__.py
@@ -35,6 +35,8 @@
from ._discretization import KBinsDiscretizer
+from ._polynomial import SplineTransformer
+
__all__ = [
'Binarizer',
@@ -52,6 +54,7 @@
'OrdinalEncoder',
'PowerTransformer',
'RobustScaler',
+ 'SplineTransformer',
'StandardScaler',
'add_dummy_feature',
'PolynomialFeatures',
diff --git a/sklearn/preprocessing/_data.py b/sklearn/preprocessing/_data.py
index 3921b898c072d..5814875e04bff 100644
--- a/sklearn/preprocessing/_data.py
+++ b/sklearn/preprocessing/_data.py
@@ -1620,6 +1620,11 @@ class PolynomialFeatures(TransformerMixin, BaseEstimator):
features is computed by iterating over all suitably sized combinations
of input features.
+ See Also
+ --------
+ SplineTransformer : Transformer that generates univariate B-spline bases
+ for features
+
Notes
-----
Be aware that the number of features in the output array scales
@@ -1711,7 +1716,7 @@ def fit(self, X, y=None):
return self
def transform(self, X):
- """Transform data to polynomial features
+ """Transform data to polynomial features.
Parameters
----------
diff --git a/sklearn/preprocessing/_polynomial.py b/sklearn/preprocessing/_polynomial.py
new file mode 100644
index 0000000000000..47ab90be2ebcd
--- /dev/null
+++ b/sklearn/preprocessing/_polynomial.py
@@ -0,0 +1,429 @@
+"""
+This file contains preprocessing tools based on polynomials.
+"""
+import numbers
+
+import numpy as np
+from scipy.interpolate import BSpline
+
+from ..base import BaseEstimator, TransformerMixin
+from ..utils import check_array
+from ..utils.fixes import linspace
+from ..utils.validation import check_is_fitted, FLOAT_DTYPES
+
+
+__all__ = [
+ "SplineTransformer",
+]
+
+
+# TODO:
+# - sparse support (either scipy or own cython solution)?
+# - extrapolation (cyclic)
+class SplineTransformer(TransformerMixin, BaseEstimator):
+ """Generate univariate B-spline bases for features.
+
+ Generate a new feature matrix consisting of
+ `n_splines=n_knots + degree - 1` spline basis functions (B-splines) of
+ polynomial order=`degree` for each feature.
+
+ Read more in the :ref:`User Guide <spline_transformer>`.
+
+ .. versionadded:: 1.0
+
+ Parameters
+ ----------
+ n_knots : int, default=5
+ Number of knots of the splines if `knots` equals one of
+ {'uniform', 'quantile'}. Must be larger or equal 2.
+
+ degree : int, default=3
+ The polynomial degree of the spline basis. Must be a non-negative
+ integer.
+
+ knots : {'uniform', 'quantile'} or array-like of shape \
+ (n_knots, n_features), default='uniform'
+ Set knot positions such that first knot <= features <= last knot.
+
+ - If 'uniform', `n_knots` number of knots are distributed uniformly
+ from min to max values of the features.
+ - If 'quantile', they are distributed uniformly along the quantiles of
+ the features.
+ - If an array-like is given, it directly specifies the sorted knot
+ positions including the boundary knots. Note that, internally,
+ `degree` number of knots are added before the first knot, the same
+ after the last knot.
+
+ extrapolation : {'error', 'constant', 'linear', 'continue'}, \
+ default='constant'
+ If 'error', values outside the min and max values of the training
+ features raises a `ValueError`. If 'constant', the value of the
+ splines at minimum and maximum value of the features is used as
+ constant extrapolation. If 'linear', a linear extrapolation is used.
+ If 'continue', the splines are extrapolated as is, i.e. option
+ `extrapolate=True` in :class:`scipy.interpolate.BSpline`.
+
+ include_bias : bool, default=True
+ If True (default), then the last spline element inside the data range
+ of a feature is dropped. As B-splines sum to one over the spline basis
+ functions for each data point, they implicitly include a bias term,
+ i.e. a column of ones. It acts as an intercept term in a linear models.
+
+ order : {'C', 'F'}, default='C'
+ Order of output array. 'F' order is faster to compute, but may slow
+ down subsequent estimators.
+
+ Attributes
+ ----------
+ bsplines_ : list of shape (n_features,)
+ List of BSplines objects, one for each feature.
+
+ n_features_in_ : int
+ The total number of input features.
+
+ n_features_out_ : int
+ The total number of output features, which is computed as
+ `n_features * n_splines`, where `n_splines` is
+ the number of bases elements of the B-splines, `n_knots + degree - 1`.
+ If `include_bias=False`, then it is only
+ `n_features * (n_splines - 1)`.
+
+ See Also
+ --------
+ KBinsDiscretizer : Transformer that bins continuous data into intervals.
+
+ PolynomialFeatures : Transformer that generates polynomial and interaction
+ features.
+
+ Notes
+ -----
+ High degrees and a high number of knots can cause overfitting.
+
+ See :ref:`examples/linear_model/plot_polynomial_interpolation.py
+ <sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py>`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from sklearn.preprocessing import SplineTransformer
+ >>> X = np.arange(6).reshape(6, 1)
+ >>> spline = SplineTransformer(degree=2, n_knots=3)
+ >>> spline.fit_transform(X)
+ array([[0.5 , 0.5 , 0. , 0. ],
+ [0.18, 0.74, 0.08, 0. ],
+ [0.02, 0.66, 0.32, 0. ],
+ [0. , 0.32, 0.66, 0.02],
+ [0. , 0.08, 0.74, 0.18],
+ [0. , 0. , 0.5 , 0.5 ]])
+ """
+
+ def __init__(
+ self,
+ n_knots=5,
+ degree=3,
+ *,
+ knots="uniform",
+ extrapolation="constant",
+ include_bias=True,
+ order="C",
+ ):
+ self.n_knots = n_knots
+ self.degree = degree
+ self.knots = knots
+ self.extrapolation = extrapolation
+ self.include_bias = include_bias
+ self.order = order
+
+ @staticmethod
+ def _get_base_knot_positions(X, n_knots=10, knots="uniform"):
+ """Calculate base knot positions.
+
+ Base knots such that first knot <= feature <= last knot. For the
+ B-spline construction with scipy.interpolate.BSpline, 2*degree knots
+ beyond the base interval are added.
+
+ Returns
+ -------
+ knots : ndarray of shape (n_knots, n_features), dtype=np.float64
+ Knot positions (points) of base interval.
+ """
+ if knots == "quantile":
+ knots = np.percentile(
+ X,
+ 100
+ * np.linspace(start=0, stop=1, num=n_knots, dtype=np.float64),
+ axis=0,
+ )
+ else:
+ # knots == 'uniform':
+ # Note that the variable `knots` has already been validated and
+ # `else` is therefore safe.
+ x_min = np.amin(X, axis=0)
+ x_max = np.amax(X, axis=0)
+ knots = linspace(
+ start=x_min,
+ stop=x_max,
+ num=n_knots,
+ endpoint=True,
+ dtype=np.float64,
+ )
+
+ return knots
+
+ def get_feature_names(self, input_features=None):
+ """Return feature names for output features.
+
+ Parameters
+ ----------
+ input_features : list of str of shape (n_features,), default=None
+ String names for input features if available. By default,
+ "x0", "x1", ... "xn_features" is used.
+
+ Returns
+ -------
+ output_feature_names : list of str of shape (n_output_features,)
+ """
+ n_splines = self.bsplines_[0].c.shape[0]
+ if input_features is None:
+ input_features = ["x%d" % i for i in range(self.n_features_in_)]
+ feature_names = []
+ for i in range(self.n_features_in_):
+ for j in range(n_splines - 1 + self.include_bias):
+ feature_names.append(f"{input_features[i]}_sp_{j}")
+ return feature_names
+
+ def fit(self, X, y=None):
+ """Compute knot positions of splines.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The data.
+
+ y : None
+ Ignored.
+
+ Returns
+ -------
+ self : object
+ Fitted transformer.
+ """
+ X = self._validate_data(
+ X,
+ reset=True,
+ accept_sparse=False,
+ ensure_min_samples=2,
+ ensure_2d=True,
+ )
+ n_samples, n_features = X.shape
+
+ if not (
+ isinstance(self.degree, numbers.Integral) and self.degree >= 0
+ ):
+ raise ValueError("degree must be a non-negative integer.")
+
+ if not (
+ isinstance(self.n_knots, numbers.Integral) and self.n_knots >= 2
+ ):
+ raise ValueError("n_knots must be a positive integer >= 2.")
+
+ if isinstance(self.knots, str) and self.knots in [
+ "uniform",
+ "quantile",
+ ]:
+ base_knots = self._get_base_knot_positions(
+ X, n_knots=self.n_knots, knots=self.knots
+ )
+ else:
+ base_knots = check_array(self.knots)
+ if base_knots.shape[0] < 2:
+ raise ValueError(
+ "Number of knots, knots.shape[0], must be >= " "2."
+ )
+ elif base_knots.shape[1] != n_features:
+ raise ValueError("knots.shape[1] == n_features is violated.")
+ elif not np.all(np.diff(base_knots, axis=0) > 0):
+ raise ValueError("knots must be sorted without duplicates.")
+
+ if self.extrapolation not in (
+ "error",
+ "constant",
+ "linear",
+ "continue",
+ ):
+ raise ValueError(
+ "extrapolation must be one of 'error', "
+ "'constant', 'linear' or 'continue'."
+ )
+
+ if not isinstance(self.include_bias, (bool, np.bool_)):
+ raise ValueError("include_bias must be bool.")
+
+ # number of knots for base interval
+ n_knots = base_knots.shape[0]
+ # number of splines basis functions
+ n_splines = n_knots + self.degree - 1
+ degree = self.degree
+ n_out = n_features * n_splines
+ # We have to add degree number of knots below, and degree number knots
+ # above the base knots in order to make the spline basis complete.
+ # Eilers & Marx in "Flexible smoothing with B-splines and penalties"
+ # https://doi.org/10.1214/ss/1038425655 advice against repeating first
+ # and last knot several times, which would have inferior behaviour at
+ # boundaries if combined with a penalty (hence P-Spline). We follow
+ # this advice even if our splines are unpenalized.
+ # Meaning we do not:
+ # knots = np.r_[np.tile(base_knots.min(axis=0), reps=[degree, 1]),
+ # base_knots,
+ # np.tile(base_knots.max(axis=0), reps=[degree, 1])
+ # ]
+ # Instead, we reuse the distance of the 2 fist/last knots.
+ dist_min = base_knots[1] - base_knots[0]
+ dist_max = base_knots[-1] - base_knots[-2]
+ knots = np.r_[
+ linspace(
+ base_knots[0] - degree * dist_min,
+ base_knots[0] - dist_min,
+ num=degree,
+ ),
+ base_knots,
+ linspace(
+ base_knots[-1] + dist_max,
+ base_knots[-1] + degree * dist_max,
+ num=degree,
+ ),
+ ]
+
+ # With a diagonal coefficient matrix, we get back the spline basis
+ # elements, i.e. the design matrix of the spline.
+ # Note, BSpline appreciates C-contiguous float64 arrays as c=coef.
+ coef = np.eye(n_knots + self.degree - 1, dtype=np.float64)
+ extrapolate = self.extrapolation == "continue"
+ bsplines = [
+ BSpline.construct_fast(
+ knots[:, i], coef, self.degree, extrapolate=extrapolate
+ )
+ for i in range(n_features)
+ ]
+ self.bsplines_ = bsplines
+
+ self.n_features_out_ = n_out - n_features * self.include_bias
+ return self
+
+ def transform(self, X):
+ """Transform each feature data to B-splines.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The data to transform.
+
+ Returns
+ -------
+ XBS : ndarray of shape (n_samples, n_features * n_splines)
+ The matrix of features, where n_splines is the number of bases
+ elements of the B-splines, n_knots + degree - 1.
+ """
+ check_is_fitted(self)
+
+ X = self._validate_data(
+ X, reset=False, accept_sparse=False, ensure_2d=True
+ )
+
+ n_samples, n_features = X.shape
+ n_splines = self.bsplines_[0].c.shape[0]
+ degree = self.degree
+
+ # Note that scipy BSpline returns float64 arrays and converts input
+ # x=X[:, i] to c-contiguous float64.
+ n_out = self.n_features_out_ + n_features * self.include_bias
+ if X.dtype in FLOAT_DTYPES:
+ dtype = X.dtype
+ else:
+ dtype = np.float64
+ XBS = np.zeros((n_samples, n_out), dtype=dtype, order=self.order)
+
+ for i in range(n_features):
+ spl = self.bsplines_[i]
+
+ if self.extrapolation in ("continue", "error"):
+ XBS[:, (i * n_splines):((i + 1) * n_splines)] = spl(X[:, i])
+ else:
+ xmin = spl.t[degree]
+ xmax = spl.t[-degree - 1]
+ mask = (xmin <= X[:, i]) & (X[:, i] <= xmax)
+ XBS[mask, (i * n_splines):((i + 1) * n_splines)] = spl(
+ X[mask, i]
+ )
+
+ # Note for extrapolation:
+ # 'continue' is already returned as is by scipy BSplines
+ if self.extrapolation == "error":
+ # BSpline with extrapolate=False does not raise an error, but
+ # output np.nan.
+ if np.any(
+ np.isnan(XBS[:, (i * n_splines):((i + 1) * n_splines)])
+ ):
+ raise ValueError(
+ "X contains values beyond the limits of the knots."
+ )
+ elif self.extrapolation == "constant":
+ # Set all values beyond xmin and xmax to the value of the
+ # spline basis functions at those two positions.
+ # Only the first degree and last degree number of splines
+ # have non-zero values at the boundaries.
+
+ # spline values at boundaries
+ f_min = spl(xmin)
+ f_max = spl(xmax)
+ mask = X[:, i] < xmin
+ if np.any(mask):
+ XBS[
+ mask, (i * n_splines):(i * n_splines + degree)
+ ] = f_min[:degree]
+
+ mask = X[:, i] > xmax
+ if np.any(mask):
+ XBS[
+ mask,
+ ((i + 1) * n_splines - degree):((i + 1) * n_splines),
+ ] = f_max[-degree:]
+ elif self.extrapolation == "linear":
+ # Continue the degree first and degree last spline bases
+ # linearly beyond the boundaries, with slope = derivative at
+ # the boundary.
+ # Note that all others have derivative = value = 0 at the
+ # boundaries.
+
+ # spline values at boundaries
+ f_min, f_max = spl(xmin), spl(xmax)
+ # spline derivatives = slopes at boundaries
+ fp_min, fp_max = spl(xmin, nu=1), spl(xmax, nu=1)
+ # Compute the linear continuation.
+ if degree <= 1:
+ # For degree=1, the derivative of 2nd spline is not zero at
+ # boundary. For degree=0 it is the same as 'constant'.
+ degree += 1
+ for j in range(degree):
+ mask = X[:, i] < xmin
+ if np.any(mask):
+ XBS[mask, i * n_splines + j] = (
+ f_min[j] + (X[mask, i] - xmin) * fp_min[j]
+ )
+
+ mask = X[:, i] > xmax
+ if np.any(mask):
+ k = n_splines - 1 - j
+ XBS[mask, i * n_splines + k] = (
+ f_max[k] + (X[mask, i] - xmax) * fp_max[k]
+ )
+
+ if self.include_bias:
+ return XBS
+ else:
+ # We throw away one spline basis per feature.
+ # We chose the last one.
+ indices = [
+ j for j in range(XBS.shape[1]) if (j + 1) % n_splines != 0
+ ]
+ return XBS[:, indices]
diff --git a/sklearn/utils/fixes.py b/sklearn/utils/fixes.py
index 49519ed55c82c..593e0eb332a99 100644
--- a/sklearn/utils/fixes.py
+++ b/sklearn/utils/fixes.py
@@ -220,3 +220,51 @@ def __init__(self, function):
def __call__(self, *args, **kwargs):
with config_context(**self.config):
return self.function(*args, **kwargs)
+
+
+def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,
+ axis=0):
+ """Implements a simplified linspace function as of numpy verion >= 1.16.
+
+ As of numpy 1.16, the arguments start and stop can be array-like and
+ there is an optional argument `axis`.
+ For simplicity, we only allow 1d array-like to be passed to start and stop.
+ See: https://github.com/numpy/numpy/pull/12388 and numpy 1.16 release
+ notes about start and stop arrays for linspace logspace and geomspace.
+
+ Returns
+ -------
+ out : ndarray of shape (num, n_start) or (num,)
+ The output array with `n_start=start.shape[0]` columns.
+ """
+ if np_version < parse_version('1.16'):
+ start = np.asanyarray(start) * 1.0
+ stop = np.asanyarray(stop) * 1.0
+ dt = np.result_type(start, stop, float(num))
+ if dtype is None:
+ dtype = dt
+
+ if start.ndim == 0 == stop.ndim:
+ return np.linspace(start=start, stop=stop, num=num,
+ endpoint=endpoint, retstep=retstep, dtype=dtype)
+
+ if start.ndim != 1 or stop.ndim != 1 or start.shape != stop.shape:
+ raise ValueError("start and stop must be 1d array-like of same"
+ " shape.")
+ n_start = start.shape[0]
+ out = np.empty((num, n_start), dtype=dtype)
+ step = np.empty(n_start, dtype=np.float)
+ for i in range(n_start):
+ out[:, i], step[i] = np.linspace(start=start[i], stop=stop[i],
+ num=num, endpoint=endpoint,
+ retstep=True, dtype=dtype)
+ if axis != 0:
+ out = np.moveaxis(out, 0, axis)
+
+ if retstep:
+ return out, step
+ else:
+ return out
+ else:
+ return np.linspace(start=start, stop=stop, num=num, endpoint=endpoint,
+ retstep=retstep, dtype=dtype, axis=axis)
|
diff --git a/sklearn/preprocessing/tests/test_data.py b/sklearn/preprocessing/tests/test_data.py
index b0fbee8db9455..974dad31258eb 100644
--- a/sklearn/preprocessing/tests/test_data.py
+++ b/sklearn/preprocessing/tests/test_data.py
@@ -28,26 +28,27 @@
from sklearn.utils._testing import _convert_container
from sklearn.utils.sparsefuncs import mean_variance_axis
+from sklearn.preprocessing import Binarizer
+from sklearn.preprocessing import KernelCenterer
+from sklearn.preprocessing import Normalizer
+from sklearn.preprocessing import normalize
+from sklearn.preprocessing import StandardScaler
+from sklearn.preprocessing import scale
+from sklearn.preprocessing import MinMaxScaler
+from sklearn.preprocessing import minmax_scale
+from sklearn.preprocessing import QuantileTransformer
+from sklearn.preprocessing import quantile_transform
+from sklearn.preprocessing import MaxAbsScaler
+from sklearn.preprocessing import maxabs_scale
+from sklearn.preprocessing import RobustScaler
+from sklearn.preprocessing import robust_scale
+from sklearn.preprocessing import add_dummy_feature
+from sklearn.preprocessing import PolynomialFeatures
+from sklearn.preprocessing import PowerTransformer
+from sklearn.preprocessing import power_transform
from sklearn.preprocessing._data import _handle_zeros_in_scale
-from sklearn.preprocessing._data import Binarizer
-from sklearn.preprocessing._data import KernelCenterer
-from sklearn.preprocessing._data import Normalizer
-from sklearn.preprocessing._data import normalize
-from sklearn.preprocessing._data import StandardScaler
-from sklearn.preprocessing._data import scale
-from sklearn.preprocessing._data import MinMaxScaler
-from sklearn.preprocessing._data import minmax_scale
-from sklearn.preprocessing._data import QuantileTransformer
-from sklearn.preprocessing._data import quantile_transform
-from sklearn.preprocessing._data import MaxAbsScaler
-from sklearn.preprocessing._data import maxabs_scale
-from sklearn.preprocessing._data import RobustScaler
-from sklearn.preprocessing._data import robust_scale
-from sklearn.preprocessing._data import add_dummy_feature
-from sklearn.preprocessing._data import PolynomialFeatures
-from sklearn.preprocessing._data import PowerTransformer
-from sklearn.preprocessing._data import power_transform
from sklearn.preprocessing._data import BOUNDS_THRESHOLD
+
from sklearn.exceptions import NotFittedError
from sklearn.base import clone
@@ -58,6 +59,7 @@
from sklearn import datasets
+
iris = datasets.load_iris()
# Make some data to be used many times
@@ -148,6 +150,7 @@ def test_polynomial_feature_names():
def test_polynomial_feature_array_order():
+ """Test that output array has the given order."""
X = np.arange(10).reshape(5, 2)
def is_c_contiguous(a):
@@ -1591,15 +1594,13 @@ def test_quantile_transform_bounds():
transformer = QuantileTransformer()
transformer.fit(X)
assert (transformer.transform([[-10]]) ==
- transformer.transform([[np.min(X)]]))
+ transformer.transform([[np.min(X)]]))
assert (transformer.transform([[10]]) ==
- transformer.transform([[np.max(X)]]))
+ transformer.transform([[np.max(X)]]))
assert (transformer.inverse_transform([[-10]]) ==
- transformer.inverse_transform(
- [[np.min(transformer.references_)]]))
+ transformer.inverse_transform([[np.min(transformer.references_)]]))
assert (transformer.inverse_transform([[10]]) ==
- transformer.inverse_transform(
- [[np.max(transformer.references_)]]))
+ transformer.inverse_transform([[np.max(transformer.references_)]]))
def test_quantile_transform_and_inverse():
@@ -1904,9 +1905,9 @@ def test_maxabs_scaler_partial_fit():
scaler_incr_csc.max_abs_)
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
assert (scaler_batch.n_samples_seen_ ==
- scaler_incr_csr.n_samples_seen_)
+ scaler_incr_csr.n_samples_seen_)
assert (scaler_batch.n_samples_seen_ ==
- scaler_incr_csc.n_samples_seen_)
+ scaler_incr_csc.n_samples_seen_)
assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csr.scale_)
assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csc.scale_)
diff --git a/sklearn/preprocessing/tests/test_polynomial.py b/sklearn/preprocessing/tests/test_polynomial.py
new file mode 100644
index 0000000000000..9dd65c44d8bba
--- /dev/null
+++ b/sklearn/preprocessing/tests/test_polynomial.py
@@ -0,0 +1,245 @@
+import numpy as np
+from numpy.testing import assert_allclose, assert_array_equal
+import pytest
+
+from sklearn.linear_model import LinearRegression
+from sklearn.pipeline import Pipeline
+from sklearn.preprocessing import KBinsDiscretizer, SplineTransformer
+
+
+# TODO: add PolynomialFeatures if it moves to _polynomial.py
[email protected]("est", (SplineTransformer,))
+def test_polynomial_and_spline_array_order(est):
+ """Test that output array has the given order."""
+ X = np.arange(10).reshape(5, 2)
+
+ def is_c_contiguous(a):
+ return np.isfortran(a.T)
+
+ assert is_c_contiguous(est().fit_transform(X))
+ assert is_c_contiguous(est(order="C").fit_transform(X))
+ assert np.isfortran(est(order="F").fit_transform(X))
+
+
[email protected](
+ "params, err_msg",
+ [
+ ({"degree": -1}, "degree must be a non-negative integer."),
+ ({"degree": 2.5}, "degree must be a non-negative integer."),
+ ({"degree": "string"}, "degree must be a non-negative integer."),
+ ({"n_knots": 1}, "n_knots must be a positive integer >= 2."),
+ ({"n_knots": 1}, "n_knots must be a positive integer >= 2."),
+ ({"n_knots": 2.5}, "n_knots must be a positive integer >= 2."),
+ ({"n_knots": "string"}, "n_knots must be a positive integer >= 2."),
+ ({"knots": "string"}, "Expected 2D array, got scalar array instead:"),
+ ({"knots": [1, 2]}, "Expected 2D array, got 1D array instead:"),
+ (
+ {"knots": [[1]]},
+ r"Number of knots, knots.shape\[0\], must be >= 2.",
+ ),
+ (
+ {"knots": [[1, 5], [2, 6]]},
+ r"knots.shape\[1\] == n_features is violated.",
+ ),
+ (
+ {"knots": [[1], [1], [2]]},
+ "knots must be sorted without duplicates.",
+ ),
+ ({"knots": [[2], [1]]}, "knots must be sorted without duplicates."),
+ (
+ {"extrapolation": None},
+ "extrapolation must be one of 'error', 'constant', 'linear' or "
+ "'continue'.",
+ ),
+ (
+ {"extrapolation": 1},
+ "extrapolation must be one of 'error', 'constant', 'linear' or "
+ "'continue'.",
+ ),
+ (
+ {"extrapolation": "string"},
+ "extrapolation must be one of 'error', 'constant', 'linear' or "
+ "'continue'.",
+ ),
+ ({"include_bias": None}, "include_bias must be bool."),
+ ({"include_bias": 1}, "include_bias must be bool."),
+ ({"include_bias": "string"}, "include_bias must be bool."),
+ ],
+)
+def test_spline_transformer_input_validation(params, err_msg):
+ """Test that we raise errors for invalid input in SplineTransformer."""
+ X = [[1], [2]]
+
+ with pytest.raises(ValueError, match=err_msg):
+ SplineTransformer(**params).fit(X)
+
+
+def test_spline_transformer_manual_knot_input():
+ """Test that array-like knot positions in SplineTransformer are accepted.
+ """
+ X = np.arange(20).reshape(10, 2)
+ knots = [[0.5, 1], [1.5, 2], [5, 10]]
+ st1 = SplineTransformer(degree=3, knots=knots).fit(X)
+ knots = np.asarray(knots)
+ st2 = SplineTransformer(degree=3, knots=knots).fit(X)
+ for i in range(X.shape[1]):
+ assert_allclose(st1.bsplines_[i].t, st2.bsplines_[i].t)
+
+
+def test_spline_transformer_feature_names():
+ """Test that SplineTransformer generates correct features name."""
+ X = np.arange(20).reshape(10, 2)
+ splt = SplineTransformer(n_knots=3, degree=3, include_bias=True).fit(X)
+ feature_names = splt.get_feature_names()
+ assert_array_equal(
+ feature_names,
+ [
+ "x0_sp_0",
+ "x0_sp_1",
+ "x0_sp_2",
+ "x0_sp_3",
+ "x0_sp_4",
+ "x1_sp_0",
+ "x1_sp_1",
+ "x1_sp_2",
+ "x1_sp_3",
+ "x1_sp_4",
+ ],
+ )
+
+ splt = SplineTransformer(n_knots=3, degree=3, include_bias=False).fit(X)
+ feature_names = splt.get_feature_names(["a", "b"])
+ assert_array_equal(
+ feature_names,
+ [
+ "a_sp_0",
+ "a_sp_1",
+ "a_sp_2",
+ "a_sp_3",
+ "b_sp_0",
+ "b_sp_1",
+ "b_sp_2",
+ "b_sp_3",
+ ],
+ )
+
+
[email protected]("degree", range(1, 5))
[email protected]("n_knots", range(3, 5))
[email protected]("knots", ["uniform", "quantile"])
+def test_spline_transformer_unity_decomposition(degree, n_knots, knots):
+ """Test that B-splines are indeed a decomposition of unity.
+
+ Splines basis functions must sum up to 1 per row, if we stay in between
+ boundaries.
+ """
+ X = np.linspace(0, 1, 100)[:, None]
+ # make the boundaries 0 and 1 part of X_train, for sure.
+ X_train = np.r_[[[0]], X[::2, :], [[1]]]
+ X_test = X[1::2, :]
+ splt = SplineTransformer(
+ n_knots=n_knots, degree=degree, knots=knots, include_bias=True
+ )
+ splt.fit(X_train)
+ for X in [X_train, X_test]:
+ assert_allclose(np.sum(splt.transform(X), axis=1), 1)
+
+
[email protected](["bias", "intercept"], [(True, False), (False, True)])
+def test_spline_transformer_linear_regression(bias, intercept):
+ """Test that B-splines fit a sinusodial curve pretty well."""
+ X = np.linspace(0, 10, 100)[:, None]
+ y = np.sin(X[:, 0]) + 2 # +2 to avoid the value 0 in assert_allclose
+ pipe = Pipeline(
+ steps=[
+ (
+ "spline",
+ SplineTransformer(
+ n_knots=15,
+ degree=3,
+ include_bias=bias,
+ extrapolation="constant",
+ ),
+ ),
+ ("ols", LinearRegression(fit_intercept=intercept)),
+ ]
+ )
+ pipe.fit(X, y)
+ assert_allclose(pipe.predict(X), y, rtol=1e-3)
+
+
[email protected](["bias", "intercept"], [(True, False), (False, True)])
[email protected]("degree", [1, 2, 3, 4, 5])
+def test_spline_transformer_extrapolation(bias, intercept, degree):
+ """Test that B-spline extrapolation works correctly."""
+ # we use a straight line for that
+ X = np.linspace(-1, 1, 100)[:, None]
+ y = X.squeeze()
+
+ # 'constant'
+ pipe = Pipeline(
+ [
+ [
+ "spline",
+ SplineTransformer(
+ n_knots=4,
+ degree=degree,
+ include_bias=bias,
+ extrapolation="constant",
+ ),
+ ],
+ ["ols", LinearRegression(fit_intercept=intercept)],
+ ]
+ )
+ pipe.fit(X, y)
+ assert_allclose(pipe.predict([[-10], [5]]), [-1, 1])
+
+ # 'linear'
+ pipe = Pipeline(
+ [
+ [
+ "spline",
+ SplineTransformer(
+ n_knots=4,
+ degree=degree,
+ include_bias=bias,
+ extrapolation="linear",
+ ),
+ ],
+ ["ols", LinearRegression(fit_intercept=intercept)],
+ ]
+ )
+ pipe.fit(X, y)
+ assert_allclose(pipe.predict([[-10], [5]]), [-10, 5])
+
+ # 'error'
+ splt = SplineTransformer(
+ n_knots=4, degree=degree, include_bias=bias, extrapolation="error"
+ )
+ splt.fit(X)
+ with pytest.raises(ValueError):
+ splt.transform([[-10]])
+ with pytest.raises(ValueError):
+ splt.transform([[5]])
+
+
+def test_spline_transformer_kbindiscretizer():
+ """Test that a B-spline of degree=0 is equivalent to KBinsDiscretizer."""
+ rng = np.random.RandomState(97531)
+ X = rng.randn(200).reshape(200, 1)
+ n_bins = 5
+ n_knots = n_bins + 1
+
+ splt = SplineTransformer(
+ n_knots=n_knots, degree=0, knots="quantile", include_bias=True
+ )
+ splines = splt.fit_transform(X)
+
+ kbd = KBinsDiscretizer(
+ n_bins=n_bins, encode="onehot-dense", strategy="quantile"
+ )
+ kbins = kbd.fit_transform(X)
+
+ # Though they should be exactly equal, we test approximately with high
+ # accuracy.
+ assert_allclose(splines, kbins, rtol=1e-13)
diff --git a/sklearn/utils/tests/test_fixes.py b/sklearn/utils/tests/test_fixes.py
index 28824a6acee55..03e11f5bc1a08 100644
--- a/sklearn/utils/tests/test_fixes.py
+++ b/sklearn/utils/tests/test_fixes.py
@@ -15,6 +15,7 @@
from sklearn.utils.fixes import _object_dtype_isnan
from sklearn.utils.fixes import loguniform
from sklearn.utils.fixes import MaskedArray
+from sklearn.utils.fixes import linspace, parse_version, np_version
@pytest.mark.parametrize('joblib_version', ('0.11', '0.12.0'))
@@ -89,3 +90,37 @@ def test_loguniform(low, high, base):
def test_masked_array_deprecated(): # TODO: remove in 1.0
with pytest.warns(FutureWarning, match='is deprecated'):
MaskedArray()
+
+
+def test_linspace():
+ """Test that linespace works like np.linespace as of numpy version 1.16."""
+ start, stop = 0, 10
+ num = 6
+ out = linspace(start=start, stop=stop, num=num, endpoint=True)
+ assert_array_equal(out, np.array([0., 2, 4, 6, 8, 10]))
+
+ start, stop = [0, 100], [10, 1100]
+ num = 6
+ out = linspace(start=start, stop=stop, num=num, endpoint=True)
+ res = np.c_[[0., 2, 4, 6, 8, 10],
+ [100, 300, 500, 700, 900, 1100]]
+ assert_array_equal(out, res)
+
+ out2 = linspace(start=start, stop=stop, num=num, endpoint=True, axis=1)
+ assert_array_equal(out2, out.T)
+
+ out, step = linspace(
+ start=start,
+ stop=stop,
+ num=num,
+ endpoint=True,
+ retstep=True,
+ )
+ assert_array_equal(out, res)
+ assert_array_equal(step, [2, 200])
+
+ if np_version < parse_version('1.16'):
+ with pytest.raises(ValueError):
+ linspace(start=[0, 1], stop=10)
+ else:
+ linspace(start=[0, 1], stop=10)
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 84f8097cbbe9d..65d555f978df0 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1414,6 +1414,7 @@ details.\n preprocessing.PowerTransformer\n preprocessing.QuantileTransformer\n preprocessing.RobustScaler\n+ preprocessing.SplineTransformer\n preprocessing.StandardScaler\n \n .. autosummary::\n"
},
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex 801d9a98ed1f4..a339b4bfae4e2 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -624,7 +624,9 @@ of continuous attributes to one with only nominal attributes.\n \n One-hot encoded discretized features can make a model more expressive, while\n maintaining interpretability. For instance, pre-processing with a discretizer\n-can introduce nonlinearity to linear models.\n+can introduce nonlinearity to linear models. For more advanced possibilities,\n+in particular smooth ones, see :ref:`generating_polynomial_features` further\n+below.\n \n K-bins discretization\n ---------------------\n@@ -756,12 +758,24 @@ Imputation of missing values\n \n Tools for imputing missing values are discussed at :ref:`impute`.\n \n-.. _polynomial_features:\n+.. _generating_polynomial_features:\n \n Generating polynomial features\n ==============================\n \n-Often it's useful to add complexity to the model by considering nonlinear features of the input data. A simple and common method to use is polynomial features, which can get features' high-order and interaction terms. It is implemented in :class:`PolynomialFeatures`::\n+Often it's useful to add complexity to a model by considering nonlinear\n+features of the input data. We show two possibilities that are both based on\n+polynomials: The first one uses pure polynomials, the second one uses splines,\n+i.e. piecewise polynomials.\n+\n+.. _polynomial_features:\n+\n+Polynomial features\n+-------------------\n+\n+A simple and common method to use is polynomial features, which can get\n+features' high-order and interaction terms. It is implemented in\n+:class:`PolynomialFeatures`::\n \n >>> import numpy as np\n >>> from sklearn.preprocessing import PolynomialFeatures\n@@ -776,9 +790,11 @@ Often it's useful to add complexity to the model by considering nonlinear featur\n [ 1., 2., 3., 4., 6., 9.],\n [ 1., 4., 5., 16., 20., 25.]])\n \n-The features of X have been transformed from :math:`(X_1, X_2)` to :math:`(1, X_1, X_2, X_1^2, X_1X_2, X_2^2)`.\n+The features of X have been transformed from :math:`(X_1, X_2)` to\n+:math:`(1, X_1, X_2, X_1^2, X_1X_2, X_2^2)`.\n \n-In some cases, only interaction terms among features are required, and it can be gotten with the setting ``interaction_only=True``::\n+In some cases, only interaction terms among features are required, and it can\n+be gotten with the setting ``interaction_only=True``::\n \n >>> X = np.arange(9).reshape(3, 3)\n >>> X\n@@ -791,11 +807,94 @@ In some cases, only interaction terms among features are required, and it can be\n [ 1., 3., 4., 5., 12., 15., 20., 60.],\n [ 1., 6., 7., 8., 42., 48., 56., 336.]])\n \n-The features of X have been transformed from :math:`(X_1, X_2, X_3)` to :math:`(1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3)`.\n+The features of X have been transformed from :math:`(X_1, X_2, X_3)` to\n+:math:`(1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3)`.\n+\n+Note that polynomial features are used implicitly in `kernel methods\n+<https://en.wikipedia.org/wiki/Kernel_method>`_ (e.g., :class:`~sklearn.svm.SVC`,\n+:class:`~sklearn.decomposition.KernelPCA`) when using polynomial :ref:`svm_kernels`.\n+\n+See :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py`\n+for Ridge regression using created polynomial features.\n+\n+.. _spline_transformer:\n+\n+Spline transformer\n+------------------\n+\n+Another way to add nonlinear terms instead of pure polynomials of features is\n+to generate spline basis functions for each feature with the\n+:class:`SplineTransformer`. Splines are piecewise polynomials, parametrized by\n+their polynomial degree and the positions of the knots. The\n+:class:`SplineTransformer` implements a B-spline basis, cf. the references\n+below.\n+\n+.. note::\n+\n+ The :class:`SplineTransformer` treats each feature separately, i.e. it\n+ won't give you interaction terms.\n+\n+Some of the advantages of splines over polynomials are:\n+\n+ - B-splines are very flexible and robust if you keep a fixed low degree,\n+ usually 3, and parsimoniously adapt the number of knots. Polynomials\n+ would need a higher degree, which leads to the next point.\n+ - B-splines do not have oscillatory behaviour at the boundaries as have\n+ polynomials (the higher the degree, the worse). This is known as `Runge's\n+ phenomenon <https://en.wikipedia.org/wiki/Runge%27s_phenomenon>`_.\n+ - B-splines provide good options for extrapolation beyond the boundaries,\n+ i.e. beyond the range of fitted values. Have a look at the option\n+ ``extrapolation``.\n+ - B-splines generate a feature matrix with a banded structure. For a single\n+ feature, every row contains only ``degree + 1`` non-zero elements, which\n+ occur consecutively and are even positive. This results in a matrix with\n+ good numerical properties, e.g. a low condition number, in sharp contrast\n+ to a matrix of polynomials, which goes under the name\n+ `Vandermonde matrix <https://en.wikipedia.org/wiki/Vandermonde_matrix>`_.\n+ A low condition number is important for stable algorithms of linear\n+ models.\n+\n+The following code snippet shows splines in action::\n+\n+ >>> import numpy as np\n+ >>> from sklearn.preprocessing import SplineTransformer\n+ >>> X = np.arange(5).reshape(5, 1)\n+ >>> X\n+ array([[0],\n+ [1],\n+ [2],\n+ [3],\n+ [4]])\n+ >>> spline = SplineTransformer(degree=2, n_knots=3)\n+ >>> spline.fit_transform(X)\n+ array([[0.5 , 0.5 , 0. , 0. ],\n+ [0.125, 0.75 , 0.125, 0. ],\n+ [0. , 0.5 , 0.5 , 0. ],\n+ [0. , 0.125, 0.75 , 0.125],\n+ [0. , 0. , 0.5 , 0.5 ]])\n+\n+As the ``X`` is sorted, one can easily see the banded matrix output. Only the\n+three middle diagonals are non-zero for ``degree=2``. The higher the degree,\n+the more overlapping of the splines.\n+\n+Interestingly, a :class:`SplineTransformer` of ``degree=0`` is the same as\n+:class:`~sklearn.preprocessing.KBinsDiscretizer` with ``encode='onehot-dense``\n+and ``n_bins = n_knots - 1`` if ``knots = strategy``.\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py`\n+\n+.. topic:: References:\n \n-Note that polynomial features are used implicitly in `kernel methods <https://en.wikipedia.org/wiki/Kernel_method>`_ (e.g., :class:`~sklearn.svm.SVC`, :class:`~sklearn.decomposition.KernelPCA`) when using polynomial :ref:`svm_kernels`.\n+ * Eilers, P., & Marx, B. (1996). Flexible Smoothing with B-splines and\n+ Penalties. Statist. Sci. 11 (1996), no. 2, 89--121.\n+ `doi:10.1214/ss/1038425655 <https://doi.org/10.1214/ss/1038425655>`_\n \n-See :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py` for Ridge regression using created polynomial features.\n+ * Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. A review of\n+ spline function procedures in R. BMC Med Res Methodol 19, 46 (2019).\n+ `doi:10.1186/s12874-019-0666-3\n+ <https://doi.org/10.1186/s12874-019-0666-3>`_\n \n .. _function_transformer:\n \n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 652eba896903b..177dab23b3e62 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -110,6 +110,15 @@ Changelog\n Use ``var_`` instead.\n :pr:`18842` by :user:`Hong Shao Yang <hongshaoyang>`.\n \n+:mod:`sklearn.preprocessing`\n+............................\n+\n+- |Feature| The new :class:`preprocessing.SplineTransformer` is a feature\n+ preprocessing tool for the generation of B-splines, parametrized by the\n+ polynomial ``degree`` of the splines, number of knots ``n_knots`` and knot\n+ positioning strategy ``knots``.\n+ :pr:`18368` by :user:`Christian Lorentzen <lorentzenchr>`.\n+\n :mod:`sklearn.tree`\n ...................\n \n"
}
] |
1.00
|
8c6a045e46abe94e43a971d4f8042728addfd6a7
|
[
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[2-2-True]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_floats[3-False-False-float64]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-0]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[False-csr_matrix]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sparse_partial_fit_finite_variance[X_21]",
"sklearn/preprocessing/tests/test_data.py::test_center_kernel",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[0-3-False]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X0-True-False]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[3-3-False]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[array-Xw1-X1-sample_weight1]",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[yeo-johnson-1.0]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X[3-False-False-float64]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X0-False-False]",
"sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[True]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_matrix-False-False]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_without_copy",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csc_X[2-True-False-float64]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[2-3-True]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[1-3-True]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_matrix-True-False]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transformer_sorted_quantiles[array]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[asarray-False-False]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_sparse_toy",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_partial_fit_numerical_stability",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_method_exception",
"sklearn/preprocessing/tests/test_data.py::test_scaler_float16_overflow",
"sklearn/preprocessing/tests/test_data.py::test_yeo_johnson_darwin_example",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X[2-True-False-float32]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_iris",
"sklearn/preprocessing/tests/test_data.py::test_pairwise_deprecated",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[3-3-True]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_invalid_range",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_fit_transform[True-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csr-Xw1-X1-sample_weight1]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_2d_arrays",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[2-2-False]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_partial_fit",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-1]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_fit_transform[False-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_large_negative_value",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_degree_4[True-False]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-0.05]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_1d",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[False-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_2d",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[2-1-True]",
"sklearn/preprocessing/tests/test_data.py::test_fit_cold_start",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_shape_exception[box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[2-1-False]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-0]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_yeojohnson_any_input[X2]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csc_X[3-False-False-float64]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_floats[3-False-True-float64]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-None]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_return_identity",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_bounds",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_fit_transform[False-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_min_max_scaler_iris",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_iris_quantiles",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[3-2-False]",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_zero_variance_features",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csc_X[2-True-False-float32]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_axis1",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_error_sparse",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transformer_sorted_quantiles[sparse]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-0]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_1d",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-0.5]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-0.5]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csr_matrix-False-False]",
"sklearn/preprocessing/tests/test_data.py::test_binarizer",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_and_inverse",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[0-2-True]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[3-2-True]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[1-2-True]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csc_X[3-False-True-float64]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X[3-False-True-float64]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_trasform_with_partial_fit[None]",
"sklearn/preprocessing/tests/test_data.py::test_scale_input_finiteness_validation",
"sklearn/preprocessing/tests/test_data.py::test_minmax_scale_axis1",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_subsampling",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[asarray-False-True]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X1-True-False]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_iris",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csc-Xw1-X1-sample_weight1]",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[box-cox-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[yeo-johnson-0.5]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_nans[yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X0-True-True]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[3-1-False]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_zero_variance_features",
"sklearn/preprocessing/tests/test_data.py::test_normalizer_l1",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_notfitted[box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[2-2-False]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_lambda_one",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_degree_4[False-False]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X[1-True-False-int]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X0-False-True]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-True-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-False-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[0-3-True]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[True-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-0.5]",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_partial_fit",
"sklearn/preprocessing/tests/test_data.py::test_normalizer_l2",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[False-csc_matrix]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-True-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_transform_one_row_csr",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[array-Xw2-X2-sample_weight2]",
"sklearn/preprocessing/tests/test_data.py::test_add_dummy_feature",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-csc_matrix]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-False-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_boxcox_strictly_positive_exception",
"sklearn/preprocessing/tests/test_data.py::test_normalize",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[False-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_minmax_scaler_clip[feature_range0]",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_transform_one_row_csr",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[array-Xw0-X0-sample_weight0]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csr-Xw2-X2-sample_weight2]",
"sklearn/preprocessing/tests/test_data.py::test_min_max_scaler_zero_variance_features",
"sklearn/preprocessing/tests/test_data.py::test_maxabs_scaler_1d",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_shape_exception[yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-0.05]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[True]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_feature_names",
"sklearn/preprocessing/tests/test_data.py::test_minmax_scaler_partial_fit",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[True-csr_matrix]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[None-0.05]",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[box-cox-0.5]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_floats[2-True-False-float64]",
"sklearn/preprocessing/tests/test_data.py::test_scale_sparse_with_mean_raise_exception",
"sklearn/preprocessing/tests/test_data.py::test_optimization_power_transformer[yeo-johnson-0.1]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csc_X[4-False-False-float64]",
"sklearn/preprocessing/tests/test_data.py::test_normalizer_max_sign",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[0-2-False]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_lambda_zero",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_degree_4[False-True]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[positive-0.05]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_attributes[X1-False-False]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_dense_toy",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_numerical_stability",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[1-2-False]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_check_error",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_sparse_ignore_zeros",
"sklearn/preprocessing/tests/test_data.py::test_robust_scale_1d_array",
"sklearn/preprocessing/tests/test_data.py::test_scale_1d",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[asarray-True-False]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[True-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scale_axis1",
"sklearn/preprocessing/tests/test_data.py::test_min_max_scaler_1d",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_notfitted[yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csc_X[4-False-True-float64]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_floats[2-True-False-float32]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_int",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_dim_edges[3-1-True]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_unit_variance",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[1-3-False]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-0.5]",
"sklearn/preprocessing/tests/test_data.py::test_add_dummy_feature_csr",
"sklearn/preprocessing/tests/test_data.py::test_scaler_2d_arrays",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[csc_matrix-True-False]",
"sklearn/preprocessing/tests/test_data.py::test_handle_zeros_in_scale",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[2-2-True]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-False-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csc-Xw2-X2-sample_weight2]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_without_centering[None]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_zero_row[2-3-False]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X0-True-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_nans[box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_dtype[False-None]",
"sklearn/preprocessing/tests/test_data.py::test_fit_transform",
"sklearn/preprocessing/tests/test_data.py::test_cv_pipeline_precomputed",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_nan",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_yeojohnson_any_input[X3]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_fit_transform[True-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[False-yeo-johnson]",
"sklearn/preprocessing/tests/test_data.py::test_quantile_transform_valid_axis",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-0]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_col_zero_sparse",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_trasform_with_partial_fit[True]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csc_X[1-True-False-int]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-True-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[negative-1]",
"sklearn/preprocessing/tests/test_data.py::test_add_dummy_feature_csc",
"sklearn/preprocessing/tests/test_data.py::test_normalizer_max",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csc-Xw0-X0-sample_weight0]",
"sklearn/preprocessing/tests/test_data.py::test_scaler_n_samples_seen_with_nan[asarray-True-True]",
"sklearn/preprocessing/tests/test_data.py::test_add_dummy_feature_coo",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_feature_array_order",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sparse_partial_fit_finite_variance[X_20]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csc_X[2-True-False-int]",
"sklearn/preprocessing/tests/test_data.py::test_robust_scaler_equivalence_dense_sparse[zeros-1]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_yeojohnson_any_input[X1]",
"sklearn/preprocessing/tests/test_data.py::test_scale_function_without_centering",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_inverse[X1-False-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[True-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_minmax_scaler_clip[feature_range1]",
"sklearn/preprocessing/tests/test_data.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/preprocessing/tests/test_data.py::test_standard_scaler_sample_weight[sparse_csr-Xw0-X0-sample_weight0]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_yeojohnson_any_input[X0]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X[2-True-False-float64]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X_degree_4[True-True]",
"sklearn/preprocessing/tests/test_data.py::test_partial_fit_sparse_input[None]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_True[True-box-cox]",
"sklearn/preprocessing/tests/test_data.py::test_polynomial_features_csr_X[2-True-False-int]",
"sklearn/preprocessing/tests/test_data.py::test_power_transformer_copy_False[False-box-cox]"
] |
[
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[uniform-3-1]",
"sklearn/utils/tests/test_fixes.py::test_object_dtype_isnan[object-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params12-knots must be sorted without duplicates.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params0-degree must be a non-negative integer.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_manual_knot_input",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params7-Expected 2D array, got scalar array instead:]",
"sklearn/utils/tests/test_fixes.py::test_object_dtype_isnan[float-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[uniform-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params18-include_bias must be bool.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-True-False]",
"sklearn/utils/tests/test_fixes.py::test_loguniform[-1-0-10]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params11-knots must be sorted without duplicates.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params1-degree must be a non-negative integer.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[quantile-4-2]",
"sklearn/utils/tests/test_fixes.py::test_linspace",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params6-n_knots must be a positive integer >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params10-knots.shape\\\\[1\\\\] == n_features is violated.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[uniform-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params16-include_bias must be bool.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[quantile-4-1]",
"sklearn/utils/tests/test_fixes.py::test_loguniform[-1-1-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[uniform-4-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params15-extrapolation must be one of 'error', 'constant', 'linear' or 'continue'.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params4-n_knots must be a positive integer >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params5-n_knots must be a positive integer >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_and_spline_array_order[SplineTransformer]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[uniform-3-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[quantile-3-1]",
"sklearn/utils/tests/test_fixes.py::test_masked_array_deprecated",
"sklearn/utils/tests/test_fixes.py::test_joblib_parallel_args[0.11]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-True-False]",
"sklearn/utils/tests/test_fixes.py::test_loguniform[0-2-2.718281828459045]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[uniform-4-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params3-n_knots must be a positive integer >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params8-Expected 2D array, got 1D array instead:]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[quantile-3-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[uniform-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params13-extrapolation must be one of 'error', 'constant', 'linear' or 'continue'.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params17-include_bias must be bool.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[uniform-3-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[quantile-4-3]",
"sklearn/utils/tests/test_fixes.py::test_joblib_parallel_args[0.12.0]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params9-Number of knots, knots.shape\\\\[0\\\\], must be >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[quantile-4-4]",
"sklearn/utils/tests/test_fixes.py::test_object_dtype_isnan[object-a]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[quantile-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_kbindiscretizer",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_feature_names",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[quantile-3-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params14-extrapolation must be one of 'error', 'constant', 'linear' or 'continue'.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params2-degree must be a non-negative integer.]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "sklearn/preprocessing/_polynomial.py"
}
]
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 84f8097cbbe9d..65d555f978df0 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1414,6 +1414,7 @@ details.\n preprocessing.PowerTransformer\n preprocessing.QuantileTransformer\n preprocessing.RobustScaler\n+ preprocessing.SplineTransformer\n preprocessing.StandardScaler\n \n .. autosummary::\n"
},
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex 801d9a98ed1f4..a339b4bfae4e2 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -624,7 +624,9 @@ of continuous attributes to one with only nominal attributes.\n \n One-hot encoded discretized features can make a model more expressive, while\n maintaining interpretability. For instance, pre-processing with a discretizer\n-can introduce nonlinearity to linear models.\n+can introduce nonlinearity to linear models. For more advanced possibilities,\n+in particular smooth ones, see :ref:`generating_polynomial_features` further\n+below.\n \n K-bins discretization\n ---------------------\n@@ -756,12 +758,24 @@ Imputation of missing values\n \n Tools for imputing missing values are discussed at :ref:`impute`.\n \n-.. _polynomial_features:\n+.. _generating_polynomial_features:\n \n Generating polynomial features\n ==============================\n \n-Often it's useful to add complexity to the model by considering nonlinear features of the input data. A simple and common method to use is polynomial features, which can get features' high-order and interaction terms. It is implemented in :class:`PolynomialFeatures`::\n+Often it's useful to add complexity to a model by considering nonlinear\n+features of the input data. We show two possibilities that are both based on\n+polynomials: The first one uses pure polynomials, the second one uses splines,\n+i.e. piecewise polynomials.\n+\n+.. _polynomial_features:\n+\n+Polynomial features\n+-------------------\n+\n+A simple and common method to use is polynomial features, which can get\n+features' high-order and interaction terms. It is implemented in\n+:class:`PolynomialFeatures`::\n \n >>> import numpy as np\n >>> from sklearn.preprocessing import PolynomialFeatures\n@@ -776,9 +790,11 @@ Often it's useful to add complexity to the model by considering nonlinear featur\n [ 1., 2., 3., 4., 6., 9.],\n [ 1., 4., 5., 16., 20., 25.]])\n \n-The features of X have been transformed from :math:`(X_1, X_2)` to :math:`(1, X_1, X_2, X_1^2, X_1X_2, X_2^2)`.\n+The features of X have been transformed from :math:`(X_1, X_2)` to\n+:math:`(1, X_1, X_2, X_1^2, X_1X_2, X_2^2)`.\n \n-In some cases, only interaction terms among features are required, and it can be gotten with the setting ``interaction_only=True``::\n+In some cases, only interaction terms among features are required, and it can\n+be gotten with the setting ``interaction_only=True``::\n \n >>> X = np.arange(9).reshape(3, 3)\n >>> X\n@@ -791,11 +807,94 @@ In some cases, only interaction terms among features are required, and it can be\n [ 1., 3., 4., 5., 12., 15., 20., 60.],\n [ 1., 6., 7., 8., 42., 48., 56., 336.]])\n \n-The features of X have been transformed from :math:`(X_1, X_2, X_3)` to :math:`(1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3)`.\n+The features of X have been transformed from :math:`(X_1, X_2, X_3)` to\n+:math:`(1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3)`.\n+\n+Note that polynomial features are used implicitly in `kernel methods\n+<https://en.wikipedia.org/wiki/Kernel_method>`_ (e.g., :class:`~sklearn.svm.SVC`,\n+:class:`~sklearn.decomposition.KernelPCA`) when using polynomial :ref:`svm_kernels`.\n+\n+See :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py`\n+for Ridge regression using created polynomial features.\n+\n+.. _spline_transformer:\n+\n+Spline transformer\n+------------------\n+\n+Another way to add nonlinear terms instead of pure polynomials of features is\n+to generate spline basis functions for each feature with the\n+:class:`SplineTransformer`. Splines are piecewise polynomials, parametrized by\n+their polynomial degree and the positions of the knots. The\n+:class:`SplineTransformer` implements a B-spline basis, cf. the references\n+below.\n+\n+.. note::\n+\n+ The :class:`SplineTransformer` treats each feature separately, i.e. it\n+ won't give you interaction terms.\n+\n+Some of the advantages of splines over polynomials are:\n+\n+ - B-splines are very flexible and robust if you keep a fixed low degree,\n+ usually 3, and parsimoniously adapt the number of knots. Polynomials\n+ would need a higher degree, which leads to the next point.\n+ - B-splines do not have oscillatory behaviour at the boundaries as have\n+ polynomials (the higher the degree, the worse). This is known as `Runge's\n+ phenomenon <https://en.wikipedia.org/wiki/Runge%27s_phenomenon>`_.\n+ - B-splines provide good options for extrapolation beyond the boundaries,\n+ i.e. beyond the range of fitted values. Have a look at the option\n+ ``extrapolation``.\n+ - B-splines generate a feature matrix with a banded structure. For a single\n+ feature, every row contains only ``degree + 1`` non-zero elements, which\n+ occur consecutively and are even positive. This results in a matrix with\n+ good numerical properties, e.g. a low condition number, in sharp contrast\n+ to a matrix of polynomials, which goes under the name\n+ `Vandermonde matrix <https://en.wikipedia.org/wiki/Vandermonde_matrix>`_.\n+ A low condition number is important for stable algorithms of linear\n+ models.\n+\n+The following code snippet shows splines in action::\n+\n+ >>> import numpy as np\n+ >>> from sklearn.preprocessing import SplineTransformer\n+ >>> X = np.arange(5).reshape(5, 1)\n+ >>> X\n+ array([[0],\n+ [1],\n+ [2],\n+ [3],\n+ [4]])\n+ >>> spline = SplineTransformer(degree=2, n_knots=3)\n+ >>> spline.fit_transform(X)\n+ array([[0.5 , 0.5 , 0. , 0. ],\n+ [0.125, 0.75 , 0.125, 0. ],\n+ [0. , 0.5 , 0.5 , 0. ],\n+ [0. , 0.125, 0.75 , 0.125],\n+ [0. , 0. , 0.5 , 0.5 ]])\n+\n+As the ``X`` is sorted, one can easily see the banded matrix output. Only the\n+three middle diagonals are non-zero for ``degree=2``. The higher the degree,\n+the more overlapping of the splines.\n+\n+Interestingly, a :class:`SplineTransformer` of ``degree=0`` is the same as\n+:class:`~sklearn.preprocessing.KBinsDiscretizer` with ``encode='onehot-dense``\n+and ``n_bins = n_knots - 1`` if ``knots = strategy``.\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py`\n+\n+.. topic:: References:\n \n-Note that polynomial features are used implicitly in `kernel methods <https://en.wikipedia.org/wiki/Kernel_method>`_ (e.g., :class:`~sklearn.svm.SVC`, :class:`~sklearn.decomposition.KernelPCA`) when using polynomial :ref:`svm_kernels`.\n+ * Eilers, P., & Marx, B. (1996). Flexible Smoothing with B-splines and\n+ Penalties. Statist. Sci. 11 (1996), no. 2, 89--121.\n+ `doi:10.1214/ss/1038425655 <https://doi.org/10.1214/ss/1038425655>`_\n \n-See :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py` for Ridge regression using created polynomial features.\n+ * Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. A review of\n+ spline function procedures in R. BMC Med Res Methodol 19, 46 (2019).\n+ `doi:10.1186/s12874-019-0666-3\n+ <https://doi.org/10.1186/s12874-019-0666-3>`_\n \n .. _function_transformer:\n \n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 652eba896903b..177dab23b3e62 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -110,6 +110,15 @@ Changelog\n Use ``var_`` instead.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.preprocessing`\n+............................\n+\n+- |Feature| The new :class:`preprocessing.SplineTransformer` is a feature\n+ preprocessing tool for the generation of B-splines, parametrized by the\n+ polynomial ``degree`` of the splines, number of knots ``n_knots`` and knot\n+ positioning strategy ``knots``.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.tree`\n ...................\n \n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 84f8097cbbe9d..65d555f978df0 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1414,6 +1414,7 @@ details.
preprocessing.PowerTransformer
preprocessing.QuantileTransformer
preprocessing.RobustScaler
+ preprocessing.SplineTransformer
preprocessing.StandardScaler
.. autosummary::
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index 801d9a98ed1f4..a339b4bfae4e2 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -624,7 +624,9 @@ of continuous attributes to one with only nominal attributes.
One-hot encoded discretized features can make a model more expressive, while
maintaining interpretability. For instance, pre-processing with a discretizer
-can introduce nonlinearity to linear models.
+can introduce nonlinearity to linear models. For more advanced possibilities,
+in particular smooth ones, see :ref:`generating_polynomial_features` further
+below.
K-bins discretization
---------------------
@@ -756,12 +758,24 @@ Imputation of missing values
Tools for imputing missing values are discussed at :ref:`impute`.
-.. _polynomial_features:
+.. _generating_polynomial_features:
Generating polynomial features
==============================
-Often it's useful to add complexity to the model by considering nonlinear features of the input data. A simple and common method to use is polynomial features, which can get features' high-order and interaction terms. It is implemented in :class:`PolynomialFeatures`::
+Often it's useful to add complexity to a model by considering nonlinear
+features of the input data. We show two possibilities that are both based on
+polynomials: The first one uses pure polynomials, the second one uses splines,
+i.e. piecewise polynomials.
+
+.. _polynomial_features:
+
+Polynomial features
+-------------------
+
+A simple and common method to use is polynomial features, which can get
+features' high-order and interaction terms. It is implemented in
+:class:`PolynomialFeatures`::
>>> import numpy as np
>>> from sklearn.preprocessing import PolynomialFeatures
@@ -776,9 +790,11 @@ Often it's useful to add complexity to the model by considering nonlinear featur
[ 1., 2., 3., 4., 6., 9.],
[ 1., 4., 5., 16., 20., 25.]])
-The features of X have been transformed from :math:`(X_1, X_2)` to :math:`(1, X_1, X_2, X_1^2, X_1X_2, X_2^2)`.
+The features of X have been transformed from :math:`(X_1, X_2)` to
+:math:`(1, X_1, X_2, X_1^2, X_1X_2, X_2^2)`.
-In some cases, only interaction terms among features are required, and it can be gotten with the setting ``interaction_only=True``::
+In some cases, only interaction terms among features are required, and it can
+be gotten with the setting ``interaction_only=True``::
>>> X = np.arange(9).reshape(3, 3)
>>> X
@@ -791,11 +807,94 @@ In some cases, only interaction terms among features are required, and it can be
[ 1., 3., 4., 5., 12., 15., 20., 60.],
[ 1., 6., 7., 8., 42., 48., 56., 336.]])
-The features of X have been transformed from :math:`(X_1, X_2, X_3)` to :math:`(1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3)`.
+The features of X have been transformed from :math:`(X_1, X_2, X_3)` to
+:math:`(1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3)`.
+
+Note that polynomial features are used implicitly in `kernel methods
+<https://en.wikipedia.org/wiki/Kernel_method>`_ (e.g., :class:`~sklearn.svm.SVC`,
+:class:`~sklearn.decomposition.KernelPCA`) when using polynomial :ref:`svm_kernels`.
+
+See :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py`
+for Ridge regression using created polynomial features.
+
+.. _spline_transformer:
+
+Spline transformer
+------------------
+
+Another way to add nonlinear terms instead of pure polynomials of features is
+to generate spline basis functions for each feature with the
+:class:`SplineTransformer`. Splines are piecewise polynomials, parametrized by
+their polynomial degree and the positions of the knots. The
+:class:`SplineTransformer` implements a B-spline basis, cf. the references
+below.
+
+.. note::
+
+ The :class:`SplineTransformer` treats each feature separately, i.e. it
+ won't give you interaction terms.
+
+Some of the advantages of splines over polynomials are:
+
+ - B-splines are very flexible and robust if you keep a fixed low degree,
+ usually 3, and parsimoniously adapt the number of knots. Polynomials
+ would need a higher degree, which leads to the next point.
+ - B-splines do not have oscillatory behaviour at the boundaries as have
+ polynomials (the higher the degree, the worse). This is known as `Runge's
+ phenomenon <https://en.wikipedia.org/wiki/Runge%27s_phenomenon>`_.
+ - B-splines provide good options for extrapolation beyond the boundaries,
+ i.e. beyond the range of fitted values. Have a look at the option
+ ``extrapolation``.
+ - B-splines generate a feature matrix with a banded structure. For a single
+ feature, every row contains only ``degree + 1`` non-zero elements, which
+ occur consecutively and are even positive. This results in a matrix with
+ good numerical properties, e.g. a low condition number, in sharp contrast
+ to a matrix of polynomials, which goes under the name
+ `Vandermonde matrix <https://en.wikipedia.org/wiki/Vandermonde_matrix>`_.
+ A low condition number is important for stable algorithms of linear
+ models.
+
+The following code snippet shows splines in action::
+
+ >>> import numpy as np
+ >>> from sklearn.preprocessing import SplineTransformer
+ >>> X = np.arange(5).reshape(5, 1)
+ >>> X
+ array([[0],
+ [1],
+ [2],
+ [3],
+ [4]])
+ >>> spline = SplineTransformer(degree=2, n_knots=3)
+ >>> spline.fit_transform(X)
+ array([[0.5 , 0.5 , 0. , 0. ],
+ [0.125, 0.75 , 0.125, 0. ],
+ [0. , 0.5 , 0.5 , 0. ],
+ [0. , 0.125, 0.75 , 0.125],
+ [0. , 0. , 0.5 , 0.5 ]])
+
+As the ``X`` is sorted, one can easily see the banded matrix output. Only the
+three middle diagonals are non-zero for ``degree=2``. The higher the degree,
+the more overlapping of the splines.
+
+Interestingly, a :class:`SplineTransformer` of ``degree=0`` is the same as
+:class:`~sklearn.preprocessing.KBinsDiscretizer` with ``encode='onehot-dense``
+and ``n_bins = n_knots - 1`` if ``knots = strategy``.
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py`
+
+.. topic:: References:
-Note that polynomial features are used implicitly in `kernel methods <https://en.wikipedia.org/wiki/Kernel_method>`_ (e.g., :class:`~sklearn.svm.SVC`, :class:`~sklearn.decomposition.KernelPCA`) when using polynomial :ref:`svm_kernels`.
+ * Eilers, P., & Marx, B. (1996). Flexible Smoothing with B-splines and
+ Penalties. Statist. Sci. 11 (1996), no. 2, 89--121.
+ `doi:10.1214/ss/1038425655 <https://doi.org/10.1214/ss/1038425655>`_
-See :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py` for Ridge regression using created polynomial features.
+ * Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. et al. A review of
+ spline function procedures in R. BMC Med Res Methodol 19, 46 (2019).
+ `doi:10.1186/s12874-019-0666-3
+ <https://doi.org/10.1186/s12874-019-0666-3>`_
.. _function_transformer:
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 652eba896903b..177dab23b3e62 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -110,6 +110,15 @@ Changelog
Use ``var_`` instead.
:pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.preprocessing`
+............................
+
+- |Feature| The new :class:`preprocessing.SplineTransformer` is a feature
+ preprocessing tool for the generation of B-splines, parametrized by the
+ polynomial ``degree`` of the splines, number of knots ``n_knots`` and knot
+ positioning strategy ``knots``.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.tree`
...................
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'sklearn/preprocessing/_polynomial.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19069
|
https://github.com/scikit-learn/scikit-learn/pull/19069
|
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index e1b4c5599c3b5..b87971ec4ae5a 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -482,6 +482,17 @@ scikit-learn estimators, as these expect continuous input, and would interpret
the categories as being ordered, which is often not desired (i.e. the set of
browsers was ordered arbitrarily).
+:class:`OrdinalEncoder` will also passthrough missing values that are
+indicated by `np.nan`.
+
+ >>> enc = preprocessing.OrdinalEncoder()
+ >>> X = [['male'], ['female'], [np.nan], ['female']]
+ >>> enc.fit_transform(X)
+ array([[ 1.],
+ [ 0.],
+ [nan],
+ [ 0.]])
+
Another possibility to convert categorical features to features that can be used
with scikit-learn estimators is to use a one-of-K, also known as one-hot or
dummy encoding.
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 25e0b369bebd3..6a565b8d5e21b 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -123,6 +123,12 @@ Changelog
not corresponding to their objective. :pr:`19172` by
:user:`Mathurin Massias <mathurinm>`
+:mod:`sklearn.preprocessing`
+............................
+
+- |Feature| :class:`preprocessing.OrdinalEncoder` supports passing through
+ missing values by default. :pr:`19069` by `Thomas Fan`_.
+
- |API|: The parameter ``normalize`` of :class:`linear_model.LinearRegression`
is deprecated and will be removed in 1.2.
Motivation for this deprecation: ``normalize`` parameter did not take any
diff --git a/sklearn/preprocessing/_encoders.py b/sklearn/preprocessing/_encoders.py
index 342b730ba91ed..043f9fc40ef53 100644
--- a/sklearn/preprocessing/_encoders.py
+++ b/sklearn/preprocessing/_encoders.py
@@ -10,6 +10,7 @@
from ..utils import check_array, is_scalar_nan
from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args
+from ..utils._mask import _get_mask
from ..utils._encode import _encode, _check_unknown, _unique
@@ -752,7 +753,7 @@ def fit(self, X, y=None):
if np.dtype(self.dtype).kind != 'f':
raise ValueError(
f"When unknown_value is np.nan, the dtype "
- "parameter should be "
+ f"parameter should be "
f"a float dtype. Got {self.dtype}."
)
elif not isinstance(self.unknown_value, numbers.Integral):
@@ -765,7 +766,7 @@ def fit(self, X, y=None):
f"handle_unknown is 'use_encoded_value', "
f"got {self.unknown_value}.")
- self._fit(X)
+ self._fit(X, force_all_finite='allow-nan')
if self.handle_unknown == 'use_encoded_value':
for feature_cats in self.categories_:
@@ -775,6 +776,21 @@ def fit(self, X, y=None):
f"values already used for encoding the "
f"seen categories.")
+ # stores the missing indices per category
+ self._missing_indices = {}
+ for cat_idx, categories_for_idx in enumerate(self.categories_):
+ for i, cat in enumerate(categories_for_idx):
+ if is_scalar_nan(cat):
+ self._missing_indices[cat_idx] = i
+ continue
+
+ if np.dtype(self.dtype).kind != 'f' and self._missing_indices:
+ raise ValueError(
+ "There are missing values in features "
+ f"{list(self._missing_indices)}. For OrdinalEncoder to "
+ "passthrough missing values, the dtype parameter must be a "
+ "float")
+
return self
def transform(self, X):
@@ -791,9 +807,14 @@ def transform(self, X):
X_out : sparse matrix or a 2-d array
Transformed input.
"""
- X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
+ X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown,
+ force_all_finite='allow-nan')
X_trans = X_int.astype(self.dtype, copy=False)
+ for cat_idx, missing_idx in self._missing_indices.items():
+ X_missing_mask = X_int[:, cat_idx] == missing_idx
+ X_trans[X_missing_mask, cat_idx] = np.nan
+
# create separate category for unknown values
if self.handle_unknown == 'use_encoded_value':
X_trans[~X_mask] = self.unknown_value
@@ -814,7 +835,7 @@ def inverse_transform(self, X):
Inverse transformed array.
"""
check_is_fitted(self)
- X = check_array(X, accept_sparse='csr')
+ X = check_array(X, accept_sparse='csr', force_all_finite='allow-nan')
n_samples, _ = X.shape
n_features = len(self.categories_)
@@ -833,6 +854,12 @@ def inverse_transform(self, X):
for i in range(n_features):
labels = X[:, i].astype('int64', copy=False)
+
+ # replace values of X[:, i] that were nan with actual indices
+ if i in self._missing_indices:
+ X_i_mask = _get_mask(X[:, i], np.nan)
+ labels[X_i_mask] = self._missing_indices[i]
+
if self.handle_unknown == 'use_encoded_value':
unknown_labels = labels == self.unknown_value
X_tr[:, i] = self.categories_[i][np.where(
|
diff --git a/sklearn/preprocessing/tests/test_encoders.py b/sklearn/preprocessing/tests/test_encoders.py
index fd28d8c40b46c..b1eff0cad21e0 100644
--- a/sklearn/preprocessing/tests/test_encoders.py
+++ b/sklearn/preprocessing/tests/test_encoders.py
@@ -574,24 +574,6 @@ def test_ordinal_encoder_inverse():
enc.inverse_transform(X_tr)
[email protected]("X", [np.array([[1, np.nan]]).T,
- np.array([['a', np.nan]], dtype=object).T],
- ids=['numeric', 'object'])
-def test_ordinal_encoder_raise_missing(X):
- ohe = OrdinalEncoder()
-
- with pytest.raises(ValueError, match="Input contains NaN"):
- ohe.fit(X)
-
- with pytest.raises(ValueError, match="Input contains NaN"):
- ohe.fit_transform(X)
-
- ohe.fit(X[:1, :])
-
- with pytest.raises(ValueError, match="Input contains NaN"):
- ohe.transform(X)
-
-
def test_ordinal_encoder_handle_unknowns_string():
enc = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-2)
X_fit = np.array([['a', 'x'], ['b', 'y'], ['c', 'z']], dtype=object)
@@ -930,3 +912,122 @@ def test_ohe_missing_value_support_pandas_categorical(pd_nan_type):
assert len(ohe.categories_) == 1
assert_array_equal(ohe.categories_[0][:-1], ['a', 'b', 'c'])
assert np.isnan(ohe.categories_[0][-1])
+
+
+def test_ordinal_encoder_passthrough_missing_values_float_errors_dtype():
+ """Test ordinal encoder with nan passthrough fails when dtype=np.int32."""
+
+ X = np.array([[np.nan, 3.0, 1.0, 3.0]]).T
+ oe = OrdinalEncoder(dtype=np.int32)
+
+ msg = (r"There are missing values in features \[0\]. For OrdinalEncoder "
+ "to passthrough missing values, the dtype parameter must be a "
+ "float")
+ with pytest.raises(ValueError, match=msg):
+ oe.fit(X)
+
+
+def test_ordinal_encoder_passthrough_missing_values_float():
+ """Test ordinal encoder with nan on float dtypes."""
+
+ X = np.array([[np.nan, 3.0, 1.0, 3.0]], dtype=np.float64).T
+ oe = OrdinalEncoder().fit(X)
+
+ assert len(oe.categories_) == 1
+ assert_allclose(oe.categories_[0], [1.0, 3.0, np.nan])
+
+ X_trans = oe.transform(X)
+ assert_allclose(X_trans, [[np.nan], [1.0], [0.0], [1.0]])
+
+ X_inverse = oe.inverse_transform(X_trans)
+ assert_allclose(X_inverse, X)
+
+
[email protected]('pd_nan_type', ['pd.NA', 'np.nan'])
+def test_ordinal_encoder_missing_value_support_pandas_categorical(pd_nan_type):
+ """Check ordinal encoder is compatible with pandas."""
+ # checks pandas dataframe with categorical features
+ if pd_nan_type == 'pd.NA':
+ # pd.NA is in pandas 1.0
+ pd = pytest.importorskip('pandas', minversion="1.0")
+ pd_missing_value = pd.NA
+ else: # np.nan
+ pd = pytest.importorskip('pandas')
+ pd_missing_value = np.nan
+
+ df = pd.DataFrame({
+ 'col1': pd.Series(['c', 'a', pd_missing_value, 'b', 'a'],
+ dtype='category'),
+ })
+
+ oe = OrdinalEncoder().fit(df)
+ assert len(oe.categories_) == 1
+ assert_array_equal(oe.categories_[0][:3], ['a', 'b', 'c'])
+ assert np.isnan(oe.categories_[0][-1])
+
+ df_trans = oe.transform(df)
+
+ assert_allclose(df_trans, [[2.0], [0.0], [np.nan], [1.0], [0.0]])
+
+ X_inverse = oe.inverse_transform(df_trans)
+ assert X_inverse.shape == (5, 1)
+ assert_array_equal(X_inverse[:2, 0], ['c', 'a'])
+ assert_array_equal(X_inverse[3:, 0], ['b', 'a'])
+ assert np.isnan(X_inverse[2, 0])
+
+
[email protected]("X, X2, cats, cat_dtype", [
+ ((np.array([['a', np.nan]], dtype=object).T,
+ np.array([['a', 'b']], dtype=object).T,
+ [np.array(['a', np.nan, 'd'], dtype=object)], np.object_)),
+ ((np.array([['a', np.nan]], dtype=object).T,
+ np.array([['a', 'b']], dtype=object).T,
+ [np.array(['a', np.nan, 'd'], dtype=object)], np.object_)),
+ ((np.array([[2.0, np.nan]], dtype=np.float64).T,
+ np.array([[3.0]], dtype=np.float64).T,
+ [np.array([2.0, 4.0, np.nan])], np.float64)),
+ ], ids=['object-None-missing-value', 'object-nan-missing_value',
+ 'numeric-missing-value'])
+def test_ordinal_encoder_specified_categories_missing_passthrough(
+ X, X2, cats, cat_dtype):
+ """Test ordinal encoder for specified categories."""
+ oe = OrdinalEncoder(categories=cats)
+ exp = np.array([[0.], [np.nan]])
+ assert_array_equal(oe.fit_transform(X), exp)
+ # manually specified categories should have same dtype as
+ # the data when coerced from lists
+ assert oe.categories_[0].dtype == cat_dtype
+
+ # when specifying categories manually, unknown categories should already
+ # raise when fitting
+ oe = OrdinalEncoder(categories=cats)
+ with pytest.raises(ValueError, match="Found unknown categories"):
+ oe.fit(X2)
+
+
[email protected]("X, expected_X_trans, X_test", [
+ (np.array([[1.0, np.nan, 3.0]]).T,
+ np.array([[0.0, np.nan, 1.0]]).T,
+ np.array([[4.0]])),
+ (np.array([[1.0, 4.0, 3.0]]).T,
+ np.array([[0.0, 2.0, 1.0]]).T,
+ np.array([[np.nan]])),
+ (np.array([['c', np.nan, 'b']], dtype=object).T,
+ np.array([[1.0, np.nan, 0.0]]).T,
+ np.array([['d']], dtype=object)),
+ (np.array([['c', 'a', 'b']], dtype=object).T,
+ np.array([[2.0, 0.0, 1.0]]).T,
+ np.array([[np.nan]], dtype=object)),
+])
+def test_ordinal_encoder_handle_missing_and_unknown(
+ X, expected_X_trans, X_test
+):
+ """Test the interaction between missing values and handle_unknown"""
+
+ oe = OrdinalEncoder(handle_unknown="use_encoded_value",
+ unknown_value=-1)
+
+ X_trans = oe.fit_transform(X)
+ assert_allclose(X_trans, expected_X_trans)
+
+ assert_allclose(oe.transform(X_test), [[-1.0]])
|
[
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex e1b4c5599c3b5..b87971ec4ae5a 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -482,6 +482,17 @@ scikit-learn estimators, as these expect continuous input, and would interpret\n the categories as being ordered, which is often not desired (i.e. the set of\n browsers was ordered arbitrarily).\n \n+:class:`OrdinalEncoder` will also passthrough missing values that are\n+indicated by `np.nan`.\n+\n+ >>> enc = preprocessing.OrdinalEncoder()\n+ >>> X = [['male'], ['female'], [np.nan], ['female']]\n+ >>> enc.fit_transform(X)\n+ array([[ 1.],\n+ [ 0.],\n+ [nan],\n+ [ 0.]])\n+\n Another possibility to convert categorical features to features that can be used\n with scikit-learn estimators is to use a one-of-K, also known as one-hot or\n dummy encoding.\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 25e0b369bebd3..6a565b8d5e21b 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -123,6 +123,12 @@ Changelog\n not corresponding to their objective. :pr:`19172` by\n :user:`Mathurin Massias <mathurinm>`\n \n+:mod:`sklearn.preprocessing`\n+............................\n+\n+- |Feature| :class:`preprocessing.OrdinalEncoder` supports passing through\n+ missing values by default. :pr:`19069` by `Thomas Fan`_.\n+\n - |API|: The parameter ``normalize`` of :class:`linear_model.LinearRegression`\n is deprecated and will be removed in 1.2.\n Motivation for this deprecation: ``normalize`` parameter did not take any\n"
}
] |
1.00
|
5c246225ddf130f1eee398e889e4c2a19b5f1791
|
[
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_if_binary",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[dataframe-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[array-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[dataframe-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_params",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[array-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_not_fitted",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_inverse",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[list-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit2-params2-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float-nan-object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan0]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[dataframe-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_raise_categories_shape",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[list-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_unsorted_categories",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-nan-and-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit3-params3-The following categories were supposed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories_mixed_columns",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[list-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_diff_n_features",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan_non_float_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-sparse]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[float]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[int]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OrdinalEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_equals_if_binary",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_warning",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[array-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-dense]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[dataframe-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit0-params0-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params4-ValueError-handle_unknown should be either 'error' or 'use_encoded_value', got ignore.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params0-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got None.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params1-TypeError-unknown_value should only be set when handle_unknown is 'use_encoded_value', got -2.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object-string-cat]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[array-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-dense]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params3-ValueError-The used value for unknown_value (1) is one of the values already used for encoding the seen categories.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_sparse_dense",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit1-params1-`handle_unknown` must be 'error']",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-sparse]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OneHotEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[list-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[string]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params2-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got bla.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_string",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-np.nan-object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit]"
] |
[
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[np.nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-None-missing-value]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[numeric-missing-value]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-nan-missing_value]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X3-expected_X_trans3-X_test3]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float_errors_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X1-expected_X_trans1-X_test1]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X0-expected_X_trans0-X_test0]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[pd.NA]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X2-expected_X_trans2-X_test2]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex e1b4c5599c3b5..b87971ec4ae5a 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -482,6 +482,17 @@ scikit-learn estimators, as these expect continuous input, and would interpret\n the categories as being ordered, which is often not desired (i.e. the set of\n browsers was ordered arbitrarily).\n \n+:class:`OrdinalEncoder` will also passthrough missing values that are\n+indicated by `np.nan`.\n+\n+ >>> enc = preprocessing.OrdinalEncoder()\n+ >>> X = [['male'], ['female'], [np.nan], ['female']]\n+ >>> enc.fit_transform(X)\n+ array([[ 1.],\n+ [ 0.],\n+ [nan],\n+ [ 0.]])\n+\n Another possibility to convert categorical features to features that can be used\n with scikit-learn estimators is to use a one-of-K, also known as one-hot or\n dummy encoding.\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 25e0b369bebd3..6a565b8d5e21b 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -123,6 +123,12 @@ Changelog\n not corresponding to their objective. :pr:`<PRID>` by\n :user:`<NAME>`\n \n+:mod:`sklearn.preprocessing`\n+............................\n+\n+- |Feature| :class:`preprocessing.OrdinalEncoder` supports passing through\n+ missing values by default. :pr:`<PRID>` by `<NAME>`_.\n+\n - |API|: The parameter ``normalize`` of :class:`linear_model.LinearRegression`\n is deprecated and will be removed in 1.2.\n Motivation for this deprecation: ``normalize`` parameter did not take any\n"
}
] |
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index e1b4c5599c3b5..b87971ec4ae5a 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -482,6 +482,17 @@ scikit-learn estimators, as these expect continuous input, and would interpret
the categories as being ordered, which is often not desired (i.e. the set of
browsers was ordered arbitrarily).
+:class:`OrdinalEncoder` will also passthrough missing values that are
+indicated by `np.nan`.
+
+ >>> enc = preprocessing.OrdinalEncoder()
+ >>> X = [['male'], ['female'], [np.nan], ['female']]
+ >>> enc.fit_transform(X)
+ array([[ 1.],
+ [ 0.],
+ [nan],
+ [ 0.]])
+
Another possibility to convert categorical features to features that can be used
with scikit-learn estimators is to use a one-of-K, also known as one-hot or
dummy encoding.
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 25e0b369bebd3..6a565b8d5e21b 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -123,6 +123,12 @@ Changelog
not corresponding to their objective. :pr:`<PRID>` by
:user:`<NAME>`
+:mod:`sklearn.preprocessing`
+............................
+
+- |Feature| :class:`preprocessing.OrdinalEncoder` supports passing through
+ missing values by default. :pr:`<PRID>` by `<NAME>`_.
+
- |API|: The parameter ``normalize`` of :class:`linear_model.LinearRegression`
is deprecated and will be removed in 1.2.
Motivation for this deprecation: ``normalize`` parameter did not take any
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19041
|
https://github.com/scikit-learn/scikit-learn/pull/19041
|
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index b87971ec4ae5a..cdde7479b1a4f 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -560,9 +560,7 @@ parameter allows the user to specify a category for each feature to be dropped.
This is useful to avoid co-linearity in the input matrix in some classifiers.
Such functionality is useful, for example, when using non-regularized
regression (:class:`LinearRegression <sklearn.linear_model.LinearRegression>`),
-since co-linearity would cause the covariance matrix to be non-invertible.
-When this parameter is not None, ``handle_unknown`` must be set to
-``error``::
+since co-linearity would cause the covariance matrix to be non-invertible::
>>> X = [['male', 'from US', 'uses Safari'],
... ['female', 'from Europe', 'uses Firefox']]
@@ -591,6 +589,30 @@ In the transformed `X`, the first column is the encoding of the feature with
categories "male"/"female", while the remaining 6 columns is the encoding of
the 2 features with respectively 3 categories each.
+When `handle_unknown='ignore'` and `drop` is not None, unknown categories will
+be encoded as all zeros::
+
+ >>> drop_enc = preprocessing.OneHotEncoder(drop='first',
+ ... handle_unknown='ignore').fit(X)
+ >>> X_test = [['unknown', 'America', 'IE']]
+ >>> drop_enc.transform(X_test).toarray()
+ array([[0., 0., 0., 0., 0.]])
+
+All the categories in `X_test` are unknown during transform and will be mapped
+to all zeros. This means that unknown categories will have the same mapping as
+the dropped category. :meth`OneHotEncoder.inverse_transform` will map all zeros
+to the dropped category if a category is dropped and `None` if a category is
+not dropped::
+
+ >>> drop_enc = preprocessing.OneHotEncoder(drop='if_binary', sparse=False,
+ ... handle_unknown='ignore').fit(X)
+ >>> X_test = [['unknown', 'America', 'IE']]
+ >>> X_trans = drop_enc.transform(X_test)
+ >>> X_trans
+ array([[0., 0., 0., 0., 0., 0., 0.]])
+ >>> drop_enc.inverse_transform(X_trans)
+ array([['female', None, None]], dtype=object)
+
:class:`OneHotEncoder` supports categorical features with missing values by
considering the missing values as an additional category::
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 2b108d2f0e197..2aaecb6d9b438 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -79,6 +79,13 @@ Changelog
:mod:`sklearn.cluster`
......................
+:mod:`sklearn.preprocessing`
+............................
+
+- |Feature| :class:`preprocessing.OneHotEncoder` now supports
+ `handle_unknown='ignore'` and dropping categories. :pr:`19041` by
+ `Thomas Fan`_.
+
- |Efficiency| The "k-means++" initialization of :class:`cluster.KMeans` and
:class:`cluster.MiniBatchKMeans` is now faster, especially in multicore
settings. :pr:`19002` by :user:`Jon Crall <Erotemic>` and
diff --git a/sklearn/preprocessing/_encoders.py b/sklearn/preprocessing/_encoders.py
index 043f9fc40ef53..4344e010bba1a 100644
--- a/sklearn/preprocessing/_encoders.py
+++ b/sklearn/preprocessing/_encoders.py
@@ -2,6 +2,7 @@
# Joris Van den Bossche <[email protected]>
# License: BSD 3 clause
+import warnings
import numpy as np
from scipy import sparse
import numbers
@@ -110,7 +111,8 @@ def _fit(self, X, handle_unknown='error', force_all_finite=True):
raise ValueError(msg)
self.categories_.append(cats)
- def _transform(self, X, handle_unknown='error', force_all_finite=True):
+ def _transform(self, X, handle_unknown='error', force_all_finite=True,
+ warn_on_unknown=False):
X_list, n_samples, n_features = self._check_X(
X, force_all_finite=force_all_finite)
@@ -125,6 +127,7 @@ def _transform(self, X, handle_unknown='error', force_all_finite=True):
.format(len(self.categories_,), n_features)
)
+ columns_with_unknown = []
for i in range(n_features):
Xi = X_list[i]
diff, valid_mask = _check_unknown(Xi, self.categories_[i],
@@ -136,6 +139,8 @@ def _transform(self, X, handle_unknown='error', force_all_finite=True):
" during transform".format(diff, i))
raise ValueError(msg)
else:
+ if warn_on_unknown:
+ columns_with_unknown.append(i)
# Set the problematic rows to an acceptable value and
# continue `The rows are marked `X_mask` and will be
# removed later.
@@ -153,6 +158,11 @@ def _transform(self, X, handle_unknown='error', force_all_finite=True):
# already called above.
X_int[:, i] = _encode(Xi, uniques=self.categories_[i],
check_unknown=False)
+ if columns_with_unknown:
+ warnings.warn("Found unknown categories in columns "
+ f"{columns_with_unknown} during transform. These "
+ "unknown categories will be encoded as all zeros",
+ UserWarning)
return X_int, X_mask
@@ -327,14 +337,6 @@ def _validate_keywords(self):
msg = ("handle_unknown should be either 'error' or 'ignore', "
"got {0}.".format(self.handle_unknown))
raise ValueError(msg)
- # If we have both dropped columns and ignored unknown
- # values, there will be ambiguous cells. This creates difficulties
- # in interpreting the model.
- if self.drop is not None and self.handle_unknown != 'error':
- raise ValueError(
- "`handle_unknown` must be 'error' when the drop parameter is "
- "specified, as both would create categories that are all "
- "zero.")
def _compute_drop_idx(self):
if self.drop is None:
@@ -459,8 +461,11 @@ def transform(self, X):
"""
check_is_fitted(self)
# validation of X happens in _check_X called by _transform
+ warn_on_unknown = (self.handle_unknown == "ignore"
+ and self.drop is not None)
X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown,
- force_all_finite='allow-nan')
+ force_all_finite='allow-nan',
+ warn_on_unknown=warn_on_unknown)
n_samples, n_features = X_int.shape
@@ -509,8 +514,10 @@ def inverse_transform(self, X):
"""
Convert the data back to the original representation.
- In case unknown categories are encountered (all zeros in the
- one-hot encoding), ``None`` is used to represent this category.
+ When unknown categories are encountered (all zeros in the
+ one-hot encoding), ``None`` is used to represent this category. If the
+ feature with the unknown category has a dropped caregory, the dropped
+ category will be its inverse.
Parameters
----------
@@ -571,7 +578,14 @@ def inverse_transform(self, X):
unknown = np.asarray(sub.sum(axis=1) == 0).flatten()
# ignored unknown categories: we have a row of all zero
if unknown.any():
- found_unknown[i] = unknown
+ # if categories were dropped then unknown categories will
+ # be mapped to the dropped category
+ if self.drop_idx_ is None or self.drop_idx_[i] is None:
+ found_unknown[i] = unknown
+ else:
+ X_tr[unknown, i] = self.categories_[i][
+ self.drop_idx_[i]
+ ]
else:
dropped = np.asarray(sub.sum(axis=1) == 0).flatten()
if dropped.any():
|
diff --git a/sklearn/preprocessing/tests/test_encoders.py b/sklearn/preprocessing/tests/test_encoders.py
index b1eff0cad21e0..eb776c4c25267 100644
--- a/sklearn/preprocessing/tests/test_encoders.py
+++ b/sklearn/preprocessing/tests/test_encoders.py
@@ -775,8 +775,6 @@ def test_one_hot_encoder_drop_manual(missing_value):
"X_fit, params, err_msg",
[([["Male"], ["Female"]], {'drop': 'second'},
"Wrong input for parameter `drop`"),
- ([["Male"], ["Female"]], {'drop': 'first', 'handle_unknown': 'ignore'},
- "`handle_unknown` must be 'error'"),
([['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]],
{'drop': np.asarray('b', dtype=object)},
"Wrong input for parameter `drop`"),
@@ -914,6 +912,87 @@ def test_ohe_missing_value_support_pandas_categorical(pd_nan_type):
assert np.isnan(ohe.categories_[0][-1])
+def test_ohe_drop_first_handle_unknown_ignore_warns():
+ """Check drop='first' and handle_unknown='ignore' during transform."""
+ X = [['a', 0], ['b', 2], ['b', 1]]
+
+ ohe = OneHotEncoder(drop='first', sparse=False, handle_unknown='ignore')
+ X_trans = ohe.fit_transform(X)
+
+ X_expected = np.array([
+ [0, 0, 0],
+ [1, 0, 1],
+ [1, 1, 0],
+ ])
+ assert_allclose(X_trans, X_expected)
+
+ # Both categories are unknown
+ X_test = [['c', 3]]
+ X_expected = np.array([[0, 0, 0]])
+
+ warn_msg = (r"Found unknown categories in columns \[0, 1\] during "
+ "transform. These unknown categories will be encoded as all "
+ "zeros")
+ with pytest.warns(UserWarning, match=warn_msg):
+ X_trans = ohe.transform(X_test)
+ assert_allclose(X_trans, X_expected)
+
+ # inverse_transform maps to None
+ X_inv = ohe.inverse_transform(X_expected)
+ assert_array_equal(X_inv, np.array([['a', 0]], dtype=object))
+
+
+def test_ohe_drop_if_binary_handle_unknown_ignore_warns():
+ """Check drop='if_binary' and handle_unknown='ignore' during transform."""
+ X = [['a', 0], ['b', 2], ['b', 1]]
+
+ ohe = OneHotEncoder(drop='if_binary', sparse=False,
+ handle_unknown='ignore')
+ X_trans = ohe.fit_transform(X)
+
+ X_expected = np.array([
+ [0, 1, 0, 0],
+ [1, 0, 0, 1],
+ [1, 0, 1, 0],
+ ])
+ assert_allclose(X_trans, X_expected)
+
+ # Both categories are unknown
+ X_test = [['c', 3]]
+ X_expected = np.array([[0, 0, 0, 0]])
+
+ warn_msg = (r"Found unknown categories in columns \[0, 1\] during "
+ "transform. These unknown categories will be encoded as all "
+ "zeros")
+ with pytest.warns(UserWarning, match=warn_msg):
+ X_trans = ohe.transform(X_test)
+ assert_allclose(X_trans, X_expected)
+
+ # inverse_transform maps to None
+ X_inv = ohe.inverse_transform(X_expected)
+ assert_array_equal(X_inv, np.array([['a', None]], dtype=object))
+
+
+def test_ohe_drop_first_explicit_categories():
+ """Check drop='first' and handle_unknown='ignore' during fit with
+ categories passed in."""
+
+ X = [['a', 0], ['b', 2], ['b', 1]]
+
+ ohe = OneHotEncoder(drop='first', sparse=False, handle_unknown='ignore',
+ categories=[['b', 'a'], [1, 2]])
+ ohe.fit(X)
+
+ X_test = [['c', 1]]
+ X_expected = np.array([[0, 0]])
+
+ warn_msg = (r"Found unknown categories in columns \[0\] during transform. "
+ r"These unknown categories will be encoded as all zeros")
+ with pytest.warns(UserWarning, match=warn_msg):
+ X_trans = ohe.transform(X_test)
+ assert_allclose(X_trans, X_expected)
+
+
def test_ordinal_encoder_passthrough_missing_values_float_errors_dtype():
"""Test ordinal encoder with nan passthrough fails when dtype=np.int32."""
|
[
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex b87971ec4ae5a..cdde7479b1a4f 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -560,9 +560,7 @@ parameter allows the user to specify a category for each feature to be dropped.\n This is useful to avoid co-linearity in the input matrix in some classifiers.\n Such functionality is useful, for example, when using non-regularized\n regression (:class:`LinearRegression <sklearn.linear_model.LinearRegression>`),\n-since co-linearity would cause the covariance matrix to be non-invertible.\n-When this parameter is not None, ``handle_unknown`` must be set to\n-``error``::\n+since co-linearity would cause the covariance matrix to be non-invertible::\n \n >>> X = [['male', 'from US', 'uses Safari'],\n ... ['female', 'from Europe', 'uses Firefox']]\n@@ -591,6 +589,30 @@ In the transformed `X`, the first column is the encoding of the feature with\n categories \"male\"/\"female\", while the remaining 6 columns is the encoding of\n the 2 features with respectively 3 categories each.\n \n+When `handle_unknown='ignore'` and `drop` is not None, unknown categories will\n+be encoded as all zeros::\n+\n+ >>> drop_enc = preprocessing.OneHotEncoder(drop='first',\n+ ... handle_unknown='ignore').fit(X)\n+ >>> X_test = [['unknown', 'America', 'IE']]\n+ >>> drop_enc.transform(X_test).toarray()\n+ array([[0., 0., 0., 0., 0.]])\n+\n+All the categories in `X_test` are unknown during transform and will be mapped\n+to all zeros. This means that unknown categories will have the same mapping as\n+the dropped category. :meth`OneHotEncoder.inverse_transform` will map all zeros\n+to the dropped category if a category is dropped and `None` if a category is\n+not dropped::\n+\n+ >>> drop_enc = preprocessing.OneHotEncoder(drop='if_binary', sparse=False,\n+ ... handle_unknown='ignore').fit(X)\n+ >>> X_test = [['unknown', 'America', 'IE']]\n+ >>> X_trans = drop_enc.transform(X_test)\n+ >>> X_trans\n+ array([[0., 0., 0., 0., 0., 0., 0.]])\n+ >>> drop_enc.inverse_transform(X_trans)\n+ array([['female', None, None]], dtype=object)\n+\n :class:`OneHotEncoder` supports categorical features with missing values by\n considering the missing values as an additional category::\n \n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 2b108d2f0e197..2aaecb6d9b438 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -79,6 +79,13 @@ Changelog\n :mod:`sklearn.cluster`\n ......................\n \n+:mod:`sklearn.preprocessing`\n+............................\n+\n+- |Feature| :class:`preprocessing.OneHotEncoder` now supports\n+ `handle_unknown='ignore'` and dropping categories. :pr:`19041` by\n+ `Thomas Fan`_.\n+\n - |Efficiency| The \"k-means++\" initialization of :class:`cluster.KMeans` and\n :class:`cluster.MiniBatchKMeans` is now faster, especially in multicore\n settings. :pr:`19002` by :user:`Jon Crall <Erotemic>` and\n"
}
] |
1.00
|
57d3668f2a1fea69dafc2e68208576a56812cd45
|
[
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_unicode",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_if_binary",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[pd.NA]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[dataframe-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[np.nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes_pandas",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[None]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[array-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-None-missing-value]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoder_dtypes",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-if_binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[dataframe-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_set_params",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[numeric-missing-value]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_handle_unknown_strings",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[array-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_not_fitted",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_inverse",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[list-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_values_get_feature_names[nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[first]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories_missing_passthrough[object-nan-missing_value]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-float-nan-object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan0]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[dataframe-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_raise_categories_shape",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[list-O-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_invalid_drop_length[drop0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_unsorted_categories",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-nan-and-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories_mixed_columns",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[list-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_diff_n_features",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan_non_float_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-float32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X3-expected_X_trans3-X_test3]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[first-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-sparse]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[int32-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[float]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_numeric[int]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OrdinalEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float_errors_dtype",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_equals_if_binary",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X0-X_trans0-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit_transform]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_warning",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X0-fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[array-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[first-dense]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D_pandas[fit]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[dataframe-U-U]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-None-and-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit0-params0-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit2-params2-The following categories were supposed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-first]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params4-ValueError-handle_unknown should be either 'error' or 'use_encoded_value', got ignore.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[manual]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params0-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got None.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params1-TypeError-unknown_value should only be set when handle_unknown is 'use_encoded_value', got -2.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_feature_names_drop[binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_missing_value_support_pandas_categorical[np.nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object-string-cat]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_nan",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[array-O-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_invalid_params[X_fit1-params1-Wrong input for parameter `drop`]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-None-float-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-dense]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X1-expected_X_trans1-X_test1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_passthrough_missing_values_float",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-if_binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params3-ValueError-The used value for unknown_value (1) is one of the values already used for encoding the seen categories.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_sparse_dense",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_specified_categories[object-string-none]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-first]",
"sklearn/preprocessing/tests/test_encoders.py::test_categories[manual-sparse]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_has_categorical_tags[OneHotEncoder]",
"sklearn/preprocessing/tests/test_encoders.py::test_encoders_unicode_categories[list-U-O]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X0-expected_X_trans0-X_test0]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed-nan]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder[numeric]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[string]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_specified_categories[object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[if_binary-None]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse[None-False]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_raise[params2-TypeError-unknown_value should be an integer or np.nan when handle_unknown is 'use_encoded_value', got bla.]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[None-first]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_missing_value_support_pandas_categorical[pd.NA]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_reset[first-if_binary]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype_pandas[float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float64-int32]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_unknowns_string",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_drop_manual[nan1]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_categories[missing-np.nan-object]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_inverse_transform_raise_error_with_unknown[X1-X_trans1-True]",
"sklearn/preprocessing/tests/test_encoders.py::test_ordinal_encoder_handle_missing_and_unknown[X2-expected_X_trans2-X_test2]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder[mixed]",
"sklearn/preprocessing/tests/test_encoders.py::test_one_hot_encoder_dtype[float32-float64]",
"sklearn/preprocessing/tests/test_encoders.py::test_X_is_not_1D[X1-fit]"
] |
[
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_if_binary_handle_unknown_ignore_warns",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_explicit_categories",
"sklearn/preprocessing/tests/test_encoders.py::test_ohe_drop_first_handle_unknown_ignore_warns"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/preprocessing.rst",
"old_path": "a/doc/modules/preprocessing.rst",
"new_path": "b/doc/modules/preprocessing.rst",
"metadata": "diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst\nindex b87971ec4ae5a..cdde7479b1a4f 100644\n--- a/doc/modules/preprocessing.rst\n+++ b/doc/modules/preprocessing.rst\n@@ -560,9 +560,7 @@ parameter allows the user to specify a category for each feature to be dropped.\n This is useful to avoid co-linearity in the input matrix in some classifiers.\n Such functionality is useful, for example, when using non-regularized\n regression (:class:`LinearRegression <sklearn.linear_model.LinearRegression>`),\n-since co-linearity would cause the covariance matrix to be non-invertible.\n-When this parameter is not None, ``handle_unknown`` must be set to\n-``error``::\n+since co-linearity would cause the covariance matrix to be non-invertible::\n \n >>> X = [['male', 'from US', 'uses Safari'],\n ... ['female', 'from Europe', 'uses Firefox']]\n@@ -591,6 +589,30 @@ In the transformed `X`, the first column is the encoding of the feature with\n categories \"male\"/\"female\", while the remaining 6 columns is the encoding of\n the 2 features with respectively 3 categories each.\n \n+When `handle_unknown='ignore'` and `drop` is not None, unknown categories will\n+be encoded as all zeros::\n+\n+ >>> drop_enc = preprocessing.OneHotEncoder(drop='first',\n+ ... handle_unknown='ignore').fit(X)\n+ >>> X_test = [['unknown', 'America', 'IE']]\n+ >>> drop_enc.transform(X_test).toarray()\n+ array([[0., 0., 0., 0., 0.]])\n+\n+All the categories in `X_test` are unknown during transform and will be mapped\n+to all zeros. This means that unknown categories will have the same mapping as\n+the dropped category. :meth`OneHotEncoder.inverse_transform` will map all zeros\n+to the dropped category if a category is dropped and `None` if a category is\n+not dropped::\n+\n+ >>> drop_enc = preprocessing.OneHotEncoder(drop='if_binary', sparse=False,\n+ ... handle_unknown='ignore').fit(X)\n+ >>> X_test = [['unknown', 'America', 'IE']]\n+ >>> X_trans = drop_enc.transform(X_test)\n+ >>> X_trans\n+ array([[0., 0., 0., 0., 0., 0., 0.]])\n+ >>> drop_enc.inverse_transform(X_trans)\n+ array([['female', None, None]], dtype=object)\n+\n :class:`OneHotEncoder` supports categorical features with missing values by\n considering the missing values as an additional category::\n \n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 2b108d2f0e197..2aaecb6d9b438 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -79,6 +79,13 @@ Changelog\n :mod:`sklearn.cluster`\n ......................\n \n+:mod:`sklearn.preprocessing`\n+............................\n+\n+- |Feature| :class:`preprocessing.OneHotEncoder` now supports\n+ `handle_unknown='ignore'` and dropping categories. :pr:`<PRID>` by\n+ `Thomas Fan`_.\n+\n - |Efficiency| The \"k-means++\" initialization of :class:`cluster.KMeans` and\n :class:`cluster.MiniBatchKMeans` is now faster, especially in multicore\n settings. :pr:`<PRID>` by :user:`<NAME>` and\n"
}
] |
diff --git a/doc/modules/preprocessing.rst b/doc/modules/preprocessing.rst
index b87971ec4ae5a..cdde7479b1a4f 100644
--- a/doc/modules/preprocessing.rst
+++ b/doc/modules/preprocessing.rst
@@ -560,9 +560,7 @@ parameter allows the user to specify a category for each feature to be dropped.
This is useful to avoid co-linearity in the input matrix in some classifiers.
Such functionality is useful, for example, when using non-regularized
regression (:class:`LinearRegression <sklearn.linear_model.LinearRegression>`),
-since co-linearity would cause the covariance matrix to be non-invertible.
-When this parameter is not None, ``handle_unknown`` must be set to
-``error``::
+since co-linearity would cause the covariance matrix to be non-invertible::
>>> X = [['male', 'from US', 'uses Safari'],
... ['female', 'from Europe', 'uses Firefox']]
@@ -591,6 +589,30 @@ In the transformed `X`, the first column is the encoding of the feature with
categories "male"/"female", while the remaining 6 columns is the encoding of
the 2 features with respectively 3 categories each.
+When `handle_unknown='ignore'` and `drop` is not None, unknown categories will
+be encoded as all zeros::
+
+ >>> drop_enc = preprocessing.OneHotEncoder(drop='first',
+ ... handle_unknown='ignore').fit(X)
+ >>> X_test = [['unknown', 'America', 'IE']]
+ >>> drop_enc.transform(X_test).toarray()
+ array([[0., 0., 0., 0., 0.]])
+
+All the categories in `X_test` are unknown during transform and will be mapped
+to all zeros. This means that unknown categories will have the same mapping as
+the dropped category. :meth`OneHotEncoder.inverse_transform` will map all zeros
+to the dropped category if a category is dropped and `None` if a category is
+not dropped::
+
+ >>> drop_enc = preprocessing.OneHotEncoder(drop='if_binary', sparse=False,
+ ... handle_unknown='ignore').fit(X)
+ >>> X_test = [['unknown', 'America', 'IE']]
+ >>> X_trans = drop_enc.transform(X_test)
+ >>> X_trans
+ array([[0., 0., 0., 0., 0., 0., 0.]])
+ >>> drop_enc.inverse_transform(X_trans)
+ array([['female', None, None]], dtype=object)
+
:class:`OneHotEncoder` supports categorical features with missing values by
considering the missing values as an additional category::
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 2b108d2f0e197..2aaecb6d9b438 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -79,6 +79,13 @@ Changelog
:mod:`sklearn.cluster`
......................
+:mod:`sklearn.preprocessing`
+............................
+
+- |Feature| :class:`preprocessing.OneHotEncoder` now supports
+ `handle_unknown='ignore'` and dropping categories. :pr:`<PRID>` by
+ `Thomas Fan`_.
+
- |Efficiency| The "k-means++" initialization of :class:`cluster.KMeans` and
:class:`cluster.MiniBatchKMeans` is now faster, especially in multicore
settings. :pr:`<PRID>` by :user:`<NAME>` and
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-18959
|
https://github.com/scikit-learn/scikit-learn/pull/18959
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 0372dcdd1fd4e..f056f3a9be2d3 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -44,6 +44,13 @@ Changelog
:pr:`123456` by :user:`Joe Bloggs <joeongithub>`.
where 123456 is the *pull request* number, not the issue number.
+:mod:`sklearn.tree`
+...................
+
+- |Enhancement| Add `fontname` argument in :func:`tree.export_graphviz`
+ for non-English characters. :pr:`18959` by :user:`Zero <Zeroto521>`
+ and :user:`wstates <wstates>`.
+
:mod:`sklearn.cluster`
......................
diff --git a/sklearn/tree/_export.py b/sklearn/tree/_export.py
index 1615c8eb15028..ff29790e3699e 100644
--- a/sklearn/tree/_export.py
+++ b/sklearn/tree/_export.py
@@ -371,18 +371,17 @@ def __init__(self, out_file=SENTINEL, max_depth=None,
feature_names=None, class_names=None, label='all',
filled=False, leaves_parallel=False, impurity=True,
node_ids=False, proportion=False, rotate=False, rounded=False,
- special_characters=False, precision=3):
+ special_characters=False, precision=3, fontname='helvetica'):
super().__init__(
max_depth=max_depth, feature_names=feature_names,
class_names=class_names, label=label, filled=filled,
- impurity=impurity,
- node_ids=node_ids, proportion=proportion, rotate=rotate,
- rounded=rounded,
- precision=precision)
+ impurity=impurity, node_ids=node_ids, proportion=proportion,
+ rotate=rotate, rounded=rounded, precision=precision)
self.leaves_parallel = leaves_parallel
self.out_file = out_file
self.special_characters = special_characters
+ self.fontname = fontname
# PostScript compatibility for special characters
if special_characters:
@@ -449,16 +448,17 @@ def head(self):
self.out_file.write(
', style="%s", color="black"'
% ", ".join(rounded_filled))
- if self.rounded:
- self.out_file.write(', fontname=helvetica')
+
+ self.out_file.write(', fontname="%s"' % self.fontname)
self.out_file.write('] ;\n')
# Specify graph & edge aesthetics
if self.leaves_parallel:
self.out_file.write(
'graph [ranksep=equally, splines=polyline] ;\n')
- if self.rounded:
- self.out_file.write('edge [fontname=helvetica] ;\n')
+
+ self.out_file.write('edge [fontname="%s"] ;\n' % self.fontname)
+
if self.rotate:
self.out_file.write('rankdir=LR ;\n')
@@ -667,7 +667,8 @@ def export_graphviz(decision_tree, out_file=None, *, max_depth=None,
feature_names=None, class_names=None, label='all',
filled=False, leaves_parallel=False, impurity=True,
node_ids=False, proportion=False, rotate=False,
- rounded=False, special_characters=False, precision=3):
+ rounded=False, special_characters=False, precision=3,
+ fontname='helvetica'):
"""Export a decision tree in DOT format.
This function generates a GraphViz representation of the decision tree,
@@ -734,8 +735,7 @@ def export_graphviz(decision_tree, out_file=None, *, max_depth=None,
When set to ``True``, orient tree left to right rather than top-down.
rounded : bool, default=False
- When set to ``True``, draw node boxes with rounded corners and use
- Helvetica fonts instead of Times-Roman.
+ When set to ``True``, draw node boxes with rounded corners.
special_characters : bool, default=False
When set to ``False``, ignore special characters for PostScript
@@ -745,6 +745,9 @@ def export_graphviz(decision_tree, out_file=None, *, max_depth=None,
Number of digits of precision for floating point in the values of
impurity, threshold and value attributes of each node.
+ fontname : str, default='helvetica'
+ Name of font used to render text.
+
Returns
-------
dot_data : string
@@ -784,7 +787,7 @@ def export_graphviz(decision_tree, out_file=None, *, max_depth=None,
filled=filled, leaves_parallel=leaves_parallel, impurity=impurity,
node_ids=node_ids, proportion=proportion, rotate=rotate,
rounded=rounded, special_characters=special_characters,
- precision=precision)
+ precision=precision, fontname=fontname)
exporter.export(decision_tree)
if return_string:
|
diff --git a/sklearn/tree/tests/test_export.py b/sklearn/tree/tests/test_export.py
index a1b04e171e59a..6a7bf33b2143f 100644
--- a/sklearn/tree/tests/test_export.py
+++ b/sklearn/tree/tests/test_export.py
@@ -33,7 +33,8 @@ def test_graphviz_toy():
# Test export code
contents1 = export_graphviz(clf, out_file=None)
contents2 = 'digraph Tree {\n' \
- 'node [shape=box] ;\n' \
+ 'node [shape=box, fontname="helvetica"] ;\n' \
+ 'edge [fontname="helvetica"] ;\n' \
'0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
'value = [3, 3]"] ;\n' \
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \
@@ -50,7 +51,8 @@ def test_graphviz_toy():
contents1 = export_graphviz(clf, feature_names=["feature0", "feature1"],
out_file=None)
contents2 = 'digraph Tree {\n' \
- 'node [shape=box] ;\n' \
+ 'node [shape=box, fontname="helvetica"] ;\n' \
+ 'edge [fontname="helvetica"] ;\n' \
'0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
'value = [3, 3]"] ;\n' \
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \
@@ -66,7 +68,8 @@ def test_graphviz_toy():
# Test with class_names
contents1 = export_graphviz(clf, class_names=["yes", "no"], out_file=None)
contents2 = 'digraph Tree {\n' \
- 'node [shape=box] ;\n' \
+ 'node [shape=box, fontname="helvetica"] ;\n' \
+ 'edge [fontname="helvetica"] ;\n' \
'0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
'value = [3, 3]\\nclass = yes"] ;\n' \
'1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \
@@ -84,11 +87,11 @@ def test_graphviz_toy():
# Test plot_options
contents1 = export_graphviz(clf, filled=True, impurity=False,
proportion=True, special_characters=True,
- rounded=True, out_file=None)
+ rounded=True, out_file=None, fontname="sans")
contents2 = 'digraph Tree {\n' \
'node [shape=box, style="filled, rounded", color="black", ' \
- 'fontname=helvetica] ;\n' \
- 'edge [fontname=helvetica] ;\n' \
+ 'fontname="sans"] ;\n' \
+ 'edge [fontname="sans"] ;\n' \
'0 [label=<X<SUB>0</SUB> ≤ 0.0<br/>samples = 100.0%<br/>' \
'value = [0.5, 0.5]>, fillcolor="#ffffff"] ;\n' \
'1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \
@@ -107,7 +110,8 @@ def test_graphviz_toy():
contents1 = export_graphviz(clf, max_depth=0,
class_names=True, out_file=None)
contents2 = 'digraph Tree {\n' \
- 'node [shape=box] ;\n' \
+ 'node [shape=box, fontname="helvetica"] ;\n' \
+ 'edge [fontname="helvetica"] ;\n' \
'0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
'value = [3, 3]\\nclass = y[0]"] ;\n' \
'1 [label="(...)"] ;\n' \
@@ -122,7 +126,9 @@ def test_graphviz_toy():
contents1 = export_graphviz(clf, max_depth=0, filled=True,
out_file=None, node_ids=True)
contents2 = 'digraph Tree {\n' \
- 'node [shape=box, style="filled", color="black"] ;\n' \
+ 'node [shape=box, style="filled", color="black", '\
+ 'fontname="helvetica"] ;\n' \
+ 'edge [fontname="helvetica"] ;\n' \
'0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \
'samples = 6\\nvalue = [3, 3]", fillcolor="#ffffff"] ;\n' \
'1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \
@@ -143,7 +149,9 @@ def test_graphviz_toy():
contents1 = export_graphviz(clf, filled=True,
impurity=False, out_file=None)
contents2 = 'digraph Tree {\n' \
- 'node [shape=box, style="filled", color="black"] ;\n' \
+ 'node [shape=box, style="filled", color="black", ' \
+ 'fontname="helvetica"] ;\n' \
+ 'edge [fontname="helvetica"] ;\n' \
'0 [label="X[0] <= 0.0\\nsamples = 6\\n' \
'value = [[3.0, 1.5, 0.0]\\n' \
'[3.0, 1.0, 0.5]]", fillcolor="#ffffff"] ;\n' \
@@ -174,12 +182,13 @@ def test_graphviz_toy():
clf.fit(X, y)
contents1 = export_graphviz(clf, filled=True, leaves_parallel=True,
- out_file=None, rotate=True, rounded=True)
+ out_file=None, rotate=True, rounded=True,
+ fontname="sans")
contents2 = 'digraph Tree {\n' \
'node [shape=box, style="filled, rounded", color="black", ' \
- 'fontname=helvetica] ;\n' \
+ 'fontname="sans"] ;\n' \
'graph [ranksep=equally, splines=polyline] ;\n' \
- 'edge [fontname=helvetica] ;\n' \
+ 'edge [fontname="sans"] ;\n' \
'rankdir=LR ;\n' \
'0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \
'value = 0.0", fillcolor="#f2c09c"] ;\n' \
@@ -203,7 +212,9 @@ def test_graphviz_toy():
contents1 = export_graphviz(clf, filled=True, out_file=None)
contents2 = 'digraph Tree {\n' \
- 'node [shape=box, style="filled", color="black"] ;\n' \
+ 'node [shape=box, style="filled", color="black", '\
+ 'fontname="helvetica"] ;\n' \
+ 'edge [fontname="helvetica"] ;\n' \
'0 [label="gini = 0.0\\nsamples = 6\\nvalue = 6.0", ' \
'fillcolor="#ffffff"] ;\n' \
'}'
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 0372dcdd1fd4e..f056f3a9be2d3 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -44,6 +44,13 @@ Changelog\n :pr:`123456` by :user:`Joe Bloggs <joeongithub>`.\n where 123456 is the *pull request* number, not the issue number.\n \n+:mod:`sklearn.tree`\n+...................\n+\n+- |Enhancement| Add `fontname` argument in :func:`tree.export_graphviz`\n+ for non-English characters. :pr:`18959` by :user:`Zero <Zeroto521>`\n+ and :user:`wstates <wstates>`.\n+\n :mod:`sklearn.cluster`\n ......................\n \n"
}
] |
1.00
|
6b4f82433dc2f219dbff7fe8fa42c10b72379be6
|
[
"sklearn/tree/tests/test_export.py::test_export_text",
"sklearn/tree/tests/test_export.py::test_not_fitted_tree",
"sklearn/tree/tests/test_export.py::test_friedman_mse_in_graphviz",
"sklearn/tree/tests/test_export.py::test_precision",
"sklearn/tree/tests/test_export.py::test_plot_tree_rotate_deprecation",
"sklearn/tree/tests/test_export.py::test_plot_tree_gini",
"sklearn/tree/tests/test_export.py::test_graphviz_errors",
"sklearn/tree/tests/test_export.py::test_plot_tree_entropy",
"sklearn/tree/tests/test_export.py::test_export_text_errors"
] |
[
"sklearn/tree/tests/test_export.py::test_graphviz_toy"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 0372dcdd1fd4e..f056f3a9be2d3 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -44,6 +44,13 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`.\n where <PRID> is the *pull request* number, not the issue number.\n \n+:mod:`sklearn.tree`\n+...................\n+\n+- |Enhancement| Add `fontname` argument in :func:`tree.export_graphviz`\n+ for non-English characters. :pr:`<PRID>` by :user:`<NAME>`\n+ and :user:`<NAME>`.\n+\n :mod:`sklearn.cluster`\n ......................\n \n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 0372dcdd1fd4e..f056f3a9be2d3 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -44,6 +44,13 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`.
where <PRID> is the *pull request* number, not the issue number.
+:mod:`sklearn.tree`
+...................
+
+- |Enhancement| Add `fontname` argument in :func:`tree.export_graphviz`
+ for non-English characters. :pr:`<PRID>` by :user:`<NAME>`
+ and :user:`<NAME>`.
+
:mod:`sklearn.cluster`
......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20250
|
https://github.com/scikit-learn/scikit-learn/pull/20250
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index e4bff3c124dc5..536e61985a50c 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -540,6 +540,10 @@ Changelog
:class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.
:pr:`19934` by :user:`Gleb Levitskiy <GLevV>`.
+- |Feature| :class:`preprocessing.PolynomialFeatures` now supports passing
+ a tuple to `degree`, i.e. `degree=(min_degree, max_degree)`.
+ :pr:`20250` by :user:`Christian Lorentzen <lorentzenchr>`.
+
- |API| The `n_input_features_` attribute of
:class:`preprocessing.PolynomialFeatures` is deprecated in favor of
`n_features_in_` and will be removed in 1.2. :pr:`20240` by
diff --git a/sklearn/preprocessing/_polynomial.py b/sklearn/preprocessing/_polynomial.py
index 51287761a84cc..9ccac80c9c692 100644
--- a/sklearn/preprocessing/_polynomial.py
+++ b/sklearn/preprocessing/_polynomial.py
@@ -1,6 +1,7 @@
"""
This file contains preprocessing tools based on polynomials.
"""
+import collections
import numbers
from itertools import chain, combinations
from itertools import combinations_with_replacement as combinations_w_r
@@ -19,6 +20,7 @@
__all__ = [
+ "PolynomialFeatures",
"SplineTransformer",
]
@@ -35,13 +37,21 @@ class PolynomialFeatures(TransformerMixin, BaseEstimator):
Parameters
----------
- degree : int, default=2
- The degree of the polynomial features.
+ degree : int or tuple (min_degree, max_degree), default=2
+ If a single int is given, it specifies the maximal degree of the
+ polynomial features. If a tuple ``(min_degree, max_degree)`` is
+ passed, then ``min_degree`` is the minimum and ``max_degree`` is the
+ maximum polynomial degree of the generated features. Note that
+ min_degree=0 and 1 are equivalent as outputting the degree zero term
+ is determined by ``include_bias``.
interaction_only : bool, default=False
If true, only interaction features are produced: features that are
- products of at most ``degree`` *distinct* input features (so not
- ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.).
+ products of at most ``degree`` *distinct* input features, i.e. terms
+ with power of 2 or higher of the same input feature are excluded:
+
+ - included: ``x[0]``, `x[1]`, ``x[0] * x[1]``, etc.
+ - exluded: ``x[0] ** 2``, ``x[0] ** 2 * x[1]``, etc.
include_bias : bool, default=True
If True (default), then include a bias column, the feature in which
@@ -120,15 +130,22 @@ def __init__(
self.order = order
@staticmethod
- def _combinations(n_features, degree, interaction_only, include_bias):
+ def _combinations(
+ n_features, min_degree, max_degree, interaction_only, include_bias
+ ):
comb = combinations if interaction_only else combinations_w_r
- start = int(not include_bias)
- return chain.from_iterable(
- comb(range(n_features), i) for i in range(start, degree + 1)
+ start = max(1, min_degree)
+ iter = chain.from_iterable(
+ comb(range(n_features), i) for i in range(start, max_degree + 1)
)
+ if include_bias:
+ iter = chain(comb(range(n_features), 0), iter)
+ return iter
@staticmethod
- def _num_combinations(n_features, degree, interaction_only, include_bias):
+ def _num_combinations(
+ n_features, min_degree, max_degree, interaction_only, include_bias
+ ):
"""Calculate number of terms in polynomial expansion
This should be equivalent to counting the number of terms returned by
@@ -139,11 +156,14 @@ def _num_combinations(n_features, degree, interaction_only, include_bias):
combinations = sum(
[
comb(n_features, i, exact=True)
- for i in range(1, min(degree + 1, n_features + 1))
+ for i in range(max(1, min_degree), min(max_degree, n_features) + 1)
]
)
else:
- combinations = comb(n_features + degree, degree, exact=True) - 1
+ combinations = comb(n_features + max_degree, max_degree, exact=True) - 1
+ if min_degree > 0:
+ d = min_degree - 1
+ combinations -= comb(n_features + d, d, exact=True) - 1
if include_bias:
combinations += 1
@@ -155,7 +175,11 @@ def powers_(self):
check_is_fitted(self)
combinations = self._combinations(
- self.n_features_in_, self.degree, self.interaction_only, self.include_bias
+ n_features=self.n_features_in_,
+ min_degree=self._min_degree,
+ max_degree=self._max_degree,
+ interaction_only=self.interaction_only,
+ include_bias=self.include_bias,
)
return np.vstack(
[np.bincount(c, minlength=self.n_features_in_) for c in combinations]
@@ -212,8 +236,52 @@ def fit(self, X, y=None):
Fitted transformer.
"""
_, n_features = self._validate_data(X, accept_sparse=True).shape
+
+ if isinstance(self.degree, numbers.Integral):
+ if self.degree < 0:
+ raise ValueError(
+ f"degree must be a non-negative integer, " f"got {self.degree}."
+ )
+ self._min_degree = 0
+ self._max_degree = self.degree
+ elif (
+ isinstance(self.degree, collections.abc.Iterable) and len(self.degree) == 2
+ ):
+ self._min_degree, self._max_degree = self.degree
+ if not (
+ isinstance(self._min_degree, numbers.Integral)
+ and isinstance(self._max_degree, numbers.Integral)
+ and self._min_degree >= 0
+ and self._min_degree <= self._max_degree
+ ):
+ raise ValueError(
+ f"degree=(min_degree, max_degree) must "
+ f"be non-negative integers that fulfil "
+ f"min_degree <= max_degree, got "
+ f"{self.degree}."
+ )
+ else:
+ raise ValueError(
+ f"degree must be a non-negative int or tuple "
+ f"(min_degree, max_degree), got "
+ f"{self.degree}."
+ )
+
self.n_output_features_ = self._num_combinations(
- n_features, self.degree, self.interaction_only, self.include_bias
+ n_features=n_features,
+ min_degree=self._min_degree,
+ max_degree=self._max_degree,
+ interaction_only=self.interaction_only,
+ include_bias=self.include_bias,
+ )
+ # We also record the number of output features for
+ # _max_degree = 0
+ self._n_out_full = self._num_combinations(
+ n_features=n_features,
+ min_degree=0,
+ max_degree=self._max_degree,
+ interaction_only=self.interaction_only,
+ include_bias=self.include_bias,
)
return self
@@ -256,95 +324,117 @@ def transform(self, X):
n_samples, n_features = X.shape
if sparse.isspmatrix_csr(X):
- if self.degree > 3:
+ if self._max_degree > 3:
return self.transform(X.tocsc()).tocsr()
to_stack = []
if self.include_bias:
- to_stack.append(np.ones(shape=(n_samples, 1), dtype=X.dtype))
- to_stack.append(X)
- for deg in range(2, self.degree + 1):
+ to_stack.append(
+ sparse.csc_matrix(np.ones(shape=(n_samples, 1), dtype=X.dtype))
+ )
+ if self._min_degree <= 1:
+ to_stack.append(X)
+ for deg in range(max(2, self._min_degree), self._max_degree + 1):
Xp_next = _csr_polynomial_expansion(
X.data, X.indices, X.indptr, X.shape[1], self.interaction_only, deg
)
if Xp_next is None:
break
to_stack.append(Xp_next)
- XP = sparse.hstack(to_stack, format="csr")
- elif sparse.isspmatrix_csc(X) and self.degree < 4:
+ if len(to_stack) == 0:
+ # edge case: deal with empty matrix
+ XP = sparse.csr_matrix((n_samples, 0), dtype=X.dtype)
+ else:
+ XP = sparse.hstack(to_stack, format="csr")
+ elif sparse.isspmatrix_csc(X) and self._max_degree < 4:
return self.transform(X.tocsr()).tocsc()
+ elif sparse.isspmatrix(X):
+ combinations = self._combinations(
+ n_features=n_features,
+ min_degree=self._min_degree,
+ max_degree=self._max_degree,
+ interaction_only=self.interaction_only,
+ include_bias=self.include_bias,
+ )
+ columns = []
+ for combi in combinations:
+ if combi:
+ out_col = 1
+ for col_idx in combi:
+ out_col = X[:, col_idx].multiply(out_col)
+ columns.append(out_col)
+ else:
+ bias = sparse.csc_matrix(np.ones((X.shape[0], 1)))
+ columns.append(bias)
+ XP = sparse.hstack(columns, dtype=X.dtype).tocsc()
else:
- if sparse.isspmatrix(X):
- combinations = self._combinations(
- n_features, self.degree, self.interaction_only, self.include_bias
- )
- columns = []
- for combination in combinations:
- if combination:
- out_col = 1
- for col_idx in combination:
- out_col = X[:, col_idx].multiply(out_col)
- columns.append(out_col)
- else:
- bias = sparse.csc_matrix(np.ones((X.shape[0], 1)))
- columns.append(bias)
- XP = sparse.hstack(columns, dtype=X.dtype).tocsc()
+ # Do as if _min_degree = 0 and cut down array after the
+ # computation, i.e. use _n_out_full instead of n_output_features_.
+ XP = np.empty(
+ shape=(n_samples, self._n_out_full), dtype=X.dtype, order=self.order
+ )
+
+ # What follows is a faster implementation of:
+ # for i, comb in enumerate(combinations):
+ # XP[:, i] = X[:, comb].prod(1)
+ # This implementation uses two optimisations.
+ # First one is broadcasting,
+ # multiply ([X1, ..., Xn], X1) -> [X1 X1, ..., Xn X1]
+ # multiply ([X2, ..., Xn], X2) -> [X2 X2, ..., Xn X2]
+ # ...
+ # multiply ([X[:, start:end], X[:, start]) -> ...
+ # Second optimisation happens for degrees >= 3.
+ # Xi^3 is computed reusing previous computation:
+ # Xi^3 = Xi^2 * Xi.
+
+ # degree 0 term
+ if self.include_bias:
+ XP[:, 0] = 1
+ current_col = 1
else:
- XP = np.empty(
- (n_samples, self.n_output_features_),
- dtype=X.dtype,
- order=self.order,
- )
+ current_col = 0
+
+ # degree 1 term
+ XP[:, current_col : current_col + n_features] = X
+ index = list(range(current_col, current_col + n_features))
+ current_col += n_features
+ index.append(current_col)
+
+ # loop over degree >= 2 terms
+ for _ in range(2, self._max_degree + 1):
+ new_index = []
+ end = index[-1]
+ for feature_idx in range(n_features):
+ start = index[feature_idx]
+ new_index.append(current_col)
+ if self.interaction_only:
+ start += index[feature_idx + 1] - index[feature_idx]
+ next_col = current_col + end - start
+ if next_col <= current_col:
+ break
+ # XP[:, start:end] are terms of degree d - 1
+ # that exclude feature #feature_idx.
+ np.multiply(
+ XP[:, start:end],
+ X[:, feature_idx : feature_idx + 1],
+ out=XP[:, current_col:next_col],
+ casting="no",
+ )
+ current_col = next_col
- # What follows is a faster implementation of:
- # for i, comb in enumerate(combinations):
- # XP[:, i] = X[:, comb].prod(1)
- # This implementation uses two optimisations.
- # First one is broadcasting,
- # multiply ([X1, ..., Xn], X1) -> [X1 X1, ..., Xn X1]
- # multiply ([X2, ..., Xn], X2) -> [X2 X2, ..., Xn X2]
- # ...
- # multiply ([X[:, start:end], X[:, start]) -> ...
- # Second optimisation happens for degrees >= 3.
- # Xi^3 is computed reusing previous computation:
- # Xi^3 = Xi^2 * Xi.
+ new_index.append(current_col)
+ index = new_index
+ if self._min_degree > 1:
+ n_XP, n_Xout = self._n_out_full, self.n_output_features_
if self.include_bias:
- XP[:, 0] = 1
- current_col = 1
+ Xout = np.empty(
+ shape=(n_samples, n_Xout), dtype=XP.dtype, order=self.order
+ )
+ Xout[:, 0] = 1
+ Xout[:, 1:] = XP[:, n_XP - n_Xout + 1 :]
else:
- current_col = 0
-
- # d = 0
- XP[:, current_col : current_col + n_features] = X
- index = list(range(current_col, current_col + n_features))
- current_col += n_features
- index.append(current_col)
-
- # d >= 1
- for _ in range(1, self.degree):
- new_index = []
- end = index[-1]
- for feature_idx in range(n_features):
- start = index[feature_idx]
- new_index.append(current_col)
- if self.interaction_only:
- start += index[feature_idx + 1] - index[feature_idx]
- next_col = current_col + end - start
- if next_col <= current_col:
- break
- # XP[:, start:end] are terms of degree d - 1
- # that exclude feature #feature_idx.
- np.multiply(
- XP[:, start:end],
- X[:, feature_idx : feature_idx + 1],
- out=XP[:, current_col:next_col],
- casting="no",
- )
- current_col = next_col
-
- new_index.append(current_col)
- index = new_index
-
+ Xout = XP[:, n_XP - n_Xout :].copy()
+ XP = Xout
return XP
# TODO: Remove in 1.2
@@ -568,7 +658,9 @@ def fit(self, X, y=None):
n_samples, n_features = X.shape
if not (isinstance(self.degree, numbers.Integral) and self.degree >= 0):
- raise ValueError("degree must be a non-negative integer.")
+ raise ValueError(
+ f"degree must be a non-negative integer, got " f"{self.degree}."
+ )
if isinstance(self.knots, str) and self.knots in [
"uniform",
|
diff --git a/sklearn/preprocessing/tests/test_polynomial.py b/sklearn/preprocessing/tests/test_polynomial.py
index 746a1caacc718..97fc539d3e419 100644
--- a/sklearn/preprocessing/tests/test_polynomial.py
+++ b/sklearn/preprocessing/tests/test_polynomial.py
@@ -32,9 +32,9 @@ def is_c_contiguous(a):
@pytest.mark.parametrize(
"params, err_msg",
[
- ({"degree": -1}, "degree must be a non-negative integer."),
- ({"degree": 2.5}, "degree must be a non-negative integer."),
- ({"degree": "string"}, "degree must be a non-negative integer."),
+ ({"degree": -1}, "degree must be a non-negative integer"),
+ ({"degree": 2.5}, "degree must be a non-negative integer"),
+ ({"degree": "string"}, "degree must be a non-negative integer"),
({"n_knots": 1}, "n_knots must be a positive integer >= 2."),
({"n_knots": 1}, "n_knots must be a positive integer >= 2."),
({"n_knots": 2.5}, "n_knots must be a positive integer >= 2."),
@@ -432,42 +432,145 @@ def test_spline_transformer_n_features_out(n_knots, include_bias, degree):
assert splt.transform(X).shape[1] == splt.n_features_out_
-def test_polynomial_features():
- # Test Polynomial Features
- X1 = np.arange(6)[:, np.newaxis]
- P1 = np.hstack([np.ones_like(X1), X1, X1 ** 2, X1 ** 3])
- deg1 = 3
[email protected](
+ "params, err_msg",
+ [
+ ({"degree": -1}, "degree must be a non-negative integer"),
+ ({"degree": 2.5}, "degree must be a non-negative int or tuple"),
+ ({"degree": "12"}, r"degree=\(min_degree, max_degree\) must"),
+ ({"degree": "string"}, "degree must be a non-negative int or tuple"),
+ ({"degree": (-1, 2)}, r"degree=\(min_degree, max_degree\) must"),
+ ({"degree": (0, 1.5)}, r"degree=\(min_degree, max_degree\) must"),
+ ({"degree": (3, 2)}, r"degree=\(min_degree, max_degree\) must"),
+ ],
+)
+def test_polynomial_features_input_validation(params, err_msg):
+ """Test that we raise errors for invalid input in PolynomialFeatures."""
+ X = [[1], [2]]
- X2 = np.arange(6).reshape((3, 2))
- x1 = X2[:, :1]
- x2 = X2[:, 1:]
- P2 = np.hstack(
- [
- x1 ** 0 * x2 ** 0,
- x1 ** 1 * x2 ** 0,
- x1 ** 0 * x2 ** 1,
- x1 ** 2 * x2 ** 0,
- x1 ** 1 * x2 ** 1,
- x1 ** 0 * x2 ** 2,
- ]
- )
- deg2 = 2
+ with pytest.raises(ValueError, match=err_msg):
+ PolynomialFeatures(**params).fit(X)
- for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]:
- P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X)
- assert_array_almost_equal(P_test, P)
- P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X)
- assert_array_almost_equal(P_test, P[:, 1:])
[email protected]()
+def single_feature_degree3():
+ X = np.arange(6)[:, np.newaxis]
+ P = np.hstack([np.ones_like(X), X, X ** 2, X ** 3])
+ return X, P
- interact = PolynomialFeatures(2, interaction_only=True, include_bias=True)
- X_poly = interact.fit_transform(X)
- assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]])
- assert interact.powers_.shape == (
- interact.n_output_features_,
- interact.n_features_in_,
[email protected](
+ "degree, include_bias, interaction_only, indices",
+ [
+ (3, True, False, slice(None, None)),
+ (3, False, False, slice(1, None)),
+ (3, True, True, [0, 1]),
+ (3, False, True, [1]),
+ ((2, 3), True, False, [0, 2, 3]),
+ ((2, 3), False, False, [2, 3]),
+ ((2, 3), True, True, [0]),
+ ((2, 3), False, True, []),
+ ],
+)
[email protected](
+ "sparse_X",
+ [False, sparse.csr_matrix, sparse.csc_matrix],
+)
+def test_polynomial_features_one_feature(
+ single_feature_degree3,
+ degree,
+ include_bias,
+ interaction_only,
+ indices,
+ sparse_X,
+):
+ """Test PolynomialFeatures on single feature up to degree 3."""
+ X, P = single_feature_degree3
+ if sparse_X:
+ X = sparse_X(X)
+ tf = PolynomialFeatures(
+ degree=degree, include_bias=include_bias, interaction_only=interaction_only
+ ).fit(X)
+ out = tf.transform(X)
+ if sparse_X:
+ out = out.toarray()
+ assert_allclose(out, P[:, indices])
+ if tf.n_output_features_ > 0:
+ assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
+
+
[email protected]()
+def two_features_degree3():
+ X = np.arange(6).reshape((3, 2))
+ x1 = X[:, :1]
+ x2 = X[:, 1:]
+ P = np.hstack(
+ [
+ x1 ** 0 * x2 ** 0, # 0
+ x1 ** 1 * x2 ** 0, # 1
+ x1 ** 0 * x2 ** 1, # 2
+ x1 ** 2 * x2 ** 0, # 3
+ x1 ** 1 * x2 ** 1, # 4
+ x1 ** 0 * x2 ** 2, # 5
+ x1 ** 3 * x2 ** 0, # 6
+ x1 ** 2 * x2 ** 1, # 7
+ x1 ** 1 * x2 ** 2, # 8
+ x1 ** 0 * x2 ** 3, # 9
+ ]
)
+ return X, P
+
+
[email protected](
+ "degree, include_bias, interaction_only, indices",
+ [
+ (2, True, False, slice(0, 6)),
+ (2, False, False, slice(1, 6)),
+ (2, True, True, [0, 1, 2, 4]),
+ (2, False, True, [1, 2, 4]),
+ ((2, 2), True, False, [0, 3, 4, 5]),
+ ((2, 2), False, False, [3, 4, 5]),
+ ((2, 2), True, True, [0, 4]),
+ ((2, 2), False, True, [4]),
+ (3, True, False, slice(None, None)),
+ (3, False, False, slice(1, None)),
+ (3, True, True, [0, 1, 2, 4]),
+ (3, False, True, [1, 2, 4]),
+ ((2, 3), True, False, [0, 3, 4, 5, 6, 7, 8, 9]),
+ ((2, 3), False, False, slice(3, None)),
+ ((2, 3), True, True, [0, 4]),
+ ((2, 3), False, True, [4]),
+ ((3, 3), True, False, [0, 6, 7, 8, 9]),
+ ((3, 3), False, False, [6, 7, 8, 9]),
+ ((3, 3), True, True, [0]),
+ ((3, 3), False, True, []), # would need 3 input features
+ ],
+)
[email protected](
+ "sparse_X",
+ [False, sparse.csr_matrix, sparse.csc_matrix],
+)
+def test_polynomial_features_two_features(
+ two_features_degree3,
+ degree,
+ include_bias,
+ interaction_only,
+ indices,
+ sparse_X,
+):
+ """Test PolynomialFeatures on 2 features up to degree 3."""
+ X, P = two_features_degree3
+ if sparse_X:
+ X = sparse_X(X)
+ tf = PolynomialFeatures(
+ degree=degree, include_bias=include_bias, interaction_only=interaction_only
+ ).fit(X)
+ out = tf.transform(X)
+ if sparse_X:
+ out = out.toarray()
+ assert_allclose(out, P[:, indices])
+ if tf.n_output_features_ > 0:
+ assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
def test_polynomial_feature_names():
@@ -478,6 +581,7 @@ def test_polynomial_feature_names():
["1", "x0", "x1", "x2", "x0^2", "x0 x1", "x0 x2", "x1^2", "x1 x2", "x2^2"],
feature_names,
)
+ assert len(feature_names) == poly.transform(X).shape[1]
poly = PolynomialFeatures(degree=3, include_bias=False).fit(X)
feature_names = poly.get_feature_names(["a", "b", "c"])
@@ -505,6 +609,40 @@ def test_polynomial_feature_names():
],
feature_names,
)
+ assert len(feature_names) == poly.transform(X).shape[1]
+
+ poly = PolynomialFeatures(degree=(2, 3), include_bias=False).fit(X)
+ feature_names = poly.get_feature_names(["a", "b", "c"])
+ assert_array_equal(
+ [
+ "a^2",
+ "a b",
+ "a c",
+ "b^2",
+ "b c",
+ "c^2",
+ "a^3",
+ "a^2 b",
+ "a^2 c",
+ "a b^2",
+ "a b c",
+ "a c^2",
+ "b^3",
+ "b^2 c",
+ "b c^2",
+ "c^3",
+ ],
+ feature_names,
+ )
+ assert len(feature_names) == poly.transform(X).shape[1]
+
+ poly = PolynomialFeatures(
+ degree=(3, 3), include_bias=True, interaction_only=True
+ ).fit(X)
+ feature_names = poly.get_feature_names(["a", "b", "c"])
+ assert_array_equal(["1", "a b c"], feature_names)
+ assert len(feature_names) == poly.transform(X).shape[1]
+
# test some unicode
poly = PolynomialFeatures(degree=1, include_bias=True).fit(X)
feature_names = poly.get_feature_names(["\u0001F40D", "\u262E", "\u05D0"])
@@ -568,22 +706,36 @@ def test_polynomial_features_csr_X(deg, include_bias, interaction_only, dtype):
@pytest.mark.parametrize("n_features", [1, 4, 5])
[email protected]("degree", range(1, 5))
[email protected](
+ "min_degree, max_degree", [(0, 1), (0, 2), (1, 3), (0, 4), (3, 4)]
+)
@pytest.mark.parametrize("interaction_only", [True, False])
@pytest.mark.parametrize("include_bias", [True, False])
-def test_num_combinations(n_features, degree, interaction_only, include_bias):
+def test_num_combinations(
+ n_features,
+ min_degree,
+ max_degree,
+ interaction_only,
+ include_bias,
+):
"""
Test that n_output_features_ is calculated correctly.
"""
x = sparse.csr_matrix(([1], ([0], [n_features - 1])))
est = PolynomialFeatures(
- degree, interaction_only=interaction_only, include_bias=include_bias
+ degree=max_degree,
+ interaction_only=interaction_only,
+ include_bias=include_bias,
)
est.fit(x)
num_combos = est.n_output_features_
combos = PolynomialFeatures._combinations(
- n_features, degree, interaction_only, include_bias
+ n_features=n_features,
+ min_degree=0,
+ max_degree=max_degree,
+ interaction_only=interaction_only,
+ include_bias=include_bias,
)
assert num_combos == sum([1 for _ in combos])
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex e4bff3c124dc5..536e61985a50c 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -540,6 +540,10 @@ Changelog\n :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.\n :pr:`19934` by :user:`Gleb Levitskiy <GLevV>`.\n \n+- |Feature| :class:`preprocessing.PolynomialFeatures` now supports passing\n+ a tuple to `degree`, i.e. `degree=(min_degree, max_degree)`.\n+ :pr:`20250` by :user:`Christian Lorentzen <lorentzenchr>`.\n+\n - |API| The `n_input_features_` attribute of\n :class:`preprocessing.PolynomialFeatures` is deprecated in favor of\n `n_features_in_` and will be removed in 1.2. :pr:`20240` by\n"
}
] |
1.00
|
7b715111bff01e836fcd3413851381c6a1057ca4
|
[
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_splines_smoothness[5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[1-True-False-int]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[3-2-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-2-True-False-indices0]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_manual_knot_input",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[2-True-False-float32]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params12-knots must be sorted without duplicates.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-3-True-False-indices8]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[2-1-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[4-False-False-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[1-2-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params7-Expected 2D array, got scalar array instead:]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[5-False-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params18-include_bias must be bool.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-2-False-False-indices1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params11-knots must be sorted without duplicates.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[5-True-10]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params15-extrapolation must be one of 'error', 'constant', 'linear', 'continue' or 'periodic'.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params19-Periodic splines require degree < n_knots. Got n_knots=3 and degree=3.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_integer_knots[periodic]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[2-True-False-float32]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-3-False-True-indices11]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params13-extrapolation must be one of 'error', 'constant', 'linear', 'continue' or 'periodic'.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[4-False-True-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[False-3-True-False-indices0]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-3-True-True-indices2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[3-2-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[3-False-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[3-1-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[2-1-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-3-False-True-indices11]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[1-3-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params6-n_knots must be a positive integer >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[2-True-False-int]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params14-extrapolation must be one of 'error', 'constant', 'linear', 'continue' or 'periodic'.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-2-True-True-indices2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-2-True-True-indices2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params10-knots.shape\\\\[1\\\\] == n_features is violated.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-2-False-False-indices1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_integer_knots[continue]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-3-False-False-indices1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-3-False-True-indices3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-2-True-False-indices0]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params16-include_bias must be bool.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[3-False-False-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[2-True-False-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[3-1-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params20-Periodic splines require degree < n_knots. Got n_knots=2 and degree=2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[3-False-True-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-2-False-True-indices3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[3-False-10]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[3-True-10]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[2-True-False-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-3-False-True-indices11]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[2-True-False-float32]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params4-n_knots must be a positive integer >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-3-False-False-indices9]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params5-n_knots must be a positive integer >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-2-False-True-indices3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodicity_of_extrapolation[uniform-5-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-3-False-False-indices1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_and_spline_array_order[SplineTransformer]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[False-3-False-False-indices1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[0-2-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[2-2-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[2-2-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_splines_periodicity",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-2-True-False-indices0]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params1-degree must be a non-negative integer]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[2-True-False-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params0-degree must be a non-negative integer]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[0-3-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-3-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params3-n_knots must be a positive integer >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params8-Expected 2D array, got 1D array instead:]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[2-2-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[False-3-False-True-indices3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[3-3-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-2-False-False-indices1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[2-3-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params17-include_bias must be bool.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params2-degree must be a non-negative integer]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-2-True-True-indices2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodicity_of_extrapolation[knots2-None-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[1-3-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[0-2-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-3-True-True-indices2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[2-3-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_deprecated_n_input_features",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[3-3-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_input_validation[params9-Number of knots, knots.shape\\\\[0\\\\], must be >= 2.]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_splines_smoothness[3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-3-True-True-indices10]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-3-True-False-indices0]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-3-False-True-indices3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[1-2-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_zero_row[0-3-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[5-True-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-3-False-False-indices9]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-3-True-True-indices10]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-uniform-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-3-True-True-indices10]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_and_spline_array_order[PolynomialFeatures]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[2-True-False-int]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[False-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X[3-False-True-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-3-2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-uniform-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-3-True-False-indices8]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_floats[3-False-False-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_kbindiscretizer",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[3-False-True-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_spline_backport",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[3-False-False-float64]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_dim_edges[2-2-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[periodic-quantile-3-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[3-True-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-3-False-False-indices9]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodicity_of_extrapolation[uniform-12-8]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csr_X_degree_4[True-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[True-False]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-3-True-False-indices0]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-False-True]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[False-3-True-True-indices2]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-2-False-True-indices3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_feature_names",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-3-3]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_csc_X[1-True-False-int]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_n_features_out[5-False-10]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-3-True-False-indices8]",
"sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_unity_decomposition[constant-quantile-4-3]"
] |
[
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-0-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree17-False-False-indices17]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree15-False-True-indices15]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree6-True-True-indices6]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-degree5-False-False-indices5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree4-True-False-indices4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-degree6-True-True-indices6]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree18-True-True-indices18]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-0-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-0-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_feature_names",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree14-True-True-indices14]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-3-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree4-True-False-indices4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-0-2-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree12-True-False-indices12]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-3-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-0-4-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree14-True-True-indices14]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-1-3-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-3-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree18-True-True-indices18]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-0-2-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree19-False-True-indices19]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-degree6-True-True-indices6]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-degree5-False-False-indices5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree19-False-True-indices19]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree17-False-False-indices17]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params4-degree=\\\\(min_degree, max_degree\\\\) must]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree16-True-False-indices16]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-degree4-True-False-indices4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree17-False-False-indices17]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-0-2-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-0-2-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree15-False-True-indices15]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-0-1-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[False-degree7-False-True-indices7]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-0-2-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-1-3-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-0-4-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-1-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-0-4-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params0-degree must be a non-negative integer]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-0-2-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree19-False-True-indices19]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-3-4-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params6-degree=\\\\(min_degree, max_degree\\\\) must]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-1-3-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-0-1-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-0-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree6-True-True-indices6]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree12-True-False-indices12]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-3-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-0-1-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[False-degree5-False-False-indices5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-0-2-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-degree4-True-False-indices4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree13-False-False-indices13]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree5-False-False-indices5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-0-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-1-3-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-0-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree15-False-True-indices15]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-1-3-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-0-1-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-1-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-3-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[False-degree4-True-False-indices4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-0-2-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-0-1-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params2-degree=\\\\(min_degree, max_degree\\\\) must]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-0-1-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-0-2-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-0-2-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-3-4-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-3-4-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree13-False-False-indices13]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params1-degree must be a non-negative int or tuple]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params5-degree=\\\\(min_degree, max_degree\\\\) must]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[False-degree6-True-True-indices6]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree6-True-True-indices6]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csr_matrix-degree7-False-True-indices7]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-0-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-3-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree7-False-True-indices7]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-0-4-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_input_validation[params3-degree must be a non-negative int or tuple]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree14-True-True-indices14]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-1-3-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-0-1-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree7-False-True-indices7]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree4-True-False-indices4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-0-2-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-0-1-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-3-4-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-1-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-1-3-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-0-2-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-0-1-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree12-True-False-indices12]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-0-1-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree7-False-True-indices7]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree5-False-False-indices5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree13-False-False-indices13]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-0-1-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-3-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-True-0-4-4]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_one_feature[csc_matrix-degree7-False-True-indices7]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[True-False-1-3-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-3-4-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-True-1-3-1]",
"sklearn/preprocessing/tests/test_polynomial.py::test_num_combinations[False-False-0-1-5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree16-True-False-indices16]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[False-degree18-True-True-indices18]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csr_matrix-degree5-False-False-indices5]",
"sklearn/preprocessing/tests/test_polynomial.py::test_polynomial_features_two_features[csc_matrix-degree16-True-False-indices16]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex e4bff3c124dc5..536e61985a50c 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -540,6 +540,10 @@ Changelog\n :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Feature| :class:`preprocessing.PolynomialFeatures` now supports passing\n+ a tuple to `degree`, i.e. `degree=(min_degree, max_degree)`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |API| The `n_input_features_` attribute of\n :class:`preprocessing.PolynomialFeatures` is deprecated in favor of\n `n_features_in_` and will be removed in 1.2. :pr:`<PRID>` by\n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index e4bff3c124dc5..536e61985a50c 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -540,6 +540,10 @@ Changelog
:class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Feature| :class:`preprocessing.PolynomialFeatures` now supports passing
+ a tuple to `degree`, i.e. `degree=(min_degree, max_degree)`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |API| The `n_input_features_` attribute of
:class:`preprocessing.PolynomialFeatures` is deprecated in favor of
`n_features_in_` and will be removed in 1.2. :pr:`<PRID>` by
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-12069
|
https://github.com/scikit-learn/scikit-learn/pull/12069
|
diff --git a/benchmarks/bench_kernel_pca_solvers_time_vs_n_components.py b/benchmarks/bench_kernel_pca_solvers_time_vs_n_components.py
new file mode 100644
index 0000000000000..d871967ad1327
--- /dev/null
+++ b/benchmarks/bench_kernel_pca_solvers_time_vs_n_components.py
@@ -0,0 +1,148 @@
+"""
+=============================================================
+Kernel PCA Solvers comparison benchmark: time vs n_components
+=============================================================
+
+This benchmark shows that the approximate solvers provided in Kernel PCA can
+help significantly improve its execution speed when an approximate solution
+(small `n_components`) is acceptable. In many real-world datasets a few
+hundreds of principal components are indeed sufficient enough to capture the
+underlying distribution.
+
+Description:
+------------
+A fixed number of training (default: 2000) and test (default: 1000) samples
+with 2 features is generated using the `make_circles` helper method.
+
+KernelPCA models are trained on the training set with an increasing number of
+principal components, between 1 and `max_n_compo` (default: 1999), with
+`n_compo_grid_size` positions (default: 10). For each value of `n_components`
+to try, KernelPCA models are trained for the various possible `eigen_solver`
+values. The execution times are displayed in a plot at the end of the
+experiment.
+
+What you can observe:
+---------------------
+When the number of requested principal components is small, the dense solver
+takes more time to complete, while the randomized method returns similar
+results with shorter execution times.
+
+Going further:
+--------------
+You can adjust `max_n_compo` and `n_compo_grid_size` if you wish to explore a
+different range of values for `n_components`.
+
+You can also set `arpack_all=True` to activate arpack solver for large number
+of components (this takes more time).
+"""
+# Authors: Sylvain MARIE, Schneider Electric
+
+import time
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+from numpy.testing import assert_array_almost_equal
+from sklearn.decomposition import KernelPCA
+from sklearn.datasets import make_circles
+
+
+print(__doc__)
+
+
+# 1- Design the Experiment
+# ------------------------
+n_train, n_test = 2000, 1000 # the sample sizes to use
+max_n_compo = 1999 # max n_components to try
+n_compo_grid_size = 10 # nb of positions in the grid to try
+# generate the grid
+n_compo_range = [np.round(np.exp((x / (n_compo_grid_size - 1))
+ * np.log(max_n_compo)))
+ for x in range(0, n_compo_grid_size)]
+
+n_iter = 3 # the number of times each experiment will be repeated
+arpack_all = False # set to True if you wish to run arpack for all n_compo
+
+
+# 2- Generate random data
+# -----------------------
+n_features = 2
+X, y = make_circles(n_samples=(n_train + n_test), factor=.3, noise=.05,
+ random_state=0)
+X_train, X_test = X[:n_train, :], X[n_train:, :]
+
+
+# 3- Benchmark
+# ------------
+# init
+ref_time = np.empty((len(n_compo_range), n_iter)) * np.nan
+a_time = np.empty((len(n_compo_range), n_iter)) * np.nan
+r_time = np.empty((len(n_compo_range), n_iter)) * np.nan
+# loop
+for j, n_components in enumerate(n_compo_range):
+
+ n_components = int(n_components)
+ print("Performing kPCA with n_components = %i" % n_components)
+
+ # A- reference (dense)
+ print(" - dense solver")
+ for i in range(n_iter):
+ start_time = time.perf_counter()
+ ref_pred = KernelPCA(n_components, eigen_solver="dense") \
+ .fit(X_train).transform(X_test)
+ ref_time[j, i] = time.perf_counter() - start_time
+
+ # B- arpack (for small number of components only, too slow otherwise)
+ if arpack_all or n_components < 100:
+ print(" - arpack solver")
+ for i in range(n_iter):
+ start_time = time.perf_counter()
+ a_pred = KernelPCA(n_components, eigen_solver="arpack") \
+ .fit(X_train).transform(X_test)
+ a_time[j, i] = time.perf_counter() - start_time
+ # check that the result is still correct despite the approx
+ assert_array_almost_equal(np.abs(a_pred), np.abs(ref_pred))
+
+ # C- randomized
+ print(" - randomized solver")
+ for i in range(n_iter):
+ start_time = time.perf_counter()
+ r_pred = KernelPCA(n_components, eigen_solver="randomized") \
+ .fit(X_train).transform(X_test)
+ r_time[j, i] = time.perf_counter() - start_time
+ # check that the result is still correct despite the approximation
+ assert_array_almost_equal(np.abs(r_pred), np.abs(ref_pred))
+
+# Compute statistics for the 3 methods
+avg_ref_time = ref_time.mean(axis=1)
+std_ref_time = ref_time.std(axis=1)
+avg_a_time = a_time.mean(axis=1)
+std_a_time = a_time.std(axis=1)
+avg_r_time = r_time.mean(axis=1)
+std_r_time = r_time.std(axis=1)
+
+
+# 4- Plots
+# --------
+fig, ax = plt.subplots(figsize=(12, 8))
+
+# Display 1 plot with error bars per method
+ax.errorbar(n_compo_range, avg_ref_time, yerr=std_ref_time,
+ marker='x', linestyle='', color='r', label='full')
+ax.errorbar(n_compo_range, avg_a_time, yerr=std_a_time, marker='x',
+ linestyle='', color='g', label='arpack')
+ax.errorbar(n_compo_range, avg_r_time, yerr=std_r_time, marker='x',
+ linestyle='', color='b', label='randomized')
+ax.legend(loc='upper left')
+
+# customize axes
+ax.set_xscale('log')
+ax.set_xlim(1, max(n_compo_range) * 1.1)
+ax.set_ylabel("Execution time (s)")
+ax.set_xlabel("n_components")
+
+ax.set_title("kPCA Execution time comparison on %i samples with %i "
+ "features, according to the choice of `eigen_solver`"
+ "" % (n_train, n_features))
+
+plt.show()
diff --git a/benchmarks/bench_kernel_pca_solvers_time_vs_n_samples.py b/benchmarks/bench_kernel_pca_solvers_time_vs_n_samples.py
new file mode 100644
index 0000000000000..d238802a68d64
--- /dev/null
+++ b/benchmarks/bench_kernel_pca_solvers_time_vs_n_samples.py
@@ -0,0 +1,153 @@
+"""
+==========================================================
+Kernel PCA Solvers comparison benchmark: time vs n_samples
+==========================================================
+
+This benchmark shows that the approximate solvers provided in Kernel PCA can
+help significantly improve its execution speed when an approximate solution
+(small `n_components`) is acceptable. In many real-world datasets the number of
+samples is very large, but a few hundreds of principal components are
+sufficient enough to capture the underlying distribution.
+
+Description:
+------------
+An increasing number of examples is used to train a KernelPCA, between
+`min_n_samples` (default: 101) and `max_n_samples` (default: 4000) with
+`n_samples_grid_size` positions (default: 4). Samples have 2 features, and are
+generated using `make_circles`. For each training sample size, KernelPCA models
+are trained for the various possible `eigen_solver` values. All of them are
+trained to obtain `n_components` principal components (default: 100). The
+execution times are displayed in a plot at the end of the experiment.
+
+What you can observe:
+---------------------
+When the number of samples provided gets large, the dense solver takes a lot
+of time to complete, while the randomized method returns similar results in
+much shorter execution times.
+
+Going further:
+--------------
+You can increase `max_n_samples` and `nb_n_samples_to_try` if you wish to
+explore a wider range of values for `n_samples`.
+
+You can also set `include_arpack=True` to add this other solver in the
+experiments (much slower).
+
+Finally you can have a look at the second example of this series, "Kernel PCA
+Solvers comparison benchmark: time vs n_components", where this time the number
+of examples is fixed, and the desired number of components varies.
+"""
+# Author: Sylvain MARIE, Schneider Electric
+
+import time
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+from numpy.testing import assert_array_almost_equal
+from sklearn.decomposition import KernelPCA
+from sklearn.datasets import make_circles
+
+
+print(__doc__)
+
+
+# 1- Design the Experiment
+# ------------------------
+min_n_samples, max_n_samples = 101, 4000 # min and max n_samples to try
+n_samples_grid_size = 4 # nb of positions in the grid to try
+# generate the grid
+n_samples_range = [min_n_samples + np.floor((x / (n_samples_grid_size - 1))
+ * (max_n_samples - min_n_samples))
+ for x in range(0, n_samples_grid_size)]
+
+n_components = 100 # the number of principal components we want to use
+n_iter = 3 # the number of times each experiment will be repeated
+include_arpack = False # set this to True to include arpack solver (slower)
+
+
+# 2- Generate random data
+# -----------------------
+n_features = 2
+X, y = make_circles(n_samples=max_n_samples, factor=.3, noise=.05,
+ random_state=0)
+
+
+# 3- Benchmark
+# ------------
+# init
+ref_time = np.empty((len(n_samples_range), n_iter)) * np.nan
+a_time = np.empty((len(n_samples_range), n_iter)) * np.nan
+r_time = np.empty((len(n_samples_range), n_iter)) * np.nan
+
+# loop
+for j, n_samples in enumerate(n_samples_range):
+
+ n_samples = int(n_samples)
+ print("Performing kPCA with n_samples = %i" % n_samples)
+
+ X_train = X[:n_samples, :]
+ X_test = X_train
+
+ # A- reference (dense)
+ print(" - dense")
+ for i in range(n_iter):
+ start_time = time.perf_counter()
+ ref_pred = KernelPCA(n_components, eigen_solver="dense") \
+ .fit(X_train).transform(X_test)
+ ref_time[j, i] = time.perf_counter() - start_time
+
+ # B- arpack
+ if include_arpack:
+ print(" - arpack")
+ for i in range(n_iter):
+ start_time = time.perf_counter()
+ a_pred = KernelPCA(n_components, eigen_solver="arpack") \
+ .fit(X_train).transform(X_test)
+ a_time[j, i] = time.perf_counter() - start_time
+ # check that the result is still correct despite the approx
+ assert_array_almost_equal(np.abs(a_pred), np.abs(ref_pred))
+
+ # C- randomized
+ print(" - randomized")
+ for i in range(n_iter):
+ start_time = time.perf_counter()
+ r_pred = KernelPCA(n_components, eigen_solver="randomized") \
+ .fit(X_train).transform(X_test)
+ r_time[j, i] = time.perf_counter() - start_time
+ # check that the result is still correct despite the approximation
+ assert_array_almost_equal(np.abs(r_pred), np.abs(ref_pred))
+
+# Compute statistics for the 3 methods
+avg_ref_time = ref_time.mean(axis=1)
+std_ref_time = ref_time.std(axis=1)
+avg_a_time = a_time.mean(axis=1)
+std_a_time = a_time.std(axis=1)
+avg_r_time = r_time.mean(axis=1)
+std_r_time = r_time.std(axis=1)
+
+
+# 4- Plots
+# --------
+fig, ax = plt.subplots(figsize=(12, 8))
+
+# Display 1 plot with error bars per method
+ax.errorbar(n_samples_range, avg_ref_time, yerr=std_ref_time,
+ marker='x', linestyle='', color='r', label='full')
+if include_arpack:
+ ax.errorbar(n_samples_range, avg_a_time, yerr=std_a_time, marker='x',
+ linestyle='', color='g', label='arpack')
+ax.errorbar(n_samples_range, avg_r_time, yerr=std_r_time, marker='x',
+ linestyle='', color='b', label='randomized')
+ax.legend(loc='upper left')
+
+# customize axes
+ax.set_xlim(min(n_samples_range) * 0.9, max(n_samples_range) * 1.1)
+ax.set_ylabel("Execution time (s)")
+ax.set_xlabel("n_samples")
+
+ax.set_title("Execution time comparison of kPCA with %i components on samples "
+ "with %i features, according to the choice of `eigen_solver`"
+ "" % (n_components, n_features))
+
+plt.show()
diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst
index e971d784c63d6..fd51f60d8bfc6 100644
--- a/doc/modules/decomposition.rst
+++ b/doc/modules/decomposition.rst
@@ -166,32 +166,16 @@ Note: the implementation of ``inverse_transform`` in :class:`PCA` with
.. topic:: References:
- * `"Finding structure with randomness: Stochastic algorithms for
+ * Algorithm 4.3 in
+ `"Finding structure with randomness: Stochastic algorithms for
constructing approximate matrix decompositions"
<https://arxiv.org/abs/0909.4061>`_
Halko, et al., 2009
-
-.. _kernel_PCA:
-
-Kernel PCA
-----------
-
-:class:`KernelPCA` is an extension of PCA which achieves non-linear
-dimensionality reduction through the use of kernels (see :ref:`metrics`). It
-has many applications including denoising, compression and structured
-prediction (kernel dependency estimation). :class:`KernelPCA` supports both
-``transform`` and ``inverse_transform``.
-
-.. figure:: ../auto_examples/decomposition/images/sphx_glr_plot_kernel_pca_001.png
- :target: ../auto_examples/decomposition/plot_kernel_pca.html
- :align: center
- :scale: 75%
-
-.. topic:: Examples:
-
- * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`
-
+ * `"An implementation of a randomized algorithm for principal component
+ analysis"
+ <https://arxiv.org/pdf/1412.3510.pdf>`_
+ A. Szlam et al. 2014
.. _SparsePCA:
@@ -278,6 +262,100 @@ factorization, while larger values shrink many coefficients to zero.
R. Jenatton, G. Obozinski, F. Bach, 2009
+.. _kernel_PCA:
+
+Kernel Principal Component Analysis (kPCA)
+==========================================
+
+Exact Kernel PCA
+----------------
+
+:class:`KernelPCA` is an extension of PCA which achieves non-linear
+dimensionality reduction through the use of kernels (see :ref:`metrics`). It
+has many applications including denoising, compression and structured
+prediction (kernel dependency estimation). :class:`KernelPCA` supports both
+``transform`` and ``inverse_transform``.
+
+.. figure:: ../auto_examples/decomposition/images/sphx_glr_plot_kernel_pca_001.png
+ :target: ../auto_examples/decomposition/plot_kernel_pca.html
+ :align: center
+ :scale: 75%
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`
+
+.. topic:: References:
+
+ * Kernel PCA was introduced in "Kernel principal component analysis"
+ Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999.
+ In Advances in kernel methods, MIT Press, Cambridge, MA, USA 327-352.
+
+
+.. _kPCA_Solvers:
+
+Choice of solver for Kernel PCA
+-------------------------------
+
+While in :class:`PCA` the number of components is bounded by the number of
+features, in :class:`KernelPCA` the number of components is bounded by the
+number of samples. Many real-world datasets have large number of samples! In
+these cases finding *all* the components with a full kPCA is a waste of
+computation time, as data is mostly described by the first few components
+(e.g. ``n_components<=100``). In other words, the centered Gram matrix that
+is eigendecomposed in the Kernel PCA fitting process has an effective rank that
+is much smaller than its size. This is a situation where approximate
+eigensolvers can provide speedup with very low precision loss.
+
+The optional parameter ``eigen_solver='randomized'`` can be used to
+*significantly* reduce the computation time when the number of requested
+``n_components`` is small compared with the number of samples. It relies on
+randomized decomposition methods to find an approximate solution in a shorter
+time.
+
+The time complexity of the randomized :class:`KernelPCA` is
+:math:`O(n_{\mathrm{samples}}^2 \cdot n_{\mathrm{components}})`
+instead of :math:`O(n_{\mathrm{samples}}^3)` for the exact method
+implemented with ``eigen_solver='dense'``.
+
+The memory footprint of randomized :class:`KernelPCA` is also proportional to
+:math:`2 \cdot n_{\mathrm{samples}} \cdot n_{\mathrm{components}}` instead of
+:math:`n_{\mathrm{samples}}^2` for the exact method.
+
+Note: this technique is the same as in :ref:`RandomizedPCA`.
+
+In addition to the above two solvers, ``eigen_solver='arpack'`` can be used as
+an alternate way to get an approximate decomposition. In practice, this method
+only provides reasonable execution times when the number of components to find
+is extremely small. It is enabled by default when the desired number of
+components is less than 10 (strict) and the number of samples is more than 200
+(strict). See :class:`KernelPCA` for details.
+
+.. topic:: References:
+
+ * *dense* solver:
+ `scipy.linalg.eigh documentation
+ <https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html>`_
+
+ * *randomized* solver:
+
+ - Algorithm 4.3 in
+ `"Finding structure with randomness: Stochastic algorithms for
+ constructing approximate matrix decompositions"
+ <https://arxiv.org/abs/0909.4061>`_
+ Halko, et al., 2009
+
+ - `"An implementation of a randomized algorithm for principal component
+ analysis"
+ <https://arxiv.org/pdf/1412.3510.pdf>`_
+ A. Szlam et al. 2014
+
+ * *arpack* solver:
+ `scipy.sparse.linalg.eigsh documentation
+ <https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html>`_
+ R. B. Lehoucq, D. C. Sorensen, and C. Yang, 1998
+
+
.. _LSA:
Truncated singular value decomposition and latent semantic analysis
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 3b3884e68e185..e89eecfe0874c 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -159,14 +159,17 @@ Changelog
- |Fix| Fixes incorrect multiple data-conversion warnings when clustering
boolean data. :pr:`19046` by :user:`Surya Prakash <jdsurya>`.
-:mod:`sklearn.decomposition`
-............................
-
- |Fix| Fixed :func:`dict_learning`, used by :class:`DictionaryLearning`, to
ensure determinism of the output. Achieved by flipping signs of the SVD
output which is used to initialize the code.
:pr:`18433` by :user:`Bruno Charron <brcharron>`.
+- |Enhancement| added a new approximate solver (randomized SVD, available with
+ `eigen_solver='randomized'`) to :class:`decomposition.KernelPCA`. This
+ significantly accelerates computation when the number of samples is much
+ larger than the desired number of components.
+ :pr:`12069` by :user:`Sylvain Marié <smarie>`.
+
- |Fix| Fixed a bug in :class:`MiniBatchDictionaryLearning`,
:class:`MiniBatchSparsePCA` and :func:`dict_learning_online` where the
update of the dictionary was incorrect. :pr:`19198` by
@@ -389,8 +392,8 @@ Changelog
supporting sparse matrix and raise the appropriate error message.
:pr:`19879` by :user:`Guillaume Lemaitre <glemaitre>`.
-- |Efficiency| Changed ``algorithm`` argument for :class:`cluster.KMeans` in
- :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.
+- |Efficiency| Changed ``algorithm`` argument for :class:`cluster.KMeans` in
+ :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.
:pr:`19934` by :user:`Gleb Levitskiy <GLevV>`.
:mod:`sklearn.tree`
diff --git a/sklearn/decomposition/_kernel_pca.py b/sklearn/decomposition/_kernel_pca.py
index 415ee034c1769..8663193a8383e 100644
--- a/sklearn/decomposition/_kernel_pca.py
+++ b/sklearn/decomposition/_kernel_pca.py
@@ -1,6 +1,7 @@
"""Kernel Principal Components Analysis."""
# Author: Mathieu Blondel <[email protected]>
+# Sylvain Marie <[email protected]>
# License: BSD 3 clause
import numpy as np
@@ -8,7 +9,7 @@
from scipy.sparse.linalg import eigsh
from ..utils._arpack import _init_arpack_v0
-from ..utils.extmath import svd_flip
+from ..utils.extmath import svd_flip, _randomized_eigsh
from ..utils.validation import check_is_fitted, _check_psd_eigenvalues
from ..utils.deprecation import deprecated
from ..exceptions import NotFittedError
@@ -24,6 +25,12 @@ class KernelPCA(TransformerMixin, BaseEstimator):
Non-linear dimensionality reduction through the use of kernels (see
:ref:`metrics`).
+ It uses the `scipy.linalg.eigh` LAPACK implementation of the full SVD or
+ the `scipy.sparse.linalg.eigsh` ARPACK implementation of the truncated SVD,
+ depending on the shape of the input data and the number of components to
+ extract. It can also use a randomized truncated SVD by the method of
+ Halko et al. 2009, see `eigen_solver`.
+
Read more in the :ref:`User Guide <kernel_PCA>`.
Parameters
@@ -59,10 +66,37 @@ class KernelPCA(TransformerMixin, BaseEstimator):
Learn the inverse transform for non-precomputed kernels.
(i.e. learn to find the pre-image of a point)
- eigen_solver : {'auto', 'dense', 'arpack'}, default='auto'
- Select eigensolver to use. If n_components is much less than
- the number of training samples, arpack may be more efficient
- than the dense eigensolver.
+ eigen_solver : {'auto', 'dense', 'arpack', 'randomized'}, \
+ default='auto'
+ Select eigensolver to use. If `n_components` is much
+ less than the number of training samples, randomized (or arpack to a
+ smaller extend) may be more efficient than the dense eigensolver.
+ Randomized SVD is performed according to the method of Halko et al.
+
+ auto :
+ the solver is selected by a default policy based on n_samples
+ (the number of training samples) and `n_components`:
+ if the number of components to extract is less than 10 (strict) and
+ the number of samples is more than 200 (strict), the 'arpack'
+ method is enabled. Otherwise the exact full eigenvalue
+ decomposition is computed and optionally truncated afterwards
+ ('dense' method).
+ dense :
+ run exact full eigenvalue decomposition calling the standard
+ LAPACK solver via `scipy.linalg.eigh`, and select the components
+ by postprocessing
+ arpack :
+ run SVD truncated to n_components calling ARPACK solver using
+ `scipy.sparse.linalg.eigsh`. It requires strictly
+ 0 < n_components < n_samples
+ randomized :
+ run randomized SVD by the method of Halko et al. The current
+ implementation selects eigenvalues based on their module; therefore
+ using this method can lead to unexpected results if the kernel is
+ not positive semi-definite.
+
+ .. versionchanged:: 1.0
+ `'randomized'` was added.
tol : float, default=0
Convergence tolerance for arpack.
@@ -72,6 +106,13 @@ class KernelPCA(TransformerMixin, BaseEstimator):
Maximum number of iterations for arpack.
If None, optimal value will be chosen by arpack.
+ iterated_power : int >= 0, or 'auto', default='auto'
+ Number of iterations for the power method computed by
+ svd_solver == 'randomized'. When 'auto', it is set to 7 when
+ `n_components < 0.1 * min(X.shape)`, other it is set to 4.
+
+ .. versionadded:: 1.0
+
remove_zero_eig : bool, default=False
If True, then all components with zero eigenvalues are removed, so
that the number of components in the output may be < n_components
@@ -80,8 +121,8 @@ class KernelPCA(TransformerMixin, BaseEstimator):
with zero eigenvalues are removed regardless.
random_state : int, RandomState instance or None, default=None
- Used when ``eigen_solver`` == 'arpack'. Pass an int for reproducible
- results across multiple function calls.
+ Used when ``eigen_solver`` == 'arpack' or 'randomized'. Pass an int
+ for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
.. versionadded:: 0.18
@@ -141,12 +182,22 @@ class KernelPCA(TransformerMixin, BaseEstimator):
and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods,
MIT Press, Cambridge, MA, USA 327-352.
+
+ For eigen_solver == 'arpack', refer to `scipy.sparse.linalg.eigsh`.
+
+ For eigen_solver == 'randomized', see:
+ Finding structure with randomness: Stochastic algorithms
+ for constructing approximate matrix decompositions Halko, et al., 2009
+ (arXiv:909)
+ A randomized algorithm for the decomposition of matrices
+ Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert
"""
@_deprecate_positional_args
def __init__(self, n_components=None, *, kernel="linear",
gamma=None, degree=3, coef0=1, kernel_params=None,
alpha=1.0, fit_inverse_transform=False, eigen_solver='auto',
- tol=0, max_iter=None, remove_zero_eig=False,
+ tol=0, max_iter=None, iterated_power='auto',
+ remove_zero_eig=False,
random_state=None, copy_X=True, n_jobs=None):
if fit_inverse_transform and kernel == 'precomputed':
raise ValueError(
@@ -160,9 +211,10 @@ def __init__(self, n_components=None, *, kernel="linear",
self.alpha = alpha
self.fit_inverse_transform = fit_inverse_transform
self.eigen_solver = eigen_solver
- self.remove_zero_eig = remove_zero_eig
self.tol = tol
self.max_iter = max_iter
+ self.iterated_power = iterated_power
+ self.remove_zero_eig = remove_zero_eig
self.random_state = random_state
self.n_jobs = n_jobs
self.copy_X = copy_X
@@ -191,9 +243,14 @@ def _fit_transform(self, K):
# center kernel
K = self._centerer.fit_transform(K)
+ # adjust n_components according to user inputs
if self.n_components is None:
- n_components = K.shape[0]
+ n_components = K.shape[0] # use all dimensions
else:
+ if self.n_components < 1:
+ raise ValueError(
+ f"`n_components` should be >= 1, got: {self.n_component}"
+ )
n_components = min(K.shape[0], self.n_components)
# compute eigenvectors
@@ -206,6 +263,7 @@ def _fit_transform(self, K):
eigen_solver = self.eigen_solver
if eigen_solver == 'dense':
+ # Note: eigvals specifies the indices of smallest/largest to return
self.lambdas_, self.alphas_ = linalg.eigh(
K, eigvals=(K.shape[0] - n_components, K.shape[0] - 1))
elif eigen_solver == 'arpack':
@@ -215,6 +273,14 @@ def _fit_transform(self, K):
tol=self.tol,
maxiter=self.max_iter,
v0=v0)
+ elif eigen_solver == 'randomized':
+ self.lambdas_, self.alphas_ = _randomized_eigsh(
+ K, n_components=n_components, n_iter=self.iterated_power,
+ random_state=self.random_state, selection='module'
+ )
+ else:
+ raise ValueError("Unsupported value for `eigen_solver`: %r"
+ % eigen_solver)
# make sure that the eigenvalues are ok and fix numerical issues
self.lambdas_ = _check_psd_eigenvalues(self.lambdas_,
diff --git a/sklearn/utils/extmath.py b/sklearn/utils/extmath.py
index add8c5883a751..c72c54bd1aa4d 100644
--- a/sklearn/utils/extmath.py
+++ b/sklearn/utils/extmath.py
@@ -249,6 +249,9 @@ def randomized_svd(M, n_components, *, n_oversamples=10, n_iter='auto',
flip_sign=True, random_state='warn'):
"""Computes a truncated randomized SVD.
+ This method solves the fixed-rank approximation problem described in the
+ Halko et al paper (problem (1.5), p5).
+
Parameters
----------
M : {ndarray, sparse matrix}
@@ -262,13 +265,23 @@ def randomized_svd(M, n_components, *, n_oversamples=10, n_iter='auto',
to ensure proper conditioning. The total number of random vectors
used to find the range of M is n_components + n_oversamples. Smaller
number can improve speed but can negatively impact the quality of
- approximation of singular vectors and singular values.
+ approximation of singular vectors and singular values. Users might wish
+ to increase this parameter up to `2*k - n_components` where k is the
+ effective rank, for large matrices, noisy problems, matrices with
+ slowly decaying spectrums, or to increase precision accuracy. See Halko
+ et al (pages 5, 23 and 26).
n_iter : int or 'auto', default='auto'
Number of power iterations. It can be used to deal with very noisy
problems. When 'auto', it is set to 4, unless `n_components` is small
- (< .1 * min(X.shape)) `n_iter` in which case is set to 7.
- This improves precision with few components.
+ (< .1 * min(X.shape)) in which case `n_iter` is set to 7.
+ This improves precision with few components. Note that in general
+ users should rather increase `n_oversamples` before increasing `n_iter`
+ as the principle of the randomized method is to avoid usage of these
+ more costly power iterations steps. When `n_components` is equal
+ or greater to the effective matrix rank and the spectrum does not
+ present a slow decay, `n_iter=0` or `1` should even work fine in theory
+ (see Halko et al paper, page 9).
.. versionchanged:: 0.18
@@ -316,12 +329,15 @@ def randomized_svd(M, n_components, *, n_oversamples=10, n_iter='auto',
computations. It is particularly fast on large matrices on which
you wish to extract only a small number of components. In order to
obtain further speed up, `n_iter` can be set <=2 (at the cost of
- loss of precision).
+ loss of precision). To increase the precision it is recommended to
+ increase `n_oversamples`, up to `2*k-n_components` where k is the
+ effective rank. Usually, `n_components` is chosen to be greater than k
+ so increasing `n_oversamples` up to `n_components` should be enough.
References
----------
* Finding structure with randomness: Stochastic algorithms for constructing
- approximate matrix decompositions
+ approximate matrix decompositions (Algorithm 4.3)
Halko, et al., 2009 https://arxiv.org/abs/0909.4061
* A randomized algorithm for the decomposition of matrices
@@ -393,6 +409,152 @@ def randomized_svd(M, n_components, *, n_oversamples=10, n_iter='auto',
return U[:, :n_components], s[:n_components], Vt[:n_components, :]
+@_deprecate_positional_args
+def _randomized_eigsh(M, n_components, *, n_oversamples=10, n_iter='auto',
+ power_iteration_normalizer='auto',
+ selection='module', random_state=None):
+ """Computes a truncated eigendecomposition using randomized methods
+
+ This method solves the fixed-rank approximation problem described in the
+ Halko et al paper.
+
+ The choice of which components to select can be tuned with the `selection`
+ parameter.
+
+ .. versionadded:: 0.24
+
+ Parameters
+ ----------
+ M : ndarray or sparse matrix
+ Matrix to decompose, it should be real symmetric square or complex
+ hermitian
+
+ n_components : int
+ Number of eigenvalues and vectors to extract.
+
+ n_oversamples : int, default=10
+ Additional number of random vectors to sample the range of M so as
+ to ensure proper conditioning. The total number of random vectors
+ used to find the range of M is n_components + n_oversamples. Smaller
+ number can improve speed but can negatively impact the quality of
+ approximation of eigenvectors and eigenvalues. Users might wish
+ to increase this parameter up to `2*k - n_components` where k is the
+ effective rank, for large matrices, noisy problems, matrices with
+ slowly decaying spectrums, or to increase precision accuracy. See Halko
+ et al (pages 5, 23 and 26).
+
+ n_iter : int or 'auto', default='auto'
+ Number of power iterations. It can be used to deal with very noisy
+ problems. When 'auto', it is set to 4, unless `n_components` is small
+ (< .1 * min(X.shape)) in which case `n_iter` is set to 7.
+ This improves precision with few components. Note that in general
+ users should rather increase `n_oversamples` before increasing `n_iter`
+ as the principle of the randomized method is to avoid usage of these
+ more costly power iterations steps. When `n_components` is equal
+ or greater to the effective matrix rank and the spectrum does not
+ present a slow decay, `n_iter=0` or `1` should even work fine in theory
+ (see Halko et al paper, page 9).
+
+ power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
+ Whether the power iterations are normalized with step-by-step
+ QR factorization (the slowest but most accurate), 'none'
+ (the fastest but numerically unstable when `n_iter` is large, e.g.
+ typically 5 or larger), or 'LU' factorization (numerically stable
+ but can lose slightly in accuracy). The 'auto' mode applies no
+ normalization if `n_iter` <= 2 and switches to LU otherwise.
+
+ selection : {'value', 'module'}, default='module'
+ Strategy used to select the n components. When `selection` is `'value'`
+ (not yet implemented, will become the default when implemented), the
+ components corresponding to the n largest eigenvalues are returned.
+ When `selection` is `'module'`, the components corresponding to the n
+ eigenvalues with largest modules are returned.
+
+ random_state : int, RandomState instance, default=None
+ The seed of the pseudo random number generator to use when shuffling
+ the data, i.e. getting the random vectors to initialize the algorithm.
+ Pass an int for reproducible results across multiple function calls.
+ See :term:`Glossary <random_state>`.
+
+ Notes
+ -----
+ This algorithm finds a (usually very good) approximate truncated
+ eigendecomposition using randomized methods to speed up the computations.
+
+ This method is particularly fast on large matrices on which
+ you wish to extract only a small number of components. In order to
+ obtain further speed up, `n_iter` can be set <=2 (at the cost of
+ loss of precision). To increase the precision it is recommended to
+ increase `n_oversamples`, up to `2*k-n_components` where k is the
+ effective rank. Usually, `n_components` is chosen to be greater than k
+ so increasing `n_oversamples` up to `n_components` should be enough.
+
+ Strategy 'value': not implemented yet.
+ Algorithms 5.3, 5.4 and 5.5 in the Halko et al paper should provide good
+ condidates for a future implementation.
+
+ Strategy 'module':
+ The principle is that for diagonalizable matrices, the singular values and
+ eigenvalues are related: if t is an eigenvalue of A, then :math:`|t|` is a
+ singular value of A. This method relies on a randomized SVD to find the n
+ singular components corresponding to the n singular values with largest
+ modules, and then uses the signs of the singular vectors to find the true
+ sign of t: if the sign of left and right singular vectors are different
+ then the corresponding eigenvalue is negative.
+
+ Returns
+ -------
+ eigvals : 1D array of shape (n_components,) containing the `n_components`
+ eigenvalues selected (see ``selection`` parameter).
+ eigvecs : 2D array of shape (M.shape[0], n_components) containing the
+ `n_components` eigenvectors corresponding to the `eigvals`, in the
+ corresponding order. Note that this follows the `scipy.linalg.eigh`
+ convention.
+
+ See Also
+ --------
+ :func:`randomized_svd`
+
+ References
+ ----------
+ * Finding structure with randomness: Stochastic algorithms for constructing
+ approximate matrix decompositions (Algorithm 4.3 for strategy 'module')
+ Halko, et al., 2009 https://arxiv.org/abs/0909.4061
+
+ """
+ if selection == 'value': # pragma: no cover
+ # to do : an algorithm can be found in the Halko et al reference
+ raise NotImplementedError()
+
+ elif selection == 'module':
+ # Note: no need for deterministic U and Vt (flip_sign=True),
+ # as we only use the dot product UVt afterwards
+ U, S, Vt = randomized_svd(
+ M, n_components=n_components, n_oversamples=n_oversamples,
+ n_iter=n_iter,
+ power_iteration_normalizer=power_iteration_normalizer,
+ flip_sign=False, random_state=random_state)
+
+ eigvecs = U[:, :n_components]
+ eigvals = S[:n_components]
+
+ # Conversion of Singular values into Eigenvalues:
+ # For any eigenvalue t, the corresponding singular value is |t|.
+ # So if there is a negative eigenvalue t, the corresponding singular
+ # value will be -t, and the left (U) and right (V) singular vectors
+ # will have opposite signs.
+ # Fastest way: see <https://stackoverflow.com/a/61974002/7262247>
+ diag_VtU = np.einsum('ji,ij->j',
+ Vt[:n_components, :], U[:, :n_components])
+ signs = np.sign(diag_VtU)
+ eigvals = eigvals * signs
+
+ else: # pragma: no cover
+ raise ValueError("Invalid `selection`: %r" % selection)
+
+ return eigvals, eigvecs
+
+
@_deprecate_positional_args
def weighted_mode(a, w, *, axis=0):
"""Returns an array of the weighted modal (most common) value in a.
|
diff --git a/sklearn/decomposition/tests/test_kernel_pca.py b/sklearn/decomposition/tests/test_kernel_pca.py
index adf68f1db1a6c..5c8d052a7aa14 100644
--- a/sklearn/decomposition/tests/test_kernel_pca.py
+++ b/sklearn/decomposition/tests/test_kernel_pca.py
@@ -3,11 +3,13 @@
import pytest
from sklearn.utils._testing import (assert_array_almost_equal,
- assert_allclose)
+ assert_array_equal,
+ assert_allclose)
from sklearn.decomposition import PCA, KernelPCA
from sklearn.datasets import make_circles
from sklearn.datasets import make_blobs
+from sklearn.exceptions import NotFittedError
from sklearn.linear_model import Perceptron
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
@@ -17,6 +19,12 @@
def test_kernel_pca():
+ """Nominal test for all solvers and all known kernels + a custom one
+
+ It tests
+ - that fit_transform is equivalent to fit+transform
+ - that the shapes of transforms and inverse transforms are correct
+ """
rng = np.random.RandomState(0)
X_fit = rng.random_sample((5, 4))
X_pred = rng.random_sample((2, 4))
@@ -26,7 +34,7 @@ def histogram(x, y, **kwargs):
assert kwargs == {} # no kernel_params that we didn't ask for
return np.minimum(x, y).sum()
- for eigen_solver in ("auto", "dense", "arpack"):
+ for eigen_solver in ("auto", "dense", "arpack", "randomized"):
for kernel in ("linear", "rbf", "poly", histogram):
# histogram kernel produces singular matrix inside linalg.solve
# XXX use a least-squares approximation?
@@ -55,12 +63,31 @@ def histogram(x, y, **kwargs):
assert X_pred2.shape == X_pred.shape
+def test_kernel_pca_invalid_solver():
+ """Check that kPCA raises an error if the solver parameter is invalid
+
+ """
+ with pytest.raises(ValueError):
+ KernelPCA(eigen_solver="unknown").fit(np.random.randn(10, 10))
+
+
def test_kernel_pca_invalid_parameters():
+ """Check that kPCA raises an error if the parameters are invalid
+
+ Tests fitting inverse transform with a precomputed kernel raises a
+ ValueError.
+ """
with pytest.raises(ValueError):
KernelPCA(10, fit_inverse_transform=True, kernel='precomputed')
def test_kernel_pca_consistent_transform():
+ """Check robustness to mutations in the original training array
+
+ Test that after fitting a kPCA model, it stays independent of any
+ mutation of the values of the original data object by relying on an
+ internal copy.
+ """
# X_fit_ needs to retain the old, unmodified copy of X
state = np.random.RandomState(0)
X = state.rand(10, 10)
@@ -74,6 +101,10 @@ def test_kernel_pca_consistent_transform():
def test_kernel_pca_deterministic_output():
+ """Test that Kernel PCA produces deterministic output
+
+ Tests that the same inputs and random state produce the same output.
+ """
rng = np.random.RandomState(0)
X = rng.rand(10, 10)
eigen_solver = ('arpack', 'dense')
@@ -89,15 +120,20 @@ def test_kernel_pca_deterministic_output():
def test_kernel_pca_sparse():
+ """Test that kPCA works on a sparse data input.
+
+ Same test as ``test_kernel_pca except inverse_transform`` since it's not
+ implemented for sparse matrices.
+ """
rng = np.random.RandomState(0)
X_fit = sp.csr_matrix(rng.random_sample((5, 4)))
X_pred = sp.csr_matrix(rng.random_sample((2, 4)))
- for eigen_solver in ("auto", "arpack"):
+ for eigen_solver in ("auto", "arpack", "randomized"):
for kernel in ("linear", "rbf", "poly"):
# transform fit data
kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver,
- fit_inverse_transform=False)
+ fit_inverse_transform=False, random_state=0)
X_fit_transformed = kpca.fit_transform(X_fit)
X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit)
assert_array_almost_equal(np.abs(X_fit_transformed),
@@ -108,31 +144,47 @@ def test_kernel_pca_sparse():
assert (X_pred_transformed.shape[1] ==
X_fit_transformed.shape[1])
- # inverse transform
- # X_pred2 = kpca.inverse_transform(X_pred_transformed)
- # assert X_pred2.shape == X_pred.shape)
+ # inverse transform: not available for sparse matrices
+ # XXX: should we raise another exception type here? For instance:
+ # NotImplementedError.
+ with pytest.raises(NotFittedError):
+ kpca.inverse_transform(X_pred_transformed)
-def test_kernel_pca_linear_kernel():
[email protected]("solver", ["auto", "dense", "arpack", "randomized"])
[email protected]("n_features", [4, 10])
+def test_kernel_pca_linear_kernel(solver, n_features):
+ """Test that kPCA with linear kernel is equivalent to PCA for all solvers.
+
+ KernelPCA with linear kernel should produce the same output as PCA.
+ """
rng = np.random.RandomState(0)
- X_fit = rng.random_sample((5, 4))
- X_pred = rng.random_sample((2, 4))
+ X_fit = rng.random_sample((5, n_features))
+ X_pred = rng.random_sample((2, n_features))
# for a linear kernel, kernel PCA should find the same projection as PCA
# modulo the sign (direction)
# fit only the first four components: fifth is near zero eigenvalue, so
# can be trimmed due to roundoff error
+ n_comps = 3 if solver == "arpack" else 4
assert_array_almost_equal(
- np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)),
- np.abs(PCA(4).fit(X_fit).transform(X_pred)))
+ np.abs(KernelPCA(n_comps, eigen_solver=solver).fit(X_fit)
+ .transform(X_pred)),
+ np.abs(PCA(n_comps, svd_solver=solver if solver != "dense" else "full")
+ .fit(X_fit).transform(X_pred)))
def test_kernel_pca_n_components():
+ """Test that `n_components` is correctly taken into account for projections
+
+ For all solvers this tests that the output has the correct shape depending
+ on the selected number of components.
+ """
rng = np.random.RandomState(0)
X_fit = rng.random_sample((5, 4))
X_pred = rng.random_sample((2, 4))
- for eigen_solver in ("dense", "arpack"):
+ for eigen_solver in ("dense", "arpack", "randomized"):
for c in [1, 2, 4]:
kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver)
shape = kpca.fit(X_fit).transform(X_pred).shape
@@ -141,6 +193,11 @@ def test_kernel_pca_n_components():
def test_remove_zero_eig():
+ """Check that the ``remove_zero_eig`` parameter works correctly.
+
+ Tests that the null-space (Zero) eigenvalues are removed when
+ remove_zero_eig=True, whereas they are not by default.
+ """
X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]])
# n_components=None (default) => remove_zero_eig is True
@@ -158,9 +215,11 @@ def test_remove_zero_eig():
def test_leave_zero_eig():
- """This test checks that fit().transform() returns the same result as
+ """Non-regression test for issue #12141 (PR #12143)
+
+ This test checks that fit().transform() returns the same result as
fit_transform() in case of non-removed zero eigenvalue.
- Non-regression test for issue #12141 (PR #12143)"""
+ """
X_fit = np.array([[1, 1], [0, 0]])
# Assert that even with all np warnings on, there is no div by zero warning
@@ -184,23 +243,29 @@ def test_leave_zero_eig():
def test_kernel_pca_precomputed():
+ """Test that kPCA works with a precomputed kernel, for all solvers
+
+ """
rng = np.random.RandomState(0)
X_fit = rng.random_sample((5, 4))
X_pred = rng.random_sample((2, 4))
- for eigen_solver in ("dense", "arpack"):
- X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\
- fit(X_fit).transform(X_pred)
+ for eigen_solver in ("dense", "arpack", "randomized"):
+ X_kpca = KernelPCA(
+ 4, eigen_solver=eigen_solver, random_state=0
+ ).fit(X_fit).transform(X_pred)
+
X_kpca2 = KernelPCA(
- 4, eigen_solver=eigen_solver, kernel='precomputed').fit(
- np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T))
+ 4, eigen_solver=eigen_solver, kernel='precomputed', random_state=0
+ ).fit(np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T))
X_kpca_train = KernelPCA(
- 4, eigen_solver=eigen_solver,
- kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T))
+ 4, eigen_solver=eigen_solver, kernel='precomputed', random_state=0
+ ).fit_transform(np.dot(X_fit, X_fit.T))
+
X_kpca_train2 = KernelPCA(
- 4, eigen_solver=eigen_solver, kernel='precomputed').fit(
- np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T))
+ 4, eigen_solver=eigen_solver, kernel='precomputed', random_state=0
+ ).fit(np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T))
assert_array_almost_equal(np.abs(X_kpca),
np.abs(X_kpca2))
@@ -209,7 +274,42 @@ def test_kernel_pca_precomputed():
np.abs(X_kpca_train2))
[email protected]("solver", ["auto", "dense", "arpack", "randomized"])
+def test_kernel_pca_precomputed_non_symmetric(solver):
+ """Check that the kernel centerer works.
+
+ Tests that a non symmetric precomputed kernel is actually accepted
+ because the kernel centerer does its job correctly.
+ """
+
+ # a non symmetric gram matrix
+ K = [
+ [1, 2],
+ [3, 40]
+ ]
+ kpca = KernelPCA(kernel="precomputed", eigen_solver=solver,
+ n_components=1, random_state=0)
+ kpca.fit(K) # no error
+
+ # same test with centered kernel
+ Kc = [
+ [9, -9],
+ [-9, 9]
+ ]
+ kpca_c = KernelPCA(kernel="precomputed", eigen_solver=solver,
+ n_components=1, random_state=0)
+ kpca_c.fit(Kc)
+
+ # comparison between the non-centered and centered versions
+ assert_array_equal(kpca.alphas_, kpca_c.alphas_)
+ assert_array_equal(kpca.lambdas_, kpca_c.lambdas_)
+
+
def test_kernel_pca_invalid_kernel():
+ """Tests that using an invalid kernel name raises a ValueError
+
+ An invalid kernel name should raise a ValueError at fit time.
+ """
rng = np.random.RandomState(0)
X_fit = rng.random_sample((2, 4))
kpca = KernelPCA(kernel="tototiti")
@@ -218,8 +318,11 @@ def test_kernel_pca_invalid_kernel():
def test_gridsearch_pipeline():
- # Test if we can do a grid-search to find parameters to separate
- # circles with a perceptron model.
+ """Check that kPCA works as expected in a grid search pipeline
+
+ Test if we can do a grid-search to find parameters to separate
+ circles with a perceptron model.
+ """
X, y = make_circles(n_samples=400, factor=.3, noise=.05,
random_state=0)
kpca = KernelPCA(kernel="rbf", n_components=2)
@@ -232,8 +335,11 @@ def test_gridsearch_pipeline():
def test_gridsearch_pipeline_precomputed():
- # Test if we can do a grid-search to find parameters to separate
- # circles with a perceptron model using a precomputed kernel.
+ """Check that kPCA works as expected in a grid search pipeline (2)
+
+ Test if we can do a grid-search to find parameters to separate
+ circles with a perceptron model. This test uses a precomputed kernel.
+ """
X, y = make_circles(n_samples=400, factor=.3, noise=.05,
random_state=0)
kpca = KernelPCA(kernel="precomputed", n_components=2)
@@ -247,7 +353,12 @@ def test_gridsearch_pipeline_precomputed():
def test_nested_circles():
- # Test the linear separability of the first 2D KPCA transform
+ """Check that kPCA projects in a space where nested circles are separable
+
+ Tests that 2D nested circles become separable with a perceptron when
+ projected in the first 2 kPCA using an RBF kernel, while raw samples
+ are not directly separable in the original space.
+ """
X, y = make_circles(n_samples=400, factor=.3, noise=.05,
random_state=0)
@@ -270,8 +381,10 @@ def test_nested_circles():
def test_kernel_conditioning():
- """ Test that ``_check_psd_eigenvalues`` is correctly called
- Non-regression test for issue #12140 (PR #12145)"""
+ """Check that ``_check_psd_eigenvalues`` is correctly called in kPCA
+
+ Non-regression test for issue #12140 (PR #12145).
+ """
# create a pathological X leading to small non-zero eigenvalue
X = [[5, 1],
@@ -286,11 +399,93 @@ def test_kernel_conditioning():
assert np.all(kpca.lambdas_ == _check_psd_eigenvalues(kpca.lambdas_))
[email protected]("solver", ["auto", "dense", "arpack", "randomized"])
+def test_precomputed_kernel_not_psd(solver):
+ """Check how KernelPCA works with non-PSD kernels depending on n_components
+
+ Tests for all methods what happens with a non PSD gram matrix (this
+ can happen in an isomap scenario, or with custom kernel functions, or
+ maybe with ill-posed datasets).
+
+ When ``n_component`` is large enough to capture a negative eigenvalue, an
+ error should be raised. Otherwise, KernelPCA should run without error
+ since the negative eigenvalues are not selected.
+ """
+
+ # a non PSD kernel with large eigenvalues, already centered
+ # it was captured from an isomap call and multiplied by 100 for compacity
+ K = [
+ [4.48, -1., 8.07, 2.33, 2.33, 2.33, -5.76, -12.78],
+ [-1., -6.48, 4.5, -1.24, -1.24, -1.24, -0.81, 7.49],
+ [8.07, 4.5, 15.48, 2.09, 2.09, 2.09, -11.1, -23.23],
+ [2.33, -1.24, 2.09, 4., -3.65, -3.65, 1.02, -0.9],
+ [2.33, -1.24, 2.09, -3.65, 4., -3.65, 1.02, -0.9],
+ [2.33, -1.24, 2.09, -3.65, -3.65, 4., 1.02, -0.9],
+ [-5.76, -0.81, -11.1, 1.02, 1.02, 1.02, 4.86, 9.75],
+ [-12.78, 7.49, -23.23, -0.9, -0.9, -0.9, 9.75, 21.46]
+ ]
+ # this gram matrix has 5 positive eigenvalues and 3 negative ones
+ # [ 52.72, 7.65, 7.65, 5.02, 0. , -0. , -6.13, -15.11]
+
+ # 1. ask for enough components to get a significant negative one
+ kpca = KernelPCA(kernel="precomputed", eigen_solver=solver, n_components=7)
+ # make sure that the appropriate error is raised
+ with pytest.raises(ValueError,
+ match="There are significant negative eigenvalues"):
+ kpca.fit(K)
+
+ # 2. ask for a small enough n_components to get only positive ones
+ kpca = KernelPCA(kernel="precomputed", eigen_solver=solver, n_components=2)
+ if solver == 'randomized':
+ # the randomized method is still inconsistent with the others on this
+ # since it selects the eigenvalues based on the largest 2 modules, not
+ # on the largest 2 values.
+ #
+ # At least we can ensure that we return an error instead of returning
+ # the wrong eigenvalues
+ with pytest.raises(ValueError,
+ match="There are significant negative eigenvalues"):
+ kpca.fit(K)
+ else:
+ # general case: make sure that it works
+ kpca.fit(K)
+
+
[email protected]("n_components", [4, 10, 20])
+def test_kernel_pca_solvers_equivalence(n_components):
+ """Check that 'dense' 'arpack' & 'randomized' solvers give similar results
+ """
+
+ # Generate random data
+ n_train, n_test = 2000, 100
+ X, _ = make_circles(n_samples=(n_train + n_test), factor=.3, noise=.05,
+ random_state=0)
+ X_fit, X_pred = X[:n_train, :], X[n_train:, :]
+
+ # reference (full)
+ ref_pred = KernelPCA(n_components, eigen_solver="dense", random_state=0
+ ).fit(X_fit).transform(X_pred)
+
+ # arpack
+ a_pred = KernelPCA(n_components, eigen_solver="arpack", random_state=0
+ ).fit(X_fit).transform(X_pred)
+ # check that the result is still correct despite the approx
+ assert_array_almost_equal(np.abs(a_pred), np.abs(ref_pred))
+
+ # randomized
+ r_pred = KernelPCA(n_components, eigen_solver="randomized", random_state=0
+ ).fit(X_fit).transform(X_pred)
+ # check that the result is still correct despite the approximation
+ assert_array_almost_equal(np.abs(r_pred), np.abs(ref_pred))
+
+
def test_kernel_pca_inverse_transform_reconstruction():
- # Test if the reconstruction is a good approximation.
- # Note that in general it is not possible to get an arbitrarily good
- # reconstruction because of kernel centering that does not
- # preserve all the information of the original data.
+ """Test if the reconstruction is a good approximation.
+
+ Note that in general it is not possible to get an arbitrarily good
+ reconstruction because of kernel centering that does not
+ preserve all the information of the original data.
+ """
X, *_ = make_blobs(n_samples=100, n_features=4, random_state=0)
kpca = KernelPCA(
@@ -302,8 +497,11 @@ def test_kernel_pca_inverse_transform_reconstruction():
def test_32_64_decomposition_shape():
- """ Test that the decomposition is similar for 32 and 64 bits data """
- # see https://github.com/scikit-learn/scikit-learn/issues/18146
+ """Test that the decomposition is similar for 32 and 64 bits data
+
+ Non regression test for
+ https://github.com/scikit-learn/scikit-learn/issues/18146
+ """
X, y = make_blobs(
n_samples=30,
centers=[[0, 0, 0], [1, 1, 1]],
@@ -321,6 +519,10 @@ def test_32_64_decomposition_shape():
# TODO: Remove in 1.1
def test_kernel_pcc_pairwise_is_deprecated():
+ """Check that `_pairwise` is correctly marked with deprecation warning
+
+ Tests that a `FutureWarning` is issued when `_pairwise` is accessed.
+ """
kp = KernelPCA(kernel='precomputed')
msg = r"Attribute _pairwise was deprecated in version 0\.24"
with pytest.warns(FutureWarning, match=msg):
diff --git a/sklearn/utils/tests/test_extmath.py b/sklearn/utils/tests/test_extmath.py
index 8e53d94d911f0..1a77d08b12388 100644
--- a/sklearn/utils/tests/test_extmath.py
+++ b/sklearn/utils/tests/test_extmath.py
@@ -8,11 +8,12 @@
from scipy import sparse
from scipy import linalg
from scipy import stats
+from scipy.sparse.linalg import eigsh
from scipy.special import expit
import pytest
from sklearn.utils import gen_batches
-
+from sklearn.utils._arpack import _init_arpack_v0
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_allclose_dense_sparse
@@ -23,7 +24,7 @@
from sklearn.utils._testing import skip_if_32bit
from sklearn.utils.extmath import density, _safe_accumulator_op
-from sklearn.utils.extmath import randomized_svd
+from sklearn.utils.extmath import randomized_svd, _randomized_eigsh
from sklearn.utils.extmath import row_norms
from sklearn.utils.extmath import weighted_mode
from sklearn.utils.extmath import cartesian
@@ -34,7 +35,7 @@
from sklearn.utils.extmath import softmax
from sklearn.utils.extmath import stable_cumsum
from sklearn.utils.extmath import safe_sparse_dot
-from sklearn.datasets import make_low_rank_matrix
+from sklearn.datasets import make_low_rank_matrix, make_sparse_spd_matrix
def test_density():
@@ -161,6 +162,128 @@ def test_randomized_svd_low_rank_all_dtypes(dtype):
check_randomized_svd_low_rank(dtype)
[email protected]('dtype',
+ (np.int32, np.int64, np.float32, np.float64))
+def test_randomized_eigsh(dtype):
+ """Test that `_randomized_eigsh` returns the appropriate components"""
+
+ rng = np.random.RandomState(42)
+ X = np.diag(np.array([1., -2., 0., 3.], dtype=dtype))
+ # random rotation that preserves the eigenvalues of X
+ rand_rot = np.linalg.qr(rng.normal(size=X.shape))[0]
+ X = rand_rot @ X @ rand_rot.T
+
+ # with 'module' selection method, the negative eigenvalue shows up
+ eigvals, eigvecs = _randomized_eigsh(X, n_components=2, selection='module')
+ # eigenvalues
+ assert eigvals.shape == (2,)
+ assert_array_almost_equal(eigvals, [3., -2.]) # negative eigenvalue here
+ # eigenvectors
+ assert eigvecs.shape == (4, 2)
+
+ # with 'value' selection method, the negative eigenvalue does not show up
+ with pytest.raises(NotImplementedError):
+ _randomized_eigsh(X, n_components=2, selection='value')
+
+
[email protected]('k', (10, 50, 100, 199, 200))
+def test_randomized_eigsh_compared_to_others(k):
+ """Check that `_randomized_eigsh` is similar to other `eigsh`
+
+ Tests that for a random PSD matrix, `_randomized_eigsh` provides results
+ comparable to LAPACK (scipy.linalg.eigh) and ARPACK
+ (scipy.sparse.linalg.eigsh).
+
+ Note: some versions of ARPACK do not support k=n_features.
+ """
+
+ # make a random PSD matrix
+ n_features = 200
+ X = make_sparse_spd_matrix(n_features, random_state=0)
+
+ # compare two versions of randomized
+ # rough and fast
+ eigvals, eigvecs = _randomized_eigsh(X, n_components=k, selection='module',
+ n_iter=25, random_state=0)
+ # more accurate but slow (TODO find realistic settings here)
+ eigvals_qr, eigvecs_qr = _randomized_eigsh(
+ X, n_components=k, n_iter=25, n_oversamples=20, random_state=0,
+ power_iteration_normalizer="QR", selection='module'
+ )
+
+ # with LAPACK
+ eigvals_lapack, eigvecs_lapack = linalg.eigh(X, eigvals=(n_features - k,
+ n_features - 1))
+ indices = eigvals_lapack.argsort()[::-1]
+ eigvals_lapack = eigvals_lapack[indices]
+ eigvecs_lapack = eigvecs_lapack[:, indices]
+
+ # -- eigenvalues comparison
+ assert eigvals_lapack.shape == (k,)
+ # comparison precision
+ assert_array_almost_equal(eigvals, eigvals_lapack, decimal=6)
+ assert_array_almost_equal(eigvals_qr, eigvals_lapack, decimal=6)
+
+ # -- eigenvectors comparison
+ assert eigvecs_lapack.shape == (n_features, k)
+ # flip eigenvectors' sign to enforce deterministic output
+ dummy_vecs = np.zeros_like(eigvecs).T
+ eigvecs, _ = svd_flip(eigvecs, dummy_vecs)
+ eigvecs_qr, _ = svd_flip(eigvecs_qr, dummy_vecs)
+ eigvecs_lapack, _ = svd_flip(eigvecs_lapack, dummy_vecs)
+ assert_array_almost_equal(eigvecs, eigvecs_lapack, decimal=4)
+ assert_array_almost_equal(eigvecs_qr, eigvecs_lapack, decimal=6)
+
+ # comparison ARPACK ~ LAPACK (some ARPACK implems do not support k=n)
+ if k < n_features:
+ v0 = _init_arpack_v0(n_features, random_state=0)
+ # "LA" largest algebraic <=> selection="value" in randomized_eigsh
+ eigvals_arpack, eigvecs_arpack = eigsh(X, k, which="LA", tol=0,
+ maxiter=None, v0=v0)
+ indices = eigvals_arpack.argsort()[::-1]
+ # eigenvalues
+ eigvals_arpack = eigvals_arpack[indices]
+ assert_array_almost_equal(eigvals_lapack, eigvals_arpack, decimal=10)
+ # eigenvectors
+ eigvecs_arpack = eigvecs_arpack[:, indices]
+ eigvecs_arpack, _ = svd_flip(eigvecs_arpack, dummy_vecs)
+ assert_array_almost_equal(eigvecs_arpack, eigvecs_lapack, decimal=8)
+
+
[email protected]("n,rank", [
+ (10, 7),
+ (100, 10),
+ (100, 80),
+ (500, 10),
+ (500, 250),
+ (500, 400),
+])
+def test_randomized_eigsh_reconst_low_rank(n, rank):
+ """Check that randomized_eigsh is able to reconstruct a low rank psd matrix
+
+ Tests that the decomposition provided by `_randomized_eigsh` leads to
+ orthonormal eigenvectors, and that a low rank PSD matrix can be effectively
+ reconstructed with good accuracy using it.
+ """
+ assert rank < n
+
+ # create a low rank PSD
+ rng = np.random.RandomState(69)
+ X = rng.randn(n, rank)
+ A = X @ X.T
+
+ # approximate A with the "right" number of components
+ S, V = _randomized_eigsh(A, n_components=rank, random_state=rng)
+ # orthonormality checks
+ assert_array_almost_equal(np.linalg.norm(V, axis=0), np.ones(S.shape))
+ assert_array_almost_equal(V.T @ V, np.diag(np.ones(S.shape)))
+ # reconstruction
+ A_reconstruct = V @ np.diag(S) @ V.T
+
+ # test that the approximation is good
+ assert_array_almost_equal(A_reconstruct, A, decimal=6)
+
+
@pytest.mark.parametrize('dtype',
(np.float32, np.float64))
def test_row_norms(dtype):
|
[
{
"path": "doc/modules/decomposition.rst",
"old_path": "a/doc/modules/decomposition.rst",
"new_path": "b/doc/modules/decomposition.rst",
"metadata": "diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst\nindex e971d784c63d6..fd51f60d8bfc6 100644\n--- a/doc/modules/decomposition.rst\n+++ b/doc/modules/decomposition.rst\n@@ -166,32 +166,16 @@ Note: the implementation of ``inverse_transform`` in :class:`PCA` with\n \n .. topic:: References:\n \n- * `\"Finding structure with randomness: Stochastic algorithms for\n+ * Algorithm 4.3 in\n+ `\"Finding structure with randomness: Stochastic algorithms for\n constructing approximate matrix decompositions\"\n <https://arxiv.org/abs/0909.4061>`_\n Halko, et al., 2009\n \n-\n-.. _kernel_PCA:\n-\n-Kernel PCA\n-----------\n-\n-:class:`KernelPCA` is an extension of PCA which achieves non-linear\n-dimensionality reduction through the use of kernels (see :ref:`metrics`). It\n-has many applications including denoising, compression and structured\n-prediction (kernel dependency estimation). :class:`KernelPCA` supports both\n-``transform`` and ``inverse_transform``.\n-\n-.. figure:: ../auto_examples/decomposition/images/sphx_glr_plot_kernel_pca_001.png\n- :target: ../auto_examples/decomposition/plot_kernel_pca.html\n- :align: center\n- :scale: 75%\n-\n-.. topic:: Examples:\n-\n- * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`\n-\n+ * `\"An implementation of a randomized algorithm for principal component\n+ analysis\"\n+ <https://arxiv.org/pdf/1412.3510.pdf>`_\n+ A. Szlam et al. 2014\n \n .. _SparsePCA:\n \n@@ -278,6 +262,100 @@ factorization, while larger values shrink many coefficients to zero.\n R. Jenatton, G. Obozinski, F. Bach, 2009\n \n \n+.. _kernel_PCA:\n+\n+Kernel Principal Component Analysis (kPCA)\n+==========================================\n+\n+Exact Kernel PCA\n+----------------\n+\n+:class:`KernelPCA` is an extension of PCA which achieves non-linear\n+dimensionality reduction through the use of kernels (see :ref:`metrics`). It\n+has many applications including denoising, compression and structured\n+prediction (kernel dependency estimation). :class:`KernelPCA` supports both\n+``transform`` and ``inverse_transform``.\n+\n+.. figure:: ../auto_examples/decomposition/images/sphx_glr_plot_kernel_pca_001.png\n+ :target: ../auto_examples/decomposition/plot_kernel_pca.html\n+ :align: center\n+ :scale: 75%\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`\n+\n+.. topic:: References:\n+\n+ * Kernel PCA was introduced in \"Kernel principal component analysis\"\n+ Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999.\n+ In Advances in kernel methods, MIT Press, Cambridge, MA, USA 327-352.\n+\n+\n+.. _kPCA_Solvers:\n+\n+Choice of solver for Kernel PCA\n+-------------------------------\n+\n+While in :class:`PCA` the number of components is bounded by the number of\n+features, in :class:`KernelPCA` the number of components is bounded by the\n+number of samples. Many real-world datasets have large number of samples! In\n+these cases finding *all* the components with a full kPCA is a waste of\n+computation time, as data is mostly described by the first few components\n+(e.g. ``n_components<=100``). In other words, the centered Gram matrix that\n+is eigendecomposed in the Kernel PCA fitting process has an effective rank that\n+is much smaller than its size. This is a situation where approximate\n+eigensolvers can provide speedup with very low precision loss.\n+\n+The optional parameter ``eigen_solver='randomized'`` can be used to\n+*significantly* reduce the computation time when the number of requested\n+``n_components`` is small compared with the number of samples. It relies on\n+randomized decomposition methods to find an approximate solution in a shorter\n+time.\n+\n+The time complexity of the randomized :class:`KernelPCA` is\n+:math:`O(n_{\\mathrm{samples}}^2 \\cdot n_{\\mathrm{components}})`\n+instead of :math:`O(n_{\\mathrm{samples}}^3)` for the exact method\n+implemented with ``eigen_solver='dense'``.\n+\n+The memory footprint of randomized :class:`KernelPCA` is also proportional to\n+:math:`2 \\cdot n_{\\mathrm{samples}} \\cdot n_{\\mathrm{components}}` instead of\n+:math:`n_{\\mathrm{samples}}^2` for the exact method.\n+\n+Note: this technique is the same as in :ref:`RandomizedPCA`.\n+\n+In addition to the above two solvers, ``eigen_solver='arpack'`` can be used as\n+an alternate way to get an approximate decomposition. In practice, this method\n+only provides reasonable execution times when the number of components to find\n+is extremely small. It is enabled by default when the desired number of\n+components is less than 10 (strict) and the number of samples is more than 200\n+(strict). See :class:`KernelPCA` for details.\n+\n+.. topic:: References:\n+\n+ * *dense* solver:\n+ `scipy.linalg.eigh documentation\n+ <https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html>`_\n+\n+ * *randomized* solver:\n+\n+ - Algorithm 4.3 in\n+ `\"Finding structure with randomness: Stochastic algorithms for\n+ constructing approximate matrix decompositions\"\n+ <https://arxiv.org/abs/0909.4061>`_\n+ Halko, et al., 2009\n+\n+ - `\"An implementation of a randomized algorithm for principal component\n+ analysis\"\n+ <https://arxiv.org/pdf/1412.3510.pdf>`_\n+ A. Szlam et al. 2014\n+\n+ * *arpack* solver:\n+ `scipy.sparse.linalg.eigsh documentation\n+ <https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html>`_\n+ R. B. Lehoucq, D. C. Sorensen, and C. Yang, 1998\n+\n+\n .. _LSA:\n \n Truncated singular value decomposition and latent semantic analysis\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 3b3884e68e185..e89eecfe0874c 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -159,14 +159,17 @@ Changelog\n - |Fix| Fixes incorrect multiple data-conversion warnings when clustering\n boolean data. :pr:`19046` by :user:`Surya Prakash <jdsurya>`.\n \n-:mod:`sklearn.decomposition`\n-............................\n-\n - |Fix| Fixed :func:`dict_learning`, used by :class:`DictionaryLearning`, to\n ensure determinism of the output. Achieved by flipping signs of the SVD\n output which is used to initialize the code.\n :pr:`18433` by :user:`Bruno Charron <brcharron>`.\n \n+- |Enhancement| added a new approximate solver (randomized SVD, available with\n+ `eigen_solver='randomized'`) to :class:`decomposition.KernelPCA`. This\n+ significantly accelerates computation when the number of samples is much\n+ larger than the desired number of components.\n+ :pr:`12069` by :user:`Sylvain Marié <smarie>`.\n+\n - |Fix| Fixed a bug in :class:`MiniBatchDictionaryLearning`,\n :class:`MiniBatchSparsePCA` and :func:`dict_learning_online` where the\n update of the dictionary was incorrect. :pr:`19198` by\n@@ -389,8 +392,8 @@ Changelog\n supporting sparse matrix and raise the appropriate error message.\n :pr:`19879` by :user:`Guillaume Lemaitre <glemaitre>`.\n \n-- |Efficiency| Changed ``algorithm`` argument for :class:`cluster.KMeans` in \n- :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``. \n+- |Efficiency| Changed ``algorithm`` argument for :class:`cluster.KMeans` in\n+ :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.\n :pr:`19934` by :user:`Gleb Levitskiy <GLevV>`.\n \n :mod:`sklearn.tree`\n"
}
] |
1.00
|
2641baf16d9de5191316745ec46120cc8b57a666
|
[
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_deterministic_output",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_inverse_transform_reconstruction",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[4-auto]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_conditioning",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed_non_symmetric[dense]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_remove_zero_eig",
"sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline_precomputed",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[10-arpack]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_invalid_parameters",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pcc_pairwise_is_deprecated",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[10-dense]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_precomputed_kernel_not_psd[auto]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed_non_symmetric[arpack]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_precomputed_kernel_not_psd[dense]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_nested_circles",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed_non_symmetric[auto]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_invalid_kernel",
"sklearn/decomposition/tests/test_kernel_pca.py::test_gridsearch_pipeline",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[4-dense]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_32_64_decomposition_shape",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_consistent_transform",
"sklearn/decomposition/tests/test_kernel_pca.py::test_precomputed_kernel_not_psd[arpack]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[4-arpack]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[10-auto]"
] |
[
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_sign_flip_with_transpose",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10000000.0-1-1e-08-0]",
"sklearn/utils/tests/test_extmath.py::test_uniform_weights",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_reconst_low_rank[500-400]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1-1--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10000000.0-1-1e-08--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1-1e-08-0]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_sparse",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10000000.0-1-100000.0-0]",
"sklearn/utils/tests/test_extmath.py::test_safe_sparse_dot_2d[sparse-dense]",
"sklearn/utils/tests/test_extmath.py::test_incremental_mean_and_variance_ignore_nan",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh[float64]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_compared_to_others[200]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10-1-100000.0--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1e-08-1e-08-0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance_ignore_nan[float64]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_compared_to_others[10]",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_sparse_warnings",
"sklearn/decomposition/tests/test_kernel_pca.py::test_precomputed_kernel_not_psd[randomized]",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_low_rank_all_dtypes[int64]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_compared_to_others[100]",
"sklearn/utils/tests/test_extmath.py::test_softmax",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_compared_to_others[50]",
"sklearn/utils/tests/test_extmath.py::test_cartesian",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_transpose_consistency",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_n_components",
"sklearn/utils/tests/test_extmath.py::test_vector_sign_flip",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10000000.0-1-1-10000000.0]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_precomputed_non_symmetric[randomized]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1e-08-1e-08-10000000.0]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_solvers_equivalence[10]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10-1-1e-08-0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1e-08-1-0]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[4-randomized]",
"sklearn/utils/tests/test_extmath.py::test_incremental_variance_update_formulas",
"sklearn/utils/tests/test_extmath.py::test_svd_flip",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_invalid_solver",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10000000.0-1-100000.0--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[1-1e-08-1-0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10-1-1e-08-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10000000.0-1-1-0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1-1e-08--10000000.0]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_solvers_equivalence[4]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh[float32]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1e-08-100000.0-0]",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_low_rank_all_dtypes[int32]",
"sklearn/utils/tests/test_extmath.py::test_safe_sparse_dot_2d_1d[sparse]",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_low_rank_all_dtypes[float64]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10000000.0-1-1e-08-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_safe_sparse_dot_2d_1d[dense]",
"sklearn/utils/tests/test_extmath.py::test_safe_sparse_dot_dense_output[True]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[1-1e-08-1--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10000000.0-1-100000.0-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[1-1e-08-100000.0-0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[1-1e-08-100000.0--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1e-08-1e-08--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_reconst_low_rank[500-10]",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_sign_flip",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel[10-randomized]",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_low_rank_with_noise",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[1-1e-08-1e-08-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance_simple[float64]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1-100000.0--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1e-08-100000.0-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[1-1e-08-1e-08--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10-1-1-0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1e-08-1-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance_ignore_nan[float32]",
"sklearn/utils/tests/test_extmath.py::test_incremental_variance_ddof",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10000000.0-1-1--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1e-08-1--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_safe_sparse_dot_nd",
"sklearn/utils/tests/test_extmath.py::test_row_norms[float64]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10-1-100000.0-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_infinite_rank",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10-1-100000.0-0]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh[int32]",
"sklearn/utils/tests/test_extmath.py::test_safe_sparse_dot_2d[sparse-sparse]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh[int64]",
"sklearn/utils/tests/test_extmath.py::test_safe_sparse_dot_dense_output[False]",
"sklearn/decomposition/tests/test_kernel_pca.py::test_kernel_pca_solvers_equivalence[20]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance_simple[float32]",
"sklearn/utils/tests/test_extmath.py::test_incremental_variance_numerical_stability",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_power_iteration_normalizer",
"sklearn/utils/tests/test_extmath.py::test_row_norms[float32]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[1-1e-08-1e-08-0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1-1e-08-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_density",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10-1-1-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1-1-0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10-1-1--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[10-1-1e-08--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1-1-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1-100000.0-0]",
"sklearn/utils/tests/test_extmath.py::test_logistic_sigmoid",
"sklearn/utils/tests/test_extmath.py::test_randomized_svd_low_rank_all_dtypes[float32]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1e-08-100000.0--10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_compared_to_others[199]",
"sklearn/utils/tests/test_extmath.py::test_safe_sparse_dot_2d[dense-dense]",
"sklearn/utils/tests/test_extmath.py::test_stable_cumsum",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_reconst_low_rank[100-80]",
"sklearn/utils/tests/test_extmath.py::test_random_weights",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[1-1e-08-1-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_reconst_low_rank[500-250]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_reconst_low_rank[10-7]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[0-1-100000.0-10000000.0]",
"sklearn/utils/tests/test_extmath.py::test_safe_sparse_dot_2d[dense-sparse]",
"sklearn/utils/tests/test_extmath.py::test_randomized_eigsh_reconst_low_rank[100-10]",
"sklearn/utils/tests/test_extmath.py::test_incremental_weighted_mean_and_variance[1-1e-08-100000.0-10000000.0]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "benchmarks/bench_kernel_pca_solvers_time_vs_n_samples.py"
},
{
"type": "file",
"name": "benchmarks/bench_kernel_pca_solvers_time_vs_n_components.py"
}
]
}
|
[
{
"path": "doc/modules/decomposition.rst",
"old_path": "a/doc/modules/decomposition.rst",
"new_path": "b/doc/modules/decomposition.rst",
"metadata": "diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst\nindex e971d784c63d6..fd51f60d8bfc6 100644\n--- a/doc/modules/decomposition.rst\n+++ b/doc/modules/decomposition.rst\n@@ -166,32 +166,16 @@ Note: the implementation of ``inverse_transform`` in :class:`PCA` with\n \n .. topic:: References:\n \n- * `\"Finding structure with randomness: Stochastic algorithms for\n+ * Algorithm 4.3 in\n+ `\"Finding structure with randomness: Stochastic algorithms for\n constructing approximate matrix decompositions\"\n <https://arxiv.org/abs/0909.4061>`_\n Halko, et al., 2009\n \n-\n-.. _kernel_PCA:\n-\n-Kernel PCA\n-----------\n-\n-:class:`KernelPCA` is an extension of PCA which achieves non-linear\n-dimensionality reduction through the use of kernels (see :ref:`metrics`). It\n-has many applications including denoising, compression and structured\n-prediction (kernel dependency estimation). :class:`KernelPCA` supports both\n-``transform`` and ``inverse_transform``.\n-\n-.. figure:: ../auto_examples/decomposition/images/sphx_glr_plot_kernel_pca_001.png\n- :target: ../auto_examples/decomposition/plot_kernel_pca.html\n- :align: center\n- :scale: 75%\n-\n-.. topic:: Examples:\n-\n- * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`\n-\n+ * `\"An implementation of a randomized algorithm for principal component\n+ analysis\"\n+ <https://arxiv.org/pdf/1412.3510.pdf>`_\n+ A. Szlam et al. 2014\n \n .. _SparsePCA:\n \n@@ -278,6 +262,100 @@ factorization, while larger values shrink many coefficients to zero.\n R. Jenatton, G. Obozinski, F. Bach, 2009\n \n \n+.. _kernel_PCA:\n+\n+Kernel Principal Component Analysis (kPCA)\n+==========================================\n+\n+Exact Kernel PCA\n+----------------\n+\n+:class:`KernelPCA` is an extension of PCA which achieves non-linear\n+dimensionality reduction through the use of kernels (see :ref:`metrics`). It\n+has many applications including denoising, compression and structured\n+prediction (kernel dependency estimation). :class:`KernelPCA` supports both\n+``transform`` and ``inverse_transform``.\n+\n+.. figure:: ../auto_examples/decomposition/images/sphx_glr_plot_kernel_pca_001.png\n+ :target: ../auto_examples/decomposition/plot_kernel_pca.html\n+ :align: center\n+ :scale: 75%\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`\n+\n+.. topic:: References:\n+\n+ * Kernel PCA was introduced in \"Kernel principal component analysis\"\n+ Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999.\n+ In Advances in kernel methods, MIT Press, Cambridge, MA, USA 327-352.\n+\n+\n+.. _kPCA_Solvers:\n+\n+Choice of solver for Kernel PCA\n+-------------------------------\n+\n+While in :class:`PCA` the number of components is bounded by the number of\n+features, in :class:`KernelPCA` the number of components is bounded by the\n+number of samples. Many real-world datasets have large number of samples! In\n+these cases finding *all* the components with a full kPCA is a waste of\n+computation time, as data is mostly described by the first few components\n+(e.g. ``n_components<=100``). In other words, the centered Gram matrix that\n+is eigendecomposed in the Kernel PCA fitting process has an effective rank that\n+is much smaller than its size. This is a situation where approximate\n+eigensolvers can provide speedup with very low precision loss.\n+\n+The optional parameter ``eigen_solver='randomized'`` can be used to\n+*significantly* reduce the computation time when the number of requested\n+``n_components`` is small compared with the number of samples. It relies on\n+randomized decomposition methods to find an approximate solution in a shorter\n+time.\n+\n+The time complexity of the randomized :class:`KernelPCA` is\n+:math:`O(n_{\\mathrm{samples}}^2 \\cdot n_{\\mathrm{components}})`\n+instead of :math:`O(n_{\\mathrm{samples}}^3)` for the exact method\n+implemented with ``eigen_solver='dense'``.\n+\n+The memory footprint of randomized :class:`KernelPCA` is also proportional to\n+:math:`2 \\cdot n_{\\mathrm{samples}} \\cdot n_{\\mathrm{components}}` instead of\n+:math:`n_{\\mathrm{samples}}^2` for the exact method.\n+\n+Note: this technique is the same as in :ref:`RandomizedPCA`.\n+\n+In addition to the above two solvers, ``eigen_solver='arpack'`` can be used as\n+an alternate way to get an approximate decomposition. In practice, this method\n+only provides reasonable execution times when the number of components to find\n+is extremely small. It is enabled by default when the desired number of\n+components is less than 10 (strict) and the number of samples is more than 200\n+(strict). See :class:`KernelPCA` for details.\n+\n+.. topic:: References:\n+\n+ * *dense* solver:\n+ `scipy.linalg.eigh documentation\n+ <https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html>`_\n+\n+ * *randomized* solver:\n+\n+ - Algorithm 4.3 in\n+ `\"Finding structure with randomness: Stochastic algorithms for\n+ constructing approximate matrix decompositions\"\n+ <https://arxiv.org/abs/0909.4061>`_\n+ Halko, et al., 2009\n+\n+ - `\"An implementation of a randomized algorithm for principal component\n+ analysis\"\n+ <https://arxiv.org/pdf/1412.3510.pdf>`_\n+ A. Szlam et al. 2014\n+\n+ * *arpack* solver:\n+ `scipy.sparse.linalg.eigsh documentation\n+ <https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html>`_\n+ R. B. Lehoucq, D. C. Sorensen, and C. Yang, 1998\n+\n+\n .. _LSA:\n \n Truncated singular value decomposition and latent semantic analysis\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 3b3884e68e185..e89eecfe0874c 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -159,14 +159,17 @@ Changelog\n - |Fix| Fixes incorrect multiple data-conversion warnings when clustering\n boolean data. :pr:`<PRID>` by :user:`<NAME>`.\n \n-:mod:`sklearn.decomposition`\n-............................\n-\n - |Fix| Fixed :func:`dict_learning`, used by :class:`DictionaryLearning`, to\n ensure determinism of the output. Achieved by flipping signs of the SVD\n output which is used to initialize the code.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| added a new approximate solver (randomized SVD, available with\n+ `eigen_solver='randomized'`) to :class:`decomposition.KernelPCA`. This\n+ significantly accelerates computation when the number of samples is much\n+ larger than the desired number of components.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Fix| Fixed a bug in :class:`MiniBatchDictionaryLearning`,\n :class:`MiniBatchSparsePCA` and :func:`dict_learning_online` where the\n update of the dictionary was incorrect. :pr:`<PRID>` by\n@@ -389,8 +392,8 @@ Changelog\n supporting sparse matrix and raise the appropriate error message.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n-- |Efficiency| Changed ``algorithm`` argument for :class:`cluster.KMeans` in \n- :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``. \n+- |Efficiency| Changed ``algorithm`` argument for :class:`cluster.KMeans` in\n+ :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n :mod:`sklearn.tree`\n"
}
] |
diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst
index e971d784c63d6..fd51f60d8bfc6 100644
--- a/doc/modules/decomposition.rst
+++ b/doc/modules/decomposition.rst
@@ -166,32 +166,16 @@ Note: the implementation of ``inverse_transform`` in :class:`PCA` with
.. topic:: References:
- * `"Finding structure with randomness: Stochastic algorithms for
+ * Algorithm 4.3 in
+ `"Finding structure with randomness: Stochastic algorithms for
constructing approximate matrix decompositions"
<https://arxiv.org/abs/0909.4061>`_
Halko, et al., 2009
-
-.. _kernel_PCA:
-
-Kernel PCA
-----------
-
-:class:`KernelPCA` is an extension of PCA which achieves non-linear
-dimensionality reduction through the use of kernels (see :ref:`metrics`). It
-has many applications including denoising, compression and structured
-prediction (kernel dependency estimation). :class:`KernelPCA` supports both
-``transform`` and ``inverse_transform``.
-
-.. figure:: ../auto_examples/decomposition/images/sphx_glr_plot_kernel_pca_001.png
- :target: ../auto_examples/decomposition/plot_kernel_pca.html
- :align: center
- :scale: 75%
-
-.. topic:: Examples:
-
- * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`
-
+ * `"An implementation of a randomized algorithm for principal component
+ analysis"
+ <https://arxiv.org/pdf/1412.3510.pdf>`_
+ A. Szlam et al. 2014
.. _SparsePCA:
@@ -278,6 +262,100 @@ factorization, while larger values shrink many coefficients to zero.
R. Jenatton, G. Obozinski, F. Bach, 2009
+.. _kernel_PCA:
+
+Kernel Principal Component Analysis (kPCA)
+==========================================
+
+Exact Kernel PCA
+----------------
+
+:class:`KernelPCA` is an extension of PCA which achieves non-linear
+dimensionality reduction through the use of kernels (see :ref:`metrics`). It
+has many applications including denoising, compression and structured
+prediction (kernel dependency estimation). :class:`KernelPCA` supports both
+``transform`` and ``inverse_transform``.
+
+.. figure:: ../auto_examples/decomposition/images/sphx_glr_plot_kernel_pca_001.png
+ :target: ../auto_examples/decomposition/plot_kernel_pca.html
+ :align: center
+ :scale: 75%
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`
+
+.. topic:: References:
+
+ * Kernel PCA was introduced in "Kernel principal component analysis"
+ Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999.
+ In Advances in kernel methods, MIT Press, Cambridge, MA, USA 327-352.
+
+
+.. _kPCA_Solvers:
+
+Choice of solver for Kernel PCA
+-------------------------------
+
+While in :class:`PCA` the number of components is bounded by the number of
+features, in :class:`KernelPCA` the number of components is bounded by the
+number of samples. Many real-world datasets have large number of samples! In
+these cases finding *all* the components with a full kPCA is a waste of
+computation time, as data is mostly described by the first few components
+(e.g. ``n_components<=100``). In other words, the centered Gram matrix that
+is eigendecomposed in the Kernel PCA fitting process has an effective rank that
+is much smaller than its size. This is a situation where approximate
+eigensolvers can provide speedup with very low precision loss.
+
+The optional parameter ``eigen_solver='randomized'`` can be used to
+*significantly* reduce the computation time when the number of requested
+``n_components`` is small compared with the number of samples. It relies on
+randomized decomposition methods to find an approximate solution in a shorter
+time.
+
+The time complexity of the randomized :class:`KernelPCA` is
+:math:`O(n_{\mathrm{samples}}^2 \cdot n_{\mathrm{components}})`
+instead of :math:`O(n_{\mathrm{samples}}^3)` for the exact method
+implemented with ``eigen_solver='dense'``.
+
+The memory footprint of randomized :class:`KernelPCA` is also proportional to
+:math:`2 \cdot n_{\mathrm{samples}} \cdot n_{\mathrm{components}}` instead of
+:math:`n_{\mathrm{samples}}^2` for the exact method.
+
+Note: this technique is the same as in :ref:`RandomizedPCA`.
+
+In addition to the above two solvers, ``eigen_solver='arpack'`` can be used as
+an alternate way to get an approximate decomposition. In practice, this method
+only provides reasonable execution times when the number of components to find
+is extremely small. It is enabled by default when the desired number of
+components is less than 10 (strict) and the number of samples is more than 200
+(strict). See :class:`KernelPCA` for details.
+
+.. topic:: References:
+
+ * *dense* solver:
+ `scipy.linalg.eigh documentation
+ <https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html>`_
+
+ * *randomized* solver:
+
+ - Algorithm 4.3 in
+ `"Finding structure with randomness: Stochastic algorithms for
+ constructing approximate matrix decompositions"
+ <https://arxiv.org/abs/0909.4061>`_
+ Halko, et al., 2009
+
+ - `"An implementation of a randomized algorithm for principal component
+ analysis"
+ <https://arxiv.org/pdf/1412.3510.pdf>`_
+ A. Szlam et al. 2014
+
+ * *arpack* solver:
+ `scipy.sparse.linalg.eigsh documentation
+ <https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html>`_
+ R. B. Lehoucq, D. C. Sorensen, and C. Yang, 1998
+
+
.. _LSA:
Truncated singular value decomposition and latent semantic analysis
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 3b3884e68e185..e89eecfe0874c 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -159,14 +159,17 @@ Changelog
- |Fix| Fixes incorrect multiple data-conversion warnings when clustering
boolean data. :pr:`<PRID>` by :user:`<NAME>`.
-:mod:`sklearn.decomposition`
-............................
-
- |Fix| Fixed :func:`dict_learning`, used by :class:`DictionaryLearning`, to
ensure determinism of the output. Achieved by flipping signs of the SVD
output which is used to initialize the code.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| added a new approximate solver (randomized SVD, available with
+ `eigen_solver='randomized'`) to :class:`decomposition.KernelPCA`. This
+ significantly accelerates computation when the number of samples is much
+ larger than the desired number of components.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Fix| Fixed a bug in :class:`MiniBatchDictionaryLearning`,
:class:`MiniBatchSparsePCA` and :func:`dict_learning_online` where the
update of the dictionary was incorrect. :pr:`<PRID>` by
@@ -389,8 +392,8 @@ Changelog
supporting sparse matrix and raise the appropriate error message.
:pr:`<PRID>` by :user:`<NAME>`.
-- |Efficiency| Changed ``algorithm`` argument for :class:`cluster.KMeans` in
- :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.
+- |Efficiency| Changed ``algorithm`` argument for :class:`cluster.KMeans` in
+ :class:`preprocessing.KBinsDiscretizer` from ``auto`` to ``full``.
:pr:`<PRID>` by :user:`<NAME>`.
:mod:`sklearn.tree`
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'benchmarks/bench_kernel_pca_solvers_time_vs_n_samples.py'}, {'type': 'file', 'name': 'benchmarks/bench_kernel_pca_solvers_time_vs_n_components.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19948
|
https://github.com/scikit-learn/scikit-learn/pull/19948
|
diff --git a/doc/glossary.rst b/doc/glossary.rst
index ba924387bc5eb..21d0c947f3e64 100644
--- a/doc/glossary.rst
+++ b/doc/glossary.rst
@@ -923,7 +923,7 @@ Class APIs and Estimator Types
possible to identify which methods are provided by the underlying
estimator until the meta-estimator has been :term:`fitted` (see also
:term:`duck typing`), for which
- :func:`utils.metaestimators.if_delegate_has_method` may help. It
+ :func:`utils.metaestimators.available_if` may help. It
should also provide (or modify) the :term:`estimator tags` and
:term:`classes_` attribute provided by the base estimator.
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index cdeb6f0523422..ddcbe36bb1b33 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1605,6 +1605,7 @@ Plotting
utils.graph_shortest_path.graph_shortest_path
utils.indexable
utils.metaestimators.if_delegate_has_method
+ utils.metaestimators.available_if
utils.multiclass.type_of_target
utils.multiclass.is_multilabel
utils.multiclass.unique_labels
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 9689cd8789a7a..6a9f0cb55d2f5 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -591,6 +591,11 @@ Changelog
:pr:`19459` by :user:`Cindy Bezuidenhout <cinbez>` and
:user:`Clifford Akai-Nettey<cliffordEmmanuel>`.
+- |Enhancement| Added helper decorator :func:`utils.metaestimators.available_if`
+ to provide flexiblity in metaestimators making methods available or
+ unavailable on the basis of state, in a more readable way.
+ :pr:`19948` by `Joel Nothman`_.
+
- |Fix| Fixed a bug in :func:`utils.sparsefuncs.mean_variance_axis` where the
precision of the computed variance was very poor when the real variance is
exactly zero. :pr:`19766` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
diff --git a/sklearn/multioutput.py b/sklearn/multioutput.py
index 335dc5410b9ce..f6be8cd8011c3 100644
--- a/sklearn/multioutput.py
+++ b/sklearn/multioutput.py
@@ -22,8 +22,8 @@
from .base import BaseEstimator, clone, MetaEstimatorMixin
from .base import RegressorMixin, ClassifierMixin, is_classifier
from .model_selection import cross_val_predict
+from .utils.metaestimators import available_if
from .utils import check_random_state
-from .utils.metaestimators import if_delegate_has_method
from .utils.validation import check_is_fitted, has_fit_parameter, _check_fit_params
from .utils.multiclass import check_classification_targets
from .utils.fixes import delayed
@@ -64,13 +64,27 @@ def _partial_fit_estimator(
return estimator
+def _available_if_estimator_has(attr):
+ """Returns a function to check if estimator or estimators_ has attr
+
+ Helper for Chain implementations
+ """
+ def _check(self):
+ return (
+ hasattr(self.estimator, attr)
+ or all(hasattr(est, attr) for est in self.estimators_)
+ )
+
+ return available_if(_check)
+
+
class _MultiOutputEstimator(MetaEstimatorMixin, BaseEstimator, metaclass=ABCMeta):
@abstractmethod
def __init__(self, estimator, *, n_jobs=None):
self.estimator = estimator
self.n_jobs = n_jobs
- @if_delegate_has_method("estimator")
+ @_available_if_estimator_has("partial_fit")
def partial_fit(self, X, y, classes=None, sample_weight=None):
"""Incrementally fit the model to data.
Fit a separate model for each output variable.
@@ -280,7 +294,7 @@ class MultiOutputRegressor(RegressorMixin, _MultiOutputEstimator):
def __init__(self, estimator, *, n_jobs=None):
super().__init__(estimator, n_jobs=n_jobs)
- @if_delegate_has_method("estimator")
+ @_available_if_estimator_has("partial_fit")
def partial_fit(self, X, y, sample_weight=None):
"""Incrementally fit the model to data.
Fit a separate model for each output variable.
@@ -464,6 +478,20 @@ def _more_tags(self):
return {"_skip_test": True}
+def _available_if_base_estimator_has(attr):
+ """Returns a function to check if base_estimator or estimators_ has attr
+
+ Helper for Chain implementations
+ """
+ def _check(self):
+ return (
+ hasattr(self.base_estimator, attr)
+ or all(hasattr(est, attr) for est in self.estimators_)
+ )
+
+ return available_if(_check)
+
+
class _BaseChain(BaseEstimator, metaclass=ABCMeta):
def __init__(self, base_estimator, *, order=None, cv=None, random_state=None):
self.base_estimator = base_estimator
@@ -700,7 +728,7 @@ def fit(self, X, Y):
]
return self
- @if_delegate_has_method("base_estimator")
+ @_available_if_base_estimator_has("predict_proba")
def predict_proba(self, X):
"""Predict probability estimates.
@@ -729,7 +757,7 @@ def predict_proba(self, X):
return Y_prob
- @if_delegate_has_method("base_estimator")
+ @_available_if_base_estimator_has("decision_function")
def decision_function(self, X):
"""Evaluate the decision_function of the models in the chain.
diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py
index 54670bc4086cd..e91349a6ed484 100644
--- a/sklearn/pipeline.py
+++ b/sklearn/pipeline.py
@@ -18,7 +18,7 @@
from .base import clone, TransformerMixin
from .utils._estimator_html_repr import _VisualBlock
-from .utils.metaestimators import if_delegate_has_method
+from .utils.metaestimators import if_delegate_has_method, available_if
from .utils import (
Bunch,
_print_elapsed_time,
@@ -550,8 +550,13 @@ def predict_log_proba(self, X, **predict_log_proba_params):
Xt = transform.transform(Xt)
return self.steps[-1][1].predict_log_proba(Xt, **predict_log_proba_params)
- @property
- def transform(self):
+ def _can_transform(self):
+ return self._final_estimator == "passthrough" or hasattr(
+ self._final_estimator, "transform"
+ )
+
+ @available_if(_can_transform)
+ def transform(self, X):
"""Apply transforms, and transform with the final estimator
This also works where final estimator is ``None``: all prior
@@ -567,20 +572,16 @@ def transform(self):
-------
Xt : array-like of shape (n_samples, n_transformed_features)
"""
- # _final_estimator is None or has transform, otherwise attribute error
- # XXX: Handling the None case means we can't use if_delegate_has_method
- if self._final_estimator != "passthrough":
- self._final_estimator.transform
- return self._transform
-
- def _transform(self, X):
Xt = X
for _, _, transform in self._iter():
Xt = transform.transform(Xt)
return Xt
- @property
- def inverse_transform(self):
+ def _can_inverse_transform(self):
+ return all(hasattr(t, "inverse_transform") for _, _, t in self._iter())
+
+ @available_if(_can_inverse_transform)
+ def inverse_transform(self, Xt):
"""Apply inverse transformations in reverse order
All estimators in the pipeline must support ``inverse_transform``.
@@ -597,14 +598,6 @@ def inverse_transform(self):
-------
Xt : array-like of shape (n_samples, n_features)
"""
- # raise AttributeError if necessary for hasattr behaviour
- # XXX: Handling the None case means we can't use if_delegate_has_method
- for _, _, transform in self._iter():
- transform.inverse_transform
- return self._inverse_transform
-
- def _inverse_transform(self, X):
- Xt = X
reverse_iter = reversed(list(self._iter()))
for _, _, transform in reverse_iter:
Xt = transform.inverse_transform(Xt)
diff --git a/sklearn/utils/metaestimators.py b/sklearn/utils/metaestimators.py
index fd017c158cbe5..20bd514a1bba8 100644
--- a/sklearn/utils/metaestimators.py
+++ b/sklearn/utils/metaestimators.py
@@ -13,7 +13,7 @@
from ..base import BaseEstimator
from ..base import _is_pairwise
-__all__ = ["if_delegate_has_method"]
+__all__ = ["available_if", "if_delegate_has_method"]
class _BaseComposition(BaseEstimator, metaclass=ABCMeta):
@@ -80,53 +80,114 @@ def _validate_names(self, names):
)
-class _IffHasAttrDescriptor:
+class _AvailableIfDescriptor:
"""Implements a conditional property using the descriptor protocol.
Using this class to create a decorator will raise an ``AttributeError``
- if none of the delegates (specified in ``delegate_names``) is an attribute
- of the base object or the first found delegate does not have an attribute
- ``attribute_name``.
-
- This allows ducktyping of the decorated method based on
- ``delegate.attribute_name``. Here ``delegate`` is the first item in
- ``delegate_names`` for which ``hasattr(object, delegate) is True``.
+ if check(self) returns a falsey value. Note that if check raises an error
+ this will also result in hasattr returning false.
See https://docs.python.org/3/howto/descriptor.html for an explanation of
descriptors.
"""
- def __init__(self, fn, delegate_names, attribute_name):
+ def __init__(self, fn, check, attribute_name):
self.fn = fn
- self.delegate_names = delegate_names
+ self.check = check
self.attribute_name = attribute_name
# update the docstring of the descriptor
update_wrapper(self, fn)
- def __get__(self, obj, type=None):
- # raise an AttributeError if the attribute is not present on the object
+ def __get__(self, obj, owner=None):
if obj is not None:
# delegate only on instances, not the classes.
# this is to allow access to the docstrings.
- for delegate_name in self.delegate_names:
- try:
- delegate = attrgetter(delegate_name)(obj)
- except AttributeError:
- continue
- else:
- getattr(delegate, self.attribute_name)
- break
- else:
- attrgetter(self.delegate_names[-1])(obj)
+ if not self.check(obj):
+ raise AttributeError(
+ f"This {repr(owner.__name__)}"
+ " has no attribute"
+ f" {repr(self.attribute_name)}"
+ )
# lambda, but not partial, allows help() to work with update_wrapper
- out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
+ out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) # noqa
# update the docstring of the returned function
update_wrapper(out, self.fn)
return out
+def available_if(check):
+ """An attribute that is available only if check returns a truthy value
+
+ Parameters
+ ----------
+ check : callable
+ When passed the object with the decorated method, this should return
+ a truthy value if the attribute is available, and either return False
+ or raise an AttributeError if not available.
+
+ Examples
+ --------
+ >>> from sklearn.utils.metaestimators import available_if
+ >>> class HelloIfEven:
+ ... def __init__(self, x):
+ ... self.x = x
+ ...
+ ... def _x_is_even(self):
+ ... return self.x % 2 == 0
+ ...
+ ... @available_if(_x_is_even)
+ ... def say_hello(self):
+ ... print("Hello")
+ ...
+ >>> obj = HelloIfEven(1)
+ >>> hasattr(obj, "say_hello")
+ False
+ >>> obj.x = 2
+ >>> hasattr(obj, "say_hello")
+ True
+ >>> obj.say_hello()
+ Hello
+ """
+ return lambda fn: _AvailableIfDescriptor(fn, check, attribute_name=fn.__name__)
+
+
+class _IffHasAttrDescriptor(_AvailableIfDescriptor):
+ """Implements a conditional property using the descriptor protocol.
+
+ Using this class to create a decorator will raise an ``AttributeError``
+ if none of the delegates (specified in ``delegate_names``) is an attribute
+ of the base object or the first found delegate does not have an attribute
+ ``attribute_name``.
+
+ This allows ducktyping of the decorated method based on
+ ``delegate.attribute_name``. Here ``delegate`` is the first item in
+ ``delegate_names`` for which ``hasattr(object, delegate) is True``.
+
+ See https://docs.python.org/3/howto/descriptor.html for an explanation of
+ descriptors.
+ """
+
+ def __init__(self, fn, delegate_names, attribute_name):
+ super().__init__(fn, self._check, attribute_name)
+ self.delegate_names = delegate_names
+
+ def _check(self, obj):
+ delegate = None
+ for delegate_name in self.delegate_names:
+ try:
+ delegate = attrgetter(delegate_name)(obj)
+ break
+ except AttributeError:
+ continue
+
+ if delegate is None:
+ return False
+ # raise original AttributeError
+ return getattr(delegate, self.attribute_name) or True
+
+
def if_delegate_has_method(delegate):
"""Create a decorator for methods that are delegated to a sub-estimator
|
diff --git a/sklearn/utils/tests/test_metaestimators.py b/sklearn/utils/tests/test_metaestimators.py
index e6c1ca592e94f..35a459e949e29 100644
--- a/sklearn/utils/tests/test_metaestimators.py
+++ b/sklearn/utils/tests/test_metaestimators.py
@@ -1,4 +1,5 @@
from sklearn.utils.metaestimators import if_delegate_has_method
+from sklearn.utils.metaestimators import available_if
class Prefix:
@@ -74,3 +75,32 @@ def test_if_delegate_has_method():
assert not hasattr(MetaEstTestTuple(HasNoPredict(), HasPredict()), "predict")
assert not hasattr(MetaEstTestList(HasNoPredict(), HasPredict()), "predict")
assert hasattr(MetaEstTestList(HasPredict(), HasPredict()), "predict")
+
+
+class AvailableParameterEstimator:
+ """This estimator's `available` parameter toggles the presence of a method"""
+
+ def __init__(self, available=True):
+ self.available = available
+
+ @available_if(lambda est: est.available)
+ def available_func(self):
+ """This is a mock available_if function"""
+ pass
+
+
+def test_available_if_docstring():
+ assert "This is a mock available_if function" in str(
+ AvailableParameterEstimator.__dict__["available_func"].__doc__
+ )
+ assert "This is a mock available_if function" in str(
+ AvailableParameterEstimator.available_func.__doc__
+ )
+ assert "This is a mock available_if function" in str(
+ AvailableParameterEstimator().available_func.__doc__
+ )
+
+
+def test_available_if():
+ assert hasattr(AvailableParameterEstimator(), "available_func")
+ assert not hasattr(AvailableParameterEstimator(available=False), "available_func")
|
[
{
"path": "doc/glossary.rst",
"old_path": "a/doc/glossary.rst",
"new_path": "b/doc/glossary.rst",
"metadata": "diff --git a/doc/glossary.rst b/doc/glossary.rst\nindex ba924387bc5eb..21d0c947f3e64 100644\n--- a/doc/glossary.rst\n+++ b/doc/glossary.rst\n@@ -923,7 +923,7 @@ Class APIs and Estimator Types\n possible to identify which methods are provided by the underlying\n estimator until the meta-estimator has been :term:`fitted` (see also\n :term:`duck typing`), for which\n- :func:`utils.metaestimators.if_delegate_has_method` may help. It\n+ :func:`utils.metaestimators.available_if` may help. It\n should also provide (or modify) the :term:`estimator tags` and\n :term:`classes_` attribute provided by the base estimator.\n \n"
},
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex cdeb6f0523422..ddcbe36bb1b33 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1605,6 +1605,7 @@ Plotting\n utils.graph_shortest_path.graph_shortest_path\n utils.indexable\n utils.metaestimators.if_delegate_has_method\n+ utils.metaestimators.available_if\n utils.multiclass.type_of_target\n utils.multiclass.is_multilabel\n utils.multiclass.unique_labels\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 9689cd8789a7a..6a9f0cb55d2f5 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -591,6 +591,11 @@ Changelog\n :pr:`19459` by :user:`Cindy Bezuidenhout <cinbez>` and\n :user:`Clifford Akai-Nettey<cliffordEmmanuel>`.\n \n+- |Enhancement| Added helper decorator :func:`utils.metaestimators.available_if`\n+ to provide flexiblity in metaestimators making methods available or\n+ unavailable on the basis of state, in a more readable way.\n+ :pr:`19948` by `Joel Nothman`_.\n+\n - |Fix| Fixed a bug in :func:`utils.sparsefuncs.mean_variance_axis` where the\n precision of the computed variance was very poor when the real variance is\n exactly zero. :pr:`19766` by :user:`Jérémie du Boisberranger <jeremiedbb>`.\n"
}
] |
1.00
|
c79bed337c6eeea3b181d1e2054308197090b036
|
[] |
[
"sklearn/utils/tests/test_metaestimators.py::test_available_if",
"sklearn/utils/tests/test_metaestimators.py::test_if_delegate_has_method",
"sklearn/utils/tests/test_metaestimators.py::test_delegated_docstring",
"sklearn/utils/tests/test_metaestimators.py::test_available_if_docstring"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/glossary.rst",
"old_path": "a/doc/glossary.rst",
"new_path": "b/doc/glossary.rst",
"metadata": "diff --git a/doc/glossary.rst b/doc/glossary.rst\nindex ba924387bc5eb..21d0c947f3e64 100644\n--- a/doc/glossary.rst\n+++ b/doc/glossary.rst\n@@ -923,7 +923,7 @@ Class APIs and Estimator Types\n possible to identify which methods are provided by the underlying\n estimator until the meta-estimator has been :term:`fitted` (see also\n :term:`duck typing`), for which\n- :func:`utils.metaestimators.if_delegate_has_method` may help. It\n+ :func:`utils.metaestimators.available_if` may help. It\n should also provide (or modify) the :term:`estimator tags` and\n :term:`classes_` attribute provided by the base estimator.\n \n"
},
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex cdeb6f0523422..ddcbe36bb1b33 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1605,6 +1605,7 @@ Plotting\n utils.graph_shortest_path.graph_shortest_path\n utils.indexable\n utils.metaestimators.if_delegate_has_method\n+ utils.metaestimators.available_if\n utils.multiclass.type_of_target\n utils.multiclass.is_multilabel\n utils.multiclass.unique_labels\n"
},
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 9689cd8789a7a..6a9f0cb55d2f5 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -591,6 +591,11 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n \n+- |Enhancement| Added helper decorator :func:`utils.metaestimators.available_if`\n+ to provide flexiblity in metaestimators making methods available or\n+ unavailable on the basis of state, in a more readable way.\n+ :pr:`<PRID>` by `<NAME>`_.\n+\n - |Fix| Fixed a bug in :func:`utils.sparsefuncs.mean_variance_axis` where the\n precision of the computed variance was very poor when the real variance is\n exactly zero. :pr:`<PRID>` by :user:`<NAME>`.\n"
}
] |
diff --git a/doc/glossary.rst b/doc/glossary.rst
index ba924387bc5eb..21d0c947f3e64 100644
--- a/doc/glossary.rst
+++ b/doc/glossary.rst
@@ -923,7 +923,7 @@ Class APIs and Estimator Types
possible to identify which methods are provided by the underlying
estimator until the meta-estimator has been :term:`fitted` (see also
:term:`duck typing`), for which
- :func:`utils.metaestimators.if_delegate_has_method` may help. It
+ :func:`utils.metaestimators.available_if` may help. It
should also provide (or modify) the :term:`estimator tags` and
:term:`classes_` attribute provided by the base estimator.
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index cdeb6f0523422..ddcbe36bb1b33 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1605,6 +1605,7 @@ Plotting
utils.graph_shortest_path.graph_shortest_path
utils.indexable
utils.metaestimators.if_delegate_has_method
+ utils.metaestimators.available_if
utils.multiclass.type_of_target
utils.multiclass.is_multilabel
utils.multiclass.unique_labels
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 9689cd8789a7a..6a9f0cb55d2f5 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -591,6 +591,11 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
+- |Enhancement| Added helper decorator :func:`utils.metaestimators.available_if`
+ to provide flexiblity in metaestimators making methods available or
+ unavailable on the basis of state, in a more readable way.
+ :pr:`<PRID>` by `<NAME>`_.
+
- |Fix| Fixed a bug in :func:`utils.sparsefuncs.mean_variance_axis` where the
precision of the computed variance was very poor when the real variance is
exactly zero. :pr:`<PRID>` by :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-19004
|
https://github.com/scikit-learn/scikit-learn/pull/19004
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 0372dcdd1fd4e..ecdb38440bf0b 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -62,6 +62,9 @@ Changelog
- |Fix| :meth:`ElasticNet.fit` no longer modifies `sample_weight` in place.
:pr:`19055` by `Thomas Fan`_.
+- |Enhancement| Validate user-supplied gram matrix passed to linear models
+ via the `precompute` argument. :pr:`19004` by :user:`Adam Midvidy <amidvidy>`.
+
Code and Documentation Contributors
-----------------------------------
diff --git a/examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py b/examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py
new file mode 100644
index 0000000000000..852ea545c5fd6
--- /dev/null
+++ b/examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py
@@ -0,0 +1,53 @@
+"""
+==========================================================================
+Fitting an Elastic Net with a precomputed Gram Matrix and Weighted Samples
+==========================================================================
+
+The following example shows how to precompute the gram matrix
+while using weighted samples with an ElasticNet.
+
+If weighted samples are used, the design matrix must be centered and then
+rescaled by the square root of the weight vector before the gram matrix
+is computed.
+
+.. note::
+ `sample_weight` vector is also rescaled to sum to `n_samples`, see the
+ documentation for the `sample_weight` parameter to
+ :func:`linear_model.ElasticNet.fit`.
+
+"""
+
+print(__doc__)
+
+# %%
+# Let's start by loading the dataset and creating some sample weights.
+import numpy as np
+from sklearn.datasets import make_regression
+
+rng = np.random.RandomState(0)
+
+n_samples = int(1e5)
+X, y = make_regression(n_samples=n_samples, noise=0.5, random_state=rng)
+
+sample_weight = rng.lognormal(size=n_samples)
+# normalize the sample weights
+normalized_weights = sample_weight * (n_samples / (sample_weight.sum()))
+
+# %%
+# To fit the elastic net using the `precompute` option together with the sample
+# weights, we must first center the design matrix, and rescale it by the
+# normalized weights prior to computing the gram matrix.
+X_offset = np.average(X, axis=0, weights=normalized_weights)
+X_centered = (X - np.average(X, axis=0, weights=normalized_weights))
+X_scaled = X_centered * np.sqrt(normalized_weights)[:, np.newaxis]
+gram = np.dot(X_scaled.T, X_scaled)
+
+# %%
+# We can now proceed with fitting. We must passed the centered design matrix to
+# `fit` otherwise the elastic net estimator will detect that it is uncentered
+# and discard the gram matrix we passed. However, if we pass the scaled design
+# matrix, the preprocessing code will incorrectly rescale it a second time.
+from sklearn.linear_model import ElasticNet
+
+lm = ElasticNet(alpha=0.01, precompute=gram)
+lm.fit(X_centered, y, sample_weight=normalized_weights)
diff --git a/sklearn/linear_model/_base.py b/sklearn/linear_model/_base.py
index 2399e1216238f..907d4960264f8 100644
--- a/sklearn/linear_model/_base.py
+++ b/sklearn/linear_model/_base.py
@@ -37,6 +37,7 @@
from ..utils._seq_dataset import ArrayDataset32, CSRDataset32
from ..utils._seq_dataset import ArrayDataset64, CSRDataset64
from ..utils.validation import check_is_fitted, _check_sample_weight
+
from ..utils.fixes import delayed
from ..preprocessing import normalize as f_normalize
@@ -575,6 +576,61 @@ def rmatvec(b):
return self
+def _check_precomputed_gram_matrix(X, precompute, X_offset, X_scale,
+ rtol=1e-7,
+ atol=1e-5):
+ """Computes a single element of the gram matrix and compares it to
+ the corresponding element of the user supplied gram matrix.
+
+ If the values do not match a ValueError will be thrown.
+
+ Parameters
+ ----------
+ X : ndarray of shape (n_samples, n_features)
+ Data array.
+
+ precompute : array-like of shape (n_features, n_features)
+ User-supplied gram matrix.
+
+ X_offset : ndarray of shape (n_features,)
+ Array of feature means used to center design matrix.
+
+ X_scale : ndarray of shape (n_features,)
+ Array of feature scale factors used to normalize design matrix.
+
+ rtol : float, default=1e-7
+ Relative tolerance; see numpy.allclose.
+
+ atol : float, default=1e-5
+ absolute tolerance; see :func`numpy.allclose`. Note that the default
+ here is more tolerant than the default for
+ :func:`numpy.testing.assert_allclose`, where `atol=0`.
+
+ Raises
+ ------
+ ValueError
+ Raised when the provided Gram matrix is not consistent.
+ """
+
+ n_features = X.shape[1]
+ f1 = n_features // 2
+ f2 = min(f1+1, n_features-1)
+
+ v1 = (X[:, f1] - X_offset[f1]) * X_scale[f1]
+ v2 = (X[:, f2] - X_offset[f2]) * X_scale[f2]
+
+ expected = np.dot(v1, v2)
+ actual = precompute[f1, f2]
+
+ if not np.isclose(expected, actual, rtol=rtol, atol=atol):
+ raise ValueError("Gram matrix passed in via 'precompute' parameter "
+ "did not pass validation when a single element was "
+ "checked - please check that it was computed "
+ f"properly. For element ({f1},{f2}) we computed "
+ f"{expected} but the user-supplied value was "
+ f"{actual}.")
+
+
def _pre_fit(X, y, Xy, precompute, normalize, fit_intercept, copy,
check_input=True, sample_weight=None):
"""Aux function used at beginning of fit in linear models
@@ -600,16 +656,22 @@ def _pre_fit(X, y, Xy, precompute, normalize, fit_intercept, copy,
check_input=check_input, sample_weight=sample_weight)
if sample_weight is not None:
X, y = _rescale_data(X, y, sample_weight=sample_weight)
- if hasattr(precompute, '__array__') and (
- fit_intercept and not np.allclose(X_offset, np.zeros(n_features)) or
- normalize and not np.allclose(X_scale, np.ones(n_features))):
- warnings.warn("Gram matrix was provided but X was centered"
- " to fit intercept, "
- "or X was normalized : recomputing Gram matrix.",
- UserWarning)
- # recompute Gram
- precompute = 'auto'
- Xy = None
+ if hasattr(precompute, '__array__'):
+ if (fit_intercept and not np.allclose(X_offset, np.zeros(n_features))
+ or normalize and not np.allclose(X_scale,
+ np.ones(n_features))):
+ warnings.warn(
+ "Gram matrix was provided but X was centered to fit "
+ "intercept, or X was normalized : recomputing Gram matrix.",
+ UserWarning
+ )
+ # recompute Gram
+ precompute = 'auto'
+ Xy = None
+ elif check_input:
+ # If we're going to use the user's precomputed gram matrix, we
+ # do a quick check to make sure its not totally bogus.
+ _check_precomputed_gram_matrix(X, precompute, X_offset, X_scale)
# precompute if n_samples > n_features
if isinstance(precompute, str) and precompute == 'auto':
diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py
index 6dcaa5043b414..f2a004be81048 100644
--- a/sklearn/linear_model/_coordinate_descent.py
+++ b/sklearn/linear_model/_coordinate_descent.py
@@ -729,7 +729,8 @@ def fit(self, X, y, sample_weight=None, check_input=True):
Target. Will be cast to X's dtype if necessary.
sample_weight : float or array-like of shape (n_samples,), default=None
- Sample weight.
+ Sample weight. Internally, the `sample_weight` vector will be
+ rescaled to sum to `n_samples`.
.. versionadded:: 0.23
|
diff --git a/sklearn/linear_model/tests/test_coordinate_descent.py b/sklearn/linear_model/tests/test_coordinate_descent.py
index f0095b235ac2b..232a59e846ff7 100644
--- a/sklearn/linear_model/tests/test_coordinate_descent.py
+++ b/sklearn/linear_model/tests/test_coordinate_descent.py
@@ -743,6 +743,45 @@ def test_precompute_invalid_argument():
"Got 'auto'", ElasticNet(precompute='auto').fit, X, y)
+def test_elasticnet_precompute_incorrect_gram():
+ # check that passing an invalid precomputed Gram matrix will raise an
+ # error.
+ X, y, _, _ = build_dataset()
+
+ rng = np.random.RandomState(0)
+
+ X_centered = X - np.average(X, axis=0)
+ garbage = rng.standard_normal(X.shape)
+ precompute = np.dot(garbage.T, garbage)
+
+ clf = ElasticNet(alpha=0.01, precompute=precompute)
+ msg = "Gram matrix.*did not pass validation.*"
+ with pytest.raises(ValueError, match=msg):
+ clf.fit(X_centered, y)
+
+
+def test_elasticnet_precompute_gram_weighted_samples():
+ # check the equivalence between passing a precomputed Gram matrix and
+ # internal computation using sample weights.
+ X, y, _, _ = build_dataset()
+
+ rng = np.random.RandomState(0)
+ sample_weight = rng.lognormal(size=y.shape)
+
+ w_norm = sample_weight * (y.shape / np.sum(sample_weight))
+ X_c = (X - np.average(X, axis=0, weights=w_norm))
+ X_r = X_c * np.sqrt(w_norm)[:, np.newaxis]
+ gram = np.dot(X_r.T, X_r)
+
+ clf1 = ElasticNet(alpha=0.01, precompute=gram)
+ clf1.fit(X_c, y, sample_weight=sample_weight)
+
+ clf2 = ElasticNet(alpha=0.01, precompute=False)
+ clf2.fit(X, y, sample_weight=sample_weight)
+
+ assert_allclose(clf1.coef_, clf2.coef_)
+
+
def test_warm_start_convergence():
X, y, _, _ = build_dataset()
model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y)
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 0372dcdd1fd4e..ecdb38440bf0b 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -62,6 +62,9 @@ Changelog\n - |Fix| :meth:`ElasticNet.fit` no longer modifies `sample_weight` in place.\n :pr:`19055` by `Thomas Fan`_.\n \n+- |Enhancement| Validate user-supplied gram matrix passed to linear models\n+ via the `precompute` argument. :pr:`19004` by :user:`Adam Midvidy <amidvidy>`.\n+\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
1.00
|
6b4f82433dc2f219dbff7fe8fa42c10b72379be6
|
[
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_zero",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_enet_and_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_alpha_warning",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_float_precision",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[-1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LinearRegression-params13]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_multitask_lasso",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskLasso-params11]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_l1_ratio",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeCV-params8]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_with_some_model_selection",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_and_enet",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_for_all_backends[MultiTaskElasticNetCV-threading]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_for_all_backends[ElasticNetCV-loky]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[Ridge-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_dtype_enet_and_lassocv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_gram_weighted_samples",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LassoCV-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[Lasso]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[something_wrong]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[C-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_for_all_backends[LassoCV-threading]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[LinearRegression-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_for_all_backends[MultiTaskLassoCV-loky]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_dense[F-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_enet_and_multitask_enet_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lars-params12]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Lasso-params0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_for_all_backends[LassoCV-loky]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_readonly_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[auto-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLars-params1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multioutput_enetcv_error",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_path_return_models_vs_new_return_gives_same_coefficients",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[ElasticNet]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[False-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_toy",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_readonly_data",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_uniform_targets",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[True-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNetCV-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_dense_descent_paths",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_False_check_input_False",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_coef_shape_not_zero",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-False-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[None]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[True-True-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs0]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-False-0.01-True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_toy",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_lasso_and_multitask_lasso_cv",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_precompute_invalid_argument",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ARDRegression-params7]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[False-True-0.01-False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_random_descent",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-C]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[LassoLarsIC-params14]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_for_all_backends[MultiTaskElasticNetCV-loky]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[ElasticNet-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[C-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_set_order_sparse[F-F]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[OrthogonalMatchingPursuit-params8]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_l1_ratio_param_invalid[10]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[False]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params10]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs1]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_cv_dtype",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params4]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[ElasticNet-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_for_all_backends[MultiTaskLassoCV-threading]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[MultiTaskElasticNet-params9]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_overrided_gram_matrix",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_for_all_backends[ElasticNetCV-threading]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_check_input_false",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[True]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[RidgeClassifier-params2]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[RidgeClassifier-params3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence_with_regularizer_decrement",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_multitarget",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path_positive",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[BayesianRidge-params6]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_positive_constraint",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true[Ridge-params5]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_path_parameters",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[MultiTaskLasso-2-kwargs3]",
"sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_sparse"
] |
[
"sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_incorrect_gram"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py"
}
]
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 0372dcdd1fd4e..ecdb38440bf0b 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -62,6 +62,9 @@ Changelog\n - |Fix| :meth:`ElasticNet.fit` no longer modifies `sample_weight` in place.\n :pr:`<PRID>` by `<NAME>`_.\n \n+- |Enhancement| Validate user-supplied gram matrix passed to linear models\n+ via the `precompute` argument. :pr:`<PRID>` by :user:`<NAME>`.\n+\n Code and Documentation Contributors\n -----------------------------------\n \n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 0372dcdd1fd4e..ecdb38440bf0b 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -62,6 +62,9 @@ Changelog
- |Fix| :meth:`ElasticNet.fit` no longer modifies `sample_weight` in place.
:pr:`<PRID>` by `<NAME>`_.
+- |Enhancement| Validate user-supplied gram matrix passed to linear models
+ via the `precompute` argument. :pr:`<PRID>` by :user:`<NAME>`.
+
Code and Documentation Contributors
-----------------------------------
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20297
|
https://github.com/scikit-learn/scikit-learn/pull/20297
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index ecb4b5972a669..f3885f852591a 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -231,6 +231,13 @@ Changelog
installing on Windows and its default 260 character limit on file names.
:pr:`20209` by `Thomas Fan`_.
+- |Enhancement| Replace usages of ``__file__`` related to resource file I/O
+ with ``importlib.resources`` to avoid the assumption that these resource
+ files (e.g. ``iris.csv``) already exist on a filesystem, and by extension
+ to enable compatibility with tools such as ``PyOxidizer``.
+ :pr:`20297` by :user:`Jack Liu <jackzyliu>`
+
+
:mod:`sklearn.decomposition`
............................
diff --git a/sklearn/datasets/_base.py b/sklearn/datasets/_base.py
index f31e7cd58f551..246e20d8c3f6e 100644
--- a/sklearn/datasets/_base.py
+++ b/sklearn/datasets/_base.py
@@ -8,11 +8,12 @@
# License: BSD 3 clause
import csv
import hashlib
-import os
+import gzip
import shutil
from collections import namedtuple
from os import environ, listdir, makedirs
-from os.path import dirname, expanduser, isdir, join, splitext
+from os.path import expanduser, isdir, join, splitext
+from importlib import resources
from ..utils import Bunch
from ..utils import check_random_state
@@ -22,6 +23,10 @@
from urllib.request import urlretrieve
+DATA_MODULE = "sklearn.datasets.data"
+DESCR_MODULE = "sklearn.datasets.descr"
+IMAGES_MODULE = "sklearn.datasets.images"
+
RemoteFileMetadata = namedtuple("RemoteFileMetadata", ["filename", "url", "checksum"])
@@ -238,33 +243,53 @@ def load_files(
)
-def load_data(module_path, data_file_name):
- """Loads data from module_path/data/data_file_name.
+def load_csv_data(
+ data_file_name,
+ *,
+ data_module=DATA_MODULE,
+ descr_file_name=None,
+ descr_module=DESCR_MODULE,
+):
+ """Loads `data_file_name` from `data_module with `importlib.resources`.
Parameters
----------
- module_path : string
- The module path.
+ data_file_name : str
+ Name of csv file to be loaded from `data_module/data_file_name`.
+ For example `'wine_data.csv'`.
+
+ data_module : str or module, default='sklearn.datasets.data'
+ Module where data lives. The default is `'sklearn.datasets.data'`.
- data_file_name : string
- Name of csv file to be loaded from
- module_path/data/data_file_name. For example 'wine_data.csv'.
+ descr_file_name : str, default=None
+ Name of rst file to be loaded from `descr_module/descr_file_name`.
+ For example `'wine_data.rst'`. See also :func:`load_descr`.
+ If not None, also returns the corresponding description of
+ the dataset.
+
+ descr_module : str or module, default='sklearn.datasets.descr'
+ Module where `descr_file_name` lives. See also :func:`load_descr`.
+ The default is `'sklearn.datasets.descr'`.
Returns
-------
- data : Numpy array
+ data : ndarray of shape (n_samples, n_features)
A 2D array with each row representing one sample and each column
representing the features of a given sample.
- target : Numpy array
- A 1D array holding target variables for all the samples in `data.
- For example target[0] is the target varible for data[0].
+ target : ndarry of shape (n_samples,)
+ A 1D array holding target variables for all the samples in `data`.
+ For example target[0] is the target variable for data[0].
- target_names : Numpy array
+ target_names : ndarry of shape (n_samples,)
A 1D array containing the names of the classifications. For example
target_names[0] is the name of the target[0] class.
+
+ descr : str, optional
+ Description of the dataset (the content of `descr_file_name`).
+ Only returned if `descr_file_name` is not None.
"""
- with open(join(module_path, "data", data_file_name)) as csv_file:
+ with resources.open_text(data_module, data_file_name) as csv_file:
data_file = csv.reader(csv_file)
temp = next(data_file)
n_samples = int(temp[0])
@@ -277,7 +302,101 @@ def load_data(module_path, data_file_name):
data[i] = np.asarray(ir[:-1], dtype=np.float64)
target[i] = np.asarray(ir[-1], dtype=int)
- return data, target, target_names
+ if descr_file_name is None:
+ return data, target, target_names
+ else:
+ assert descr_module is not None
+ descr = load_descr(descr_module=descr_module, descr_file_name=descr_file_name)
+ return data, target, target_names, descr
+
+
+def load_gzip_compressed_csv_data(
+ data_file_name,
+ *,
+ data_module=DATA_MODULE,
+ descr_file_name=None,
+ descr_module=DESCR_MODULE,
+ encoding="utf-8",
+ **kwargs,
+):
+ """Loads gzip-compressed `data_file_name` from `data_module` with `importlib.resources`.
+
+ 1) Open resource file with `importlib.resources.open_binary`
+ 2) Decompress file obj with `gzip.open`
+ 3) Load decompressed data with `np.loadtxt`
+
+ Parameters
+ ----------
+ data_file_name : str
+ Name of gzip-compressed csv file (`'*.csv.gz'`) to be loaded from
+ `data_module/data_file_name`. For example `'diabetes_data.csv.gz'`.
+
+ data_module : str or module, default='sklearn.datasets.data'
+ Module where data lives. The default is `'sklearn.datasets.data'`.
+
+ descr_file_name : str, default=None
+ Name of rst file to be loaded from `descr_module/descr_file_name`.
+ For example `'wine_data.rst'`. See also :func:`load_descr`.
+ If not None, also returns the corresponding description of
+ the dataset.
+
+ descr_module : str or module, default='sklearn.datasets.descr'
+ Module where `descr_file_name` lives. See also :func:`load_descr`.
+ The default is `'sklearn.datasets.descr'`.
+
+ encoding : str, default="utf-8"
+ Name of the encoding that the gzip-decompressed file will be
+ decoded with. The default is 'utf-8'.
+
+ **kwargs : dict, optional
+ Keyword arguments to be passed to `np.loadtxt`;
+ e.g. delimiter=','.
+
+ Returns
+ -------
+ data : ndarray of shape (n_samples, n_features)
+ A 2D array with each row representing one sample and each column
+ representing the features and/or target of a given sample.
+
+ descr : str, optional
+ Description of the dataset (the content of `descr_file_name`).
+ Only returned if `descr_file_name` is not None.
+ """
+ with resources.open_binary(data_module, data_file_name) as compressed_file:
+ compressed_file = gzip.open(compressed_file, mode="rt", encoding=encoding)
+ data = np.loadtxt(compressed_file, **kwargs)
+
+ if descr_file_name is None:
+ return data
+ else:
+ assert descr_module is not None
+ descr = load_descr(descr_module=descr_module, descr_file_name=descr_file_name)
+ return data, descr
+
+
+def load_descr(descr_file_name, *, descr_module=DESCR_MODULE):
+ """Load `descr_file_name` from `descr_module` with `importlib.resources`.
+
+ Parameters
+ ----------
+ descr_file_name : str, default=None
+ Name of rst file to be loaded from `descr_module/descr_file_name`.
+ For example `'wine_data.rst'`. See also :func:`load_descr`.
+ If not None, also returns the corresponding description of
+ the dataset.
+
+ descr_module : str or module, default='sklearn.datasets.descr'
+ Module where `descr_file_name` lives. See also :func:`load_descr`.
+ The default is `'sklearn.datasets.descr'`.
+
+ Returns
+ -------
+ fdescr : str
+ Content of `descr_file_name`.
+ """
+ fdescr = resources.read_text(descr_module, descr_file_name)
+
+ return fdescr
def load_wine(*, return_X_y=False, as_frame=False):
@@ -354,11 +473,10 @@ def load_wine(*, return_X_y=False, as_frame=False):
>>> list(data.target_names)
['class_0', 'class_1', 'class_2']
"""
- module_path = dirname(__file__)
- data, target, target_names = load_data(module_path, "wine_data.csv")
- with open(join(module_path, "descr", "wine_data.rst")) as rst_file:
- fdescr = rst_file.read()
+ data, target, target_names, fdescr = load_csv_data(
+ data_file_name="wine_data.csv", descr_file_name="wine_data.rst"
+ )
feature_names = [
"alcohol",
@@ -481,12 +599,10 @@ def load_iris(*, return_X_y=False, as_frame=False):
>>> list(data.target_names)
['setosa', 'versicolor', 'virginica']
"""
- module_path = dirname(__file__)
- data, target, target_names = load_data(module_path, "iris.csv")
- iris_csv_filename = join(module_path, "data", "iris.csv")
-
- with open(join(module_path, "descr", "iris.rst")) as rst_file:
- fdescr = rst_file.read()
+ data_file_name = "iris.csv"
+ data, target, target_names, fdescr = load_csv_data(
+ data_file_name=data_file_name, descr_file_name="iris.rst"
+ )
feature_names = [
"sepal length (cm)",
@@ -514,7 +630,8 @@ def load_iris(*, return_X_y=False, as_frame=False):
target_names=target_names,
DESCR=fdescr,
feature_names=feature_names,
- filename=iris_csv_filename,
+ filename=data_file_name,
+ data_module=DATA_MODULE,
)
@@ -598,12 +715,10 @@ def load_breast_cancer(*, return_X_y=False, as_frame=False):
>>> list(data.target_names)
['malignant', 'benign']
"""
- module_path = dirname(__file__)
- data, target, target_names = load_data(module_path, "breast_cancer.csv")
- csv_filename = join(module_path, "data", "breast_cancer.csv")
-
- with open(join(module_path, "descr", "breast_cancer.rst")) as rst_file:
- fdescr = rst_file.read()
+ data_file_name = "breast_cancer.csv"
+ data, target, target_names, fdescr = load_csv_data(
+ data_file_name=data_file_name, descr_file_name="breast_cancer.rst"
+ )
feature_names = np.array(
[
@@ -659,7 +774,8 @@ def load_breast_cancer(*, return_X_y=False, as_frame=False):
target_names=target_names,
DESCR=fdescr,
feature_names=feature_names,
- filename=csv_filename,
+ filename=data_file_name,
+ data_module=DATA_MODULE,
)
@@ -747,10 +863,11 @@ def load_digits(*, n_class=10, return_X_y=False, as_frame=False):
<...>
>>> plt.show()
"""
- module_path = dirname(__file__)
- data = np.loadtxt(join(module_path, "data", "digits.csv.gz"), delimiter=",")
- with open(join(module_path, "descr", "digits.rst")) as f:
- descr = f.read()
+
+ data, fdescr = load_gzip_compressed_csv_data(
+ data_file_name="digits.csv.gz", descr_file_name="digits.rst", delimiter=","
+ )
+
target = data[:, -1].astype(int, copy=False)
flat_data = data[:, :-1]
images = flat_data.view()
@@ -786,7 +903,7 @@ def load_digits(*, n_class=10, return_X_y=False, as_frame=False):
feature_names=feature_names,
target_names=np.arange(10),
images=images,
- DESCR=descr,
+ DESCR=fdescr,
)
@@ -854,15 +971,12 @@ def load_diabetes(*, return_X_y=False, as_frame=False):
.. versionadded:: 0.18
"""
- module_path = dirname(__file__)
- base_dir = join(module_path, "data")
- data_filename = join(base_dir, "diabetes_data.csv.gz")
- data = np.loadtxt(data_filename)
- target_filename = join(base_dir, "diabetes_target.csv.gz")
- target = np.loadtxt(target_filename)
+ data_filename = "diabetes_data.csv.gz"
+ target_filename = "diabetes_target.csv.gz"
+ data = load_gzip_compressed_csv_data(data_filename)
+ target = load_gzip_compressed_csv_data(target_filename)
- with open(join(module_path, "descr", "diabetes.rst")) as rst_file:
- fdescr = rst_file.read()
+ fdescr = load_descr("diabetes.rst")
feature_names = ["age", "sex", "bmi", "bp", "s1", "s2", "s3", "s4", "s5", "s6"]
@@ -886,6 +1000,7 @@ def load_diabetes(*, return_X_y=False, as_frame=False):
feature_names=feature_names,
data_filename=data_filename,
target_filename=target_filename,
+ data_module=DATA_MODULE,
)
@@ -953,22 +1068,21 @@ def load_linnerud(*, return_X_y=False, as_frame=False):
.. versionadded:: 0.18
"""
- base_dir = join(dirname(__file__), "data/")
- data_filename = join(base_dir, "linnerud_exercise.csv")
- target_filename = join(base_dir, "linnerud_physiological.csv")
-
- # Read data
- data_exercise = np.loadtxt(data_filename, skiprows=1)
- data_physiological = np.loadtxt(target_filename, skiprows=1)
+ data_filename = "linnerud_exercise.csv"
+ target_filename = "linnerud_physiological.csv"
- # Read header
- with open(data_filename) as f:
+ # Read header and data
+ with resources.open_text(DATA_MODULE, data_filename) as f:
header_exercise = f.readline().split()
- with open(target_filename) as f:
+ f.seek(0) # reset file obj
+ data_exercise = np.loadtxt(f, skiprows=1)
+
+ with resources.open_text(DATA_MODULE, target_filename) as f:
header_physiological = f.readline().split()
+ f.seek(0) # reset file obj
+ data_physiological = np.loadtxt(f, skiprows=1)
- with open(dirname(__file__) + "/descr/linnerud.rst") as f:
- descr = f.read()
+ fdescr = load_descr("linnerud.rst")
frame = None
if as_frame:
@@ -988,9 +1102,10 @@ def load_linnerud(*, return_X_y=False, as_frame=False):
target=data_physiological,
target_names=header_physiological,
frame=frame,
- DESCR=descr,
+ DESCR=fdescr,
data_filename=data_filename,
target_filename=target_filename,
+ data_module=DATA_MODULE,
)
@@ -1049,14 +1164,11 @@ def load_boston(*, return_X_y=False):
>>> print(X.shape)
(506, 13)
"""
- module_path = dirname(__file__)
- fdescr_name = join(module_path, "descr", "boston_house_prices.rst")
- with open(fdescr_name) as f:
- descr_text = f.read()
+ descr_text = load_descr("boston_house_prices.rst")
- data_file_name = join(module_path, "data", "boston_house_prices.csv")
- with open(data_file_name) as f:
+ data_file_name = "boston_house_prices.csv"
+ with resources.open_text(DATA_MODULE, data_file_name) as f:
data_file = csv.reader(f)
temp = next(data_file)
n_samples = int(temp[0])
@@ -1080,6 +1192,7 @@ def load_boston(*, return_X_y=False):
feature_names=feature_names[:-1],
DESCR=descr_text,
filename=data_file_name,
+ data_module=DATA_MODULE,
)
@@ -1119,16 +1232,15 @@ def load_sample_images():
# import PIL only when needed
from ..externals._pilutil import imread
- module_path = join(dirname(__file__), "images")
- with open(join(module_path, "README.txt")) as f:
- descr = f.read()
- filenames = [
- join(module_path, filename)
- for filename in sorted(os.listdir(module_path))
- if filename.endswith(".jpg")
- ]
- # Load image data for each image in the source folder.
- images = [imread(filename) for filename in filenames]
+ descr = load_descr("README.txt", descr_module=IMAGES_MODULE)
+
+ filenames, images = [], []
+ for filename in sorted(resources.contents(IMAGES_MODULE)):
+ if filename.endswith(".jpg"):
+ filenames.append(filename)
+ with resources.open_binary(IMAGES_MODULE, filename) as image_file:
+ image = imread(image_file)
+ images.append(image)
return Bunch(images=images, filenames=filenames, DESCR=descr)
@@ -1217,12 +1329,12 @@ def _fetch_remote(remote, dirname=None):
Named tuple containing remote dataset meta information: url, filename
and checksum
- dirname : string
+ dirname : str
Directory to save the file to.
Returns
-------
- file_path: string
+ file_path: str
Full path of the created file.
"""
diff --git a/sklearn/datasets/_california_housing.py b/sklearn/datasets/_california_housing.py
index e5396a5f3ef50..34a936e51cbb2 100644
--- a/sklearn/datasets/_california_housing.py
+++ b/sklearn/datasets/_california_housing.py
@@ -21,7 +21,7 @@
# Authors: Peter Prettenhofer
# License: BSD 3 clause
-from os.path import dirname, exists, join
+from os.path import exists
from os import makedirs, remove
import tarfile
@@ -35,6 +35,7 @@
from ._base import _fetch_remote
from ._base import _pkl_filepath
from ._base import RemoteFileMetadata
+from ._base import load_descr
from ..utils import Bunch
@@ -173,9 +174,7 @@ def fetch_california_housing(
# target in units of 100,000
target = target / 100000.0
- module_path = dirname(__file__)
- with open(join(module_path, "descr", "california_housing.rst")) as dfile:
- descr = dfile.read()
+ descr = load_descr("california_housing.rst")
X = data
y = target
diff --git a/sklearn/datasets/_covtype.py b/sklearn/datasets/_covtype.py
index 7179ac8e655d3..14af26bde0463 100644
--- a/sklearn/datasets/_covtype.py
+++ b/sklearn/datasets/_covtype.py
@@ -16,7 +16,7 @@
from gzip import GzipFile
import logging
-from os.path import dirname, exists, join
+from os.path import exists, join
from os import remove, makedirs
import numpy as np
@@ -26,6 +26,7 @@
from ._base import _convert_data_dataframe
from ._base import _fetch_remote
from ._base import RemoteFileMetadata
+from ._base import load_descr
from ..utils import Bunch
from ._base import _pkl_filepath
from ..utils import check_random_state
@@ -178,9 +179,7 @@ def fetch_covtype(
X = X[ind]
y = y[ind]
- module_path = dirname(__file__)
- with open(join(module_path, "descr", "covtype.rst")) as rst_file:
- fdescr = rst_file.read()
+ fdescr = load_descr("covtype.rst")
frame = None
if as_frame:
diff --git a/sklearn/datasets/_kddcup99.py b/sklearn/datasets/_kddcup99.py
index a898658e16820..b698d299b7c8d 100644
--- a/sklearn/datasets/_kddcup99.py
+++ b/sklearn/datasets/_kddcup99.py
@@ -12,7 +12,7 @@
from gzip import GzipFile
import logging
import os
-from os.path import dirname, exists, join
+from os.path import exists, join
import numpy as np
import joblib
@@ -21,6 +21,7 @@
from ._base import _convert_data_dataframe
from . import get_data_home
from ._base import RemoteFileMetadata
+from ._base import load_descr
from ..utils import Bunch
from ..utils import check_random_state
from ..utils import shuffle as shuffle_method
@@ -202,9 +203,7 @@ def fetch_kddcup99(
if shuffle:
data, target = shuffle_method(data, target, random_state=random_state)
- module_path = dirname(__file__)
- with open(join(module_path, "descr", "kddcup99.rst")) as rst_file:
- fdescr = rst_file.read()
+ fdescr = load_descr("kddcup99.rst")
frame = None
if as_frame:
diff --git a/sklearn/datasets/_lfw.py b/sklearn/datasets/_lfw.py
index 3048bb87a2c4f..fb7d603bfc0ff 100644
--- a/sklearn/datasets/_lfw.py
+++ b/sklearn/datasets/_lfw.py
@@ -9,7 +9,7 @@
# License: BSD 3 clause
from os import listdir, makedirs, remove
-from os.path import dirname, join, exists, isdir
+from os.path import join, exists, isdir
import logging
@@ -17,7 +17,12 @@
import joblib
from joblib import Memory
-from ._base import get_data_home, _fetch_remote, RemoteFileMetadata
+from ._base import (
+ get_data_home,
+ _fetch_remote,
+ RemoteFileMetadata,
+ load_descr,
+)
from ..utils import Bunch
from ..utils.fixes import parse_version
@@ -329,9 +334,7 @@ def fetch_lfw_people(
X = faces.reshape(len(faces), -1)
- module_path = dirname(__file__)
- with open(join(module_path, "descr", "lfw.rst")) as rst_file:
- fdescr = rst_file.read()
+ fdescr = load_descr("lfw.rst")
if return_X_y:
return X, target
@@ -519,9 +522,7 @@ def fetch_lfw_pairs(
index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_
)
- module_path = dirname(__file__)
- with open(join(module_path, "descr", "lfw.rst")) as rst_file:
- fdescr = rst_file.read()
+ fdescr = load_descr("lfw.rst")
# pack the results as a Bunch instance
return Bunch(
diff --git a/sklearn/datasets/_olivetti_faces.py b/sklearn/datasets/_olivetti_faces.py
index 41279778eea11..038acb12ea15b 100644
--- a/sklearn/datasets/_olivetti_faces.py
+++ b/sklearn/datasets/_olivetti_faces.py
@@ -13,7 +13,7 @@
# Copyright (c) 2011 David Warde-Farley <wardefar at iro dot umontreal dot ca>
# License: BSD 3 clause
-from os.path import dirname, exists, join
+from os.path import exists
from os import makedirs, remove
import numpy as np
@@ -24,6 +24,7 @@
from ._base import _fetch_remote
from ._base import RemoteFileMetadata
from ._base import _pkl_filepath
+from ._base import load_descr
from ..utils import check_random_state, Bunch
# The original data can be found at:
@@ -137,9 +138,7 @@ def fetch_olivetti_faces(
target = target[order]
faces_vectorized = faces.reshape(len(faces), -1)
- module_path = dirname(__file__)
- with open(join(module_path, "descr", "olivetti_faces.rst")) as rst_file:
- fdescr = rst_file.read()
+ fdescr = load_descr("olivetti_faces.rst")
if return_X_y:
return faces_vectorized, target
diff --git a/sklearn/datasets/_rcv1.py b/sklearn/datasets/_rcv1.py
index f815bcc2e253d..8669eec721453 100644
--- a/sklearn/datasets/_rcv1.py
+++ b/sklearn/datasets/_rcv1.py
@@ -11,7 +11,7 @@
import logging
from os import remove, makedirs
-from os.path import dirname, exists, join
+from os.path import exists, join
from gzip import GzipFile
import numpy as np
@@ -22,6 +22,7 @@
from ._base import _pkl_filepath
from ._base import _fetch_remote
from ._base import RemoteFileMetadata
+from ._base import load_descr
from ._svmlight_format_io import load_svmlight_files
from ..utils import shuffle as shuffle_
from ..utils import Bunch
@@ -268,9 +269,7 @@ def fetch_rcv1(
if shuffle:
X, y, sample_id = shuffle_(X, y, sample_id, random_state=random_state)
- module_path = dirname(__file__)
- with open(join(module_path, "descr", "rcv1.rst")) as rst_file:
- fdescr = rst_file.read()
+ fdescr = load_descr("rcv1.rst")
if return_X_y:
return X, y
diff --git a/sklearn/datasets/_twenty_newsgroups.py b/sklearn/datasets/_twenty_newsgroups.py
index 53f3e5317001f..7fe17cbcb0a7a 100644
--- a/sklearn/datasets/_twenty_newsgroups.py
+++ b/sklearn/datasets/_twenty_newsgroups.py
@@ -25,7 +25,6 @@
# License: BSD 3 clause
import os
-from os.path import dirname, join
import logging
import tarfile
import pickle
@@ -43,6 +42,7 @@
from ._base import _pkl_filepath
from ._base import _fetch_remote
from ._base import RemoteFileMetadata
+from ._base import load_descr
from ..feature_extraction.text import CountVectorizer
from .. import preprocessing
from ..utils import check_random_state, Bunch
@@ -287,9 +287,7 @@ def fetch_20newsgroups(
"subset can only be 'train', 'test' or 'all', got '%s'" % subset
)
- module_path = dirname(__file__)
- with open(join(module_path, "descr", "twenty_newsgroups.rst")) as rst_file:
- fdescr = rst_file.read()
+ fdescr = load_descr("twenty_newsgroups.rst")
data.DESCR = fdescr
@@ -510,9 +508,7 @@ def fetch_20newsgroups_vectorized(
% subset
)
- module_path = dirname(__file__)
- with open(join(module_path, "descr", "twenty_newsgroups.rst")) as rst_file:
- fdescr = rst_file.read()
+ fdescr = load_descr("twenty_newsgroups.rst")
frame = None
target_name = ["category_class"]
diff --git a/sklearn/datasets/data/__init__.py b/sklearn/datasets/data/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/descr/__init__.py b/sklearn/datasets/descr/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/images/__init__.py b/sklearn/datasets/images/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
|
diff --git a/sklearn/datasets/tests/data/__init__.py b/sklearn/datasets/tests/data/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/__init__.py b/sklearn/datasets/tests/data/openml/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/id_1/__init__.py b/sklearn/datasets/tests/data/openml/id_1/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/1/api-v1-jd-1.json.gz b/sklearn/datasets/tests/data/openml/id_1/api-v1-jd-1.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1/api-v1-jd-1.json.gz
rename to sklearn/datasets/tests/data/openml/id_1/api-v1-jd-1.json.gz
diff --git a/sklearn/datasets/tests/data/openml/1/api-v1-jdf-1.json.gz b/sklearn/datasets/tests/data/openml/id_1/api-v1-jdf-1.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1/api-v1-jdf-1.json.gz
rename to sklearn/datasets/tests/data/openml/id_1/api-v1-jdf-1.json.gz
diff --git a/sklearn/datasets/tests/data/openml/1/api-v1-jdq-1.json.gz b/sklearn/datasets/tests/data/openml/id_1/api-v1-jdq-1.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1/api-v1-jdq-1.json.gz
rename to sklearn/datasets/tests/data/openml/id_1/api-v1-jdq-1.json.gz
diff --git a/sklearn/datasets/tests/data/openml/1/data-v1-dl-1.arff.gz b/sklearn/datasets/tests/data/openml/id_1/data-v1-dl-1.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1/data-v1-dl-1.arff.gz
rename to sklearn/datasets/tests/data/openml/id_1/data-v1-dl-1.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_1119/__init__.py b/sklearn/datasets/tests/data/openml/id_1119/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/1119/api-v1-jd-1119.json.gz b/sklearn/datasets/tests/data/openml/id_1119/api-v1-jd-1119.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1119/api-v1-jd-1119.json.gz
rename to sklearn/datasets/tests/data/openml/id_1119/api-v1-jd-1119.json.gz
diff --git a/sklearn/datasets/tests/data/openml/1119/api-v1-jdf-1119.json.gz b/sklearn/datasets/tests/data/openml/id_1119/api-v1-jdf-1119.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1119/api-v1-jdf-1119.json.gz
rename to sklearn/datasets/tests/data/openml/id_1119/api-v1-jdf-1119.json.gz
diff --git a/sklearn/datasets/tests/data/openml/1119/api-v1-jdl-dn-adult-census-l-2-dv-1.json.gz b/sklearn/datasets/tests/data/openml/id_1119/api-v1-jdl-dn-adult-census-l-2-dv-1.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1119/api-v1-jdl-dn-adult-census-l-2-dv-1.json.gz
rename to sklearn/datasets/tests/data/openml/id_1119/api-v1-jdl-dn-adult-census-l-2-dv-1.json.gz
diff --git a/sklearn/datasets/tests/data/openml/1119/api-v1-jdl-dn-adult-census-l-2-s-act-.json.gz b/sklearn/datasets/tests/data/openml/id_1119/api-v1-jdl-dn-adult-census-l-2-s-act-.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1119/api-v1-jdl-dn-adult-census-l-2-s-act-.json.gz
rename to sklearn/datasets/tests/data/openml/id_1119/api-v1-jdl-dn-adult-census-l-2-s-act-.json.gz
diff --git a/sklearn/datasets/tests/data/openml/1119/api-v1-jdq-1119.json.gz b/sklearn/datasets/tests/data/openml/id_1119/api-v1-jdq-1119.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1119/api-v1-jdq-1119.json.gz
rename to sklearn/datasets/tests/data/openml/id_1119/api-v1-jdq-1119.json.gz
diff --git a/sklearn/datasets/tests/data/openml/1119/data-v1-dl-54002.arff.gz b/sklearn/datasets/tests/data/openml/id_1119/data-v1-dl-54002.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/1119/data-v1-dl-54002.arff.gz
rename to sklearn/datasets/tests/data/openml/id_1119/data-v1-dl-54002.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_2/__init__.py b/sklearn/datasets/tests/data/openml/id_2/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/2/api-v1-jd-2.json.gz b/sklearn/datasets/tests/data/openml/id_2/api-v1-jd-2.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/2/api-v1-jd-2.json.gz
rename to sklearn/datasets/tests/data/openml/id_2/api-v1-jd-2.json.gz
diff --git a/sklearn/datasets/tests/data/openml/2/api-v1-jdf-2.json.gz b/sklearn/datasets/tests/data/openml/id_2/api-v1-jdf-2.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/2/api-v1-jdf-2.json.gz
rename to sklearn/datasets/tests/data/openml/id_2/api-v1-jdf-2.json.gz
diff --git a/sklearn/datasets/tests/data/openml/2/api-v1-jdl-dn-anneal-l-2-dv-1.json.gz b/sklearn/datasets/tests/data/openml/id_2/api-v1-jdl-dn-anneal-l-2-dv-1.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/2/api-v1-jdl-dn-anneal-l-2-dv-1.json.gz
rename to sklearn/datasets/tests/data/openml/id_2/api-v1-jdl-dn-anneal-l-2-dv-1.json.gz
diff --git a/sklearn/datasets/tests/data/openml/2/api-v1-jdl-dn-anneal-l-2-s-act-.json.gz b/sklearn/datasets/tests/data/openml/id_2/api-v1-jdl-dn-anneal-l-2-s-act-.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/2/api-v1-jdl-dn-anneal-l-2-s-act-.json.gz
rename to sklearn/datasets/tests/data/openml/id_2/api-v1-jdl-dn-anneal-l-2-s-act-.json.gz
diff --git a/sklearn/datasets/tests/data/openml/2/api-v1-jdq-2.json.gz b/sklearn/datasets/tests/data/openml/id_2/api-v1-jdq-2.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/2/api-v1-jdq-2.json.gz
rename to sklearn/datasets/tests/data/openml/id_2/api-v1-jdq-2.json.gz
diff --git a/sklearn/datasets/tests/data/openml/2/data-v1-dl-1666876.arff.gz b/sklearn/datasets/tests/data/openml/id_2/data-v1-dl-1666876.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/2/data-v1-dl-1666876.arff.gz
rename to sklearn/datasets/tests/data/openml/id_2/data-v1-dl-1666876.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_292/__init__.py b/sklearn/datasets/tests/data/openml/id_292/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/292/api-v1-jd-292.json.gz b/sklearn/datasets/tests/data/openml/id_292/api-v1-jd-292.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/292/api-v1-jd-292.json.gz
rename to sklearn/datasets/tests/data/openml/id_292/api-v1-jd-292.json.gz
diff --git a/sklearn/datasets/tests/data/openml/292/api-v1-jd-40981.json.gz b/sklearn/datasets/tests/data/openml/id_292/api-v1-jd-40981.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/292/api-v1-jd-40981.json.gz
rename to sklearn/datasets/tests/data/openml/id_292/api-v1-jd-40981.json.gz
diff --git a/sklearn/datasets/tests/data/openml/292/api-v1-jdf-292.json.gz b/sklearn/datasets/tests/data/openml/id_292/api-v1-jdf-292.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/292/api-v1-jdf-292.json.gz
rename to sklearn/datasets/tests/data/openml/id_292/api-v1-jdf-292.json.gz
diff --git a/sklearn/datasets/tests/data/openml/292/api-v1-jdf-40981.json.gz b/sklearn/datasets/tests/data/openml/id_292/api-v1-jdf-40981.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/292/api-v1-jdf-40981.json.gz
rename to sklearn/datasets/tests/data/openml/id_292/api-v1-jdf-40981.json.gz
diff --git a/sklearn/datasets/tests/data/openml/292/api-v1-jdl-dn-australian-l-2-dv-1-s-dact.json.gz b/sklearn/datasets/tests/data/openml/id_292/api-v1-jdl-dn-australian-l-2-dv-1-s-dact.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/292/api-v1-jdl-dn-australian-l-2-dv-1-s-dact.json.gz
rename to sklearn/datasets/tests/data/openml/id_292/api-v1-jdl-dn-australian-l-2-dv-1-s-dact.json.gz
diff --git a/sklearn/datasets/tests/data/openml/292/api-v1-jdl-dn-australian-l-2-dv-1.json.gz b/sklearn/datasets/tests/data/openml/id_292/api-v1-jdl-dn-australian-l-2-dv-1.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/292/api-v1-jdl-dn-australian-l-2-dv-1.json.gz
rename to sklearn/datasets/tests/data/openml/id_292/api-v1-jdl-dn-australian-l-2-dv-1.json.gz
diff --git a/sklearn/datasets/tests/data/openml/292/api-v1-jdl-dn-australian-l-2-s-act-.json.gz b/sklearn/datasets/tests/data/openml/id_292/api-v1-jdl-dn-australian-l-2-s-act-.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/292/api-v1-jdl-dn-australian-l-2-s-act-.json.gz
rename to sklearn/datasets/tests/data/openml/id_292/api-v1-jdl-dn-australian-l-2-s-act-.json.gz
diff --git a/sklearn/datasets/tests/data/openml/292/data-v1-dl-49822.arff.gz b/sklearn/datasets/tests/data/openml/id_292/data-v1-dl-49822.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/292/data-v1-dl-49822.arff.gz
rename to sklearn/datasets/tests/data/openml/id_292/data-v1-dl-49822.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_3/__init__.py b/sklearn/datasets/tests/data/openml/id_3/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/3/api-v1-jd-3.json.gz b/sklearn/datasets/tests/data/openml/id_3/api-v1-jd-3.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/3/api-v1-jd-3.json.gz
rename to sklearn/datasets/tests/data/openml/id_3/api-v1-jd-3.json.gz
diff --git a/sklearn/datasets/tests/data/openml/3/api-v1-jdf-3.json.gz b/sklearn/datasets/tests/data/openml/id_3/api-v1-jdf-3.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/3/api-v1-jdf-3.json.gz
rename to sklearn/datasets/tests/data/openml/id_3/api-v1-jdf-3.json.gz
diff --git a/sklearn/datasets/tests/data/openml/3/api-v1-jdq-3.json.gz b/sklearn/datasets/tests/data/openml/id_3/api-v1-jdq-3.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/3/api-v1-jdq-3.json.gz
rename to sklearn/datasets/tests/data/openml/id_3/api-v1-jdq-3.json.gz
diff --git a/sklearn/datasets/tests/data/openml/3/data-v1-dl-3.arff.gz b/sklearn/datasets/tests/data/openml/id_3/data-v1-dl-3.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/3/data-v1-dl-3.arff.gz
rename to sklearn/datasets/tests/data/openml/id_3/data-v1-dl-3.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_40589/__init__.py b/sklearn/datasets/tests/data/openml/id_40589/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/40589/api-v1-jd-40589.json.gz b/sklearn/datasets/tests/data/openml/id_40589/api-v1-jd-40589.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40589/api-v1-jd-40589.json.gz
rename to sklearn/datasets/tests/data/openml/id_40589/api-v1-jd-40589.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40589/api-v1-jdf-40589.json.gz b/sklearn/datasets/tests/data/openml/id_40589/api-v1-jdf-40589.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40589/api-v1-jdf-40589.json.gz
rename to sklearn/datasets/tests/data/openml/id_40589/api-v1-jdf-40589.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40589/api-v1-jdl-dn-emotions-l-2-dv-3.json.gz b/sklearn/datasets/tests/data/openml/id_40589/api-v1-jdl-dn-emotions-l-2-dv-3.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40589/api-v1-jdl-dn-emotions-l-2-dv-3.json.gz
rename to sklearn/datasets/tests/data/openml/id_40589/api-v1-jdl-dn-emotions-l-2-dv-3.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40589/api-v1-jdl-dn-emotions-l-2-s-act-.json.gz b/sklearn/datasets/tests/data/openml/id_40589/api-v1-jdl-dn-emotions-l-2-s-act-.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40589/api-v1-jdl-dn-emotions-l-2-s-act-.json.gz
rename to sklearn/datasets/tests/data/openml/id_40589/api-v1-jdl-dn-emotions-l-2-s-act-.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40589/api-v1-jdq-40589.json.gz b/sklearn/datasets/tests/data/openml/id_40589/api-v1-jdq-40589.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40589/api-v1-jdq-40589.json.gz
rename to sklearn/datasets/tests/data/openml/id_40589/api-v1-jdq-40589.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40589/data-v1-dl-4644182.arff.gz b/sklearn/datasets/tests/data/openml/id_40589/data-v1-dl-4644182.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40589/data-v1-dl-4644182.arff.gz
rename to sklearn/datasets/tests/data/openml/id_40589/data-v1-dl-4644182.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_40675/__init__.py b/sklearn/datasets/tests/data/openml/id_40675/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/40675/api-v1-jd-40675.json.gz b/sklearn/datasets/tests/data/openml/id_40675/api-v1-jd-40675.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40675/api-v1-jd-40675.json.gz
rename to sklearn/datasets/tests/data/openml/id_40675/api-v1-jd-40675.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40675/api-v1-jdf-40675.json.gz b/sklearn/datasets/tests/data/openml/id_40675/api-v1-jdf-40675.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40675/api-v1-jdf-40675.json.gz
rename to sklearn/datasets/tests/data/openml/id_40675/api-v1-jdf-40675.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40675/api-v1-jdl-dn-glass2-l-2-dv-1-s-dact.json.gz b/sklearn/datasets/tests/data/openml/id_40675/api-v1-jdl-dn-glass2-l-2-dv-1-s-dact.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40675/api-v1-jdl-dn-glass2-l-2-dv-1-s-dact.json.gz
rename to sklearn/datasets/tests/data/openml/id_40675/api-v1-jdl-dn-glass2-l-2-dv-1-s-dact.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40675/api-v1-jdl-dn-glass2-l-2-dv-1.json.gz b/sklearn/datasets/tests/data/openml/id_40675/api-v1-jdl-dn-glass2-l-2-dv-1.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40675/api-v1-jdl-dn-glass2-l-2-dv-1.json.gz
rename to sklearn/datasets/tests/data/openml/id_40675/api-v1-jdl-dn-glass2-l-2-dv-1.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40675/api-v1-jdl-dn-glass2-l-2-s-act-.json.gz b/sklearn/datasets/tests/data/openml/id_40675/api-v1-jdl-dn-glass2-l-2-s-act-.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40675/api-v1-jdl-dn-glass2-l-2-s-act-.json.gz
rename to sklearn/datasets/tests/data/openml/id_40675/api-v1-jdl-dn-glass2-l-2-s-act-.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40675/api-v1-jdq-40675.json.gz b/sklearn/datasets/tests/data/openml/id_40675/api-v1-jdq-40675.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40675/api-v1-jdq-40675.json.gz
rename to sklearn/datasets/tests/data/openml/id_40675/api-v1-jdq-40675.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40675/data-v1-dl-4965250.arff.gz b/sklearn/datasets/tests/data/openml/id_40675/data-v1-dl-4965250.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40675/data-v1-dl-4965250.arff.gz
rename to sklearn/datasets/tests/data/openml/id_40675/data-v1-dl-4965250.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_40945/__init__.py b/sklearn/datasets/tests/data/openml/id_40945/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/40945/api-v1-jd-40945.json.gz b/sklearn/datasets/tests/data/openml/id_40945/api-v1-jd-40945.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40945/api-v1-jd-40945.json.gz
rename to sklearn/datasets/tests/data/openml/id_40945/api-v1-jd-40945.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40945/api-v1-jdf-40945.json.gz b/sklearn/datasets/tests/data/openml/id_40945/api-v1-jdf-40945.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40945/api-v1-jdf-40945.json.gz
rename to sklearn/datasets/tests/data/openml/id_40945/api-v1-jdf-40945.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40945/api-v1-jdq-40945.json.gz b/sklearn/datasets/tests/data/openml/id_40945/api-v1-jdq-40945.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40945/api-v1-jdq-40945.json.gz
rename to sklearn/datasets/tests/data/openml/id_40945/api-v1-jdq-40945.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40945/data-v1-dl-16826755.arff.gz b/sklearn/datasets/tests/data/openml/id_40945/data-v1-dl-16826755.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40945/data-v1-dl-16826755.arff.gz
rename to sklearn/datasets/tests/data/openml/id_40945/data-v1-dl-16826755.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_40966/__init__.py b/sklearn/datasets/tests/data/openml/id_40966/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/40966/api-v1-jd-40966.json.gz b/sklearn/datasets/tests/data/openml/id_40966/api-v1-jd-40966.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40966/api-v1-jd-40966.json.gz
rename to sklearn/datasets/tests/data/openml/id_40966/api-v1-jd-40966.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40966/api-v1-jdf-40966.json.gz b/sklearn/datasets/tests/data/openml/id_40966/api-v1-jdf-40966.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40966/api-v1-jdf-40966.json.gz
rename to sklearn/datasets/tests/data/openml/id_40966/api-v1-jdf-40966.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40966/api-v1-jdl-dn-miceprotein-l-2-dv-4.json.gz b/sklearn/datasets/tests/data/openml/id_40966/api-v1-jdl-dn-miceprotein-l-2-dv-4.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40966/api-v1-jdl-dn-miceprotein-l-2-dv-4.json.gz
rename to sklearn/datasets/tests/data/openml/id_40966/api-v1-jdl-dn-miceprotein-l-2-dv-4.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40966/api-v1-jdl-dn-miceprotein-l-2-s-act-.json.gz b/sklearn/datasets/tests/data/openml/id_40966/api-v1-jdl-dn-miceprotein-l-2-s-act-.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40966/api-v1-jdl-dn-miceprotein-l-2-s-act-.json.gz
rename to sklearn/datasets/tests/data/openml/id_40966/api-v1-jdl-dn-miceprotein-l-2-s-act-.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40966/api-v1-jdq-40966.json.gz b/sklearn/datasets/tests/data/openml/id_40966/api-v1-jdq-40966.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40966/api-v1-jdq-40966.json.gz
rename to sklearn/datasets/tests/data/openml/id_40966/api-v1-jdq-40966.json.gz
diff --git a/sklearn/datasets/tests/data/openml/40966/data-v1-dl-17928620.arff.gz b/sklearn/datasets/tests/data/openml/id_40966/data-v1-dl-17928620.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/40966/data-v1-dl-17928620.arff.gz
rename to sklearn/datasets/tests/data/openml/id_40966/data-v1-dl-17928620.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_42585/__init__.py b/sklearn/datasets/tests/data/openml/id_42585/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/42585/api-v1-jd-42585.json.gz b/sklearn/datasets/tests/data/openml/id_42585/api-v1-jd-42585.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/42585/api-v1-jd-42585.json.gz
rename to sklearn/datasets/tests/data/openml/id_42585/api-v1-jd-42585.json.gz
diff --git a/sklearn/datasets/tests/data/openml/42585/api-v1-jdf-42585.json.gz b/sklearn/datasets/tests/data/openml/id_42585/api-v1-jdf-42585.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/42585/api-v1-jdf-42585.json.gz
rename to sklearn/datasets/tests/data/openml/id_42585/api-v1-jdf-42585.json.gz
diff --git a/sklearn/datasets/tests/data/openml/42585/api-v1-jdq-42585.json.gz b/sklearn/datasets/tests/data/openml/id_42585/api-v1-jdq-42585.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/42585/api-v1-jdq-42585.json.gz
rename to sklearn/datasets/tests/data/openml/id_42585/api-v1-jdq-42585.json.gz
diff --git a/sklearn/datasets/tests/data/openml/42585/data-v1-dl-21854866.arff.gz b/sklearn/datasets/tests/data/openml/id_42585/data-v1-dl-21854866.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/42585/data-v1-dl-21854866.arff.gz
rename to sklearn/datasets/tests/data/openml/id_42585/data-v1-dl-21854866.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_561/__init__.py b/sklearn/datasets/tests/data/openml/id_561/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/561/api-v1-jd-561.json.gz b/sklearn/datasets/tests/data/openml/id_561/api-v1-jd-561.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/561/api-v1-jd-561.json.gz
rename to sklearn/datasets/tests/data/openml/id_561/api-v1-jd-561.json.gz
diff --git a/sklearn/datasets/tests/data/openml/561/api-v1-jdf-561.json.gz b/sklearn/datasets/tests/data/openml/id_561/api-v1-jdf-561.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/561/api-v1-jdf-561.json.gz
rename to sklearn/datasets/tests/data/openml/id_561/api-v1-jdf-561.json.gz
diff --git a/sklearn/datasets/tests/data/openml/561/api-v1-jdl-dn-cpu-l-2-dv-1.json.gz b/sklearn/datasets/tests/data/openml/id_561/api-v1-jdl-dn-cpu-l-2-dv-1.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/561/api-v1-jdl-dn-cpu-l-2-dv-1.json.gz
rename to sklearn/datasets/tests/data/openml/id_561/api-v1-jdl-dn-cpu-l-2-dv-1.json.gz
diff --git a/sklearn/datasets/tests/data/openml/561/api-v1-jdl-dn-cpu-l-2-s-act-.json.gz b/sklearn/datasets/tests/data/openml/id_561/api-v1-jdl-dn-cpu-l-2-s-act-.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/561/api-v1-jdl-dn-cpu-l-2-s-act-.json.gz
rename to sklearn/datasets/tests/data/openml/id_561/api-v1-jdl-dn-cpu-l-2-s-act-.json.gz
diff --git a/sklearn/datasets/tests/data/openml/561/api-v1-jdq-561.json.gz b/sklearn/datasets/tests/data/openml/id_561/api-v1-jdq-561.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/561/api-v1-jdq-561.json.gz
rename to sklearn/datasets/tests/data/openml/id_561/api-v1-jdq-561.json.gz
diff --git a/sklearn/datasets/tests/data/openml/561/data-v1-dl-52739.arff.gz b/sklearn/datasets/tests/data/openml/id_561/data-v1-dl-52739.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/561/data-v1-dl-52739.arff.gz
rename to sklearn/datasets/tests/data/openml/id_561/data-v1-dl-52739.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_61/__init__.py b/sklearn/datasets/tests/data/openml/id_61/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/61/api-v1-jd-61.json.gz b/sklearn/datasets/tests/data/openml/id_61/api-v1-jd-61.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/61/api-v1-jd-61.json.gz
rename to sklearn/datasets/tests/data/openml/id_61/api-v1-jd-61.json.gz
diff --git a/sklearn/datasets/tests/data/openml/61/api-v1-jdf-61.json.gz b/sklearn/datasets/tests/data/openml/id_61/api-v1-jdf-61.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/61/api-v1-jdf-61.json.gz
rename to sklearn/datasets/tests/data/openml/id_61/api-v1-jdf-61.json.gz
diff --git a/sklearn/datasets/tests/data/openml/61/api-v1-jdl-dn-iris-l-2-dv-1.json.gz b/sklearn/datasets/tests/data/openml/id_61/api-v1-jdl-dn-iris-l-2-dv-1.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/61/api-v1-jdl-dn-iris-l-2-dv-1.json.gz
rename to sklearn/datasets/tests/data/openml/id_61/api-v1-jdl-dn-iris-l-2-dv-1.json.gz
diff --git a/sklearn/datasets/tests/data/openml/61/api-v1-jdl-dn-iris-l-2-s-act-.json.gz b/sklearn/datasets/tests/data/openml/id_61/api-v1-jdl-dn-iris-l-2-s-act-.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/61/api-v1-jdl-dn-iris-l-2-s-act-.json.gz
rename to sklearn/datasets/tests/data/openml/id_61/api-v1-jdl-dn-iris-l-2-s-act-.json.gz
diff --git a/sklearn/datasets/tests/data/openml/61/api-v1-jdq-61.json.gz b/sklearn/datasets/tests/data/openml/id_61/api-v1-jdq-61.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/61/api-v1-jdq-61.json.gz
rename to sklearn/datasets/tests/data/openml/id_61/api-v1-jdq-61.json.gz
diff --git a/sklearn/datasets/tests/data/openml/61/data-v1-dl-61.arff.gz b/sklearn/datasets/tests/data/openml/id_61/data-v1-dl-61.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/61/data-v1-dl-61.arff.gz
rename to sklearn/datasets/tests/data/openml/id_61/data-v1-dl-61.arff.gz
diff --git a/sklearn/datasets/tests/data/openml/id_62/__init__.py b/sklearn/datasets/tests/data/openml/id_62/__init__.py
new file mode 100644
index 0000000000000..e69de29bb2d1d
diff --git a/sklearn/datasets/tests/data/openml/62/api-v1-jd-62.json.gz b/sklearn/datasets/tests/data/openml/id_62/api-v1-jd-62.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/62/api-v1-jd-62.json.gz
rename to sklearn/datasets/tests/data/openml/id_62/api-v1-jd-62.json.gz
diff --git a/sklearn/datasets/tests/data/openml/62/api-v1-jdf-62.json.gz b/sklearn/datasets/tests/data/openml/id_62/api-v1-jdf-62.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/62/api-v1-jdf-62.json.gz
rename to sklearn/datasets/tests/data/openml/id_62/api-v1-jdf-62.json.gz
diff --git a/sklearn/datasets/tests/data/openml/62/api-v1-jdq-62.json.gz b/sklearn/datasets/tests/data/openml/id_62/api-v1-jdq-62.json.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/62/api-v1-jdq-62.json.gz
rename to sklearn/datasets/tests/data/openml/id_62/api-v1-jdq-62.json.gz
diff --git a/sklearn/datasets/tests/data/openml/62/data-v1-dl-52352.arff.gz b/sklearn/datasets/tests/data/openml/id_62/data-v1-dl-52352.arff.gz
similarity index 100%
rename from sklearn/datasets/tests/data/openml/62/data-v1-dl-52352.arff.gz
rename to sklearn/datasets/tests/data/openml/id_62/data-v1-dl-52352.arff.gz
diff --git a/sklearn/datasets/tests/test_20news.py b/sklearn/datasets/tests/test_20news.py
index 437ced7aa8ee8..4244dd7865945 100644
--- a/sklearn/datasets/tests/test_20news.py
+++ b/sklearn/datasets/tests/test_20news.py
@@ -18,6 +18,7 @@
def test_20news(fetch_20newsgroups_fxt):
data = fetch_20newsgroups_fxt(subset="all", shuffle=False)
+ assert data.DESCR.startswith(".. _20newsgroups_dataset:")
# Extract a reduced dataset
data2cats = fetch_20newsgroups_fxt(
@@ -66,6 +67,7 @@ def test_20news_vectorized(fetch_20newsgroups_vectorized_fxt):
assert bunch.data.shape == (11314, 130107)
assert bunch.target.shape[0] == 11314
assert bunch.data.dtype == np.float64
+ assert bunch.DESCR.startswith(".. _20newsgroups_dataset:")
# test subset = test
bunch = fetch_20newsgroups_vectorized_fxt(subset="test")
@@ -73,6 +75,7 @@ def test_20news_vectorized(fetch_20newsgroups_vectorized_fxt):
assert bunch.data.shape == (7532, 130107)
assert bunch.target.shape[0] == 7532
assert bunch.data.dtype == np.float64
+ assert bunch.DESCR.startswith(".. _20newsgroups_dataset:")
# test return_X_y option
fetch_func = partial(fetch_20newsgroups_vectorized_fxt, subset="test")
@@ -84,6 +87,7 @@ def test_20news_vectorized(fetch_20newsgroups_vectorized_fxt):
assert bunch.data.shape == (11314 + 7532, 130107)
assert bunch.target.shape[0] == 11314 + 7532
assert bunch.data.dtype == np.float64
+ assert bunch.DESCR.startswith(".. _20newsgroups_dataset:")
def test_20news_normalization(fetch_20newsgroups_vectorized_fxt):
diff --git a/sklearn/datasets/tests/test_base.py b/sklearn/datasets/tests/test_base.py
index 47283d63a4ec5..dcab588757205 100644
--- a/sklearn/datasets/tests/test_base.py
+++ b/sklearn/datasets/tests/test_base.py
@@ -5,6 +5,7 @@
from pickle import loads
from pickle import dumps
from functools import partial
+from importlib import resources
import pytest
@@ -21,6 +22,10 @@
from sklearn.datasets import load_breast_cancer
from sklearn.datasets import load_boston
from sklearn.datasets import load_wine
+from sklearn.datasets._base import (
+ load_csv_data,
+ load_gzip_compressed_csv_data,
+)
from sklearn.utils import Bunch
from sklearn.datasets.tests.test_common import check_as_frame
@@ -122,6 +127,69 @@ def test_load_files_wo_load_content(
assert res.get("data") is None
[email protected](
+ "filename, expected_n_samples, expected_n_features, expected_target_names",
+ [
+ ("wine_data.csv", 178, 13, ["class_0", "class_1", "class_2"]),
+ ("iris.csv", 150, 4, ["setosa", "versicolor", "virginica"]),
+ ("breast_cancer.csv", 569, 30, ["malignant", "benign"]),
+ ],
+)
+def test_load_csv_data(
+ filename, expected_n_samples, expected_n_features, expected_target_names
+):
+ actual_data, actual_target, actual_target_names = load_csv_data(filename)
+ assert actual_data.shape[0] == expected_n_samples
+ assert actual_data.shape[1] == expected_n_features
+ assert actual_target.shape[0] == expected_n_samples
+ np.testing.assert_array_equal(actual_target_names, expected_target_names)
+
+
+def test_load_csv_data_with_descr():
+ data_file_name = "iris.csv"
+ descr_file_name = "iris.rst"
+
+ res_without_descr = load_csv_data(data_file_name=data_file_name)
+ res_with_descr = load_csv_data(
+ data_file_name=data_file_name, descr_file_name=descr_file_name
+ )
+ assert len(res_with_descr) == 4
+ assert len(res_without_descr) == 3
+
+ np.testing.assert_array_equal(res_with_descr[0], res_without_descr[0])
+ np.testing.assert_array_equal(res_with_descr[1], res_without_descr[1])
+ np.testing.assert_array_equal(res_with_descr[2], res_without_descr[2])
+
+ assert res_with_descr[-1].startswith(".. _iris_dataset:")
+
+
[email protected](
+ "filename, kwargs, expected_shape",
+ [
+ ("diabetes_data.csv.gz", {}, [442, 10]),
+ ("diabetes_target.csv.gz", {}, [442]),
+ ("digits.csv.gz", {"delimiter": ","}, [1797, 65]),
+ ],
+)
+def test_load_gzip_compressed_csv_data(filename, kwargs, expected_shape):
+ actual_data = load_gzip_compressed_csv_data(filename, **kwargs)
+ assert actual_data.shape == tuple(expected_shape)
+
+
+def test_load_gzip_compressed_csv_data_with_descr():
+ data_file_name = "diabetes_target.csv.gz"
+ descr_file_name = "diabetes.rst"
+
+ expected_data = load_gzip_compressed_csv_data(data_file_name=data_file_name)
+ actual_data, descr = load_gzip_compressed_csv_data(
+ data_file_name=data_file_name,
+ descr_file_name=descr_file_name,
+ )
+
+ np.testing.assert_array_equal(actual_data, expected_data)
+ assert descr.startswith(".. _diabetes_dataset:")
+
+
def test_load_sample_images():
try:
res = load_sample_images()
@@ -188,7 +256,13 @@ def test_loader(loader_func, data_shape, target_shape, n_target, has_descr, file
if has_descr:
assert bunch.DESCR
if filenames:
- assert all([os.path.exists(bunch.get(f, False)) for f in filenames])
+ assert "data_module" in bunch
+ assert all(
+ [
+ f in bunch and resources.is_resource(bunch["data_module"], bunch[f])
+ for f in filenames
+ ]
+ )
@pytest.mark.parametrize(
diff --git a/sklearn/datasets/tests/test_california_housing.py b/sklearn/datasets/tests/test_california_housing.py
index ff979b954e98f..82a321e96a8d6 100644
--- a/sklearn/datasets/tests/test_california_housing.py
+++ b/sklearn/datasets/tests/test_california_housing.py
@@ -11,6 +11,7 @@ def test_fetch(fetch_california_housing_fxt):
data = fetch_california_housing_fxt()
assert (20640, 8) == data.data.shape
assert (20640,) == data.target.shape
+ assert data.DESCR.startswith(".. _california_housing_dataset:")
# test return_X_y option
fetch_func = partial(fetch_california_housing_fxt)
diff --git a/sklearn/datasets/tests/test_covtype.py b/sklearn/datasets/tests/test_covtype.py
index 0824539a2bc2a..bbdd395a847f4 100644
--- a/sklearn/datasets/tests/test_covtype.py
+++ b/sklearn/datasets/tests/test_covtype.py
@@ -20,6 +20,10 @@ def test_fetch(fetch_covtype_fxt):
assert (X1.shape[0],) == y1.shape
assert (X1.shape[0],) == y2.shape
+ descr_prefix = ".. _covtype_dataset:"
+ assert data1.DESCR.startswith(descr_prefix)
+ assert data2.DESCR.startswith(descr_prefix)
+
# test return_X_y option
fetch_func = partial(fetch_covtype_fxt)
check_return_X_y(data1, fetch_func)
diff --git a/sklearn/datasets/tests/test_kddcup99.py b/sklearn/datasets/tests/test_kddcup99.py
index f6018c208da4e..b935da3a26add 100644
--- a/sklearn/datasets/tests/test_kddcup99.py
+++ b/sklearn/datasets/tests/test_kddcup99.py
@@ -33,6 +33,7 @@ def test_fetch_kddcup99_percent10(
assert data.target.shape == (n_samples,)
if as_frame:
assert data.frame.shape == (n_samples, n_features + 1)
+ assert data.DESCR.startswith(".. _kddcup99_dataset:")
def test_fetch_kddcup99_return_X_y(fetch_kddcup99_fxt):
diff --git a/sklearn/datasets/tests/test_lfw.py b/sklearn/datasets/tests/test_lfw.py
index 362129859fcdf..d7852ab99361a 100644
--- a/sklearn/datasets/tests/test_lfw.py
+++ b/sklearn/datasets/tests/test_lfw.py
@@ -145,6 +145,7 @@ def test_load_fake_lfw_people():
download_if_missing=False,
)
assert lfw_people.images.shape == (17, 250, 250, 3)
+ assert lfw_people.DESCR.startswith(".. _labeled_faces_in_the_wild_dataset:")
# the ids and class names are the same as previously
assert_array_equal(
@@ -219,3 +220,5 @@ def test_load_fake_lfw_pairs():
# the ids and class names are the same as previously
assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
assert_array_equal(lfw_pairs_train.target_names, expected_classes)
+
+ assert lfw_pairs_train.DESCR.startswith(".. _labeled_faces_in_the_wild_dataset:")
diff --git a/sklearn/datasets/tests/test_olivetti_faces.py b/sklearn/datasets/tests/test_olivetti_faces.py
index 996afa6e7e0f5..7d11516b0426c 100644
--- a/sklearn/datasets/tests/test_olivetti_faces.py
+++ b/sklearn/datasets/tests/test_olivetti_faces.py
@@ -21,6 +21,7 @@ def test_olivetti_faces(fetch_olivetti_faces_fxt):
assert data.images.shape == (400, 64, 64)
assert data.target.shape == (400,)
assert_array_equal(np.unique(np.sort(data.target)), np.arange(40))
+ assert data.DESCR.startswith(".. _olivetti_faces_dataset:")
# test the return_X_y option
check_return_X_y(data, fetch_olivetti_faces_fxt)
diff --git a/sklearn/datasets/tests/test_openml.py b/sklearn/datasets/tests/test_openml.py
index d99cc65bb9561..221e9362f4819 100644
--- a/sklearn/datasets/tests/test_openml.py
+++ b/sklearn/datasets/tests/test_openml.py
@@ -5,6 +5,7 @@
import json
import os
import re
+from importlib import resources
from io import BytesIO
import numpy as np
@@ -33,7 +34,7 @@
from sklearn.utils._testing import fails_if_pypy
-currdir = os.path.dirname(os.path.abspath(__file__))
+OPENML_TEST_DATA_MODULE = "sklearn.datasets.tests.data.openml"
# if True, urlopen will be monkey patched to only use local files
test_offline = True
@@ -220,6 +221,8 @@ def _monkey_patch_webbased_functions(context, data_id, gzip_response):
path_suffix = ".gz"
read_fn = gzip.open
+ data_module = OPENML_TEST_DATA_MODULE + "." + f"id_{data_id}"
+
def _file_name(url, suffix):
output = (
re.sub(r"\W", "-", url[len("https://openml.org/") :]) + suffix + path_suffix
@@ -240,74 +243,67 @@ def _file_name(url, suffix):
.replace("-active", "-act")
)
- def _mock_urlopen_data_description(url, has_gzip_header):
- assert url.startswith(url_prefix_data_description)
+ def _mock_urlopen_shared(url, has_gzip_header, expected_prefix, suffix):
+ assert url.startswith(expected_prefix)
- path = os.path.join(
- currdir, "data", "openml", str(data_id), _file_name(url, ".json")
- )
+ data_file_name = _file_name(url, suffix)
- if has_gzip_header and gzip_response:
- with open(path, "rb") as f:
+ with resources.open_binary(data_module, data_file_name) as f:
+ if has_gzip_header and gzip_response:
fp = BytesIO(f.read())
- return _MockHTTPResponse(fp, True)
- else:
- with read_fn(path, "rb") as f:
- fp = BytesIO(f.read())
- return _MockHTTPResponse(fp, False)
+ return _MockHTTPResponse(fp, True)
+ else:
+ decompressed_f = read_fn(f, "rb")
+ fp = BytesIO(decompressed_f.read())
+ return _MockHTTPResponse(fp, False)
- def _mock_urlopen_data_features(url, has_gzip_header):
- assert url.startswith(url_prefix_data_features)
- path = os.path.join(
- currdir, "data", "openml", str(data_id), _file_name(url, ".json")
+ def _mock_urlopen_data_description(url, has_gzip_header):
+ return _mock_urlopen_shared(
+ url=url,
+ has_gzip_header=has_gzip_header,
+ expected_prefix=url_prefix_data_description,
+ suffix=".json",
)
- if has_gzip_header and gzip_response:
- with open(path, "rb") as f:
- fp = BytesIO(f.read())
- return _MockHTTPResponse(fp, True)
- else:
- with read_fn(path, "rb") as f:
- fp = BytesIO(f.read())
- return _MockHTTPResponse(fp, False)
+ def _mock_urlopen_data_features(url, has_gzip_header):
+ return _mock_urlopen_shared(
+ url=url,
+ has_gzip_header=has_gzip_header,
+ expected_prefix=url_prefix_data_features,
+ suffix=".json",
+ )
def _mock_urlopen_download_data(url, has_gzip_header):
- assert url.startswith(url_prefix_download_data)
-
- path = os.path.join(
- currdir, "data", "openml", str(data_id), _file_name(url, ".arff")
+ return _mock_urlopen_shared(
+ url=url,
+ has_gzip_header=has_gzip_header,
+ expected_prefix=url_prefix_download_data,
+ suffix=".arff",
)
- if has_gzip_header and gzip_response:
- with open(path, "rb") as f:
- fp = BytesIO(f.read())
- return _MockHTTPResponse(fp, True)
- else:
- with read_fn(path, "rb") as f:
- fp = BytesIO(f.read())
- return _MockHTTPResponse(fp, False)
-
def _mock_urlopen_data_list(url, has_gzip_header):
assert url.startswith(url_prefix_data_list)
- json_file_path = os.path.join(
- currdir, "data", "openml", str(data_id), _file_name(url, ".json")
- )
+ data_file_name = _file_name(url, ".json")
+
# load the file itself, to simulate a http error
- json_data = json.loads(read_fn(json_file_path, "rb").read().decode("utf-8"))
+ with resources.open_binary(data_module, data_file_name) as f:
+ decompressed_f = read_fn(f, "rb")
+ decoded_s = decompressed_f.read().decode("utf-8")
+ json_data = json.loads(decoded_s)
if "error" in json_data:
raise HTTPError(
url=None, code=412, msg="Simulated mock error", hdrs=None, fp=None
)
- if has_gzip_header:
- with open(json_file_path, "rb") as f:
+ with resources.open_binary(data_module, data_file_name) as f:
+ if has_gzip_header:
fp = BytesIO(f.read())
- return _MockHTTPResponse(fp, True)
- else:
- with read_fn(json_file_path, "rb") as f:
- fp = BytesIO(f.read())
- return _MockHTTPResponse(fp, False)
+ return _MockHTTPResponse(fp, True)
+ else:
+ decompressed_f = read_fn(f, "rb")
+ fp = BytesIO(decompressed_f.read())
+ return _MockHTTPResponse(fp, False)
def _mock_urlopen(request):
url = request.get_full_url()
@@ -1451,14 +1447,17 @@ def test_fetch_openml_verify_checksum(monkeypatch, as_frame, cache, tmpdir):
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
# create a temporary modified arff file
- dataset_dir = os.path.join(currdir, "data", "openml", str(data_id))
- original_data_path = os.path.join(dataset_dir, "data-v1-dl-1666876.arff.gz")
- corrupt_copy = os.path.join(tmpdir, "test_invalid_checksum.arff")
- with gzip.GzipFile(original_data_path, "rb") as orig_gzip, gzip.GzipFile(
- corrupt_copy, "wb"
- ) as modified_gzip:
+ original_data_module = OPENML_TEST_DATA_MODULE + "." + f"id_{data_id}"
+ original_data_file_name = "data-v1-dl-1666876.arff.gz"
+ corrupt_copy_path = tmpdir / "test_invalid_checksum.arff"
+ with resources.open_binary(
+ original_data_module, original_data_file_name
+ ) as orig_file:
+ orig_gzip = gzip.open(orig_file, "rb")
data = bytearray(orig_gzip.read())
data[len(data) - 1] = 37
+
+ with gzip.GzipFile(corrupt_copy_path, "wb") as modified_gzip:
modified_gzip.write(data)
# Requests are already mocked by monkey_patch_webbased_functions.
@@ -1469,7 +1468,7 @@ def test_fetch_openml_verify_checksum(monkeypatch, as_frame, cache, tmpdir):
def swap_file_mock(request):
url = request.get_full_url()
if url.endswith("data/v1/download/1666876"):
- return _MockHTTPResponse(open(corrupt_copy, "rb"), is_gzip=True)
+ return _MockHTTPResponse(open(corrupt_copy_path, "rb"), is_gzip=True)
else:
return mocked_openml_url(request)
diff --git a/sklearn/datasets/tests/test_rcv1.py b/sklearn/datasets/tests/test_rcv1.py
index c913a7a135c8b..cdc9f02c010c5 100644
--- a/sklearn/datasets/tests/test_rcv1.py
+++ b/sklearn/datasets/tests/test_rcv1.py
@@ -27,6 +27,9 @@ def test_fetch_rcv1(fetch_rcv1_fxt):
assert (804414,) == s1.shape
assert 103 == len(cat_list)
+ # test descr
+ assert data1.DESCR.startswith(".. _rcv1_dataset:")
+
# test ordering of categories
first_categories = ["C11", "C12", "C13", "C14", "C15", "C151"]
assert_array_equal(first_categories, cat_list[:6])
diff --git a/sklearn/datasets/tests/test_svmlight_format.py b/sklearn/datasets/tests/test_svmlight_format.py
index 1b97fe26b6467..892b6d0d43ba6 100644
--- a/sklearn/datasets/tests/test_svmlight_format.py
+++ b/sklearn/datasets/tests/test_svmlight_format.py
@@ -5,6 +5,7 @@
import scipy.sparse as sp
import os
import shutil
+from importlib import resources
from tempfile import NamedTemporaryFile
import pytest
@@ -16,17 +17,26 @@
import sklearn
from sklearn.datasets import load_svmlight_file, load_svmlight_files, dump_svmlight_file
-currdir = os.path.dirname(os.path.abspath(__file__))
-datafile = os.path.join(currdir, "data", "svmlight_classification.txt")
-multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt")
-invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt")
-invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt")
+
+TEST_DATA_MODULE = "sklearn.datasets.tests.data"
+datafile = "svmlight_classification.txt"
+multifile = "svmlight_multilabel.txt"
+invalidfile = "svmlight_invalid.txt"
+invalidfile2 = "svmlight_invalid_order.txt"
pytestmark = fails_if_pypy
+def _load_svmlight_local_test_file(filename, **kwargs):
+ """
+ Helper to load resource `filename` with `importlib.resources`
+ """
+ with resources.open_binary(TEST_DATA_MODULE, filename) as f:
+ return load_svmlight_file(f, **kwargs)
+
+
def test_load_svmlight_file():
- X, y = load_svmlight_file(datafile)
+ X, y = _load_svmlight_local_test_file(datafile)
# test X's shape
assert X.indptr.shape[0] == 7
@@ -63,39 +73,48 @@ def test_load_svmlight_file():
def test_load_svmlight_file_fd():
# test loading from file descriptor
- X1, y1 = load_svmlight_file(datafile)
- fd = os.open(datafile, os.O_RDONLY)
- try:
- X2, y2 = load_svmlight_file(fd)
- assert_array_almost_equal(X1.data, X2.data)
- assert_array_almost_equal(y1, y2)
- finally:
- os.close(fd)
+ # GH20081: testing equality between path-based and
+ # fd-based load_svmlight_file
+ with resources.path(TEST_DATA_MODULE, datafile) as data_path:
+ data_path = str(data_path)
+ X1, y1 = load_svmlight_file(data_path)
+
+ fd = os.open(data_path, os.O_RDONLY)
+ try:
+ X2, y2 = load_svmlight_file(fd)
+ assert_array_almost_equal(X1.data, X2.data)
+ assert_array_almost_equal(y1, y2)
+ finally:
+ os.close(fd)
def test_load_svmlight_file_multilabel():
- X, y = load_svmlight_file(multifile, multilabel=True)
+ X, y = _load_svmlight_local_test_file(multifile, multilabel=True)
assert y == [(0, 1), (2,), (), (1, 2)]
def test_load_svmlight_files():
- X_train, y_train, X_test, y_test = load_svmlight_files(
- [datafile] * 2, dtype=np.float32
- )
+ with resources.path(TEST_DATA_MODULE, datafile) as data_path:
+ X_train, y_train, X_test, y_test = load_svmlight_files(
+ [str(data_path)] * 2, dtype=np.float32
+ )
assert_array_equal(X_train.toarray(), X_test.toarray())
assert_array_almost_equal(y_train, y_test)
assert X_train.dtype == np.float32
assert X_test.dtype == np.float32
- X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64)
+ with resources.path(TEST_DATA_MODULE, datafile) as data_path:
+ X1, y1, X2, y2, X3, y3 = load_svmlight_files(
+ [str(data_path)] * 3, dtype=np.float64
+ )
assert X1.dtype == X2.dtype
assert X2.dtype == X3.dtype
assert X3.dtype == np.float64
def test_load_svmlight_file_n_features():
- X, y = load_svmlight_file(datafile, n_features=22)
+ X, y = _load_svmlight_local_test_file(datafile, n_features=22)
# test X'shape
assert X.indptr.shape[0] == 7
@@ -109,15 +128,15 @@ def test_load_svmlight_file_n_features():
# 21 features in file
with pytest.raises(ValueError):
- load_svmlight_file(datafile, n_features=20)
+ _load_svmlight_local_test_file(datafile, n_features=20)
def test_load_compressed():
- X, y = load_svmlight_file(datafile)
+ X, y = _load_svmlight_local_test_file(datafile)
with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp:
tmp.close() # necessary under windows
- with open(datafile, "rb") as f:
+ with resources.open_binary(TEST_DATA_MODULE, datafile) as f:
with gzip.open(tmp.name, "wb") as fh_out:
shutil.copyfileobj(f, fh_out)
Xgz, ygz = load_svmlight_file(tmp.name)
@@ -129,7 +148,7 @@ def test_load_compressed():
with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp:
tmp.close() # necessary under windows
- with open(datafile, "rb") as f:
+ with resources.open_binary(TEST_DATA_MODULE, datafile) as f:
with BZ2File(tmp.name, "wb") as fh_out:
shutil.copyfileobj(f, fh_out)
Xbz, ybz = load_svmlight_file(tmp.name)
@@ -142,12 +161,12 @@ def test_load_compressed():
def test_load_invalid_file():
with pytest.raises(ValueError):
- load_svmlight_file(invalidfile)
+ _load_svmlight_local_test_file(invalidfile)
def test_load_invalid_order_file():
with pytest.raises(ValueError):
- load_svmlight_file(invalidfile2)
+ _load_svmlight_local_test_file(invalidfile2)
def test_load_zero_based():
@@ -208,7 +227,10 @@ def test_load_large_qid():
def test_load_invalid_file2():
with pytest.raises(ValueError):
- load_svmlight_files([datafile, invalidfile, datafile])
+ with resources.path(TEST_DATA_MODULE, datafile) as data_path, resources.path(
+ TEST_DATA_MODULE, invalidfile
+ ) as invalid_path:
+ load_svmlight_files([str(data_path), str(invalid_path), str(data_path)])
def test_not_a_filename():
@@ -224,7 +246,7 @@ def test_invalid_filename():
def test_dump():
- X_sparse, y_dense = load_svmlight_file(datafile)
+ X_sparse, y_dense = _load_svmlight_local_test_file(datafile)
X_dense = X_sparse.toarray()
y_sparse = sp.csr_matrix(y_dense)
@@ -338,7 +360,7 @@ def test_dump_concise():
def test_dump_comment():
- X, y = load_svmlight_file(datafile)
+ X, y = _load_svmlight_local_test_file(datafile)
X = X.toarray()
f = BytesIO()
@@ -371,7 +393,7 @@ def test_dump_comment():
def test_dump_invalid():
- X, y = load_svmlight_file(datafile)
+ X, y = _load_svmlight_local_test_file(datafile)
f = BytesIO()
y2d = [y]
@@ -385,7 +407,7 @@ def test_dump_invalid():
def test_dump_query_id():
# test dumping a file with query_id
- X, y = load_svmlight_file(datafile)
+ X, y = _load_svmlight_local_test_file(datafile)
X = X.toarray()
query_id = np.arange(X.shape[0]) // 2
f = BytesIO()
@@ -530,4 +552,4 @@ def test_load_offset_exhaustive_splits():
def test_load_with_offsets_error():
with pytest.raises(ValueError, match="n_features is required"):
- load_svmlight_file(datafile, offset=3, length=3)
+ _load_svmlight_local_test_file(datafile, offset=3, length=3)
diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py
index 244da311fb036..1d6700cf46ded 100644
--- a/sklearn/tests/test_common.py
+++ b/sklearn/tests/test_common.py
@@ -208,6 +208,11 @@ def test_all_tests_are_importable():
\._
"""
)
+ resource_modules = {
+ "sklearn.datasets.data",
+ "sklearn.datasets.descr",
+ "sklearn.datasets.images",
+ }
lookup = {
name: ispkg
for _, name, ispkg in pkgutil.walk_packages(sklearn.__path__, prefix="sklearn.")
@@ -216,6 +221,7 @@ def test_all_tests_are_importable():
name
for name, ispkg in lookup.items()
if ispkg
+ and name not in resource_modules
and not HAS_TESTS_EXCEPTIONS.search(name)
and name + ".tests" not in lookup
]
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex ecb4b5972a669..f3885f852591a 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -231,6 +231,13 @@ Changelog\n installing on Windows and its default 260 character limit on file names.\n :pr:`20209` by `Thomas Fan`_.\n \n+- |Enhancement| Replace usages of ``__file__`` related to resource file I/O\n+ with ``importlib.resources`` to avoid the assumption that these resource\n+ files (e.g. ``iris.csv``) already exist on a filesystem, and by extension\n+ to enable compatibility with tools such as ``PyOxidizer``.\n+ :pr:`20297` by :user:`Jack Liu <jackzyliu>`\n+\n+\n :mod:`sklearn.decomposition`\n ............................\n \n"
}
] |
1.00
|
238451d55ed57c3d16bc42f6a74f5f0126a7c700
|
[
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cpu[False]",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_unlinks_local_path[False-True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_with_ignored_feature[False]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-101-0.5]",
"sklearn/datasets/tests/test_lfw.py::test_load_empty_lfw_pairs",
"sklearn/datasets/tests/test_openml.py::test_warn_ignore_attribute[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_as_frame_auto",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cache[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_raises_missing_values_target[False]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-13-0.99]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature5-float64]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_adultcensus[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_nonexiting[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_miceprotein_pandas",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cpu_pandas",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_svmlight_file_n_features",
"sklearn/datasets/tests/test_svmlight_format.py::test_dump_query_id",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-101-0]",
"sklearn/datasets/tests/test_svmlight_format.py::test_not_a_filename",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_with_ignored_feature[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris[True]",
"sklearn/datasets/tests/test_lfw.py::test_load_fake_lfw_people_too_restrictive",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_cache[False]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-101-1]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-13-1]",
"sklearn/datasets/tests/test_openml.py::test_dataset_with_openml_error[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal[True]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-101-0]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_compressed",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_multitarget[False]",
"sklearn/datasets/tests/test_openml.py::test_raises_illegal_multitarget[True]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-101-0.1]",
"sklearn/datasets/tests/test_openml.py::test_dataset_with_openml_error[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_verify_checksum[True]",
"sklearn/datasets/tests/test_openml.py::test_decode_anneal",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-13-0]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-13-0.5]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal[False]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-13-0.99]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-13-0.5]",
"sklearn/datasets/tests/test_openml.py::test_dataset_with_openml_warning[True]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-13-0.1]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature7-float64]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_notarget[False]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_zero_based_auto",
"sklearn/datasets/tests/test_openml.py::test_string_attribute_without_dataframe[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_verify_checksum[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_emotions_pandas",
"sklearn/datasets/tests/test_openml.py::test_illegal_column[False]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_svmlight_files",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-101-0.99]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-101-0]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cache[False]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_svmlight_file",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal_pandas",
"sklearn/datasets/tests/test_svmlight_format.py::test_dump_comment",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-13-0]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-13-0.99]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-101-0.5]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_multitarget_pandas",
"sklearn/datasets/tests/test_openml.py::test_decode_cpu",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature3-float64]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_emotions[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_pandas_equal_to_no_frame",
"sklearn/datasets/tests/test_svmlight_format.py::test_dump_multilabel",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_zeros",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_svmlight_file_fd",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-13-1]",
"sklearn/datasets/tests/test_svmlight_format.py::test_invalid_filename",
"sklearn/datasets/tests/test_openml.py::test_decode_emotions",
"sklearn/datasets/tests/test_openml.py::test_string_attribute_without_dataframe[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_pandas",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_invalid_file2",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_emotions[False]",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_unlinks_local_path[False-False]",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_cache[True]",
"sklearn/datasets/tests/test_openml.py::test_retry_with_clean_cache_http_error",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-13-0.1]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal_multitarget[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_australian[False]",
"sklearn/datasets/tests/test_openml.py::test_dataset_with_openml_warning[False]",
"sklearn/datasets/tests/test_openml.py::test_missing_values_pandas",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris[False]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature2-float64]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature8-category]",
"sklearn/datasets/tests/test_openml.py::test_fetch_nonexiting[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_raises_illegal_argument",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_notarget[True]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-13-0.5]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_adultcensus_pandas_return_X_y",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-13-0]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[7-101-0.1]",
"sklearn/datasets/tests/test_openml.py::test_decode_iris",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cpu[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_miceprotein[True]",
"sklearn/datasets/tests/test_lfw.py::test_load_fake_lfw_pairs",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_miceprotein[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_raises_missing_values_target[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_inactive[False]",
"sklearn/datasets/tests/test_openml.py::test_convert_arff_data_type",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_svmlight_file_multilabel",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets_error",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_offset_exhaustive_splits",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-101-1]",
"sklearn/datasets/tests/test_openml.py::test_retry_with_clean_cache",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_adultcensus[True]",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_unlinks_local_path[True-False]",
"sklearn/datasets/tests/test_openml.py::test_raises_illegal_multitarget[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_adultcensus_pandas",
"sklearn/datasets/tests/test_openml.py::test_illegal_column[True]",
"sklearn/datasets/tests/test_lfw.py::test_load_empty_lfw_people",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature6-int64]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_australian_pandas_error_sparse",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-101-0.99]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature4-float64]",
"sklearn/datasets/tests/test_openml.py::test_convert_arff_data_dataframe_warning_low_memory_pandas",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_unlinks_local_path[True-True]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature9-category]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_inactive[True]",
"sklearn/datasets/tests/test_svmlight_format.py::test_dump",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype_error[feature0]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature1-object]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_multitarget[True]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-101-0.5]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_long_qid",
"sklearn/datasets/tests/test_lfw.py::test_load_fake_lfw_people",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_australian[True]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[41-13-1]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_titanic_pandas",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal_multitarget[False]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-101-0.99]",
"sklearn/datasets/tests/test_openml.py::test_warn_ignore_attribute[False]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-13-0.1]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature0-object]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_qid",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-101-1]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_invalid_order_file",
"sklearn/datasets/tests/test_svmlight_format.py::test_dump_concise",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_invalid_file",
"sklearn/datasets/tests/test_svmlight_format.py::test_dump_invalid",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_with_offsets[2-101-0.1]",
"sklearn/datasets/tests/test_svmlight_format.py::test_load_zero_based"
] |
[
"sklearn/datasets/tests/test_base.py::test_toy_dataset_frame_dtype[load_breast_cancer-float64-int]",
"sklearn/datasets/tests/test_base.py::test_loader[load_breast_cancer-data_shape0-target_shape0-2-True-filenames0]",
"sklearn/datasets/tests/test_base.py::test_loads_dumps_bunch",
"sklearn/datasets/tests/test_base.py::test_data_home",
"sklearn/datasets/tests/test_base.py::test_bunch_dir",
"sklearn/datasets/tests/test_base.py::test_load_files_w_categories_desc_and_encoding",
"sklearn/datasets/tests/test_base.py::test_loader[load_diabetes-data_shape4-target_shape4-None-True-filenames4]",
"sklearn/datasets/tests/test_base.py::test_load_gzip_compressed_csv_data[digits.csv.gz-kwargs2-expected_shape2]",
"sklearn/datasets/tests/test_base.py::test_toy_dataset_frame_dtype[load_diabetes-float64-float64]",
"sklearn/datasets/tests/test_base.py::test_toy_dataset_frame_dtype[load_digits-float64-int]",
"sklearn/datasets/tests/test_base.py::test_load_gzip_compressed_csv_data[diabetes_data.csv.gz-kwargs0-expected_shape0]",
"sklearn/datasets/tests/test_base.py::test_load_csv_data_with_descr",
"sklearn/datasets/tests/test_base.py::test_loader[load_digits-data_shape5-target_shape5-10-True-filenames5]",
"sklearn/datasets/tests/test_base.py::test_loader[loader_func6-data_shape6-target_shape6-10-True-filenames6]",
"sklearn/datasets/tests/test_base.py::test_load_files_wo_load_content",
"sklearn/datasets/tests/test_base.py::test_loader[load_linnerud-data_shape3-target_shape3-3-True-filenames3]",
"sklearn/datasets/tests/test_base.py::test_default_load_files",
"sklearn/datasets/tests/test_base.py::test_loader[load_wine-data_shape1-target_shape1-3-True-filenames1]",
"sklearn/datasets/tests/test_base.py::test_default_empty_load_files",
"sklearn/datasets/tests/test_base.py::test_load_csv_data[breast_cancer.csv-569-30-expected_target_names2]",
"sklearn/datasets/tests/test_base.py::test_load_sample_images",
"sklearn/datasets/tests/test_base.py::test_load_sample_image",
"sklearn/datasets/tests/test_base.py::test_loader[load_boston-data_shape7-target_shape7-None-True-filenames7]",
"sklearn/datasets/tests/test_base.py::test_load_csv_data[wine_data.csv-178-13-expected_target_names0]",
"sklearn/datasets/tests/test_base.py::test_load_csv_data[iris.csv-150-4-expected_target_names1]",
"sklearn/datasets/tests/test_base.py::test_bunch_pickle_generated_with_0_16_and_read_with_0_17",
"sklearn/datasets/tests/test_base.py::test_load_gzip_compressed_csv_data[diabetes_target.csv.gz-kwargs1-expected_shape1]",
"sklearn/datasets/tests/test_base.py::test_load_gzip_compressed_csv_data_with_descr",
"sklearn/datasets/tests/test_base.py::test_loader[load_iris-data_shape2-target_shape2-3-True-filenames2]",
"sklearn/datasets/tests/test_base.py::test_toy_dataset_frame_dtype[load_iris-float64-int]",
"sklearn/datasets/tests/test_base.py::test_toy_dataset_frame_dtype[load_linnerud-float64-float64]",
"sklearn/datasets/tests/test_base.py::test_toy_dataset_frame_dtype[load_wine-float64-int]",
"sklearn/datasets/tests/test_base.py::test_load_missing_sample_image_error"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "sklearn/datasets/data/__init__.py"
},
{
"type": "file",
"name": "sklearn/datasets/images/__init__.py"
},
{
"type": "file",
"name": "sklearn/datasets/descr/__init__.py"
}
]
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex ecb4b5972a669..f3885f852591a 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -231,6 +231,13 @@ Changelog\n installing on Windows and its default 260 character limit on file names.\n :pr:`<PRID>` by `<NAME>`_.\n \n+- |Enhancement| Replace usages of ``__file__`` related to resource file I/O\n+ with ``importlib.resources`` to avoid the assumption that these resource\n+ files (e.g. ``iris.csv``) already exist on a filesystem, and by extension\n+ to enable compatibility with tools such as ``PyOxidizer``.\n+ :pr:`<PRID>` by :user:`<NAME>`\n+\n+\n :mod:`sklearn.decomposition`\n ............................\n \n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index ecb4b5972a669..f3885f852591a 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -231,6 +231,13 @@ Changelog
installing on Windows and its default 260 character limit on file names.
:pr:`<PRID>` by `<NAME>`_.
+- |Enhancement| Replace usages of ``__file__`` related to resource file I/O
+ with ``importlib.resources`` to avoid the assumption that these resource
+ files (e.g. ``iris.csv``) already exist on a filesystem, and by extension
+ to enable compatibility with tools such as ``PyOxidizer``.
+ :pr:`<PRID>` by :user:`<NAME>`
+
+
:mod:`sklearn.decomposition`
............................
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'sklearn/datasets/data/__init__.py'}, {'type': 'file', 'name': 'sklearn/datasets/images/__init__.py'}, {'type': 'file', 'name': 'sklearn/datasets/descr/__init__.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17856
|
https://github.com/scikit-learn/scikit-learn/pull/17856
|
diff --git a/doc/modules/calibration.rst b/doc/modules/calibration.rst
index cb157a9d78c93..146601d70765e 100644
--- a/doc/modules/calibration.rst
+++ b/doc/modules/calibration.rst
@@ -96,9 +96,9 @@ in [0, 1]. Denoting the output of the classifier for a given sample by :math:`f_
the calibrator tries to predict :math:`p(y_i = 1 | f_i)`.
The samples that are used to fit the calibrator should not be the same
-samples used to fit the classifier, as this would
-introduce bias. The classifier performance on its training data would be
-better than for novel data. Using the classifier output from training data
+samples used to fit the classifier, as this would introduce bias.
+This is because performance of the classifier on its training data would be
+better than for novel data. Using the classifier output of training data
to fit the calibrator would thus result in a biased calibrator that maps to
probabilities closer to 0 and 1 than it should.
@@ -107,22 +107,39 @@ Usage
The :class:`CalibratedClassifierCV` class is used to calibrate a classifier.
-:class:`CalibratedClassifierCV` uses a cross-validation approach to fit both
-the classifier and the regressor. The data is split into k
-`(train_set, test_set)` couples (as determined by `cv`). The classifier
-(`base_estimator`) is trained on the train set, and its predictions on the
-test set are used to fit a regressor. This ensures that the data used to fit
-the classifier is always disjoint from the data used to fit the calibrator.
-After fitting, we end up with k
-`(classifier, regressor)` couples where each regressor maps the output of
-its corresponding classifier into [0, 1]. Each couple is exposed in the
-`calibrated_classifiers_` attribute, where each entry is a calibrated
+:class:`CalibratedClassifierCV` uses a cross-validation approach to ensure
+unbiased data is always used to fit the calibrator. The data is split into k
+`(train_set, test_set)` couples (as determined by `cv`). When `ensemble=True`
+(default), the following procedure is repeated independently for each
+cross-validation split: a clone of `base_estimator` is first trained on the
+train subset. Then its predictions on the test subset are used to fit a
+calibrator (either a sigmoid or isotonic regressor). This results in an
+ensemble of k `(classifier, calibrator)` couples where each calibrator maps
+the output of its corresponding classifier into [0, 1]. Each couple is exposed
+in the `calibrated_classifiers_` attribute, where each entry is a calibrated
classifier with a :term:`predict_proba` method that outputs calibrated
probabilities. The output of :term:`predict_proba` for the main
:class:`CalibratedClassifierCV` instance corresponds to the average of the
-predicted probabilities of the `k` estimators in the
-`calibrated_classifiers_` list. The output of :term:`predict` is the class
-that has the highest probability.
+predicted probabilities of the `k` estimators in the `calibrated_classifiers_`
+list. The output of :term:`predict` is the class that has the highest
+probability.
+
+When `ensemble=False`, cross-validation is used to obtain 'unbiased'
+predictions for all the data, via
+:func:`~sklearn.model_selection.cross_val_predict`.
+These unbiased predictions are then used to train the calibrator. The attribute
+`calibrated_classifiers_` consists of only one `(classifier, calibrator)`
+couple where the classifier is the `base_estimator` trained on all the data.
+In this case the output of :term:`predict_proba` for
+:class:`CalibratedClassifierCV` is the predicted probabilities obtained
+from the single `(classifier, calibrator)` couple.
+
+The main advantage of `ensemble=True` is to benefit from the traditional
+ensembling effect (similar to :ref:`bagging`). The resulting ensemble should
+both be well calibrated and slightly more accurate than with `ensemble=False`.
+The main advantage of using `ensemble=False` is computational: it reduces the
+overall fit time by training only a single base classifier and calibrator
+pair, decreases the final model size and increases prediction speed.
Alternatively an already fitted classifier can be calibrated by setting
`cv="prefit"`. In this case, the data is not split and all of it is used to
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 0e87b29828977..15907d614d629 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -58,6 +58,14 @@ Changelog
sparse matrix or dataframe at the start. :pr:`17546` by
:user:`Lucy Liu <lucyleeow>`.
+- |Enhancement| Add `ensemble` parameter to
+ :class:`calibration.CalibratedClassifierCV`, which enables implementation
+ of calibration via an ensemble of calibrators (current method) or
+ just one calibrator using all the data (similar to the built-in feature of
+ :mod:`sklearn.svm` estimators with the `probabilities=True` parameter).
+ :pr:`17856` by :user:`Lucy Liu <lucyleeow>` and
+ :user:`Andrea Esuli <aesuli>`.
+
:mod:`sklearn.cluster`
......................
diff --git a/sklearn/calibration.py b/sklearn/calibration.py
index d1b0febb15605..3a6289402d929 100644
--- a/sklearn/calibration.py
+++ b/sklearn/calibration.py
@@ -10,6 +10,7 @@
import warnings
from inspect import signature
from contextlib import suppress
+from functools import partial
from math import log
import numpy as np
@@ -18,60 +19,43 @@
from scipy.special import expit
from scipy.special import xlogy
from scipy.optimize import fmin_bfgs
-from .preprocessing import LabelEncoder
from .base import (BaseEstimator, ClassifierMixin, RegressorMixin, clone,
MetaEstimatorMixin)
-from .preprocessing import label_binarize, LabelBinarizer
+from .preprocessing import label_binarize, LabelEncoder
from .utils import check_array, indexable, column_or_1d
+from .utils.multiclass import check_classification_targets
from .utils.fixes import delayed
from .utils.validation import check_is_fitted, check_consistent_length
from .utils.validation import _check_sample_weight
from .pipeline import Pipeline
from .isotonic import IsotonicRegression
from .svm import LinearSVC
-from .model_selection import check_cv
+from .model_selection import check_cv, cross_val_predict
from .utils.validation import _deprecate_positional_args
-def _fit_calibrated_classifer(estimator, X, y, train, test, supports_sw,
- method, classes, sample_weight=None):
- """Fit calibrated classifier for a given dataset split.
-
- Returns
- -------
- calibrated_classifier : estimator object
- The calibrated estimator.
- """
- if sample_weight is not None and supports_sw:
- estimator.fit(X[train], y[train],
- sample_weight=sample_weight[train])
- else:
- estimator.fit(X[train], y[train])
-
- calibrated_classifier = _CalibratedClassifier(estimator,
- method=method,
- classes=classes)
- sw = None if sample_weight is None else sample_weight[test]
- calibrated_classifier.fit(X[test], y[test], sample_weight=sw)
- return calibrated_classifier
-
-
class CalibratedClassifierCV(ClassifierMixin,
MetaEstimatorMixin,
BaseEstimator):
"""Probability calibration with isotonic regression or logistic regression.
This class uses cross-validation to both estimate the parameters of a
- classifier and subsequently calibrate a classifier. For each cv split it
- fits a copy of the base estimator to the training folds, and calibrates it
- using the testing fold. For prediction, predicted probabilities are
- averaged across these individual calibrated classifiers.
-
- Already fitted classifiers can be calibrated via the parameter cv="prefit".
- In this case, no cross-validation is used and all provided data is used
- for calibration. The user has to take care manually that data for model
- fitting and calibration are disjoint.
+ classifier and subsequently calibrate a classifier. With default
+ `ensemble=True`, for each cv split it
+ fits a copy of the base estimator to the training subset, and calibrates it
+ using the testing subset. For prediction, predicted probabilities are
+ averaged across these individual calibrated classifiers. When
+ `ensemble=False`, cross-validation is used to obtain unbiased predictions,
+ via :func:`~sklearn.model_selection.cross_val_predict`, which are then
+ used for calibration. For prediction, the base estimator, trained using all
+ the data, is used. This is the method implemented when `probabilities=True`
+ for :mod:`sklearn.svm` estimators.
+
+ Already fitted classifiers can be calibrated via the parameter
+ `cv="prefit"`. In this case, no cross-validation is used and all provided
+ data is used for calibration. The user has to take care manually that data
+ for model fitting and calibration are disjoint.
The calibration is based on the :term:`decision_function` method of the
`base_estimator` if it exists, else on :term:`predict_proba`.
@@ -122,21 +106,50 @@ class CalibratedClassifierCV(ClassifierMixin,
``-1`` means using all processors.
Base estimator clones are fitted in parallel across cross-validation
- iterations. Therefore parallelism happens only when cv != "prefit".
+ iterations. Therefore parallelism happens only when `cv != "prefit"`.
See :term:`Glossary <n_jobs>` for more details.
.. versionadded:: 0.24
+ ensemble : bool, default=True
+ Determines how the calibrator is fitted when `cv` is not `'prefit'`.
+ Ignored if `cv='prefit'`.
+
+ If `True`, the `base_estimator` is fitted using training data and
+ calibrated using testing data, for each `cv` fold. The final estimator
+ is an ensemble of `n_cv` fitted classifer and calibrator pairs, where
+ `n_cv` is the number of cross-validation folds. The output is the
+ average predicted probabilities of all pairs.
+
+ If `False`, `cv` is used to compute unbiased predictions, via
+ :func:`~sklearn.model_selection.cross_val_predict`, which are then
+ used for calibration. At prediction time, the classifier used is the
+ `base_estimator` trained on all the data.
+ Note that this method is also internally implemented in
+ :mod:`sklearn.svm` estimators with the `probabilities=True` parameter.
+
+ .. versionadded:: 0.24
+
Attributes
----------
classes_ : ndarray of shape (n_classes,)
The class labels.
- calibrated_classifiers_ : list (len() equal to cv or 1 if cv == "prefit")
- The list of calibrated classifiers, one for each cross-validation
- split, which has been fitted on training folds and
- calibrated on the testing fold.
+ calibrated_classifiers_ : list (len() equal to cv or 1 if `cv="prefit"` \
+ or `ensemble=False`)
+ The list of classifier and calibrator pairs.
+
+ - When `cv="prefit"`, the fitted `base_estimator` and fitted
+ calibrator.
+ - When `cv` is not "prefit" and `ensemble=True`, `n_cv` fitted
+ `base_estimator` and calibrator pairs. `n_cv` is the number of
+ cross-validation folds.
+ - When `cv` is not "prefit" and `ensemble=False`, the `base_estimator`,
+ fitted on all the data, and fitted calibrator.
+
+ .. versionchanged:: 0.24
+ Single calibrated classifier case when `ensemble=False`.
Examples
--------
@@ -194,14 +207,15 @@ class CalibratedClassifierCV(ClassifierMixin,
"""
@_deprecate_positional_args
def __init__(self, base_estimator=None, *, method='sigmoid',
- cv=None, n_jobs=None):
+ cv=None, n_jobs=None, ensemble=True):
self.base_estimator = base_estimator
self.method = method
self.cv = cv
self.n_jobs = n_jobs
+ self.ensemble = ensemble
def fit(self, X, y, sample_weight=None):
- """Fit the calibrated model
+ """Fit the calibrated model.
Parameters
----------
@@ -219,9 +233,9 @@ def fit(self, X, y, sample_weight=None):
self : object
Returns an instance of self.
"""
+ check_classification_targets(y)
X, y = indexable(X, y)
- self.calibrated_classifiers_ = []
if self.base_estimator is None:
# we want all classifiers that don't expose a random_state
# to be deterministic (and we don't want to expose this one).
@@ -229,8 +243,10 @@ def fit(self, X, y, sample_weight=None):
else:
base_estimator = self.base_estimator
+ self.calibrated_classifiers_ = []
if self.cv == "prefit":
- # Set `n_features_in_` attribute
+ # `classes_` and `n_features_in_` should be consistent with that
+ # of base_estimator
if isinstance(self.base_estimator, Pipeline):
check_is_fitted(self.base_estimator[-1])
else:
@@ -239,17 +255,35 @@ def fit(self, X, y, sample_weight=None):
self.n_features_in_ = base_estimator.n_features_in_
self.classes_ = self.base_estimator.classes_
- calibrated_classifier = _CalibratedClassifier(
- base_estimator, method=self.method)
- calibrated_classifier.fit(X, y, sample_weight)
+ pred_method = _get_prediction_method(base_estimator)
+ n_classes = len(self.classes_)
+ predictions = _compute_predictions(pred_method, X, n_classes)
+
+ calibrated_classifier = _fit_calibrator(
+ base_estimator, predictions, y, self.classes_, self.method,
+ sample_weight
+ )
self.calibrated_classifiers_.append(calibrated_classifier)
else:
X, y = self._validate_data(
X, y, accept_sparse=['csc', 'csr', 'coo'],
force_all_finite=False, allow_nd=True
)
- le = LabelBinarizer().fit(y)
- self.classes_ = le.classes_
+ # Set `classes_` using all `y`
+ label_encoder_ = LabelEncoder().fit(y)
+ self.classes_ = label_encoder_.classes_
+ n_classes = len(self.classes_)
+
+ # sample_weight checks
+ fit_parameters = signature(base_estimator.fit).parameters
+ supports_sw = "sample_weight" in fit_parameters
+ if sample_weight is not None:
+ sample_weight = _check_sample_weight(sample_weight, X)
+ if not supports_sw:
+ estimator_name = type(base_estimator).__name__
+ warnings.warn(f"Since {estimator_name} does not support "
+ "sample_weights, sample weights will only be"
+ " used for the calibration itself.")
# Check that each cross-validation fold can have at least one
# example per class
@@ -261,42 +295,46 @@ def fit(self, X, y, sample_weight=None):
n_folds = None
if n_folds and np.any([np.sum(y == class_) < n_folds
for class_ in self.classes_]):
- raise ValueError(f"Requesting {n_folds}-fold cross-validation "
- f"but provided less than {n_folds} examples "
- "for at least one class.")
-
+ raise ValueError(f"Requesting {n_folds}-fold "
+ "cross-validation but provided less than "
+ f"{n_folds} examples for at least one class.")
cv = check_cv(self.cv, y, classifier=True)
- fit_parameters = signature(base_estimator.fit).parameters
- supports_sw = "sample_weight" in fit_parameters
- if sample_weight is not None:
- sample_weight = _check_sample_weight(sample_weight, X)
+ if self.ensemble:
+ parallel = Parallel(n_jobs=self.n_jobs)
- if not supports_sw:
- estimator_name = type(base_estimator).__name__
- warnings.warn("Since %s does not support sample_weights, "
- "sample weights will only be used for the "
- "calibration itself." % estimator_name)
-
- parallel = Parallel(n_jobs=self.n_jobs)
-
- self.calibrated_classifiers_ = parallel(delayed(
- _fit_calibrated_classifer)(clone(base_estimator),
- X, y,
- train=train, test=test,
- method=self.method,
- classes=self.classes_,
- supports_sw=supports_sw,
- sample_weight=sample_weight)
- for train, test
- in cv.split(X, y))
+ self.calibrated_classifiers_ = parallel(
+ delayed(_fit_classifier_calibrator_pair)(
+ clone(base_estimator), X, y, train=train, test=test,
+ method=self.method, classes=self.classes_,
+ supports_sw=supports_sw, sample_weight=sample_weight)
+ for train, test in cv.split(X, y)
+ )
+ else:
+ this_estimator = clone(base_estimator)
+ method_name = _get_prediction_method(this_estimator).__name__
+ pred_method = partial(
+ cross_val_predict, estimator=this_estimator, X=X, y=y,
+ cv=cv, method=method_name, n_jobs=self.n_jobs
+ )
+ predictions = _compute_predictions(pred_method, X, n_classes)
+
+ if sample_weight is not None and supports_sw:
+ this_estimator.fit(X, y, sample_weight)
+ else:
+ this_estimator.fit(X, y)
+ calibrated_classifier = _fit_calibrator(
+ this_estimator, predictions, y, self.classes_, self.method,
+ sample_weight
+ )
+ self.calibrated_classifiers_.append(calibrated_classifier)
return self
def predict_proba(self, X):
- """Posterior probabilities of classification
+ """Calibrated probabilities of classification.
- This function returns posterior probabilities of classification
+ This function returns calibrated probabilities of classification
according to each class on an array of test vectors X.
Parameters
@@ -350,145 +388,244 @@ def _more_tags(self):
}
-class _CalibratedClassifier:
- """Probability calibration with isotonic regression or sigmoid.
+def _fit_classifier_calibrator_pair(estimator, X, y, train, test, supports_sw,
+ method, classes, sample_weight=None):
+ """Fit a classifier/calibration pair on a given train/test split.
- It assumes that base_estimator has already been fit, and trains the
- calibration on the input set of the fit function. Note that this class
- should not be used as an estimator directly. Use CalibratedClassifierCV
- with cv="prefit" instead.
+ Fit the classifier on the train set, compute its predictions on the test
+ set and use the predictions as input to fit the calibrator along with the
+ test labels.
Parameters
----------
- base_estimator : instance BaseEstimator
- The classifier whose output decision function needs to be calibrated
- to offer more accurate predict_proba outputs. No default value since
- it has to be an already fitted estimator.
+ estimator : estimator instance
+ Cloned base estimator.
- method : {'sigmoid', 'isotonic'}, default='sigmoid'
- The method to use for calibration. Can be 'sigmoid' which
- corresponds to Platt's method or 'isotonic' which is a
- non-parametric approach based on isotonic regression.
+ X : array-like, shape (n_samples, n_features)
+ Sample data.
- classes : array-like of shape (n_classes,), default=None
- Contains unique classes used to fit the base estimator.
- if None, then classes is extracted from the given target values
- in fit().
+ y : array-like, shape (n_samples,)
+ Targets.
- See Also
- --------
- CalibratedClassifierCV
+ train : ndarray, shape (n_train_indicies,)
+ Indices of the training subset.
- References
+ test : ndarray, shape (n_test_indicies,)
+ Indices of the testing subset.
+
+ supports_sw : bool
+ Whether or not the `estimator` supports sample weights.
+
+ method : {'sigmoid', 'isotonic'}
+ Method to use for calibration.
+
+ classes : ndarray, shape (n_classes,)
+ The target classes.
+
+ sample_weight : array-like, default=None
+ Sample weights for `X`.
+
+ Returns
+ -------
+ calibrated_classifier : _CalibratedClassifier instance
+ """
+ if sample_weight is not None and supports_sw:
+ estimator.fit(X[train], y[train],
+ sample_weight=sample_weight[train])
+ else:
+ estimator.fit(X[train], y[train])
+
+ n_classes = len(classes)
+ pred_method = _get_prediction_method(estimator)
+ predictions = _compute_predictions(pred_method, X[test], n_classes)
+
+ sw = None if sample_weight is None else sample_weight[test]
+ calibrated_classifier = _fit_calibrator(
+ estimator, predictions, y[test], classes, method, sample_weight=sw
+ )
+ return calibrated_classifier
+
+
+def _get_prediction_method(clf):
+ """Return prediction method.
+
+ `decision_function` method of `clf` returned, if it
+ exists, otherwise `predict_proba` method returned.
+
+ Parameters
----------
- .. [1] Obtaining calibrated probability estimates from decision trees
- and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001
+ clf : Estimator instance
+ Fitted classifier to obtain the prediction method from.
- .. [2] Transforming Classifier Scores into Accurate Multiclass
- Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)
+ Returns
+ -------
+ prediction_method : callable
+ The prediction method.
+ """
+ if hasattr(clf, 'decision_function'):
+ method = getattr(clf, 'decision_function')
+ elif hasattr(clf, 'predict_proba'):
+ method = getattr(clf, 'predict_proba')
+ else:
+ raise RuntimeError("'base_estimator' has no 'decision_function' or "
+ "'predict_proba' method.")
+ return method
- .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
- Regularized Likelihood Methods, J. Platt, (1999)
- .. [4] Predicting Good Probabilities with Supervised Learning,
- A. Niculescu-Mizil & R. Caruana, ICML 2005
+def _compute_predictions(pred_method, X, n_classes):
+ """Return predictions for `X` and reshape binary outputs to shape
+ (n_samples, 1).
+
+ Parameters
+ ----------
+ pred_method : callable
+ Prediction method.
+
+ X : array-like or None
+ Data used to obtain predictions.
+
+ n_classes : int
+ Number of classes present.
+
+ Returns
+ -------
+ predictions : array-like, shape (X.shape[0], len(clf.classes_))
+ The predictions. Note if there are 2 classes, array is of shape
+ (X.shape[0], 1).
"""
- @_deprecate_positional_args
- def __init__(self, base_estimator, *, method='sigmoid', classes=None):
- self.base_estimator = base_estimator
- self.method = method
- self.classes = classes
+ predictions = pred_method(X=X)
+ if hasattr(pred_method, '__name__'):
+ method_name = pred_method.__name__
+ else:
+ method_name = signature(pred_method).parameters['method'].default
- def _preproc(self, X):
- n_classes = len(self.classes_)
- if hasattr(self.base_estimator, "decision_function"):
- df = self.base_estimator.decision_function(X)
- if df.ndim == 1:
- df = df[:, np.newaxis]
- elif hasattr(self.base_estimator, "predict_proba"):
- df = self.base_estimator.predict_proba(X)
- if n_classes == 2:
- df = df[:, 1:]
- else:
- raise RuntimeError('classifier has no decision_function or '
- 'predict_proba method.')
+ if method_name == 'decision_function':
+ if predictions.ndim == 1:
+ predictions = predictions[:, np.newaxis]
+ elif method_name == 'predict_proba':
+ if n_classes == 2:
+ predictions = predictions[:, 1:]
+ else: # pragma: no cover
+ # this branch should be unreachable.
+ raise ValueError(f"Invalid prediction method: {method_name}")
+ return predictions
- idx_pos_class = self.label_encoder_.\
- transform(self.base_estimator.classes_)
- return df, idx_pos_class
+def _fit_calibrator(clf, predictions, y, classes, method, sample_weight=None):
+ """Fit calibrator(s) and return a `_CalibratedClassifier`
+ instance.
- def fit(self, X, y, sample_weight=None):
- """Calibrate the fitted model
+ `n_classes` (i.e. `len(clf.classes_)`) calibrators are fitted.
+ However, if `n_classes` equals 2, one calibrator is fitted.
- Parameters
- ----------
- X : array-like of shape (n_samples, n_features)
- Training data.
+ Parameters
+ ----------
+ clf : estimator instance
+ Fitted classifier.
- y : array-like of shape (n_samples,)
- Target values.
+ predictions : array-like, shape (n_samples, n_classes) or (n_samples, 1) \
+ when binary.
+ Raw predictions returned by the un-calibrated base classifier.
- sample_weight : array-like of shape (n_samples,), default=None
- Sample weights. If None, then samples are equally weighted.
+ y : array-like, shape (n_samples,)
+ The targets.
- Returns
- -------
- self : object
- Returns an instance of self.
- """
+ classes : ndarray, shape (n_classes,)
+ All the prediction classes.
+
+ method : {'sigmoid', 'isotonic'}
+ The method to use for calibration.
+
+ sample_weight : ndarray, shape (n_samples,), default=None
+ Sample weights. If None, then samples are equally weighted.
- self.label_encoder_ = LabelEncoder()
- if self.classes is None:
- self.label_encoder_.fit(y)
+ Returns
+ -------
+ pipeline : _CalibratedClassifier instance
+ """
+ Y = label_binarize(y, classes=classes)
+ label_encoder = LabelEncoder().fit(classes)
+ pos_class_indices = label_encoder.transform(clf.classes_)
+ calibrators = []
+ for class_idx, this_pred in zip(pos_class_indices, predictions.T):
+ if method == 'isotonic':
+ calibrator = IsotonicRegression(out_of_bounds='clip')
+ elif method == 'sigmoid':
+ calibrator = _SigmoidCalibration()
else:
- self.label_encoder_.fit(self.classes)
+ raise ValueError("'method' should be one of: 'sigmoid' or "
+ f"'isotonic'. Got {method}.")
+ calibrator.fit(this_pred, Y[:, class_idx], sample_weight)
+ calibrators.append(calibrator)
- self.classes_ = self.label_encoder_.classes_
- Y = label_binarize(y, classes=self.classes_)
+ pipeline = _CalibratedClassifier(
+ clf, calibrators, method=method, classes=classes
+ )
+ return pipeline
- df, idx_pos_class = self._preproc(X)
- self.calibrators_ = []
- for k, this_df in zip(idx_pos_class, df.T):
- if self.method == 'isotonic':
- calibrator = IsotonicRegression(out_of_bounds='clip')
- elif self.method == 'sigmoid':
- calibrator = _SigmoidCalibration()
- else:
- raise ValueError('method should be "sigmoid" or '
- '"isotonic". Got %s.' % self.method)
- calibrator.fit(this_df, Y[:, k], sample_weight)
- self.calibrators_.append(calibrator)
+class _CalibratedClassifier:
+ """Pipeline-like chaining a fitted classifier and its fitted calibrators.
- return self
+ Parameters
+ ----------
+ base_estimator : estimator instance
+ Fitted classifier.
+
+ calibrators : list of fitted estimator instances
+ List of fitted calibrators (either 'IsotonicRegression' or
+ '_SigmoidCalibration'). The number of calibrators equals the number of
+ classes. However, if there are 2 classes, the list contains only one
+ fitted calibrator.
+
+ classes : array-like of shape (n_classes,)
+ All the prediction classes.
+
+ method : {'sigmoid', 'isotonic'}, default='sigmoid'
+ The method to use for calibration. Can be 'sigmoid' which
+ corresponds to Platt's method or 'isotonic' which is a
+ non-parametric approach based on isotonic regression.
+ """
+ def __init__(self, base_estimator, calibrators, *, classes,
+ method='sigmoid'):
+ self.base_estimator = base_estimator
+ self.calibrators = calibrators
+ self.classes = classes
+ self.method = method
def predict_proba(self, X):
- """Posterior probabilities of classification
+ """Calculate calibrated probabilities.
- This function returns posterior probabilities of classification
- according to each class on an array of test vectors X.
+ Calculates classification calibrated probabilities
+ for each class, in a one-vs-all manner, for `X`.
Parameters
----------
- X : array-like of shape (n_samples, n_features)
- The samples.
+ X : ndarray of shape (n_samples, n_features)
+ The sample data.
Returns
-------
- C : ndarray of shape (n_samples, n_classes)
- The predicted probas. Can be exact zeros.
+ proba : array, shape (n_samples, n_classes)
+ The predicted probabilities. Can be exact zeros.
"""
- n_classes = len(self.classes_)
- proba = np.zeros((X.shape[0], n_classes))
+ n_classes = len(self.classes)
+ pred_method = _get_prediction_method(self.base_estimator)
+ predictions = _compute_predictions(pred_method, X, n_classes)
- df, idx_pos_class = self._preproc(X)
+ label_encoder = LabelEncoder().fit(self.classes)
+ pos_class_indices = label_encoder.transform(
+ self.base_estimator.classes_
+ )
- for k, this_df, calibrator in \
- zip(idx_pos_class, df.T, self.calibrators_):
+ proba = np.zeros((X.shape[0], n_classes))
+ for class_idx, this_pred, calibrator in \
+ zip(pos_class_indices, predictions.T, self.calibrators):
if n_classes == 2:
- k += 1
- proba[:, k] = calibrator.predict(this_df)
+ # When binary, `predictions` consists only of predictions for
+ # clf.classes_[1] but `pos_class_indices` = 0
+ class_idx += 1
+ proba[:, class_idx] = calibrator.predict(this_pred)
# Normalize the probabilities
if n_classes == 2:
@@ -505,12 +642,12 @@ def predict_proba(self, X):
return proba
-def _sigmoid_calibration(df, y, sample_weight=None):
+def _sigmoid_calibration(predictions, y, sample_weight=None):
"""Probability Calibration with sigmoid method (Platt 2000)
Parameters
----------
- df : ndarray of shape (n_samples,)
+ predictions : ndarray of shape (n_samples,)
The decision function or predict proba for the samples.
y : ndarray of shape (n_samples,)
@@ -531,10 +668,10 @@ def _sigmoid_calibration(df, y, sample_weight=None):
----------
Platt, "Probabilistic Outputs for Support Vector Machines"
"""
- df = column_or_1d(df)
+ predictions = column_or_1d(predictions)
y = column_or_1d(y)
- F = df # F follows Platt's notations
+ F = predictions # F follows Platt's notations
# Bayesian priors (see Platt end of section 2.2)
prior0 = float(np.sum(y <= 0))
|
diff --git a/sklearn/tests/test_calibration.py b/sklearn/tests/test_calibration.py
index f4e6f6d62d938..3d2931d0c65f9 100644
--- a/sklearn/tests/test_calibration.py
+++ b/sklearn/tests/test_calibration.py
@@ -13,27 +13,38 @@
assert_almost_equal,
assert_array_equal,
assert_raises, ignore_warnings)
+from sklearn.utils.extmath import softmax
from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification, make_blobs
-from sklearn.preprocessing import LabelBinarizer
-from sklearn.model_selection import KFold
+from sklearn.preprocessing import LabelEncoder
+from sklearn.model_selection import KFold, cross_val_predict
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.svm import LinearSVC
+from sklearn.isotonic import IsotonicRegression
from sklearn.feature_extraction import DictVectorizer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
-from sklearn.metrics import brier_score_loss, log_loss
+from sklearn.metrics import brier_score_loss
from sklearn.calibration import CalibratedClassifierCV
from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration
from sklearn.calibration import calibration_curve
-def test_calibration():
- """Test calibration objects with isotonic and sigmoid"""
[email protected](scope="module")
+def data():
+ X, y = make_classification(
+ n_samples=200, n_features=6, random_state=42
+ )
+ return X, y
+
+
[email protected]('method', ['sigmoid', 'isotonic'])
[email protected]('ensemble', [True, False])
+def test_calibration(data, method, ensemble):
+ # Test calibration objects with isotonic and sigmoid
n_samples = 100
- X, y = make_classification(n_samples=2 * n_samples, n_features=6,
- random_state=42)
+ X, y = data
sample_weight = np.random.RandomState(seed=42).uniform(size=y.size)
X -= X.min() # MultinomialNB only allows positive X
@@ -47,66 +58,76 @@ def test_calibration():
clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train)
prob_pos_clf = clf.predict_proba(X_test)[:, 1]
- pc_clf = CalibratedClassifierCV(clf, cv=y.size + 1)
- assert_raises(ValueError, pc_clf.fit, X, y)
+ cal_clf = CalibratedClassifierCV(clf, cv=y.size + 1, ensemble=ensemble)
+ assert_raises(ValueError, cal_clf.fit, X, y)
# Naive Bayes with calibration
for this_X_train, this_X_test in [(X_train, X_test),
(sparse.csr_matrix(X_train),
sparse.csr_matrix(X_test))]:
- for method in ['isotonic', 'sigmoid']:
- pc_clf = CalibratedClassifierCV(clf, method=method, cv=2)
- # Note that this fit overwrites the fit on the entire training
- # set
- pc_clf.fit(this_X_train, y_train, sample_weight=sw_train)
- prob_pos_pc_clf = pc_clf.predict_proba(this_X_test)[:, 1]
-
- # Check that brier score has improved after calibration
+ cal_clf = CalibratedClassifierCV(
+ clf, method=method, cv=5, ensemble=ensemble
+ )
+ # Note that this fit overwrites the fit on the entire training
+ # set
+ cal_clf.fit(this_X_train, y_train, sample_weight=sw_train)
+ prob_pos_cal_clf = cal_clf.predict_proba(this_X_test)[:, 1]
+
+ # Check that brier score has improved after calibration
+ assert (brier_score_loss(y_test, prob_pos_clf) >
+ brier_score_loss(y_test, prob_pos_cal_clf))
+
+ # Check invariance against relabeling [0, 1] -> [1, 2]
+ cal_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train)
+ prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1]
+ assert_array_almost_equal(prob_pos_cal_clf,
+ prob_pos_cal_clf_relabeled)
+
+ # Check invariance against relabeling [0, 1] -> [-1, 1]
+ cal_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train)
+ prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1]
+ assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled)
+
+ # Check invariance against relabeling [0, 1] -> [1, 0]
+ cal_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train)
+ prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1]
+ if method == "sigmoid":
+ assert_array_almost_equal(prob_pos_cal_clf,
+ 1 - prob_pos_cal_clf_relabeled)
+ else:
+ # Isotonic calibration is not invariant against relabeling
+ # but should improve in both cases
assert (brier_score_loss(y_test, prob_pos_clf) >
- brier_score_loss(y_test, prob_pos_pc_clf))
-
- # Check invariance against relabeling [0, 1] -> [1, 2]
- pc_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train)
- prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1]
- assert_array_almost_equal(prob_pos_pc_clf,
- prob_pos_pc_clf_relabeled)
-
- # Check invariance against relabeling [0, 1] -> [-1, 1]
- pc_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train)
- prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1]
- assert_array_almost_equal(prob_pos_pc_clf,
- prob_pos_pc_clf_relabeled)
-
- # Check invariance against relabeling [0, 1] -> [1, 0]
- pc_clf.fit(this_X_train, (y_train + 1) % 2,
- sample_weight=sw_train)
- prob_pos_pc_clf_relabeled = \
- pc_clf.predict_proba(this_X_test)[:, 1]
- if method == "sigmoid":
- assert_array_almost_equal(prob_pos_pc_clf,
- 1 - prob_pos_pc_clf_relabeled)
- else:
- # Isotonic calibration is not invariant against relabeling
- # but should improve in both cases
- assert (brier_score_loss(y_test, prob_pos_clf) >
- brier_score_loss((y_test + 1) % 2,
- prob_pos_pc_clf_relabeled))
+ brier_score_loss((y_test + 1) % 2,
+ prob_pos_cal_clf_relabeled))
- # Check failure cases:
- # only "isotonic" and "sigmoid" should be accepted as methods
- clf_invalid_method = CalibratedClassifierCV(clf, method="foo")
- assert_raises(ValueError, clf_invalid_method.fit, X_train, y_train)
- # base-estimators should provide either decision_function or
- # predict_proba (most regressors, for instance, should fail)
- clf_base_regressor = \
- CalibratedClassifierCV(RandomForestRegressor(), method="sigmoid")
- assert_raises(RuntimeError, clf_base_regressor.fit, X_train, y_train)
[email protected]('ensemble', [True, False])
+def test_calibration_bad_method(data, ensemble):
+ # Check only "isotonic" and "sigmoid" are accepted as methods
+ X, y = data
+ clf = LinearSVC()
+ clf_invalid_method = CalibratedClassifierCV(
+ clf, method="foo", ensemble=ensemble
+ )
+ with pytest.raises(ValueError):
+ clf_invalid_method.fit(X, y)
+
+
[email protected]('ensemble', [True, False])
+def test_calibration_regressor(data, ensemble):
+ # `base-estimator` should provide either decision_function or
+ # predict_proba (most regressors, for instance, should fail)
+ X, y = data
+ clf_base_regressor = \
+ CalibratedClassifierCV(RandomForestRegressor(), ensemble=ensemble)
+ with pytest.raises(RuntimeError):
+ clf_base_regressor.fit(X, y)
-def test_calibration_default_estimator():
+def test_calibration_default_estimator(data):
# Check base_estimator default is LinearSVC
- X, y = make_classification(n_samples=100, n_features=6, random_state=42)
+ X, y = data
calib_clf = CalibratedClassifierCV(cv=2)
calib_clf.fit(X, y)
@@ -114,120 +135,144 @@ def test_calibration_default_estimator():
assert isinstance(base_est, LinearSVC)
-def test_calibration_cv_splitter():
[email protected]('ensemble', [True, False])
+def test_calibration_cv_splitter(data, ensemble):
# Check when `cv` is a CV splitter
- X, y = make_classification(n_samples=100, n_features=6, random_state=42)
+ X, y = data
splits = 5
kfold = KFold(n_splits=splits)
- calib_clf = CalibratedClassifierCV(cv=kfold)
+ calib_clf = CalibratedClassifierCV(cv=kfold, ensemble=ensemble)
assert isinstance(calib_clf.cv, KFold)
assert calib_clf.cv.n_splits == splits
calib_clf.fit(X, y)
- assert len(calib_clf.calibrated_classifiers_) == splits
+ expected_n_clf = splits if ensemble else 1
+ assert len(calib_clf.calibrated_classifiers_) == expected_n_clf
-def test_sample_weight():
[email protected]('method', ['sigmoid', 'isotonic'])
[email protected]('ensemble', [True, False])
+def test_sample_weight(data, method, ensemble):
n_samples = 100
- X, y = make_classification(n_samples=2 * n_samples, n_features=6,
- random_state=42)
+ X, y = data
sample_weight = np.random.RandomState(seed=42).uniform(size=len(y))
X_train, y_train, sw_train = \
X[:n_samples], y[:n_samples], sample_weight[:n_samples]
X_test = X[n_samples:]
- for method in ['sigmoid', 'isotonic']:
- base_estimator = LinearSVC(random_state=42)
- calibrated_clf = CalibratedClassifierCV(base_estimator, method=method)
- calibrated_clf.fit(X_train, y_train, sample_weight=sw_train)
- probs_with_sw = calibrated_clf.predict_proba(X_test)
+ base_estimator = LinearSVC(random_state=42)
+ calibrated_clf = CalibratedClassifierCV(
+ base_estimator, method=method, ensemble=ensemble
+ )
+ calibrated_clf.fit(X_train, y_train, sample_weight=sw_train)
+ probs_with_sw = calibrated_clf.predict_proba(X_test)
- # As the weights are used for the calibration, they should still yield
- # a different predictions
- calibrated_clf.fit(X_train, y_train)
- probs_without_sw = calibrated_clf.predict_proba(X_test)
+ # As the weights are used for the calibration, they should still yield
+ # different predictions
+ calibrated_clf.fit(X_train, y_train)
+ probs_without_sw = calibrated_clf.predict_proba(X_test)
- diff = np.linalg.norm(probs_with_sw - probs_without_sw)
- assert diff > 0.1
+ diff = np.linalg.norm(probs_with_sw - probs_without_sw)
+ assert diff > 0.1
[email protected]("method", ['sigmoid', 'isotonic'])
-def test_parallel_execution(method):
[email protected]('method', ['sigmoid', 'isotonic'])
[email protected]('ensemble', [True, False])
+def test_parallel_execution(data, method, ensemble):
"""Test parallel calibration"""
- X, y = make_classification(random_state=42)
+ X, y = data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
base_estimator = LinearSVC(random_state=42)
- cal_clf_parallel = CalibratedClassifierCV(base_estimator,
- method=method, n_jobs=2)
+ cal_clf_parallel = CalibratedClassifierCV(
+ base_estimator, method=method, n_jobs=2, ensemble=ensemble
+ )
cal_clf_parallel.fit(X_train, y_train)
probs_parallel = cal_clf_parallel.predict_proba(X_test)
- cal_clf_sequential = CalibratedClassifierCV(base_estimator,
- method=method,
- n_jobs=1)
+ cal_clf_sequential = CalibratedClassifierCV(
+ base_estimator, method=method, n_jobs=1, ensemble=ensemble
+ )
cal_clf_sequential.fit(X_train, y_train)
probs_sequential = cal_clf_sequential.predict_proba(X_test)
assert_allclose(probs_parallel, probs_sequential)
-def test_calibration_multiclass():
- """Test calibration for multiclass """
- # test multi-class setting with classifier that implements
- # only decision function
- clf = LinearSVC()
- X, y_idx = make_blobs(n_samples=100, n_features=2, random_state=42,
- centers=3, cluster_std=3.0)
-
- # Use categorical labels to check that CalibratedClassifierCV supports
- # them correctly
- target_names = np.array(['a', 'b', 'c'])
- y = target_names[y_idx]
-
[email protected]('method', ['sigmoid', 'isotonic'])
[email protected]('ensemble', [True, False])
+# increase the number of RNG seeds to assess the statistical stability of this
+# test:
[email protected]('seed', range(2))
+def test_calibration_multiclass(method, ensemble, seed):
+
+ def multiclass_brier(y_true, proba_pred, n_classes):
+ Y_onehot = np.eye(n_classes)[y_true]
+ return np.sum((Y_onehot - proba_pred) ** 2) / Y_onehot.shape[0]
+
+ # Test calibration for multiclass with classifier that implements
+ # only decision function.
+ clf = LinearSVC(random_state=7)
+ X, y = make_blobs(n_samples=500, n_features=100, random_state=seed,
+ centers=10, cluster_std=15.0)
+
+ # Use an unbalanced dataset by collapsing 8 clusters into one class
+ # to make the naive calibration based on a softmax more unlikely
+ # to work.
+ y[y > 2] = 2
+ n_classes = np.unique(y).shape[0]
X_train, y_train = X[::2], y[::2]
X_test, y_test = X[1::2], y[1::2]
clf.fit(X_train, y_train)
- for method in ['isotonic', 'sigmoid']:
- cal_clf = CalibratedClassifierCV(clf, method=method, cv=2)
- cal_clf.fit(X_train, y_train)
- probas = cal_clf.predict_proba(X_test)
- assert_array_almost_equal(np.sum(probas, axis=1), np.ones(len(X_test)))
-
- # Check that log-loss of calibrated classifier is smaller than
- # log-loss of naively turned OvR decision function to probabilities
- # via softmax
- def softmax(y_pred):
- e = np.exp(-y_pred)
- return e / e.sum(axis=1).reshape(-1, 1)
-
- uncalibrated_log_loss = \
- log_loss(y_test, softmax(clf.decision_function(X_test)))
- calibrated_log_loss = log_loss(y_test, probas)
- assert uncalibrated_log_loss >= calibrated_log_loss
+
+ cal_clf = CalibratedClassifierCV(
+ clf, method=method, cv=5, ensemble=ensemble
+ )
+ cal_clf.fit(X_train, y_train)
+ probas = cal_clf.predict_proba(X_test)
+ # Check probabilities sum to 1
+ assert_allclose(np.sum(probas, axis=1), np.ones(len(X_test)))
+
+ # Check that the dataset is not too trivial, otherwise it's hard
+ # to get interesting calibration data during the internal
+ # cross-validation loop.
+ assert 0.65 < clf.score(X_test, y_test) < 0.95
+
+ # Check that the accuracy of the calibrated model is never degraded
+ # too much compared to the original classifier.
+ assert cal_clf.score(X_test, y_test) > 0.95 * clf.score(X_test, y_test)
+
+ # Check that Brier loss of calibrated classifier is smaller than
+ # loss obtained by naively turning OvR decision function to
+ # probabilities via a softmax
+ uncalibrated_brier = \
+ multiclass_brier(y_test, softmax(clf.decision_function(X_test)),
+ n_classes=n_classes)
+ calibrated_brier = multiclass_brier(y_test, probas,
+ n_classes=n_classes)
+
+ assert calibrated_brier < 1.1 * uncalibrated_brier
# Test that calibration of a multiclass classifier decreases log-loss
# for RandomForestClassifier
- X, y = make_blobs(n_samples=100, n_features=2, random_state=42,
- cluster_std=3.0)
- X_train, y_train = X[::2], y[::2]
- X_test, y_test = X[1::2], y[1::2]
-
- clf = RandomForestClassifier(n_estimators=10, random_state=42)
+ clf = RandomForestClassifier(n_estimators=30, random_state=42)
clf.fit(X_train, y_train)
clf_probs = clf.predict_proba(X_test)
- loss = log_loss(y_test, clf_probs)
+ uncalibrated_brier = multiclass_brier(y_test, clf_probs,
+ n_classes=n_classes)
- for method in ['isotonic', 'sigmoid']:
- cal_clf = CalibratedClassifierCV(clf, method=method, cv=3)
- cal_clf.fit(X_train, y_train)
- cal_clf_probs = cal_clf.predict_proba(X_test)
- cal_loss = log_loss(y_test, cal_clf_probs)
- assert loss > cal_loss
+ cal_clf = CalibratedClassifierCV(
+ clf, method=method, cv=5, ensemble=ensemble
+ )
+ cal_clf.fit(X_train, y_train)
+ cal_clf_probs = cal_clf.predict_proba(X_test)
+ calibrated_brier = multiclass_brier(y_test, cal_clf_probs,
+ n_classes=n_classes)
+ assert calibrated_brier < 1.1 * uncalibrated_brier
def test_calibration_prefit():
@@ -262,18 +307,45 @@ def test_calibration_prefit():
(sparse.csr_matrix(X_calib),
sparse.csr_matrix(X_test))]:
for method in ['isotonic', 'sigmoid']:
- pc_clf = CalibratedClassifierCV(clf, method=method, cv="prefit")
+ cal_clf = CalibratedClassifierCV(clf, method=method, cv="prefit")
for sw in [sw_calib, None]:
- pc_clf.fit(this_X_calib, y_calib, sample_weight=sw)
- y_prob = pc_clf.predict_proba(this_X_test)
- y_pred = pc_clf.predict(this_X_test)
- prob_pos_pc_clf = y_prob[:, 1]
+ cal_clf.fit(this_X_calib, y_calib, sample_weight=sw)
+ y_prob = cal_clf.predict_proba(this_X_test)
+ y_pred = cal_clf.predict(this_X_test)
+ prob_pos_cal_clf = y_prob[:, 1]
assert_array_equal(y_pred,
np.array([0, 1])[np.argmax(y_prob, axis=1)])
assert (brier_score_loss(y_test, prob_pos_clf) >
- brier_score_loss(y_test, prob_pos_pc_clf))
+ brier_score_loss(y_test, prob_pos_cal_clf))
+
+
[email protected]('method', ['sigmoid', 'isotonic'])
+def test_calibration_ensemble_false(data, method):
+ # Test that `ensemble=False` is the same as using predictions from
+ # `cross_val_predict` to train calibrator.
+ X, y = data
+ clf = LinearSVC(random_state=7)
+
+ cal_clf = CalibratedClassifierCV(clf, method=method, cv=3, ensemble=False)
+ cal_clf.fit(X, y)
+ cal_probas = cal_clf.predict_proba(X)
+
+ # Get probas manually
+ unbiased_preds = cross_val_predict(
+ clf, X, y, cv=3, method='decision_function'
+ )
+ if method == 'isotonic':
+ calibrator = IsotonicRegression(out_of_bounds='clip')
+ else:
+ calibrator = _SigmoidCalibration()
+ calibrator.fit(unbiased_preds, y)
+ # Use `clf` fit on all data
+ clf.fit(X, y)
+ clf_df = clf.decision_function(X)
+ manual_probas = calibrator.predict(clf_df)
+ assert_allclose(cal_probas[:, 1], manual_probas)
def test_sigmoid_calibration():
@@ -329,7 +401,8 @@ def test_calibration_curve():
strategy='percentile')
-def test_calibration_nan_imputer():
[email protected]('ensemble', [True, False])
+def test_calibration_nan_imputer(ensemble):
"""Test that calibration can accept nan"""
X, y = make_classification(n_samples=10, n_features=2,
n_informative=2, n_redundant=0,
@@ -338,42 +411,56 @@ def test_calibration_nan_imputer():
clf = Pipeline(
[('imputer', SimpleImputer()),
('rf', RandomForestClassifier(n_estimators=1))])
- clf_c = CalibratedClassifierCV(clf, cv=2, method='isotonic')
+ clf_c = CalibratedClassifierCV(
+ clf, cv=2, method='isotonic', ensemble=ensemble
+ )
clf_c.fit(X, y)
clf_c.predict(X)
-def test_calibration_prob_sum():
[email protected]('ensemble', [True, False])
+def test_calibration_prob_sum(ensemble):
# Test that sum of probabilities is 1. A non-regression test for
# issue #7796
num_classes = 2
X, y = make_classification(n_samples=10, n_features=5,
n_classes=num_classes)
- clf = LinearSVC(C=1.0)
- clf_prob = CalibratedClassifierCV(clf, method="sigmoid", cv=LeaveOneOut())
+ clf = LinearSVC(C=1.0, random_state=7)
+ clf_prob = CalibratedClassifierCV(
+ clf, method="sigmoid", cv=LeaveOneOut(), ensemble=ensemble
+ )
clf_prob.fit(X, y)
probs = clf_prob.predict_proba(X)
assert_array_almost_equal(probs.sum(axis=1), np.ones(probs.shape[0]))
-def test_calibration_less_classes():
[email protected]('ensemble', [True, False])
+def test_calibration_less_classes(ensemble):
# Test to check calibration works fine when train set in a test-train
# split does not contain all classes
# Since this test uses LOO, at each iteration train set will not contain a
# class label
X = np.random.randn(10, 5)
y = np.arange(10)
- clf = LinearSVC(C=1.0)
- cal_clf = CalibratedClassifierCV(clf, method="sigmoid", cv=LeaveOneOut())
+ clf = LinearSVC(C=1.0, random_state=7)
+ cal_clf = CalibratedClassifierCV(
+ clf, method="sigmoid", cv=LeaveOneOut(), ensemble=ensemble
+ )
cal_clf.fit(X, y)
for i, calibrated_classifier in \
enumerate(cal_clf.calibrated_classifiers_):
proba = calibrated_classifier.predict_proba(X)
- assert_array_equal(proba[:, i], np.zeros(len(y)))
- assert np.all(np.hstack([proba[:, :i],
- proba[:, i + 1:]]))
+ if ensemble:
+ # Check that the unobserved class has proba=0
+ assert_array_equal(proba[:, i], np.zeros(len(y)))
+ # Check for all other classes proba>0
+ assert np.all(proba[:, :i] > 0)
+ assert np.all(proba[:, i + 1:] > 0)
+ else:
+ # Check `proba` are all 1/n_classes
+ assert np.allclose(proba, 1 / proba.shape[0])
@ignore_warnings(category=FutureWarning)
@@ -452,6 +539,6 @@ def test_calibration_attributes(clf, cv):
assert_array_equal(calib_clf.classes_, clf.classes_)
assert calib_clf.n_features_in_ == clf.n_features_in_
else:
- classes = LabelBinarizer().fit(y).classes_
+ classes = LabelEncoder().fit(y).classes_
assert_array_equal(calib_clf.classes_, classes)
assert calib_clf.n_features_in_ == X.shape[1]
|
[
{
"path": "doc/modules/calibration.rst",
"old_path": "a/doc/modules/calibration.rst",
"new_path": "b/doc/modules/calibration.rst",
"metadata": "diff --git a/doc/modules/calibration.rst b/doc/modules/calibration.rst\nindex cb157a9d78c93..146601d70765e 100644\n--- a/doc/modules/calibration.rst\n+++ b/doc/modules/calibration.rst\n@@ -96,9 +96,9 @@ in [0, 1]. Denoting the output of the classifier for a given sample by :math:`f_\n the calibrator tries to predict :math:`p(y_i = 1 | f_i)`.\n \n The samples that are used to fit the calibrator should not be the same\n-samples used to fit the classifier, as this would\n-introduce bias. The classifier performance on its training data would be\n-better than for novel data. Using the classifier output from training data\n+samples used to fit the classifier, as this would introduce bias.\n+This is because performance of the classifier on its training data would be\n+better than for novel data. Using the classifier output of training data\n to fit the calibrator would thus result in a biased calibrator that maps to\n probabilities closer to 0 and 1 than it should.\n \n@@ -107,22 +107,39 @@ Usage\n \n The :class:`CalibratedClassifierCV` class is used to calibrate a classifier.\n \n-:class:`CalibratedClassifierCV` uses a cross-validation approach to fit both\n-the classifier and the regressor. The data is split into k\n-`(train_set, test_set)` couples (as determined by `cv`). The classifier\n-(`base_estimator`) is trained on the train set, and its predictions on the\n-test set are used to fit a regressor. This ensures that the data used to fit\n-the classifier is always disjoint from the data used to fit the calibrator.\n-After fitting, we end up with k\n-`(classifier, regressor)` couples where each regressor maps the output of\n-its corresponding classifier into [0, 1]. Each couple is exposed in the\n-`calibrated_classifiers_` attribute, where each entry is a calibrated\n+:class:`CalibratedClassifierCV` uses a cross-validation approach to ensure\n+unbiased data is always used to fit the calibrator. The data is split into k\n+`(train_set, test_set)` couples (as determined by `cv`). When `ensemble=True`\n+(default), the following procedure is repeated independently for each\n+cross-validation split: a clone of `base_estimator` is first trained on the\n+train subset. Then its predictions on the test subset are used to fit a\n+calibrator (either a sigmoid or isotonic regressor). This results in an\n+ensemble of k `(classifier, calibrator)` couples where each calibrator maps\n+the output of its corresponding classifier into [0, 1]. Each couple is exposed\n+in the `calibrated_classifiers_` attribute, where each entry is a calibrated\n classifier with a :term:`predict_proba` method that outputs calibrated\n probabilities. The output of :term:`predict_proba` for the main\n :class:`CalibratedClassifierCV` instance corresponds to the average of the\n-predicted probabilities of the `k` estimators in the\n-`calibrated_classifiers_` list. The output of :term:`predict` is the class\n-that has the highest probability.\n+predicted probabilities of the `k` estimators in the `calibrated_classifiers_`\n+list. The output of :term:`predict` is the class that has the highest\n+probability.\n+\n+When `ensemble=False`, cross-validation is used to obtain 'unbiased'\n+predictions for all the data, via\n+:func:`~sklearn.model_selection.cross_val_predict`.\n+These unbiased predictions are then used to train the calibrator. The attribute\n+`calibrated_classifiers_` consists of only one `(classifier, calibrator)`\n+couple where the classifier is the `base_estimator` trained on all the data.\n+In this case the output of :term:`predict_proba` for\n+:class:`CalibratedClassifierCV` is the predicted probabilities obtained\n+from the single `(classifier, calibrator)` couple.\n+\n+The main advantage of `ensemble=True` is to benefit from the traditional\n+ensembling effect (similar to :ref:`bagging`). The resulting ensemble should\n+both be well calibrated and slightly more accurate than with `ensemble=False`.\n+The main advantage of using `ensemble=False` is computational: it reduces the\n+overall fit time by training only a single base classifier and calibrator\n+pair, decreases the final model size and increases prediction speed.\n \n Alternatively an already fitted classifier can be calibrated by setting\n `cv=\"prefit\"`. In this case, the data is not split and all of it is used to\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 0e87b29828977..15907d614d629 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -58,6 +58,14 @@ Changelog\n sparse matrix or dataframe at the start. :pr:`17546` by\n :user:`Lucy Liu <lucyleeow>`.\n \n+- |Enhancement| Add `ensemble` parameter to\n+ :class:`calibration.CalibratedClassifierCV`, which enables implementation\n+ of calibration via an ensemble of calibrators (current method) or\n+ just one calibrator using all the data (similar to the built-in feature of\n+ :mod:`sklearn.svm` estimators with the `probabilities=True` parameter).\n+ :pr:`17856` by :user:`Lucy Liu <lucyleeow>` and\n+ :user:`Andrea Esuli <aesuli>`.\n+\n :mod:`sklearn.cluster`\n ......................\n \n"
}
] |
0.24
|
8d10285ffc2d64eb6f2107dc248bdbbc41ad1b50
|
[
"sklearn/tests/test_calibration.py::test_calibration_attributes[clf0-2]",
"sklearn/tests/test_calibration.py::test_sigmoid_calibration",
"sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X0]",
"sklearn/tests/test_calibration.py::test_calibration_attributes[clf1-prefit]",
"sklearn/tests/test_calibration.py::test_calibration_curve",
"sklearn/tests/test_calibration.py::test_calibration_pipeline",
"sklearn/tests/test_calibration.py::test_calibration_prefit",
"sklearn/tests/test_calibration.py::test_calibration_accepts_ndarray[X1]",
"sklearn/tests/test_calibration.py::test_calibration_default_estimator"
] |
[
"sklearn/tests/test_calibration.py::test_calibration[True-isotonic]",
"sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]",
"sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]",
"sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration[False-isotonic]",
"sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]",
"sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_cv_splitter[True]",
"sklearn/tests/test_calibration.py::test_calibration_less_classes[True]",
"sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]",
"sklearn/tests/test_calibration.py::test_calibration_cv_splitter[False]",
"sklearn/tests/test_calibration.py::test_calibration_bad_method[False]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_regressor[False]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]",
"sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration_less_classes[False]",
"sklearn/tests/test_calibration.py::test_calibration[True-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]",
"sklearn/tests/test_calibration.py::test_calibration[False-sigmoid]",
"sklearn/tests/test_calibration.py::test_calibration_prob_sum[True]",
"sklearn/tests/test_calibration.py::test_calibration_bad_method[True]",
"sklearn/tests/test_calibration.py::test_calibration_regressor[True]",
"sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]",
"sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/calibration.rst",
"old_path": "a/doc/modules/calibration.rst",
"new_path": "b/doc/modules/calibration.rst",
"metadata": "diff --git a/doc/modules/calibration.rst b/doc/modules/calibration.rst\nindex cb157a9d78c93..146601d70765e 100644\n--- a/doc/modules/calibration.rst\n+++ b/doc/modules/calibration.rst\n@@ -96,9 +96,9 @@ in [0, 1]. Denoting the output of the classifier for a given sample by :math:`f_\n the calibrator tries to predict :math:`p(y_i = 1 | f_i)`.\n \n The samples that are used to fit the calibrator should not be the same\n-samples used to fit the classifier, as this would\n-introduce bias. The classifier performance on its training data would be\n-better than for novel data. Using the classifier output from training data\n+samples used to fit the classifier, as this would introduce bias.\n+This is because performance of the classifier on its training data would be\n+better than for novel data. Using the classifier output of training data\n to fit the calibrator would thus result in a biased calibrator that maps to\n probabilities closer to 0 and 1 than it should.\n \n@@ -107,22 +107,39 @@ Usage\n \n The :class:`CalibratedClassifierCV` class is used to calibrate a classifier.\n \n-:class:`CalibratedClassifierCV` uses a cross-validation approach to fit both\n-the classifier and the regressor. The data is split into k\n-`(train_set, test_set)` couples (as determined by `cv`). The classifier\n-(`base_estimator`) is trained on the train set, and its predictions on the\n-test set are used to fit a regressor. This ensures that the data used to fit\n-the classifier is always disjoint from the data used to fit the calibrator.\n-After fitting, we end up with k\n-`(classifier, regressor)` couples where each regressor maps the output of\n-its corresponding classifier into [0, 1]. Each couple is exposed in the\n-`calibrated_classifiers_` attribute, where each entry is a calibrated\n+:class:`CalibratedClassifierCV` uses a cross-validation approach to ensure\n+unbiased data is always used to fit the calibrator. The data is split into k\n+`(train_set, test_set)` couples (as determined by `cv`). When `ensemble=True`\n+(default), the following procedure is repeated independently for each\n+cross-validation split: a clone of `base_estimator` is first trained on the\n+train subset. Then its predictions on the test subset are used to fit a\n+calibrator (either a sigmoid or isotonic regressor). This results in an\n+ensemble of k `(classifier, calibrator)` couples where each calibrator maps\n+the output of its corresponding classifier into [0, 1]. Each couple is exposed\n+in the `calibrated_classifiers_` attribute, where each entry is a calibrated\n classifier with a :term:`predict_proba` method that outputs calibrated\n probabilities. The output of :term:`predict_proba` for the main\n :class:`CalibratedClassifierCV` instance corresponds to the average of the\n-predicted probabilities of the `k` estimators in the\n-`calibrated_classifiers_` list. The output of :term:`predict` is the class\n-that has the highest probability.\n+predicted probabilities of the `k` estimators in the `calibrated_classifiers_`\n+list. The output of :term:`predict` is the class that has the highest\n+probability.\n+\n+When `ensemble=False`, cross-validation is used to obtain 'unbiased'\n+predictions for all the data, via\n+:func:`~sklearn.model_selection.cross_val_predict`.\n+These unbiased predictions are then used to train the calibrator. The attribute\n+`calibrated_classifiers_` consists of only one `(classifier, calibrator)`\n+couple where the classifier is the `base_estimator` trained on all the data.\n+In this case the output of :term:`predict_proba` for\n+:class:`CalibratedClassifierCV` is the predicted probabilities obtained\n+from the single `(classifier, calibrator)` couple.\n+\n+The main advantage of `ensemble=True` is to benefit from the traditional\n+ensembling effect (similar to :ref:`bagging`). The resulting ensemble should\n+both be well calibrated and slightly more accurate than with `ensemble=False`.\n+The main advantage of using `ensemble=False` is computational: it reduces the\n+overall fit time by training only a single base classifier and calibrator\n+pair, decreases the final model size and increases prediction speed.\n \n Alternatively an already fitted classifier can be calibrated by setting\n `cv=\"prefit\"`. In this case, the data is not split and all of it is used to\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 0e87b29828977..15907d614d629 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -58,6 +58,14 @@ Changelog\n sparse matrix or dataframe at the start. :pr:`<PRID>` by\n :user:`<NAME>`.\n \n+- |Enhancement| Add `ensemble` parameter to\n+ :class:`calibration.CalibratedClassifierCV`, which enables implementation\n+ of calibration via an ensemble of calibrators (current method) or\n+ just one calibrator using all the data (similar to the built-in feature of\n+ :mod:`sklearn.svm` estimators with the `probabilities=True` parameter).\n+ :pr:`<PRID>` by :user:`<NAME>` and\n+ :user:`<NAME>`.\n+\n :mod:`sklearn.cluster`\n ......................\n \n"
}
] |
diff --git a/doc/modules/calibration.rst b/doc/modules/calibration.rst
index cb157a9d78c93..146601d70765e 100644
--- a/doc/modules/calibration.rst
+++ b/doc/modules/calibration.rst
@@ -96,9 +96,9 @@ in [0, 1]. Denoting the output of the classifier for a given sample by :math:`f_
the calibrator tries to predict :math:`p(y_i = 1 | f_i)`.
The samples that are used to fit the calibrator should not be the same
-samples used to fit the classifier, as this would
-introduce bias. The classifier performance on its training data would be
-better than for novel data. Using the classifier output from training data
+samples used to fit the classifier, as this would introduce bias.
+This is because performance of the classifier on its training data would be
+better than for novel data. Using the classifier output of training data
to fit the calibrator would thus result in a biased calibrator that maps to
probabilities closer to 0 and 1 than it should.
@@ -107,22 +107,39 @@ Usage
The :class:`CalibratedClassifierCV` class is used to calibrate a classifier.
-:class:`CalibratedClassifierCV` uses a cross-validation approach to fit both
-the classifier and the regressor. The data is split into k
-`(train_set, test_set)` couples (as determined by `cv`). The classifier
-(`base_estimator`) is trained on the train set, and its predictions on the
-test set are used to fit a regressor. This ensures that the data used to fit
-the classifier is always disjoint from the data used to fit the calibrator.
-After fitting, we end up with k
-`(classifier, regressor)` couples where each regressor maps the output of
-its corresponding classifier into [0, 1]. Each couple is exposed in the
-`calibrated_classifiers_` attribute, where each entry is a calibrated
+:class:`CalibratedClassifierCV` uses a cross-validation approach to ensure
+unbiased data is always used to fit the calibrator. The data is split into k
+`(train_set, test_set)` couples (as determined by `cv`). When `ensemble=True`
+(default), the following procedure is repeated independently for each
+cross-validation split: a clone of `base_estimator` is first trained on the
+train subset. Then its predictions on the test subset are used to fit a
+calibrator (either a sigmoid or isotonic regressor). This results in an
+ensemble of k `(classifier, calibrator)` couples where each calibrator maps
+the output of its corresponding classifier into [0, 1]. Each couple is exposed
+in the `calibrated_classifiers_` attribute, where each entry is a calibrated
classifier with a :term:`predict_proba` method that outputs calibrated
probabilities. The output of :term:`predict_proba` for the main
:class:`CalibratedClassifierCV` instance corresponds to the average of the
-predicted probabilities of the `k` estimators in the
-`calibrated_classifiers_` list. The output of :term:`predict` is the class
-that has the highest probability.
+predicted probabilities of the `k` estimators in the `calibrated_classifiers_`
+list. The output of :term:`predict` is the class that has the highest
+probability.
+
+When `ensemble=False`, cross-validation is used to obtain 'unbiased'
+predictions for all the data, via
+:func:`~sklearn.model_selection.cross_val_predict`.
+These unbiased predictions are then used to train the calibrator. The attribute
+`calibrated_classifiers_` consists of only one `(classifier, calibrator)`
+couple where the classifier is the `base_estimator` trained on all the data.
+In this case the output of :term:`predict_proba` for
+:class:`CalibratedClassifierCV` is the predicted probabilities obtained
+from the single `(classifier, calibrator)` couple.
+
+The main advantage of `ensemble=True` is to benefit from the traditional
+ensembling effect (similar to :ref:`bagging`). The resulting ensemble should
+both be well calibrated and slightly more accurate than with `ensemble=False`.
+The main advantage of using `ensemble=False` is computational: it reduces the
+overall fit time by training only a single base classifier and calibrator
+pair, decreases the final model size and increases prediction speed.
Alternatively an already fitted classifier can be calibrated by setting
`cv="prefit"`. In this case, the data is not split and all of it is used to
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 0e87b29828977..15907d614d629 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -58,6 +58,14 @@ Changelog
sparse matrix or dataframe at the start. :pr:`<PRID>` by
:user:`<NAME>`.
+- |Enhancement| Add `ensemble` parameter to
+ :class:`calibration.CalibratedClassifierCV`, which enables implementation
+ of calibration via an ensemble of calibrators (current method) or
+ just one calibrator using all the data (similar to the built-in feature of
+ :mod:`sklearn.svm` estimators with the `probabilities=True` parameter).
+ :pr:`<PRID>` by :user:`<NAME>` and
+ :user:`<NAME>`.
+
:mod:`sklearn.cluster`
......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17984
|
https://github.com/scikit-learn/scikit-learn/pull/17984
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 03ba05d08e2c8..c33f896071d15 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -70,9 +70,20 @@ Changelog
`init_size_`, are deprecated and will be removed in 0.26. :pr:`17864` by
:user:`Jérémie du Boisberranger <jeremiedbb>`.
+- |Fix| :class:`cluster.AgglomerativeClustering` has a new parameter
+ `compute_distances`. When set to `True`, distances between clusters are
+ computed and stored in the `distances_` attribute even when the parameter
+ `distance_threshold` is not used. This new parameter is useful to produce
+ dendrogram visualizations, but introduces a computational and memory
+ overhead. :pr:`17984` by :user:`Michael Riedmann <mriedmann>`,
+ :user:`Emilie Delattre <EmilieDel>`, and
+ :user:`Francesco Casalegno <FrancescoCasalegno>`.
+
- |Fix| Fixed a bug in :class:`cluster.AffinityPropagation`, that
gives incorrect clusters when the array dtype is float32.
- :pr:`17995` by :user:`Thomaz Santana <Wikilicious>` and :user:`Amanda Dsouza <amy12xx>`.
+ :pr:`17995` by :user:`Thomaz Santana <Wikilicious>` and
+ :user:`Amanda Dsouza <amy12xx>`.
+
:mod:`sklearn.covariance`
.........................
diff --git a/sklearn/cluster/_agglomerative.py b/sklearn/cluster/_agglomerative.py
index dfd2ce286c213..fd9241e0b7267 100644
--- a/sklearn/cluster/_agglomerative.py
+++ b/sklearn/cluster/_agglomerative.py
@@ -747,6 +747,13 @@ class AgglomerativeClustering(ClusterMixin, BaseEstimator):
.. versionadded:: 0.21
+ compute_distances : bool, default=False
+ Computes distances between clusters even if `distance_threshold` is not
+ used. This can be used to make dendrogram visualization, but introduces
+ a computational and memory overhead.
+
+ .. versionadded:: 0.24
+
Attributes
----------
n_clusters_ : int
@@ -776,7 +783,8 @@ class AgglomerativeClustering(ClusterMixin, BaseEstimator):
distances_ : array-like of shape (n_nodes-1,)
Distances between nodes in the corresponding place in `children_`.
- Only computed if distance_threshold is not None.
+ Only computed if `distance_threshold` is used or `compute_distances`
+ is set to `True`.
Examples
--------
@@ -795,7 +803,8 @@ class AgglomerativeClustering(ClusterMixin, BaseEstimator):
def __init__(self, n_clusters=2, *, affinity="euclidean",
memory=None,
connectivity=None, compute_full_tree='auto',
- linkage='ward', distance_threshold=None):
+ linkage='ward', distance_threshold=None,
+ compute_distances=False):
self.n_clusters = n_clusters
self.distance_threshold = distance_threshold
self.memory = memory
@@ -803,6 +812,7 @@ def __init__(self, n_clusters=2, *, affinity="euclidean",
self.compute_full_tree = compute_full_tree
self.linkage = linkage
self.affinity = affinity
+ self.compute_distances = compute_distances
def fit(self, X, y=None):
"""Fit the hierarchical clustering from features, or distance matrix.
@@ -879,7 +889,10 @@ def fit(self, X, y=None):
distance_threshold = self.distance_threshold
- return_distance = distance_threshold is not None
+ return_distance = (
+ (distance_threshold is not None) or self.compute_distances
+ )
+
out = memory.cache(tree_builder)(X, connectivity=connectivity,
n_clusters=n_clusters,
return_distance=return_distance,
@@ -891,9 +904,11 @@ def fit(self, X, y=None):
if return_distance:
self.distances_ = out[-1]
+
+ if self.distance_threshold is not None: # distance_threshold is used
self.n_clusters_ = np.count_nonzero(
self.distances_ >= distance_threshold) + 1
- else:
+ else: # n_clusters is used
self.n_clusters_ = self.n_clusters
# Cut the tree
@@ -999,6 +1014,13 @@ class FeatureAgglomeration(AgglomerativeClustering, AgglomerationTransform):
.. versionadded:: 0.21
+ compute_distances : bool, default=False
+ Computes distances between clusters even if `distance_threshold` is not
+ used. This can be used to make dendrogram visualization, but introduces
+ a computational and memory overhead.
+
+ .. versionadded:: 0.24
+
Attributes
----------
n_clusters_ : int
@@ -1028,7 +1050,8 @@ class FeatureAgglomeration(AgglomerativeClustering, AgglomerationTransform):
distances_ : array-like of shape (n_nodes-1,)
Distances between nodes in the corresponding place in `children_`.
- Only computed if distance_threshold is not None.
+ Only computed if `distance_threshold` is used or `compute_distances`
+ is set to `True`.
Examples
--------
@@ -1049,11 +1072,12 @@ def __init__(self, n_clusters=2, *, affinity="euclidean",
memory=None,
connectivity=None, compute_full_tree='auto',
linkage='ward', pooling_func=np.mean,
- distance_threshold=None):
+ distance_threshold=None, compute_distances=False):
super().__init__(
n_clusters=n_clusters, memory=memory, connectivity=connectivity,
compute_full_tree=compute_full_tree, linkage=linkage,
- affinity=affinity, distance_threshold=distance_threshold)
+ affinity=affinity, distance_threshold=distance_threshold,
+ compute_distances=compute_distances)
self.pooling_func = pooling_func
def fit(self, X, y=None, **params):
|
diff --git a/sklearn/cluster/tests/test_hierarchical.py b/sklearn/cluster/tests/test_hierarchical.py
index 9e7796c219a83..26f30dcd87847 100644
--- a/sklearn/cluster/tests/test_hierarchical.py
+++ b/sklearn/cluster/tests/test_hierarchical.py
@@ -143,6 +143,37 @@ def test_zero_cosine_linkage_tree():
assert_raise_message(ValueError, msg, linkage_tree, X, affinity='cosine')
[email protected]('n_clusters, distance_threshold',
+ [(None, 0.5), (10, None)])
[email protected]('compute_distances', [True, False])
[email protected]('linkage', ["ward", "complete", "average", "single"])
+def test_agglomerative_clustering_distances(n_clusters,
+ compute_distances,
+ distance_threshold,
+ linkage):
+ # Check that when `compute_distances` is True or `distance_threshold` is
+ # given, the fitted model has an attribute `distances_`.
+ rng = np.random.RandomState(0)
+ mask = np.ones([10, 10], dtype=bool)
+ n_samples = 100
+ X = rng.randn(n_samples, 50)
+ connectivity = grid_to_graph(*mask.shape)
+
+ clustering = AgglomerativeClustering(n_clusters=n_clusters,
+ connectivity=connectivity,
+ linkage=linkage,
+ distance_threshold=distance_threshold,
+ compute_distances=compute_distances)
+ clustering.fit(X)
+ if compute_distances or (distance_threshold is not None):
+ assert hasattr(clustering, 'distances_')
+ n_children = clustering.children_.shape[0]
+ n_nodes = n_children + 1
+ assert clustering.distances_.shape == (n_nodes-1, )
+ else:
+ assert not hasattr(clustering, 'distances_')
+
+
def test_agglomerative_clustering():
# Check that we obtain the correct number of clusters with
# agglomerative clustering.
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 03ba05d08e2c8..c33f896071d15 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -70,9 +70,20 @@ Changelog\n `init_size_`, are deprecated and will be removed in 0.26. :pr:`17864` by\n :user:`Jérémie du Boisberranger <jeremiedbb>`.\n \n+- |Fix| :class:`cluster.AgglomerativeClustering` has a new parameter\n+ `compute_distances`. When set to `True`, distances between clusters are\n+ computed and stored in the `distances_` attribute even when the parameter\n+ `distance_threshold` is not used. This new parameter is useful to produce\n+ dendrogram visualizations, but introduces a computational and memory\n+ overhead. :pr:`17984` by :user:`Michael Riedmann <mriedmann>`,\n+ :user:`Emilie Delattre <EmilieDel>`, and\n+ :user:`Francesco Casalegno <FrancescoCasalegno>`.\n+\n - |Fix| Fixed a bug in :class:`cluster.AffinityPropagation`, that\n gives incorrect clusters when the array dtype is float32.\n- :pr:`17995` by :user:`Thomaz Santana <Wikilicious>` and :user:`Amanda Dsouza <amy12xx>`.\n+ :pr:`17995` by :user:`Thomaz Santana <Wikilicious>` and\n+ :user:`Amanda Dsouza <amy12xx>`.\n+\n \n :mod:`sklearn.covariance`\n .........................\n"
}
] |
0.24
|
3cb3d4109e7acc497ad1e306013547e5f72ee5f4
|
[
"sklearn/cluster/tests/test_hierarchical.py::test_vector_scikit_single_vs_scipy_single[1]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold_edge_case[1.5-y_true2-average]",
"sklearn/cluster/tests/test_hierarchical.py::test_invalid_shape_precomputed_dist_matrix",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold_edge_case[0.5-y_true0-ward]",
"sklearn/cluster/tests/test_hierarchical.py::test_single_linkage_clustering",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold_edge_case[1.5-y_true2-complete]",
"sklearn/cluster/tests/test_hierarchical.py::test_zero_cosine_linkage_tree",
"sklearn/cluster/tests/test_hierarchical.py::test_vector_scikit_single_vs_scipy_single[2]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold[ward]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold_edge_case[0.5-y_true0-average]",
"sklearn/cluster/tests/test_hierarchical.py::test_compute_full_tree",
"sklearn/cluster/tests/test_hierarchical.py::test_connectivity_fixing_non_lil",
"sklearn/cluster/tests/test_hierarchical.py::test_n_components",
"sklearn/cluster/tests/test_hierarchical.py::test_cluster_distances_with_distance_threshold",
"sklearn/cluster/tests/test_hierarchical.py::test_unstructured_linkage_tree",
"sklearn/cluster/tests/test_hierarchical.py::test_ward_linkage_tree_return_distance",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering",
"sklearn/cluster/tests/test_hierarchical.py::test_structured_linkage_tree",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold_edge_case[1.0-y_true1-average]",
"sklearn/cluster/tests/test_hierarchical.py::test_linkage_misc",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold[complete]",
"sklearn/cluster/tests/test_hierarchical.py::test_sparse_scikit_vs_scipy",
"sklearn/cluster/tests/test_hierarchical.py::test_ward_agglomeration",
"sklearn/cluster/tests/test_hierarchical.py::test_connectivity_propagation",
"sklearn/cluster/tests/test_hierarchical.py::test_agg_n_clusters",
"sklearn/cluster/tests/test_hierarchical.py::test_ward_tree_children_order",
"sklearn/cluster/tests/test_hierarchical.py::test_vector_scikit_single_vs_scipy_single[0]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold_edge_case[1.5-y_true2-ward]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold[average]",
"sklearn/cluster/tests/test_hierarchical.py::test_int_float_dict",
"sklearn/cluster/tests/test_hierarchical.py::test_identical_points",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold_edge_case[0.5-y_true0-complete]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold_edge_case[1.0-y_true1-ward]",
"sklearn/cluster/tests/test_hierarchical.py::test_affinity_passed_to_fix_connectivity",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_with_distance_threshold_edge_case[1.0-y_true1-complete]",
"sklearn/cluster/tests/test_hierarchical.py::test_dist_threshold_invalid_parameters",
"sklearn/cluster/tests/test_hierarchical.py::test_small_distance_threshold",
"sklearn/cluster/tests/test_hierarchical.py::test_connectivity_callable",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_wrong_arg_memory",
"sklearn/cluster/tests/test_hierarchical.py::test_vector_scikit_single_vs_scipy_single[4]",
"sklearn/cluster/tests/test_hierarchical.py::test_height_linkage_tree",
"sklearn/cluster/tests/test_hierarchical.py::test_connectivity_ignores_diagonal",
"sklearn/cluster/tests/test_hierarchical.py::test_vector_scikit_single_vs_scipy_single[3]"
] |
[
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[complete-False-10-None]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[average-False-10-None]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[single-False-10-None]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[complete-False-None-0.5]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[ward-True-10-None]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[ward-True-None-0.5]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[single-False-None-0.5]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[ward-False-None-0.5]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[complete-True-10-None]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[complete-True-None-0.5]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[average-True-None-0.5]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[single-True-None-0.5]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[ward-False-10-None]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[average-False-None-0.5]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[average-True-10-None]",
"sklearn/cluster/tests/test_hierarchical.py::test_agglomerative_clustering_distances[single-True-10-None]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 03ba05d08e2c8..c33f896071d15 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -70,9 +70,20 @@ Changelog\n `init_size_`, are deprecated and will be removed in 0.26. :pr:`<PRID>` by\n :user:`<NAME>`.\n \n+- |Fix| :class:`cluster.AgglomerativeClustering` has a new parameter\n+ `compute_distances`. When set to `True`, distances between clusters are\n+ computed and stored in the `distances_` attribute even when the parameter\n+ `distance_threshold` is not used. This new parameter is useful to produce\n+ dendrogram visualizations, but introduces a computational and memory\n+ overhead. :pr:`<PRID>` by :user:`<NAME>`,\n+ :user:`<NAME>`, and\n+ :user:`<NAME>`.\n+\n - |Fix| Fixed a bug in :class:`cluster.AffinityPropagation`, that\n gives incorrect clusters when the array dtype is float32.\n- :pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.\n+ :pr:`<PRID>` by :user:`<NAME>` and\n+ :user:`<NAME>`.\n+\n \n :mod:`sklearn.covariance`\n .........................\n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 03ba05d08e2c8..c33f896071d15 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -70,9 +70,20 @@ Changelog
`init_size_`, are deprecated and will be removed in 0.26. :pr:`<PRID>` by
:user:`<NAME>`.
+- |Fix| :class:`cluster.AgglomerativeClustering` has a new parameter
+ `compute_distances`. When set to `True`, distances between clusters are
+ computed and stored in the `distances_` attribute even when the parameter
+ `distance_threshold` is not used. This new parameter is useful to produce
+ dendrogram visualizations, but introduces a computational and memory
+ overhead. :pr:`<PRID>` by :user:`<NAME>`,
+ :user:`<NAME>`, and
+ :user:`<NAME>`.
+
- |Fix| Fixed a bug in :class:`cluster.AffinityPropagation`, that
gives incorrect clusters when the array dtype is float32.
- :pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.
+ :pr:`<PRID>` by :user:`<NAME>` and
+ :user:`<NAME>`.
+
:mod:`sklearn.covariance`
.........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-18052
|
https://github.com/scikit-learn/scikit-learn/pull/18052
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 8843a7bc1ca19..2682902a20983 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -72,6 +72,11 @@ Changelog
:user:`Emilie Delattre <EmilieDel>`, and
:user:`Francesco Casalegno <FrancescoCasalegno>`.
+- |Enhancement| :class:`cluster.SpectralClustering` and
+ :func:`cluster.spectral_clustering` have a new keyword argument `verbose`.
+ When set to `True`, additional messages will be displayed which can aid with
+ debugging. :pr:`18052` by :user:`Sean O. Stalley <sstalley>`.
+
- |API| :class:`cluster.MiniBatchKMeans` attributes, `counts_` and
`init_size_`, are deprecated and will be removed in 0.26. :pr:`17864` by
:user:`Jérémie du Boisberranger <jeremiedbb>`.
diff --git a/sklearn/cluster/_spectral.py b/sklearn/cluster/_spectral.py
index e40e6e694969d..847714f1cbbd4 100644
--- a/sklearn/cluster/_spectral.py
+++ b/sklearn/cluster/_spectral.py
@@ -160,7 +160,8 @@ def discretize(vectors, *, copy=True, max_svd_restarts=30, n_iter_max=20,
@_deprecate_positional_args
def spectral_clustering(affinity, *, n_clusters=8, n_components=None,
eigen_solver=None, random_state=None, n_init=10,
- eigen_tol=0.0, assign_labels='kmeans'):
+ eigen_tol=0.0, assign_labels='kmeans',
+ verbose=False):
"""Apply clustering to a projection of the normalized Laplacian.
In practice Spectral Clustering is very useful when the structure of
@@ -222,6 +223,11 @@ def spectral_clustering(affinity, *, n_clusters=8, n_components=None,
the 'Multiclass spectral clustering' paper referenced below for
more details on the discretization approach.
+ verbose : bool, default=False
+ Verbosity mode.
+
+ .. versionadded:: 0.24
+
Returns
-------
labels : array of integers, shape: n_samples
@@ -265,10 +271,12 @@ def spectral_clustering(affinity, *, n_clusters=8, n_components=None,
eigen_solver=eigen_solver,
random_state=random_state,
eigen_tol=eigen_tol, drop_first=False)
+ if verbose:
+ print(f'Computing label assignment using {assign_labels}')
if assign_labels == 'kmeans':
_, labels, _ = k_means(maps, n_clusters, random_state=random_state,
- n_init=n_init)
+ n_init=n_init, verbose=verbose)
else:
labels = discretize(maps, random_state=random_state)
@@ -381,6 +389,11 @@ class SpectralClustering(ClusterMixin, BaseEstimator):
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
+ verbose : bool, default=False
+ Verbosity mode.
+
+ .. versionadded:: 0.24
+
Attributes
----------
affinity_matrix_ : array-like of shape (n_samples, n_samples)
@@ -443,7 +456,8 @@ class SpectralClustering(ClusterMixin, BaseEstimator):
def __init__(self, n_clusters=8, *, eigen_solver=None, n_components=None,
random_state=None, n_init=10, gamma=1., affinity='rbf',
n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans',
- degree=3, coef0=1, kernel_params=None, n_jobs=None):
+ degree=3, coef0=1, kernel_params=None, n_jobs=None,
+ verbose=False):
self.n_clusters = n_clusters
self.eigen_solver = eigen_solver
self.n_components = n_components
@@ -458,6 +472,7 @@ def __init__(self, n_clusters=8, *, eigen_solver=None, n_components=None,
self.coef0 = coef0
self.kernel_params = kernel_params
self.n_jobs = n_jobs
+ self.verbose = verbose
def fit(self, X, y=None):
"""Perform spectral clustering from features, or affinity matrix.
@@ -523,7 +538,8 @@ def fit(self, X, y=None):
random_state=random_state,
n_init=self.n_init,
eigen_tol=self.eigen_tol,
- assign_labels=self.assign_labels)
+ assign_labels=self.assign_labels,
+ verbose=self.verbose)
return self
def fit_predict(self, X, y=None):
|
diff --git a/sklearn/cluster/tests/test_spectral.py b/sklearn/cluster/tests/test_spectral.py
index 1df7dcf103532..42e285d70a66f 100644
--- a/sklearn/cluster/tests/test_spectral.py
+++ b/sklearn/cluster/tests/test_spectral.py
@@ -1,4 +1,5 @@
"""Testing for Spectral Clustering methods"""
+import re
import numpy as np
from scipy import sparse
@@ -248,3 +249,20 @@ def test_n_components():
labels_diff_ncomp = SpectralClustering(n_components=2,
random_state=0).fit(X).labels_
assert not np.array_equal(labels, labels_diff_ncomp)
+
+
[email protected]('assign_labels', ('kmeans', 'discretize'))
+def test_verbose(assign_labels, capsys):
+ # Check verbose mode of KMeans for better coverage.
+ X, y = make_blobs(n_samples=20, random_state=0,
+ centers=[[1, 1], [-1, -1]], cluster_std=0.01)
+
+ SpectralClustering(n_clusters=2, random_state=42, verbose=1).fit(X)
+
+ captured = capsys.readouterr()
+
+ assert re.search(r"Computing label assignment using", captured.out)
+
+ if assign_labels == "kmeans":
+ assert re.search(r"Initialization complete", captured.out)
+ assert re.search(r"Iteration [0-9]+, inertia", captured.out)
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 8843a7bc1ca19..2682902a20983 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -72,6 +72,11 @@ Changelog\n :user:`Emilie Delattre <EmilieDel>`, and\n :user:`Francesco Casalegno <FrancescoCasalegno>`.\n \n+- |Enhancement| :class:`cluster.SpectralClustering` and\n+ :func:`cluster.spectral_clustering` have a new keyword argument `verbose`.\n+ When set to `True`, additional messages will be displayed which can aid with\n+ debugging. :pr:`18052` by :user:`Sean O. Stalley <sstalley>`.\n+\n - |API| :class:`cluster.MiniBatchKMeans` attributes, `counts_` and\n `init_size_`, are deprecated and will be removed in 0.26. :pr:`17864` by\n :user:`Jérémie du Boisberranger <jeremiedbb>`.\n"
}
] |
0.24
|
61ce18fcb748ec76082ec1a83dc026d64f842a51
|
[
"sklearn/cluster/tests/test_spectral.py::test_n_components",
"sklearn/cluster/tests/test_spectral.py::test_discretize[100]",
"sklearn/cluster/tests/test_spectral.py::test_discretize[150]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_with_arpack_amg_solvers",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-arpack]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-lobpcg]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[discretize-lobpcg]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse",
"sklearn/cluster/tests/test_spectral.py::test_discretize[500]",
"sklearn/cluster/tests/test_spectral.py::test_discretize[50]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[discretize-arpack]",
"sklearn/cluster/tests/test_spectral.py::test_spectral_unknown_assign_labels",
"sklearn/cluster/tests/test_spectral.py::test_spectral_unknown_mode",
"sklearn/cluster/tests/test_spectral.py::test_precomputed_nearest_neighbors_filtering",
"sklearn/cluster/tests/test_spectral.py::test_affinities"
] |
[
"sklearn/cluster/tests/test_spectral.py::test_verbose[discretize]",
"sklearn/cluster/tests/test_spectral.py::test_verbose[kmeans]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 8843a7bc1ca19..2682902a20983 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -72,6 +72,11 @@ Changelog\n :user:`<NAME>`, and\n :user:`<NAME>`.\n \n+- |Enhancement| :class:`cluster.SpectralClustering` and\n+ :func:`cluster.spectral_clustering` have a new keyword argument `verbose`.\n+ When set to `True`, additional messages will be displayed which can aid with\n+ debugging. :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |API| :class:`cluster.MiniBatchKMeans` attributes, `counts_` and\n `init_size_`, are deprecated and will be removed in 0.26. :pr:`<PRID>` by\n :user:`<NAME>`.\n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 8843a7bc1ca19..2682902a20983 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -72,6 +72,11 @@ Changelog
:user:`<NAME>`, and
:user:`<NAME>`.
+- |Enhancement| :class:`cluster.SpectralClustering` and
+ :func:`cluster.spectral_clustering` have a new keyword argument `verbose`.
+ When set to `True`, additional messages will be displayed which can aid with
+ debugging. :pr:`<PRID>` by :user:`<NAME>`.
+
- |API| :class:`cluster.MiniBatchKMeans` attributes, `counts_` and
`init_size_`, are deprecated and will be removed in 0.26. :pr:`<PRID>` by
:user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17396
|
https://github.com/scikit-learn/scikit-learn/pull/17396
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 927812d9fd6dd..ea27d7579ae4d 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -44,6 +44,14 @@ Changelog
:pr:`123456` by :user:`Joe Bloggs <joeongithub>`.
where 123456 is the *pull request* number, not the issue number.
+:mod:`sklearn.datasets`
+.......................
+
+- |Enhancement| :func:`datasets.fetch_openml` now allows argument `as_frame`
+ to be 'auto', which tries to convert returned data to pandas DataFrame
+ unless data is sparse.
+ :pr:`17396` by :user:`Jiaxiang <fujiaxiang>`.
+
:mod:`sklearn.decomposition`
............................
diff --git a/sklearn/datasets/_openml.py b/sklearn/datasets/_openml.py
index 112cd9c0e525e..c1f9eb94c78d3 100644
--- a/sklearn/datasets/_openml.py
+++ b/sklearn/datasets/_openml.py
@@ -667,13 +667,16 @@ def fetch_openml(name=None, *, version='active', data_id=None, data_home=None,
If True, returns ``(data, target)`` instead of a Bunch object. See
below for more information about the `data` and `target` objects.
- as_frame : boolean, default=False
+ as_frame : boolean or 'auto', default=False
If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric, string or categorical). The target is
a pandas DataFrame or Series depending on the number of target_columns.
The Bunch will contain a ``frame`` attribute with the target and the
data. If ``return_X_y`` is True, then ``(data, target)`` will be pandas
DataFrames or Series as describe above.
+ If as_frame is 'auto', the data and target will be converted to
+ DataFrame or Series as if as_frame is set to True, unless the dataset
+ is stored in sparse format.
Returns
-------
@@ -768,6 +771,9 @@ def fetch_openml(name=None, *, version='active', data_id=None, data_home=None,
if data_description['format'].lower() == 'sparse_arff':
return_sparse = True
+ if as_frame == 'auto':
+ as_frame = not return_sparse
+
if as_frame and return_sparse:
raise ValueError('Cannot return dataframe with sparse data')
|
diff --git a/sklearn/datasets/tests/test_openml.py b/sklearn/datasets/tests/test_openml.py
index 44fe392e42e74..950c208444b7d 100644
--- a/sklearn/datasets/tests/test_openml.py
+++ b/sklearn/datasets/tests/test_openml.py
@@ -489,6 +489,20 @@ def test_fetch_openml_australian_pandas_error_sparse(monkeypatch):
fetch_openml(data_id=data_id, as_frame=True, cache=False)
+def test_fetch_openml_as_frame_auto(monkeypatch):
+ pd = pytest.importorskip('pandas')
+
+ data_id = 61 # iris dataset version 1
+ _monkey_patch_webbased_functions(monkeypatch, data_id, True)
+ data = fetch_openml(data_id=data_id, as_frame='auto')
+ assert isinstance(data.data, pd.DataFrame)
+
+ data_id = 292 # Australian dataset version 1
+ _monkey_patch_webbased_functions(monkeypatch, data_id, True)
+ data = fetch_openml(data_id=data_id, as_frame='auto')
+ assert isinstance(data.data, scipy.sparse.csr_matrix)
+
+
def test_convert_arff_data_dataframe_warning_low_memory_pandas(monkeypatch):
pytest.importorskip('pandas')
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 927812d9fd6dd..ea27d7579ae4d 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -44,6 +44,14 @@ Changelog\n :pr:`123456` by :user:`Joe Bloggs <joeongithub>`.\n where 123456 is the *pull request* number, not the issue number.\n \n+:mod:`sklearn.datasets`\n+.......................\n+\n+- |Enhancement| :func:`datasets.fetch_openml` now allows argument `as_frame`\n+ to be 'auto', which tries to convert returned data to pandas DataFrame\n+ unless data is sparse.\n+ :pr:`17396` by :user:`Jiaxiang <fujiaxiang>`.\n+\n :mod:`sklearn.decomposition`\n ............................\n \n"
}
] |
0.24
|
3fb9e758a57455fc16847cc8d9452147f25d43a0
|
[
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cpu[False]",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_unlinks_local_path[False-True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_with_ignored_feature[False]",
"sklearn/datasets/tests/test_openml.py::test_warn_ignore_attribute[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cache[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_raises_missing_values_target[False]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature5-float64]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_adultcensus[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_nonexiting[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_miceprotein_pandas",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cpu_pandas",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_with_ignored_feature[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris[True]",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_cache[False]",
"sklearn/datasets/tests/test_openml.py::test_dataset_with_openml_error[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_multitarget[False]",
"sklearn/datasets/tests/test_openml.py::test_raises_illegal_multitarget[True]",
"sklearn/datasets/tests/test_openml.py::test_dataset_with_openml_error[False]",
"sklearn/datasets/tests/test_openml.py::test_decode_anneal",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal[False]",
"sklearn/datasets/tests/test_openml.py::test_dataset_with_openml_warning[True]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature7-float64]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_notarget[False]",
"sklearn/datasets/tests/test_openml.py::test_string_attribute_without_dataframe[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_emotions_pandas",
"sklearn/datasets/tests/test_openml.py::test_illegal_column[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cache[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal_pandas",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_multitarget_pandas",
"sklearn/datasets/tests/test_openml.py::test_decode_cpu",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature3-float64]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_emotions[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_pandas_equal_to_no_frame",
"sklearn/datasets/tests/test_openml.py::test_decode_emotions",
"sklearn/datasets/tests/test_openml.py::test_string_attribute_without_dataframe[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_pandas",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_emotions[False]",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_unlinks_local_path[False-False]",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_cache[True]",
"sklearn/datasets/tests/test_openml.py::test_retry_with_clean_cache_http_error",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal_multitarget[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_australian[False]",
"sklearn/datasets/tests/test_openml.py::test_dataset_with_openml_warning[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris[False]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature2-float64]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature8-category]",
"sklearn/datasets/tests/test_openml.py::test_fetch_nonexiting[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_raises_illegal_argument",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_notarget[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_adultcensus_pandas_return_X_y",
"sklearn/datasets/tests/test_openml.py::test_decode_iris",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_cpu[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_miceprotein[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_raises_missing_values_target[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_miceprotein[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_inactive[False]",
"sklearn/datasets/tests/test_openml.py::test_retry_with_clean_cache",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_adultcensus[True]",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_unlinks_local_path[True-False]",
"sklearn/datasets/tests/test_openml.py::test_raises_illegal_multitarget[False]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_adultcensus_pandas",
"sklearn/datasets/tests/test_openml.py::test_illegal_column[True]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature6-int64]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_australian_pandas_error_sparse",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature4-float64]",
"sklearn/datasets/tests/test_openml.py::test_convert_arff_data_dataframe_warning_low_memory_pandas",
"sklearn/datasets/tests/test_openml.py::test_open_openml_url_unlinks_local_path[True-True]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature9-category]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_inactive[True]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype_error[feature0]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature1-object]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_iris_multitarget[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_australian[True]",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_titanic_pandas",
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_anneal_multitarget[False]",
"sklearn/datasets/tests/test_openml.py::test_warn_ignore_attribute[False]",
"sklearn/datasets/tests/test_openml.py::test_feature_to_dtype[feature0-object]"
] |
[
"sklearn/datasets/tests/test_openml.py::test_fetch_openml_as_frame_auto"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 927812d9fd6dd..ea27d7579ae4d 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -44,6 +44,14 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`.\n where <PRID> is the *pull request* number, not the issue number.\n \n+:mod:`sklearn.datasets`\n+.......................\n+\n+- |Enhancement| :func:`datasets.fetch_openml` now allows argument `as_frame`\n+ to be 'auto', which tries to convert returned data to pandas DataFrame\n+ unless data is sparse.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.decomposition`\n ............................\n \n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 927812d9fd6dd..ea27d7579ae4d 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -44,6 +44,14 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`.
where <PRID> is the *pull request* number, not the issue number.
+:mod:`sklearn.datasets`
+.......................
+
+- |Enhancement| :func:`datasets.fetch_openml` now allows argument `as_frame`
+ to be 'auto', which tries to convert returned data to pandas DataFrame
+ unless data is sparse.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.decomposition`
............................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17937
|
https://github.com/scikit-learn/scikit-learn/pull/17937
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 6dbab18d94a0c..b58821710a125 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -124,6 +124,7 @@ Functions
cluster.dbscan
cluster.estimate_bandwidth
cluster.k_means
+ cluster.kmeans_plusplus
cluster.mean_shift
cluster.spectral_clustering
cluster.ward_tree
diff --git a/doc/modules/clustering.rst b/doc/modules/clustering.rst
index 208f6461d7e33..4bcc95d4b9826 100644
--- a/doc/modules/clustering.rst
+++ b/doc/modules/clustering.rst
@@ -197,7 +197,11 @@ initializations of the centroids. One method to help address this issue is the
k-means++ initialization scheme, which has been implemented in scikit-learn
(use the ``init='k-means++'`` parameter). This initializes the centroids to be
(generally) distant from each other, leading to provably better results than
-random initialization, as shown in the reference.
+random initialization, as shown in the reference.
+
+K-means++ can also be called independently to select seeds for other
+clustering algorithms, see :func:`sklearn.cluster.kmeans_plusplus` for details
+and example usage.
The algorithm supports sample weights, which can be given by a parameter
``sample_weight``. This allows to assign more weight to some samples when
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 9db5535415af5..1d27fc7f5ceab 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -79,6 +79,10 @@ Changelog
`init_size_`, are deprecated and will be removed in 0.26. :pr:`17864` by
:user:`Jérémie du Boisberranger <jeremiedbb>`.
+- |Enhancement| Added :func:`cluster.kmeans_plusplus` as public function.
+ Initialization by KMeans++ can now be called separately to generate
+ initial cluster centroids. :pr:`17937` by :user:`g-walsh`
+
:mod:`sklearn.compose`
......................
diff --git a/examples/cluster/plot_kmeans_plusplus.py b/examples/cluster/plot_kmeans_plusplus.py
new file mode 100644
index 0000000000000..d9821db2d452e
--- /dev/null
+++ b/examples/cluster/plot_kmeans_plusplus.py
@@ -0,0 +1,45 @@
+"""
+===========================================================
+An example of K-Means++ initialization
+===========================================================
+
+An example to show the output of the :func:`sklearn.cluster.kmeans_plusplus`
+function for generating initial seeds for clustering.
+
+K-Means++ is used as the default initialization for :ref:`k_means`.
+
+"""
+print(__doc__)
+
+from sklearn.cluster import kmeans_plusplus
+from sklearn.datasets import make_blobs
+import matplotlib.pyplot as plt
+
+# Generate sample data
+n_samples = 4000
+n_components = 4
+
+X, y_true = make_blobs(n_samples=n_samples,
+ centers=n_components,
+ cluster_std=0.60,
+ random_state=0)
+X = X[:, ::-1]
+
+# Calculate seeds from kmeans++
+centers_init, indices = kmeans_plusplus(X, n_clusters=4,
+ random_state=0)
+
+# Plot init seeds along side sample data
+plt.figure(1)
+colors = ['#4EACC5', '#FF9C34', '#4E9A06', 'm']
+
+for k, col in enumerate(colors):
+ cluster_data = y_true == k
+ plt.scatter(X[cluster_data, 0], X[cluster_data, 1],
+ c=col, marker='.', s=10)
+
+plt.scatter(centers_init[:, 0], centers_init[:, 1], c='b', s=50)
+plt.title("K-Means++ Initialization")
+plt.xticks([])
+plt.yticks([])
+plt.show()
diff --git a/sklearn/cluster/__init__.py b/sklearn/cluster/__init__.py
index 5f3cc58507576..714395d4fe469 100644
--- a/sklearn/cluster/__init__.py
+++ b/sklearn/cluster/__init__.py
@@ -9,7 +9,7 @@
from ._affinity_propagation import affinity_propagation, AffinityPropagation
from ._agglomerative import (ward_tree, AgglomerativeClustering,
linkage_tree, FeatureAgglomeration)
-from ._kmeans import k_means, KMeans, MiniBatchKMeans
+from ._kmeans import k_means, KMeans, MiniBatchKMeans, kmeans_plusplus
from ._dbscan import dbscan, DBSCAN
from ._optics import (OPTICS, cluster_optics_dbscan, compute_optics_graph,
cluster_optics_xi)
@@ -34,6 +34,7 @@
'estimate_bandwidth',
'get_bin_seeds',
'k_means',
+ 'kmeans_plusplus',
'linkage_tree',
'mean_shift',
'spectral_clustering',
diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py
index 69901236d73b8..d3d34f825d86f 100644
--- a/sklearn/cluster/_kmeans.py
+++ b/sklearn/cluster/_kmeans.py
@@ -45,14 +45,15 @@
# Initialization heuristic
-def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
- """Init n_clusters seeds according to k-means++
+def _kmeans_plusplus(X, n_clusters, x_squared_norms,
+ random_state, n_local_trials=None):
+ """Computational component for initialization of n_clusters by
+ k-means++. Prior validation of data is assumed.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
- The data to pick seeds for. To avoid memory copy, the input data
- should be double precision (dtype=np.float64).
+ The data to pick seeds for.
n_clusters : int
The number of seeds to choose.
@@ -70,22 +71,19 @@ def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
Set to None to make the number of trials depend logarithmically
on the number of seeds (2+log(k)); this is the default.
- Notes
- -----
- Selects initial cluster centers for k-mean clustering in a smart way
- to speed up convergence. see: Arthur, D. and Vassilvitskii, S.
- "k-means++: the advantages of careful seeding". ACM-SIAM symposium
- on Discrete algorithms. 2007
+ Returns
+ -------
+ centers : ndarray of shape (n_clusters, n_features)
+ The inital centers for k-means.
- Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip,
- which is the implementation used in the aforementioned paper.
+ indices : ndarray of shape (n_clusters,)
+ The index location of the chosen centers in the data array X. For a
+ given index and center, X[index] = center.
"""
n_samples, n_features = X.shape
centers = np.empty((n_clusters, n_features), dtype=X.dtype)
- assert x_squared_norms is not None, 'x_squared_norms None in _k_init'
-
# Set the number of local seeding trials if none is given
if n_local_trials is None:
# This is what Arthur/Vassilvitskii tried, but did not report
@@ -93,12 +91,14 @@ def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
# that it helped.
n_local_trials = 2 + int(np.log(n_clusters))
- # Pick first center randomly
+ # Pick first center randomly and track index of point
center_id = random_state.randint(n_samples)
+ indices = np.full(n_clusters, -1, dtype=int)
if sp.issparse(X):
centers[0] = X[center_id].toarray()
else:
centers[0] = X[center_id]
+ indices[0] = center_id
# Initialize list of closest distances and calculate current potential
closest_dist_sq = euclidean_distances(
@@ -137,8 +137,9 @@ def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
centers[c] = X[best_candidate].toarray()
else:
centers[c] = X[best_candidate]
+ indices[c] = best_candidate
- return centers
+ return centers, indices
###############################################################################
@@ -902,8 +903,9 @@ def _init_centroids(self, X, x_squared_norms, init, random_state,
n_samples = X.shape[0]
if isinstance(init, str) and init == 'k-means++':
- centers = _k_init(X, n_clusters, random_state=random_state,
- x_squared_norms=x_squared_norms)
+ centers, _ = _kmeans_plusplus(X, n_clusters,
+ random_state=random_state,
+ x_squared_norms=x_squared_norms)
elif isinstance(init, str) and init == 'random':
seeds = random_state.permutation(n_samples)[:n_clusters]
centers = X[seeds]
@@ -1886,3 +1888,97 @@ def _more_tags(self):
'zero sample_weight is not equivalent to removing samples',
}
}
+
+
+def kmeans_plusplus(X, n_clusters, *, x_squared_norms=None,
+ random_state=None, n_local_trials=None):
+ """Init n_clusters seeds according to k-means++
+
+ .. versionadded:: 0.24
+
+ Parameters
+ ----------
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ The data to pick seeds from.
+
+ n_clusters : int
+ The number of centroids to initialize
+
+ x_squared_norms : array-like of shape (n_samples,), default=None
+ Squared Euclidean norm of each data point.
+
+ random_state : int or RandomState instance, default=None
+ Determines random number generation for centroid initialization. Pass
+ an int for reproducible output across multiple function calls.
+ See :term:`Glossary <random_state>`.
+
+ n_local_trials : int, default=None
+ The number of seeding trials for each center (except the first),
+ of which the one reducing inertia the most is greedily chosen.
+ Set to None to make the number of trials depend logarithmically
+ on the number of seeds (2+log(k)).
+
+ Returns
+ -------
+ centers : ndarray of shape (n_clusters, n_features)
+ The inital centers for k-means.
+
+ indices : ndarray of shape (n_clusters,)
+ The index location of the chosen centers in the data array X. For a
+ given index and center, X[index] = center.
+
+ Notes
+ -----
+ Selects initial cluster centers for k-mean clustering in a smart way
+ to speed up convergence. see: Arthur, D. and Vassilvitskii, S.
+ "k-means++: the advantages of careful seeding". ACM-SIAM symposium
+ on Discrete algorithms. 2007
+
+ Examples
+ --------
+
+ >>> from sklearn.cluster import kmeans_plusplus
+ >>> import numpy as np
+ >>> X = np.array([[1, 2], [1, 4], [1, 0],
+ ... [10, 2], [10, 4], [10, 0]])
+ >>> centers, indices = kmeans_plusplus(X, n_clusters=2, random_state=0)
+ >>> centers
+ array([[10, 4],
+ [ 1, 0]])
+ >>> indices
+ array([4, 2])
+ """
+
+ # Check data
+ check_array(X, accept_sparse='csr',
+ dtype=[np.float64, np.float32])
+
+ if X.shape[0] < n_clusters:
+ raise ValueError(f"n_samples={X.shape[0]} should be >= "
+ f"n_clusters={n_clusters}.")
+
+ # Check parameters
+ if x_squared_norms is None:
+ x_squared_norms = row_norms(X, squared=True)
+ else:
+ x_squared_norms = check_array(x_squared_norms,
+ dtype=X.dtype,
+ ensure_2d=False)
+
+ if x_squared_norms.shape[0] != X.shape[0]:
+ raise ValueError(
+ f"The length of x_squared_norms {x_squared_norms.shape[0]} should "
+ f"be equal to the length of n_samples {X.shape[0]}.")
+
+ if n_local_trials is not None and n_local_trials < 1:
+ raise ValueError(
+ f"n_local_trials is set to {n_local_trials} but should be an "
+ f"integer value greater than zero.")
+
+ random_state = check_random_state(random_state)
+
+ # Call private k-means++
+ centers, indices = _kmeans_plusplus(X, n_clusters, x_squared_norms,
+ random_state, n_local_trials)
+
+ return centers, indices
|
diff --git a/sklearn/cluster/tests/test_k_means.py b/sklearn/cluster/tests/test_k_means.py
index 2110c08f09974..06a682eec17c7 100644
--- a/sklearn/cluster/tests/test_k_means.py
+++ b/sklearn/cluster/tests/test_k_means.py
@@ -20,7 +20,7 @@
from sklearn.metrics import pairwise_distances
from sklearn.metrics import pairwise_distances_argmin
from sklearn.metrics.cluster import v_measure_score
-from sklearn.cluster import KMeans, k_means
+from sklearn.cluster import KMeans, k_means, kmeans_plusplus
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster._kmeans import _labels_inertia
from sklearn.cluster._kmeans import _mini_batch_step
@@ -1030,3 +1030,60 @@ def test_minibatch_kmeans_wrong_params(param, match):
# are passed for the MiniBatchKMeans specific parameters
with pytest.raises(ValueError, match=match):
MiniBatchKMeans(**param).fit(X)
+
+
[email protected]("param, match", [
+ ({"n_local_trials": 0},
+ r"n_local_trials is set to 0 but should be an "
+ r"integer value greater than zero"),
+ ({"x_squared_norms": X[:2]},
+ r"The length of x_squared_norms .* should "
+ r"be equal to the length of n_samples")]
+)
+def test_kmeans_plusplus_wrong_params(param, match):
+ with pytest.raises(ValueError, match=match):
+ kmeans_plusplus(X, n_clusters, **param)
+
+
[email protected]("data", [X, X_csr])
[email protected]("dtype", [np.float64, np.float32])
+def test_kmeans_plusplus_output(data, dtype):
+ # Check for the correct number of seeds and all positive values
+ data = data.astype(dtype)
+ centers, indices = kmeans_plusplus(data, n_clusters)
+
+ # Check there are the correct number of indices and that all indices are
+ # positive and within the number of samples
+ assert indices.shape[0] == n_clusters
+ assert (indices >= 0).all()
+ assert (indices <= data.shape[0]).all()
+
+ # Check for the correct number of seeds and that they are bound by the data
+ assert centers.shape[0] == n_clusters
+ assert (centers.max(axis=0) <= data.max(axis=0)).all()
+ assert (centers.min(axis=0) >= data.min(axis=0)).all()
+
+ # Check that indices correspond to reported centers
+ # Use X for comparison rather than data, test still works against centers
+ # calculated with sparse data.
+ assert_allclose(X[indices].astype(dtype), centers)
+
+
[email protected]("x_squared_norms", [row_norms(X, squared=True), None])
+def test_kmeans_plusplus_norms(x_squared_norms):
+ # Check that defining x_squared_norms returns the same as default=None.
+ centers, indices = kmeans_plusplus(X, n_clusters,
+ x_squared_norms=x_squared_norms)
+
+ assert_allclose(X[indices], centers)
+
+
+def test_kmeans_plusplus_dataorder():
+ # Check that memory layout does not effect result
+ centers_c, _ = kmeans_plusplus(X, n_clusters, random_state=0)
+
+ X_fortran = np.asfortranarray(X)
+
+ centers_fortran, _ = kmeans_plusplus(X_fortran, n_clusters, random_state=0)
+
+ assert_allclose(centers_c, centers_fortran)
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 6dbab18d94a0c..b58821710a125 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -124,6 +124,7 @@ Functions\n cluster.dbscan\n cluster.estimate_bandwidth\n cluster.k_means\n+ cluster.kmeans_plusplus\n cluster.mean_shift\n cluster.spectral_clustering\n cluster.ward_tree\n"
},
{
"path": "doc/modules/clustering.rst",
"old_path": "a/doc/modules/clustering.rst",
"new_path": "b/doc/modules/clustering.rst",
"metadata": "diff --git a/doc/modules/clustering.rst b/doc/modules/clustering.rst\nindex 208f6461d7e33..4bcc95d4b9826 100644\n--- a/doc/modules/clustering.rst\n+++ b/doc/modules/clustering.rst\n@@ -197,7 +197,11 @@ initializations of the centroids. One method to help address this issue is the\n k-means++ initialization scheme, which has been implemented in scikit-learn\n (use the ``init='k-means++'`` parameter). This initializes the centroids to be\n (generally) distant from each other, leading to provably better results than\n-random initialization, as shown in the reference.\n+random initialization, as shown in the reference. \n+\n+K-means++ can also be called independently to select seeds for other \n+clustering algorithms, see :func:`sklearn.cluster.kmeans_plusplus` for details\n+and example usage.\n \n The algorithm supports sample weights, which can be given by a parameter\n ``sample_weight``. This allows to assign more weight to some samples when\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 9db5535415af5..1d27fc7f5ceab 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -79,6 +79,10 @@ Changelog\n `init_size_`, are deprecated and will be removed in 0.26. :pr:`17864` by\n :user:`Jérémie du Boisberranger <jeremiedbb>`.\n \n+- |Enhancement| Added :func:`cluster.kmeans_plusplus` as public function. \n+ Initialization by KMeans++ can now be called separately to generate\n+ initial cluster centroids. :pr:`17937` by :user:`g-walsh`\n+\n :mod:`sklearn.compose`\n ......................\n \n"
}
] |
0.24
|
74f18faffa90c143f42feeb48c524cff3a0e8270
|
[] |
[
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-full-random-float64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_float_precision[KMeans-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-float32]",
"sklearn/cluster/tests/test_k_means.py::test_warning_n_init_precomputed_centers[MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_wrong_params[param1-The length of x_squared_norms .* should be equal to the length of n_samples]",
"sklearn/cluster/tests/test_k_means.py::test_fortran_aligned_data[KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[ndarray]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[0-2-1e-07-csr_matrix-float64-full]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-callable-dense]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0-full]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_copyx",
"sklearn/cluster/tests/test_k_means.py::test_sample_weight_unchanged[MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[full-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[1-2-0.1-csr_matrix-float32-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param0-n_init should be > 0-MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-elkan-k-means++-float32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_weighted_vs_repeated",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-full-dense]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[KMeans-k-means++-int32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param2-n_samples.* should be >= n_clusters-KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_transform[MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[0.01-sparse-blobs]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[MiniBatchKMeans-k-means++-int32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[KMeans-k-means++-int32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_scaled_weights",
"sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[elkan-dense]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-full-k-means++-float32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-elkan-k-means++-float32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_transform[KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_inertia[float64]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[1e-100-sparse-normal]",
"sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-int64]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_wrong_params[param3-reassignment_ratio should be >= 0]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-callable-dense]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param6-The shape of the initial centers .* does not match the number of features of the data-KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[3-300-1e-07-csr_matrix-float64-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_n_jobs_deprecated[None]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param2-n_samples.* should be >= n_clusters-MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param7-init should be either 'k-means\\\\+\\\\+', 'random', a ndarray or a callable-MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[0.01-dense-normal]",
"sklearn/cluster/tests/test_k_means.py::test_score_max_iter[MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-random-dense]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param3-The shape of the initial centers .* does not match the number of clusters-MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_precompute_distance_deprecated[True]",
"sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-float64]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[1e-08-dense-normal]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[3-300-1e-07-csr_matrix-float32-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0.01-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_with_many_reassignments",
"sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[elkan-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[0-dense-normal]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[callable]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param6-The shape of the initial centers .* does not match the number of features of the data-MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_predict[MiniBatchKMeans-None-random-float32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-k-means++-dense]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[1-2-0.1-csr_matrix-float32-full]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-ndarray-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_norms[x_squared_norms0]",
"sklearn/cluster/tests/test_k_means.py::test_inertia[float32]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-full-random-float64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-random-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[4-300-0.1-asarray-float32-full]",
"sklearn/cluster/tests/test_k_means.py::test_n_jobs_deprecated[1]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[3-300-1e-07-asarray-float64-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_relocate_empty_clusters[dense]",
"sklearn/cluster/tests/test_k_means.py::test_score_max_iter[KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[MiniBatchKMeans-ndarray-int64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[0-2-1e-07-asarray-float32-full]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0.01-full]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[4-300-0.1-csr_matrix-float32-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_warning_elkan_1_cluster",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_warns_less_centers_than_unique_points",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[3-300-1e-07-asarray-float64-full]",
"sklearn/cluster/tests/test_k_means.py::test_result_of_kmeans_equal_in_diff_n_threads",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_deprecated_attributes[counts_]",
"sklearn/cluster/tests/test_k_means.py::test_sample_weight_unchanged[KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[float32-data1]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-elkan-random-float64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_euclidean_distance[False-float64]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_deprecated_attributes[random_state_]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_wrong_params[param1-batch_size should be > 0]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-random-dense]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[0-sparse-blobs]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[3-300-1e-07-asarray-float32-full]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[4-300-0.1-asarray-float64-full]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[1-2-0.1-asarray-float32-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[KMeans-ndarray-int64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_predict[MiniBatchKMeans-None-k-means++-float32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[KMeans-ndarray-int32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param1-max_iter should be > 0-KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param4-The shape of the initial centers .* does not match the number of clusters-MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-float32]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[1-2-0.1-asarray-float64-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-full-random-float32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_float_precision[KMeans-dense]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[full-dense]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_norms[None]",
"sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-float64]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[random]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-ndarray-dense]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-k-means++-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[0-2-1e-07-asarray-float32-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[KMeans-k-means++-int64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[0-2-1e-07-asarray-float64-full]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[4-300-0.1-asarray-float64-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[4-300-0.1-csr_matrix-float64-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_init_fitted_centers[dense]",
"sklearn/cluster/tests/test_k_means.py::test_fortran_aligned_data[MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param3-The shape of the initial centers .* does not match the number of clusters-KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_predict[MiniBatchKMeans-None-random-float64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-k-means++-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[0-2-1e-07-csr_matrix-float64-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_convergence[full]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_init_fitted_centers[sparse]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-ndarray-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[1-2-0.1-csr_matrix-float64-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_verbose",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-elkan-random-float32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[MiniBatchKMeans-ndarray-int64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-int32]",
"sklearn/cluster/tests/test_k_means.py::test_predict[MiniBatchKMeans-None-random-float64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[3-300-1e-07-csr_matrix-float64-full]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[3-300-1e-07-asarray-float32-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_wrong_params[param0-Algorithm must be 'auto', 'full' or 'elkan']",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param7-init should be either 'k-means\\\\+\\\\+', 'random', a ndarray or a callable-KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[0-dense-blobs]",
"sklearn/cluster/tests/test_k_means.py::test_euclidean_distance[True-float64]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[k-means++]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[0.01-sparse-normal]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_deprecated_attributes[init_size_]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param1-max_iter should be > 0-MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[KMeans-k-means++-int64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-int64]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_wrong_params[param2-init_size should be > 0]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_init_size",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_empty_cluster_relocated[sparse]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param4-The shape of the initial centers .* does not match the number of clusters-KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[3-300-1e-07-csr_matrix-float32-full]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[elkan-dense]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[0-2-1e-07-csr_matrix-float32-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-elkan-dense]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-elkan-dense]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-elkan-random-float32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_predict[MiniBatchKMeans-None-k-means++-float32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-ndarray]",
"sklearn/cluster/tests/test_k_means.py::test_precompute_distance_deprecated[auto]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[float32-data0]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_iter_attribute",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[full-dense]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[KMeans-ndarray-int32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_dataorder",
"sklearn/cluster/tests/test_k_means.py::test_predict[MiniBatchKMeans-None-random-float32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param5-The shape of the initial centers .* does not match the number of features of the data-KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_wrong_params[param0-max_no_improvement should be >= 0]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[1e-08-dense-blobs]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[0.01-dense-blobs]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[1e-08-sparse-normal]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-elkan-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_float_precision[MiniBatchKMeans-dense]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-elkan-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[4-300-0.1-asarray-float32-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-int32]",
"sklearn/cluster/tests/test_k_means.py::test_relocate_empty_clusters[sparse]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-callable-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[1e-08-sparse-blobs]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-elkan-k-means++-float64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[float64-data1]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[1-2-0.1-asarray-float64-full]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param5-The shape of the initial centers .* does not match the number of features of the data-MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[1e-100-sparse-blobs]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[1e-100-dense-blobs]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[elkan-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_sensible_reassign",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-full-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-elkan-k-means++-float64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_predict[MiniBatchKMeans-None-k-means++-float64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_warning_n_init_precomputed_centers[KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[MiniBatchKMeans-k-means++-int64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_wrong_params[param0-n_local_trials is set to 0 but should be an integer value greater than zero]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[1-2-0.1-csr_matrix-float64-full]",
"sklearn/cluster/tests/test_k_means.py::test_n_init",
"sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-k-means++]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[0-2-1e-07-asarray-float64-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-full-dense]",
"sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-random]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-full-k-means++-float64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_update_consistency",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-full-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[0-sparse-normal]",
"sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[MiniBatchKMeans-dense]",
"sklearn/cluster/tests/test_k_means.py::test_precompute_distance_deprecated[False]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-full-random-float32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_euclidean_distance[True-float32]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[4-300-0.1-csr_matrix-float64-full]",
"sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-k-means++]",
"sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-ndarray]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-callable-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_plusplus_output[float64-data0]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[1e-100-dense-normal]",
"sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[KMeans-dense]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[1-2-0.1-asarray-float32-full]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0-elkan]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[0-2-1e-07-csr_matrix-float32-full]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[MiniBatchKMeans-k-means++-int32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_fit_transform[MiniBatchKMeans]",
"sklearn/cluster/tests/test_k_means.py::test_fit_transform[KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_fit_predict[4-300-0.1-csr_matrix-float32-full]",
"sklearn/cluster/tests/test_k_means.py::test_predict[MiniBatchKMeans-None-k-means++-float64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_euclidean_distance[False-float32]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-k-means++-dense]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-elkan-random-float64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-random]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-full-k-means++-float32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[MiniBatchKMeans-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-random-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_convergence[elkan]",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_warning_init_size",
"sklearn/cluster/tests/test_k_means.py::test_float_precision[MiniBatchKMeans-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_wrong_params[param0-n_init should be > 0-KMeans]",
"sklearn/cluster/tests/test_k_means.py::test_k_means_function",
"sklearn/cluster/tests/test_k_means.py::test_minibatch_reassign",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[KMeans-ndarray-int64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[MiniBatchKMeans-ndarray-int32-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-ndarray-dense]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[MiniBatchKMeans-k-means++-int64-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_integer_input[MiniBatchKMeans-ndarray-int32-dense]",
"sklearn/cluster/tests/test_k_means.py::test_predict[KMeans-full-k-means++-float64-dense]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[full-sparse]",
"sklearn/cluster/tests/test_k_means.py::test_kmeans_empty_cluster_relocated[dense]",
"sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[KMeans-sparse]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "examples/cluster/plot_kmeans_plusplus.py"
}
]
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 6dbab18d94a0c..b58821710a125 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -124,6 +124,7 @@ Functions\n cluster.dbscan\n cluster.estimate_bandwidth\n cluster.k_means\n+ cluster.kmeans_plusplus\n cluster.mean_shift\n cluster.spectral_clustering\n cluster.ward_tree\n"
},
{
"path": "doc/modules/clustering.rst",
"old_path": "a/doc/modules/clustering.rst",
"new_path": "b/doc/modules/clustering.rst",
"metadata": "diff --git a/doc/modules/clustering.rst b/doc/modules/clustering.rst\nindex 208f6461d7e33..4bcc95d4b9826 100644\n--- a/doc/modules/clustering.rst\n+++ b/doc/modules/clustering.rst\n@@ -197,7 +197,11 @@ initializations of the centroids. One method to help address this issue is the\n k-means++ initialization scheme, which has been implemented in scikit-learn\n (use the ``init='k-means++'`` parameter). This initializes the centroids to be\n (generally) distant from each other, leading to provably better results than\n-random initialization, as shown in the reference.\n+random initialization, as shown in the reference. \n+\n+K-means++ can also be called independently to select seeds for other \n+clustering algorithms, see :func:`sklearn.cluster.kmeans_plusplus` for details\n+and example usage.\n \n The algorithm supports sample weights, which can be given by a parameter\n ``sample_weight``. This allows to assign more weight to some samples when\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 9db5535415af5..1d27fc7f5ceab 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -79,6 +79,10 @@ Changelog\n `init_size_`, are deprecated and will be removed in 0.26. :pr:`<PRID>` by\n :user:`<NAME>`.\n \n+- |Enhancement| Added :func:`cluster.kmeans_plusplus` as public function. \n+ Initialization by KMeans++ can now be called separately to generate\n+ initial cluster centroids. :pr:`<PRID>` by :user:`<NAME>`\n+\n :mod:`sklearn.compose`\n ......................\n \n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 6dbab18d94a0c..b58821710a125 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -124,6 +124,7 @@ Functions
cluster.dbscan
cluster.estimate_bandwidth
cluster.k_means
+ cluster.kmeans_plusplus
cluster.mean_shift
cluster.spectral_clustering
cluster.ward_tree
diff --git a/doc/modules/clustering.rst b/doc/modules/clustering.rst
index 208f6461d7e33..4bcc95d4b9826 100644
--- a/doc/modules/clustering.rst
+++ b/doc/modules/clustering.rst
@@ -197,7 +197,11 @@ initializations of the centroids. One method to help address this issue is the
k-means++ initialization scheme, which has been implemented in scikit-learn
(use the ``init='k-means++'`` parameter). This initializes the centroids to be
(generally) distant from each other, leading to provably better results than
-random initialization, as shown in the reference.
+random initialization, as shown in the reference.
+
+K-means++ can also be called independently to select seeds for other
+clustering algorithms, see :func:`sklearn.cluster.kmeans_plusplus` for details
+and example usage.
The algorithm supports sample weights, which can be given by a parameter
``sample_weight``. This allows to assign more weight to some samples when
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 9db5535415af5..1d27fc7f5ceab 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -79,6 +79,10 @@ Changelog
`init_size_`, are deprecated and will be removed in 0.26. :pr:`<PRID>` by
:user:`<NAME>`.
+- |Enhancement| Added :func:`cluster.kmeans_plusplus` as public function.
+ Initialization by KMeans++ can now be called separately to generate
+ initial cluster centroids. :pr:`<PRID>` by :user:`<NAME>`
+
:mod:`sklearn.compose`
......................
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'examples/cluster/plot_kmeans_plusplus.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-18280
|
https://github.com/scikit-learn/scikit-learn/pull/18280
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index c6ef6e5994cdf..9294bab242432 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -112,7 +112,15 @@ Changelog
- |Enhancement| :func:`datasets.fetch_covtype` now now supports the optional
argument `as_frame`; when it is set to True, the returned Bunch object's
`data` and `frame` members are pandas DataFrames, and the `target` member is
- a pandas Series. :pr:`17491` by :user:`Alex Liang <tianchuliang>`.
+ a pandas Series.
+ :pr:`17491` by :user:`Alex Liang <tianchuliang>`.
+
+- |Enhancement| :func:`datasets.fetch_kddcup99` now now supports the optional
+ argument `as_frame`; when it is set to True, the returned Bunch object's
+ `data` and `frame` members are pandas DataFrames, and the `target` member is
+ a pandas Series.
+ :pr:`18280` by :user:`Alex Liang <tianchuliang>` and
+ `Guillaume Lemaitre`_.
- |API| The default value of `as_frame` in :func:`datasets.fetch_openml` is
changed from False to 'auto'.
diff --git a/sklearn/datasets/_kddcup99.py b/sklearn/datasets/_kddcup99.py
index 2c9263701e0c4..e5c8bb2f298de 100644
--- a/sklearn/datasets/_kddcup99.py
+++ b/sklearn/datasets/_kddcup99.py
@@ -18,6 +18,7 @@
import joblib
from ._base import _fetch_remote
+from ._base import _convert_data_dataframe
from . import get_data_home
from ._base import RemoteFileMetadata
from ..utils import Bunch
@@ -48,7 +49,8 @@
@_deprecate_positional_args
def fetch_kddcup99(*, subset=None, data_home=None, shuffle=False,
random_state=None,
- percent10=True, download_if_missing=True, return_X_y=False):
+ percent10=True, download_if_missing=True, return_X_y=False,
+ as_frame=False):
"""Load the kddcup99 dataset (classification).
Download it if necessary.
@@ -97,29 +99,48 @@ def fetch_kddcup99(*, subset=None, data_home=None, shuffle=False,
.. versionadded:: 0.20
+ as_frame : bool, default=False
+ If `True`, returns a pandas Dataframe for the ``data`` and ``target``
+ objects in the `Bunch` returned object; `Bunch` return object will also
+ have a ``frame`` member.
+
+ .. versionadded:: 0.24
+
Returns
-------
data : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
- data : ndarray of shape (494021, 41)
- The data matrix to learn.
- target : ndarray of shape (494021,)
- The regression target for each sample.
+ data : {ndarray, dataframe} of shape (494021, 41)
+ The data matrix to learn. If `as_frame=True`, `data` will be a
+ pandas DataFrame.
+ target : {ndarray, series} of shape (494021,)
+ The regression target for each sample. If `as_frame=True`, `target`
+ will be a pandas Series.
+ frame : dataframe of shape (494021, 42)
+ Only present when `as_frame=True`. Contains `data` and `target`.
DESCR : str
The full description of the dataset.
+ feature_names : list
+ The names of the dataset columns
+ target_names: list
+ The names of the target columns
(data, target) : tuple if ``return_X_y`` is True
.. versionadded:: 0.20
"""
data_home = get_data_home(data_home=data_home)
- kddcup99 = _fetch_brute_kddcup99(data_home=data_home,
- percent10=percent10,
- download_if_missing=download_if_missing)
+ kddcup99 = _fetch_brute_kddcup99(
+ data_home=data_home,
+ percent10=percent10,
+ download_if_missing=download_if_missing
+ )
data = kddcup99.data
target = kddcup99.target
+ feature_names = kddcup99.feature_names
+ target_names = kddcup99.target_names
if subset == 'SA':
s = target == b'normal.'
@@ -143,6 +164,7 @@ def fetch_kddcup99(*, subset=None, data_home=None, shuffle=False,
# select all samples with positive logged_in attribute:
s = data[:, 11] == 1
data = np.c_[data[s, :11], data[s, 12:]]
+ feature_names = feature_names[:11] + feature_names[12:]
target = target[s]
data[:, 0] = np.log((data[:, 0] + 0.1).astype(float, copy=False))
@@ -154,15 +176,21 @@ def fetch_kddcup99(*, subset=None, data_home=None, shuffle=False,
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
+ feature_names = [feature_names[0], feature_names[4],
+ feature_names[5]]
if subset == 'smtp':
s = data[:, 2] == b'smtp'
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
+ feature_names = [feature_names[0], feature_names[4],
+ feature_names[5]]
if subset == 'SF':
data = np.c_[data[:, 0], data[:, 2], data[:, 4], data[:, 5]]
+ feature_names = [feature_names[0], feature_names[2],
+ feature_names[4], feature_names[5]]
if shuffle:
data, target = shuffle_method(data, target, random_state=random_state)
@@ -174,7 +202,20 @@ def fetch_kddcup99(*, subset=None, data_home=None, shuffle=False,
if return_X_y:
return data, target
- return Bunch(data=data, target=target, DESCR=fdescr)
+ frame = None
+ if as_frame:
+ frame, data, target = _convert_data_dataframe(
+ "fetch_kddcup99", data, target, feature_names, target_names
+ )
+
+ return Bunch(
+ data=data,
+ target=target,
+ frame=frame,
+ target_names=target_names,
+ feature_names=feature_names,
+ DESCR=fdescr,
+ )
def _fetch_brute_kddcup99(data_home=None,
@@ -205,6 +246,10 @@ def _fetch_brute_kddcup99(data_home=None,
target : ndarray of shape (494021,)
Each value corresponds to one of the 21 attack types or to the
label 'normal.'.
+ feature_names : list
+ The names of the dataset columns
+ target_names: list
+ The names of the target columns
DESCR : str
Description of the kddcup99 dataset.
@@ -224,52 +269,56 @@ def _fetch_brute_kddcup99(data_home=None,
targets_path = join(kddcup_dir, "targets")
available = exists(samples_path)
+ dt = [('duration', int),
+ ('protocol_type', 'S4'),
+ ('service', 'S11'),
+ ('flag', 'S6'),
+ ('src_bytes', int),
+ ('dst_bytes', int),
+ ('land', int),
+ ('wrong_fragment', int),
+ ('urgent', int),
+ ('hot', int),
+ ('num_failed_logins', int),
+ ('logged_in', int),
+ ('num_compromised', int),
+ ('root_shell', int),
+ ('su_attempted', int),
+ ('num_root', int),
+ ('num_file_creations', int),
+ ('num_shells', int),
+ ('num_access_files', int),
+ ('num_outbound_cmds', int),
+ ('is_host_login', int),
+ ('is_guest_login', int),
+ ('count', int),
+ ('srv_count', int),
+ ('serror_rate', float),
+ ('srv_serror_rate', float),
+ ('rerror_rate', float),
+ ('srv_rerror_rate', float),
+ ('same_srv_rate', float),
+ ('diff_srv_rate', float),
+ ('srv_diff_host_rate', float),
+ ('dst_host_count', int),
+ ('dst_host_srv_count', int),
+ ('dst_host_same_srv_rate', float),
+ ('dst_host_diff_srv_rate', float),
+ ('dst_host_same_src_port_rate', float),
+ ('dst_host_srv_diff_host_rate', float),
+ ('dst_host_serror_rate', float),
+ ('dst_host_srv_serror_rate', float),
+ ('dst_host_rerror_rate', float),
+ ('dst_host_srv_rerror_rate', float),
+ ('labels', 'S16')]
+
+ column_names = [c[0] for c in dt]
+ target_names = column_names[-1]
+ feature_names = column_names[:-1]
if download_if_missing and not available:
_mkdirp(kddcup_dir)
logger.info("Downloading %s" % archive.url)
_fetch_remote(archive, dirname=kddcup_dir)
- dt = [('duration', int),
- ('protocol_type', 'S4'),
- ('service', 'S11'),
- ('flag', 'S6'),
- ('src_bytes', int),
- ('dst_bytes', int),
- ('land', int),
- ('wrong_fragment', int),
- ('urgent', int),
- ('hot', int),
- ('num_failed_logins', int),
- ('logged_in', int),
- ('num_compromised', int),
- ('root_shell', int),
- ('su_attempted', int),
- ('num_root', int),
- ('num_file_creations', int),
- ('num_shells', int),
- ('num_access_files', int),
- ('num_outbound_cmds', int),
- ('is_host_login', int),
- ('is_guest_login', int),
- ('count', int),
- ('srv_count', int),
- ('serror_rate', float),
- ('srv_serror_rate', float),
- ('rerror_rate', float),
- ('srv_rerror_rate', float),
- ('same_srv_rate', float),
- ('diff_srv_rate', float),
- ('srv_diff_host_rate', float),
- ('dst_host_count', int),
- ('dst_host_srv_count', int),
- ('dst_host_same_srv_rate', float),
- ('dst_host_diff_srv_rate', float),
- ('dst_host_same_src_port_rate', float),
- ('dst_host_srv_diff_host_rate', float),
- ('dst_host_serror_rate', float),
- ('dst_host_srv_serror_rate', float),
- ('dst_host_rerror_rate', float),
- ('dst_host_srv_rerror_rate', float),
- ('labels', 'S16')]
DT = np.dtype(dt)
logger.debug("extracting archive")
archive_path = join(kddcup_dir, archive.filename)
@@ -304,7 +353,12 @@ def _fetch_brute_kddcup99(data_home=None,
X = joblib.load(samples_path)
y = joblib.load(targets_path)
- return Bunch(data=X, target=y)
+ return Bunch(
+ data=X,
+ target=y,
+ feature_names=feature_names,
+ target_names=[target_names],
+ )
def _mkdirp(d):
diff --git a/sklearn/datasets/descr/kddcup99.rst b/sklearn/datasets/descr/kddcup99.rst
index 00427ac08b748..8bdcccf7973ea 100644
--- a/sklearn/datasets/descr/kddcup99.rst
+++ b/sklearn/datasets/descr/kddcup99.rst
@@ -78,8 +78,9 @@ General KDD structure :
:func:`sklearn.datasets.fetch_kddcup99` will load the kddcup99 dataset; it
returns a dictionary-like object with the feature matrix in the ``data`` member
-and the target values in ``target``. The dataset will be downloaded from the
-web if necessary.
+and the target values in ``target``. The "as_frame" optional argument converts
+``data`` into a pandas DataFrame and ``target`` into a pandas Series. The
+dataset will be downloaded from the web if necessary.
.. topic: References
@@ -92,4 +93,3 @@ web if necessary.
discounting learning algorithms. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 320-324. ACM Press, 2000.
-
|
diff --git a/sklearn/datasets/tests/test_kddcup99.py b/sklearn/datasets/tests/test_kddcup99.py
index 414c1bab1acd5..11adaacfaae20 100644
--- a/sklearn/datasets/tests/test_kddcup99.py
+++ b/sklearn/datasets/tests/test_kddcup99.py
@@ -6,41 +6,56 @@
is too big to use in unit-testing.
"""
-from sklearn.datasets.tests.test_common import check_return_X_y
from functools import partial
+import pytest
+from sklearn.datasets import fetch_kddcup99
+from sklearn.datasets.tests.test_common import check_as_frame
+from sklearn.datasets.tests.test_common import check_pandas_dependency_message
+from sklearn.datasets.tests.test_common import check_return_X_y
-def test_percent10(fetch_kddcup99_fxt):
- data = fetch_kddcup99_fxt()
-
- assert data.data.shape == (494021, 41)
- assert data.target.shape == (494021,)
-
- data_shuffled = fetch_kddcup99_fxt(shuffle=True, random_state=0)
- assert data.data.shape == data_shuffled.data.shape
- assert data.target.shape == data_shuffled.target.shape
- data = fetch_kddcup99_fxt(subset='SA')
- assert data.data.shape == (100655, 41)
- assert data.target.shape == (100655,)
[email protected]("as_frame", [True, False])
[email protected](
+ "subset, n_samples, n_features",
+ [(None, 494021, 41),
+ ("SA", 100655, 41),
+ ("SF", 73237, 4),
+ ("http", 58725, 3),
+ ("smtp", 9571, 3)]
+)
+def test_fetch_kddcup99_percent10(
+ fetch_kddcup99_fxt, as_frame, subset, n_samples, n_features
+):
+ data = fetch_kddcup99_fxt(subset=subset, as_frame=as_frame)
+ assert data.data.shape == (n_samples, n_features)
+ assert data.target.shape == (n_samples,)
+ if as_frame:
+ assert data.frame.shape == (n_samples, n_features + 1)
+
+
+def test_fetch_kddcup99_return_X_y(fetch_kddcup99_fxt):
+ fetch_func = partial(fetch_kddcup99_fxt, subset='smtp')
+ data = fetch_func()
+ check_return_X_y(data, fetch_func)
- data = fetch_kddcup99_fxt(subset='SF')
- assert data.data.shape == (73237, 4)
- assert data.target.shape == (73237,)
- data = fetch_kddcup99_fxt(subset='http')
- assert data.data.shape == (58725, 3)
- assert data.target.shape == (58725,)
+def test_fetch_kddcup99_as_frame(fetch_kddcup99_fxt):
+ bunch = fetch_kddcup99_fxt()
+ check_as_frame(bunch, fetch_kddcup99_fxt)
- data = fetch_kddcup99_fxt(subset='smtp')
- assert data.data.shape == (9571, 3)
- assert data.target.shape == (9571,)
- fetch_func = partial(fetch_kddcup99_fxt, subset='smtp')
- check_return_X_y(data, fetch_func)
+def test_fetch_kddcup99_shuffle(fetch_kddcup99_fxt):
+ dataset = fetch_kddcup99_fxt(
+ random_state=0, subset='SA', percent10=True,
+ )
+ dataset_shuffled = fetch_kddcup99_fxt(
+ random_state=0, subset='SA', shuffle=True, percent10=True,
+ )
+ assert set(dataset['target']) == set(dataset_shuffled['target'])
+ assert dataset_shuffled.data.shape == dataset.data.shape
+ assert dataset_shuffled.target.shape == dataset.target.shape
-def test_shuffle(fetch_kddcup99_fxt):
- dataset = fetch_kddcup99_fxt(random_state=0, subset='SA', shuffle=True,
- percent10=True)
- assert(any(dataset.target[-100:] == b'normal.'))
+def test_pandas_dependency_message(fetch_kddcup99_fxt, hide_available_pandas):
+ check_pandas_dependency_message(fetch_kddcup99)
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex c6ef6e5994cdf..9294bab242432 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -112,7 +112,15 @@ Changelog\n - |Enhancement| :func:`datasets.fetch_covtype` now now supports the optional\n argument `as_frame`; when it is set to True, the returned Bunch object's\n `data` and `frame` members are pandas DataFrames, and the `target` member is\n- a pandas Series. :pr:`17491` by :user:`Alex Liang <tianchuliang>`.\n+ a pandas Series.\n+ :pr:`17491` by :user:`Alex Liang <tianchuliang>`.\n+\n+- |Enhancement| :func:`datasets.fetch_kddcup99` now now supports the optional\n+ argument `as_frame`; when it is set to True, the returned Bunch object's\n+ `data` and `frame` members are pandas DataFrames, and the `target` member is\n+ a pandas Series.\n+ :pr:`18280` by :user:`Alex Liang <tianchuliang>` and\n+ `Guillaume Lemaitre`_.\n \n - |API| The default value of `as_frame` in :func:`datasets.fetch_openml` is\n changed from False to 'auto'.\n"
}
] |
0.24
|
138dd7b88f1634447f838bc58088e594ffaf5549
|
[] |
[
"sklearn/datasets/tests/test_kddcup99.py::test_pandas_dependency_message"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex c6ef6e5994cdf..9294bab242432 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -112,7 +112,15 @@ Changelog\n - |Enhancement| :func:`datasets.fetch_covtype` now now supports the optional\n argument `as_frame`; when it is set to True, the returned Bunch object's\n `data` and `frame` members are pandas DataFrames, and the `target` member is\n- a pandas Series. :pr:`<PRID>` by :user:`<NAME>`.\n+ a pandas Series.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n+- |Enhancement| :func:`datasets.fetch_kddcup99` now now supports the optional\n+ argument `as_frame`; when it is set to True, the returned Bunch object's\n+ `data` and `frame` members are pandas DataFrames, and the `target` member is\n+ a pandas Series.\n+ :pr:`<PRID>` by :user:`<NAME>` and\n+ `Guillaume Lemaitre`_.\n \n - |API| The default value of `as_frame` in :func:`datasets.fetch_openml` is\n changed from False to 'auto'.\n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index c6ef6e5994cdf..9294bab242432 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -112,7 +112,15 @@ Changelog
- |Enhancement| :func:`datasets.fetch_covtype` now now supports the optional
argument `as_frame`; when it is set to True, the returned Bunch object's
`data` and `frame` members are pandas DataFrames, and the `target` member is
- a pandas Series. :pr:`<PRID>` by :user:`<NAME>`.
+ a pandas Series.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
+- |Enhancement| :func:`datasets.fetch_kddcup99` now now supports the optional
+ argument `as_frame`; when it is set to True, the returned Bunch object's
+ `data` and `frame` members are pandas DataFrames, and the `target` member is
+ a pandas Series.
+ :pr:`<PRID>` by :user:`<NAME>` and
+ `Guillaume Lemaitre`_.
- |API| The default value of `as_frame` in :func:`datasets.fetch_openml` is
changed from False to 'auto'.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-11064
|
https://github.com/scikit-learn/scikit-learn/pull/11064
|
diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst
index f6296e25250db..6d441004f8ae6 100644
--- a/doc/modules/decomposition.rst
+++ b/doc/modules/decomposition.rst
@@ -622,11 +622,18 @@ of heteroscedastic noise:
:align: center
:scale: 75%
+Factor Analysis is often followed by a rotation of the factors (with the
+parameter `rotation`), usually to improve interpretability. For example,
+Varimax rotation maximizes the sum of the variances of the squared loadings,
+i.e., it tends to produce sparser factors, which are influenced by only a few
+features each (the "simple structure"). See e.g., the first example below.
.. topic:: Examples:
+ * :ref:`sphx_glr_auto_examples_decomposition_plot_varimax_fa.py`
* :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py`
+
.. _ICA:
Independent component analysis (ICA)
@@ -959,6 +966,9 @@ when data can be fetched sequentially.
<http://www.columbia.edu/~jwp2128/Papers/HoffmanBleiWangPaisley2013.pdf>`_
M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013
+ * `"The varimax criterion for analytic rotation in factor analysis"
+ <https://link.springer.com/article/10.1007%2FBF02289233>`_
+ H. F. Kaiser, 1958
See also :ref:`nca_dim_reduction` for dimensionality reduction with
Neighborhood Components Analysis.
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index e637e367d401e..1c71bb280994d 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -84,6 +84,10 @@ Changelog
redundant with the `dictionary` attribute and constructor parameter.
:pr:`17679` by :user:`Xavier Dupré <sdpython>`.
+- |Enhancement| :func:`decomposition.FactorAnalysis` now supports the optional
+ argument `rotation`, which can take the value `None`, `'varimax'` or `'quartimax'.`
+ :pr:`11064` by :user:`Jona Sassenhagen <jona-sassenhagen>`.
+
:mod:`sklearn.ensemble`
.......................
diff --git a/examples/decomposition/plot_varimax_fa.py b/examples/decomposition/plot_varimax_fa.py
new file mode 100644
index 0000000000000..3f850fd3b545d
--- /dev/null
+++ b/examples/decomposition/plot_varimax_fa.py
@@ -0,0 +1,80 @@
+"""
+===============================================================
+Factor Analysis (with rotation) to visualize patterns
+===============================================================
+
+Investigating the Iris dataset, we see that sepal length, petal
+length and petal width are highly correlated. Sepal width is
+less redundant. Matrix decomposition techniques can uncover
+these latent patterns. Applying rotations to the resulting
+components does not inherently improve the predictve value
+of the derived latent space, but can help visualise their
+structure; here, for example, the varimax rotation, which
+is found by maximizing the squared variances of the weights,
+finds a structure where the second component only loads
+positively on sepal width.
+"""
+
+# Authors: Jona Sassenhagen
+# License: BSD 3 clause
+
+import matplotlib.pyplot as plt
+import numpy as np
+
+from sklearn.decomposition import FactorAnalysis, PCA
+from sklearn.preprocessing import StandardScaler
+from sklearn.datasets import load_iris
+
+print(__doc__)
+
+# %%
+# Load Iris data
+data = load_iris()
+X = StandardScaler().fit_transform(data["data"])
+feature_names = data["feature_names"]
+
+# %%
+# Plot covariance of Iris features
+ax = plt.axes()
+
+im = ax.imshow(np.corrcoef(X.T), cmap="RdBu_r", vmin=-1, vmax=1)
+
+ax.set_xticks([0, 1, 2, 3])
+ax.set_xticklabels(list(feature_names), rotation=90)
+ax.set_yticks([0, 1, 2, 3])
+ax.set_yticklabels(list(feature_names))
+
+plt.colorbar(im).ax.set_ylabel("$r$", rotation=0)
+ax.set_title("Iris feature correlation matrix")
+plt.tight_layout()
+
+# %%
+# Run factor analysis with Varimax rotation
+n_comps = 2
+
+methods = [('PCA', PCA()),
+ ('Unrotated FA', FactorAnalysis()),
+ ('Varimax FA', FactorAnalysis(rotation='varimax'))]
+fig, axes = plt.subplots(ncols=len(methods), figsize=(10, 8))
+
+for ax, (method, fa) in zip(axes, methods):
+ fa.set_params(n_components=n_comps)
+ fa.fit(X)
+
+ components = fa.components_.T
+ print("\n\n %s :\n" % method)
+ print(components)
+
+ vmax = np.abs(components).max()
+ ax.imshow(components, cmap="RdBu_r", vmax=vmax, vmin=-vmax)
+ ax.set_yticks(np.arange(len(feature_names)))
+ if ax.is_first_col():
+ ax.set_yticklabels(feature_names)
+ else:
+ ax.set_yticklabels([])
+ ax.set_title(str(method))
+ ax.set_xticks([0, 1])
+ ax.set_xticklabels(["Comp. 1", "Comp. 2"])
+fig.suptitle("Factors")
+plt.tight_layout()
+plt.show()
diff --git a/sklearn/decomposition/_factor_analysis.py b/sklearn/decomposition/_factor_analysis.py
index cc0178b70e447..51dda4625ab27 100644
--- a/sklearn/decomposition/_factor_analysis.py
+++ b/sklearn/decomposition/_factor_analysis.py
@@ -89,6 +89,15 @@ class FactorAnalysis(TransformerMixin, BaseEstimator):
Number of iterations for the power method. 3 by default. Only used
if ``svd_method`` equals 'randomized'
+ rotation : None | 'varimax' | 'quartimax'
+ If not None, apply the indicated rotation. Currently, varimax and
+ quartimax are implemented. See
+ `"The varimax criterion for analytic rotation in factor analysis"
+ <https://link.springer.com/article/10.1007%2FBF02289233>`_
+ H. F. Kaiser, 1958
+
+ .. versionadded:: 0.24
+
random_state : int, RandomState instance, default=0
Only used when ``svd_method`` equals 'randomized'. Pass an int for
reproducible results across multiple function calls.
@@ -142,7 +151,7 @@ class FactorAnalysis(TransformerMixin, BaseEstimator):
def __init__(self, n_components=None, *, tol=1e-2, copy=True,
max_iter=1000,
noise_variance_init=None, svd_method='randomized',
- iterated_power=3, random_state=0):
+ iterated_power=3, rotation=None, random_state=0):
self.n_components = n_components
self.copy = copy
self.tol = tol
@@ -155,6 +164,7 @@ def __init__(self, n_components=None, *, tol=1e-2, copy=True,
self.noise_variance_init = noise_variance_init
self.iterated_power = iterated_power
self.random_state = random_state
+ self.rotation = rotation
def fit(self, X, y=None):
"""Fit the FactorAnalysis model to X using SVD based approach
@@ -176,6 +186,7 @@ def fit(self, X, y=None):
n_components = self.n_components
if n_components is None:
n_components = n_features
+
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
@@ -243,6 +254,8 @@ def my_svd(X):
ConvergenceWarning)
self.components_ = W
+ if self.rotation is not None:
+ self.components_ = self._rotate(W)
self.noise_variance_ = psi
self.loglike_ = loglike
self.n_iter_ = i + 1
@@ -362,3 +375,38 @@ def score(self, X, y=None):
Average log-likelihood of the samples under the current model
"""
return np.mean(self.score_samples(X))
+
+ def _rotate(self, components, n_components=None, tol=1e-6):
+ "Rotate the factor analysis solution."
+ # note that tol is not exposed
+ implemented = ("varimax", "quartimax")
+ method = self.rotation
+ if method in implemented:
+ return _ortho_rotation(components.T, method=method,
+ tol=tol)[:self.n_components]
+ else:
+ raise ValueError("'method' must be in %s, not %s"
+ % (implemented, method))
+
+
+def _ortho_rotation(components, method='varimax', tol=1e-6, max_iter=100):
+ """Return rotated components."""
+ nrow, ncol = components.shape
+ rotation_matrix = np.eye(ncol)
+ var = 0
+
+ for _ in range(max_iter):
+ comp_rot = np.dot(components, rotation_matrix)
+ if method == "varimax":
+ tmp = comp_rot * np.transpose((comp_rot ** 2).sum(axis=0) / nrow)
+ elif method == "quartimax":
+ tmp = 0
+ u, s, v = np.linalg.svd(
+ np.dot(components.T, comp_rot ** 3 - tmp))
+ rotation_matrix = np.dot(u, v)
+ var_new = np.sum(s)
+ if var != 0 and var_new < var * (1 + tol):
+ break
+ var = var_new
+
+ return np.dot(components, rotation_matrix).T
|
diff --git a/sklearn/decomposition/tests/test_factor_analysis.py b/sklearn/decomposition/tests/test_factor_analysis.py
index 128c1d04fb405..f889e49ea4a3a 100644
--- a/sklearn/decomposition/tests/test_factor_analysis.py
+++ b/sklearn/decomposition/tests/test_factor_analysis.py
@@ -2,15 +2,19 @@
# Alexandre Gramfort <[email protected]>
# License: BSD3
+from itertools import combinations
+
import numpy as np
import pytest
from sklearn.utils._testing import assert_warns
+from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.exceptions import ConvergenceWarning
from sklearn.decomposition import FactorAnalysis
from sklearn.utils._testing import ignore_warnings
+from sklearn.decomposition._factor_analysis import _ortho_rotation
# Ignore warnings from switching to more power iterations in randomized_svd
@@ -83,3 +87,33 @@ def test_factor_analysis():
precision = fa.get_precision()
assert_array_almost_equal(np.dot(cov, precision),
np.eye(X.shape[1]), 12)
+
+ # test rotation
+ n_components = 2
+
+ results, projections = {}, {}
+ for method in (None, "varimax", 'quartimax'):
+ fa_var = FactorAnalysis(n_components=n_components,
+ rotation=method)
+ results[method] = fa_var.fit_transform(X)
+ projections[method] = fa_var.get_covariance()
+ for rot1, rot2 in combinations([None, 'varimax', 'quartimax'], 2):
+ assert not np.allclose(results[rot1], results[rot2])
+ assert np.allclose(projections[rot1], projections[rot2], atol=3)
+
+ assert_raises(ValueError,
+ FactorAnalysis(rotation='not_implemented').fit_transform, X)
+
+ # test against R's psych::principal with rotate="varimax"
+ # (i.e., the values below stem from rotating the components in R)
+ # R's factor analysis returns quite different values; therefore, we only
+ # test the rotation itself
+ factors = np.array(
+ [[0.89421016, -0.35854928, -0.27770122, 0.03773647],
+ [-0.45081822, -0.89132754, 0.0932195, -0.01787973],
+ [0.99500666, -0.02031465, 0.05426497, -0.11539407],
+ [0.96822861, -0.06299656, 0.24411001, 0.07540887]])
+ r_solution = np.array([[0.962, 0.052], [-0.141, 0.989],
+ [0.949, -0.300], [0.937, -0.251]])
+ rotated = _ortho_rotation(factors[:, :n_components], method='varimax').T
+ assert_array_almost_equal(np.abs(rotated), np.abs(r_solution), decimal=3)
|
[
{
"path": "doc/modules/decomposition.rst",
"old_path": "a/doc/modules/decomposition.rst",
"new_path": "b/doc/modules/decomposition.rst",
"metadata": "diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst\nindex f6296e25250db..6d441004f8ae6 100644\n--- a/doc/modules/decomposition.rst\n+++ b/doc/modules/decomposition.rst\n@@ -622,11 +622,18 @@ of heteroscedastic noise:\n :align: center\n :scale: 75%\n \n+Factor Analysis is often followed by a rotation of the factors (with the\n+parameter `rotation`), usually to improve interpretability. For example,\n+Varimax rotation maximizes the sum of the variances of the squared loadings,\n+i.e., it tends to produce sparser factors, which are influenced by only a few\n+features each (the \"simple structure\"). See e.g., the first example below.\n \n .. topic:: Examples:\n \n+ * :ref:`sphx_glr_auto_examples_decomposition_plot_varimax_fa.py`\n * :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py`\n \n+\n .. _ICA:\n \n Independent component analysis (ICA)\n@@ -959,6 +966,9 @@ when data can be fetched sequentially.\n <http://www.columbia.edu/~jwp2128/Papers/HoffmanBleiWangPaisley2013.pdf>`_\n M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013\n \n+ * `\"The varimax criterion for analytic rotation in factor analysis\"\n+ <https://link.springer.com/article/10.1007%2FBF02289233>`_\n+ H. F. Kaiser, 1958\n \n See also :ref:`nca_dim_reduction` for dimensionality reduction with\n Neighborhood Components Analysis.\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex e637e367d401e..1c71bb280994d 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -84,6 +84,10 @@ Changelog\n redundant with the `dictionary` attribute and constructor parameter.\n :pr:`17679` by :user:`Xavier Dupré <sdpython>`.\n \n+- |Enhancement| :func:`decomposition.FactorAnalysis` now supports the optional\n+ argument `rotation`, which can take the value `None`, `'varimax'` or `'quartimax'.`\n+ :pr:`11064` by :user:`Jona Sassenhagen <jona-sassenhagen>`.\n+\n :mod:`sklearn.ensemble`\n .......................\n \n"
}
] |
0.24
|
52cd1104ee7c5de25e5e16e100c0d74bda8e92c1
|
[] |
[
"sklearn/decomposition/tests/test_factor_analysis.py::test_factor_analysis"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "examples/decomposition/plot_varimax_fa.py"
}
]
}
|
[
{
"path": "doc/modules/decomposition.rst",
"old_path": "a/doc/modules/decomposition.rst",
"new_path": "b/doc/modules/decomposition.rst",
"metadata": "diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst\nindex f6296e25250db..6d441004f8ae6 100644\n--- a/doc/modules/decomposition.rst\n+++ b/doc/modules/decomposition.rst\n@@ -622,11 +622,18 @@ of heteroscedastic noise:\n :align: center\n :scale: 75%\n \n+Factor Analysis is often followed by a rotation of the factors (with the\n+parameter `rotation`), usually to improve interpretability. For example,\n+Varimax rotation maximizes the sum of the variances of the squared loadings,\n+i.e., it tends to produce sparser factors, which are influenced by only a few\n+features each (the \"simple structure\"). See e.g., the first example below.\n \n .. topic:: Examples:\n \n+ * :ref:`sphx_glr_auto_examples_decomposition_plot_varimax_fa.py`\n * :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py`\n \n+\n .. _ICA:\n \n Independent component analysis (ICA)\n@@ -959,6 +966,9 @@ when data can be fetched sequentially.\n <http://www.columbia.edu/~jwp2128/Papers/HoffmanBleiWangPaisley2013.pdf>`_\n M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013\n \n+ * `\"The varimax criterion for analytic rotation in factor analysis\"\n+ <https://link.springer.com/article/10.1007%2FBF02289233>`_\n+ H. F. Kaiser, 1958\n \n See also :ref:`nca_dim_reduction` for dimensionality reduction with\n Neighborhood Components Analysis.\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex e637e367d401e..1c71bb280994d 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -84,6 +84,10 @@ Changelog\n redundant with the `dictionary` attribute and constructor parameter.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| :func:`decomposition.FactorAnalysis` now supports the optional\n+ argument `rotation`, which can take the value `None`, `'varimax'` or `'quartimax'.`\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.ensemble`\n .......................\n \n"
}
] |
diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst
index f6296e25250db..6d441004f8ae6 100644
--- a/doc/modules/decomposition.rst
+++ b/doc/modules/decomposition.rst
@@ -622,11 +622,18 @@ of heteroscedastic noise:
:align: center
:scale: 75%
+Factor Analysis is often followed by a rotation of the factors (with the
+parameter `rotation`), usually to improve interpretability. For example,
+Varimax rotation maximizes the sum of the variances of the squared loadings,
+i.e., it tends to produce sparser factors, which are influenced by only a few
+features each (the "simple structure"). See e.g., the first example below.
.. topic:: Examples:
+ * :ref:`sphx_glr_auto_examples_decomposition_plot_varimax_fa.py`
* :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py`
+
.. _ICA:
Independent component analysis (ICA)
@@ -959,6 +966,9 @@ when data can be fetched sequentially.
<http://www.columbia.edu/~jwp2128/Papers/HoffmanBleiWangPaisley2013.pdf>`_
M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013
+ * `"The varimax criterion for analytic rotation in factor analysis"
+ <https://link.springer.com/article/10.1007%2FBF02289233>`_
+ H. F. Kaiser, 1958
See also :ref:`nca_dim_reduction` for dimensionality reduction with
Neighborhood Components Analysis.
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index e637e367d401e..1c71bb280994d 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -84,6 +84,10 @@ Changelog
redundant with the `dictionary` attribute and constructor parameter.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| :func:`decomposition.FactorAnalysis` now supports the optional
+ argument `rotation`, which can take the value `None`, `'varimax'` or `'quartimax'.`
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.ensemble`
.......................
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'examples/decomposition/plot_varimax_fa.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-14446
|
https://github.com/scikit-learn/scikit-learn/pull/14446
|
diff --git a/doc/modules/lda_qda.rst b/doc/modules/lda_qda.rst
index c3ac94dedefa9..e8f25d2c66930 100644
--- a/doc/modules/lda_qda.rst
+++ b/doc/modules/lda_qda.rst
@@ -163,8 +163,8 @@ transformed class means :math:`\mu^*_k`). This :math:`L` corresponds to the
:func:`~discriminant_analysis.LinearDiscriminantAnalysis.transform` method. See
[1]_ for more details.
-Shrinkage
-=========
+Shrinkage and Covariance Estimator
+==================================
Shrinkage is a form of regularization used to improve the estimation of
covariance matrices in situations where the number of training samples is
@@ -187,12 +187,33 @@ an estimate for the covariance matrix). Setting this parameter to a value
between these two extrema will estimate a shrunk version of the covariance
matrix.
+The shrinked Ledoit and Wolf estimator of covariance may not always be the
+best choice. For example if the distribution of the data
+is normally distributed, the
+Oracle Shrinkage Approximating estimator :class:`sklearn.covariance.OAS`
+yields a smaller Mean Squared Error than the one given by Ledoit and Wolf's
+formula used with shrinkage="auto". In LDA, the data are assumed to be gaussian
+conditionally to the class. If these assumptions hold, using LDA with
+the OAS estimator of covariance will yield a better classification
+accuracy than if Ledoit and Wolf or the empirical covariance estimator is used.
+
+The covariance estimator can be chosen using with the ``covariance_estimator``
+parameter of the :class:`discriminant_analysis.LinearDiscriminantAnalysis`
+class. A covariance estimator should have a :term:`fit` method and a
+``covariance_`` attribute like all covariance estimators in the
+:mod:`sklearn.covariance` module.
+
+
.. |shrinkage| image:: ../auto_examples/classification/images/sphx_glr_plot_lda_001.png
:target: ../auto_examples/classification/plot_lda.html
:scale: 75
.. centered:: |shrinkage|
+.. topic:: Examples:
+
+ :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers
+ with Empirical, Ledoit Wolf and OAS covariance estimator.
Estimation algorithms
=====================
@@ -220,7 +241,8 @@ and the SVD of the class-wise mean vectors.
The 'lsqr' solver is an efficient algorithm that only works for
classification. It needs to explicitly compute the covariance matrix
-:math:`\Sigma`, and supports shrinkage. This solver computes the coefficients
+:math:`\Sigma`, and supports shrinkage and custom covariance estimators.
+This solver computes the coefficients
:math:`\omega_k = \Sigma^{-1}\mu_k` by solving for :math:`\Sigma \omega =
\mu_k`, thus avoiding the explicit computation of the inverse
:math:`\Sigma^{-1}`.
@@ -231,11 +253,6 @@ transform, and it supports shrinkage. However, the 'eigen' solver needs to
compute the covariance matrix, so it might not be suitable for situations with
a high number of features.
-.. topic:: Examples:
-
- :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers
- with and without shrinkage.
-
.. topic:: References:
.. [1] "The Elements of Statistical Learning", Hastie T., Tibshirani R.,
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index e8225811194cc..98ccc5d143bcb 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -180,6 +180,13 @@ Changelog
:func:`decomposition.NMF.non_negative_factorization`.
:pr:`17414` by :user:`Bharat Raghunathan <Bharat123rox>`.
+:mod:`sklearn.discriminant_analysis`
+....................................
+
+- |Enhancement| :class:`discriminant_analysis.LinearDiscriminantAnalysis` can
+ now use custom covariance estimate by setting the `covariance_estimator`
+ parameter. :pr:`14446` by :user:`Hugo Richard <hugorichard>`
+
:mod:`sklearn.ensemble`
.......................
diff --git a/examples/classification/plot_lda.py b/examples/classification/plot_lda.py
index 18dfbe37b804d..ad16e7b0d2efa 100644
--- a/examples/classification/plot_lda.py
+++ b/examples/classification/plot_lda.py
@@ -1,15 +1,17 @@
"""
-====================================================================
-Normal and Shrinkage Linear Discriminant Analysis for classification
-====================================================================
+===========================================================================
+Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification
+===========================================================================
-Shows how shrinkage improves classification.
+This example illustrates how the Ledoit-Wolf and Oracle Shrinkage
+Approximating (OAS) estimators of covariance can improve classification.
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
+from sklearn.covariance import OAS
n_train = 20 # samples for training
@@ -35,34 +37,45 @@ def generate_data(n_samples, n_features):
X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
return X, y
-acc_clf1, acc_clf2 = [], []
+
+acc_clf1, acc_clf2, acc_clf3 = [], [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:
- score_clf1, score_clf2 = 0, 0
+ score_clf1, score_clf2, score_clf3 = 0, 0, 0
for _ in range(n_averages):
X, y = generate_data(n_train, n_features)
- clf1 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto').fit(X, y)
- clf2 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None).fit(X, y)
+ clf1 = LinearDiscriminantAnalysis(solver='lsqr',
+ shrinkage='auto').fit(X, y)
+ clf2 = LinearDiscriminantAnalysis(solver='lsqr',
+ shrinkage=None).fit(X, y)
+ oa = OAS(store_precision=False, assume_centered=False)
+ clf3 = LinearDiscriminantAnalysis(solver='lsqr',
+ covariance_estimator=oa).fit(X, y)
X, y = generate_data(n_test, n_features)
score_clf1 += clf1.score(X, y)
score_clf2 += clf2.score(X, y)
+ score_clf3 += clf3.score(X, y)
acc_clf1.append(score_clf1 / n_averages)
acc_clf2.append(score_clf2 / n_averages)
+ acc_clf3.append(score_clf3 / n_averages)
features_samples_ratio = np.array(n_features_range) / n_train
plt.plot(features_samples_ratio, acc_clf1, linewidth=2,
- label="Linear Discriminant Analysis with shrinkage", color='navy')
+ label="Linear Discriminant Analysis with Ledoit Wolf", color='navy')
plt.plot(features_samples_ratio, acc_clf2, linewidth=2,
label="Linear Discriminant Analysis", color='gold')
+plt.plot(features_samples_ratio, acc_clf3, linewidth=2,
+ label="Linear Discriminant Analysis with OAS", color='red')
plt.xlabel('n_features / n_samples')
plt.ylabel('Classification accuracy')
-plt.legend(loc=1, prop={'size': 12})
-plt.suptitle('Linear Discriminant Analysis vs. \
-shrinkage Linear Discriminant Analysis (1 discriminative feature)')
+plt.legend(loc=3, prop={'size': 12})
+plt.suptitle('Linear Discriminant Analysis vs. ' + '\n'
+ + 'Shrinkage Linear Discriminant Analysis vs. ' + '\n'
+ + 'OAS Linear Discriminant Analysis (1 discriminative feature)')
plt.show()
diff --git a/sklearn/discriminant_analysis.py b/sklearn/discriminant_analysis.py
index 2ce91f1540fdd..1e82578e2693b 100644
--- a/sklearn/discriminant_analysis.py
+++ b/sklearn/discriminant_analysis.py
@@ -29,9 +29,8 @@
__all__ = ['LinearDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis']
-def _cov(X, shrinkage=None):
- """Estimate covariance matrix (using optional shrinkage).
-
+def _cov(X, shrinkage=None, covariance_estimator=None):
+ """Estimate covariance matrix (using optional covariance_estimator).
Parameters
----------
X : array-like of shape (n_samples, n_features)
@@ -43,29 +42,52 @@ def _cov(X, shrinkage=None):
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage parameter.
+ Shrinkage parameter is ignored if `covariance_estimator`
+ is not None.
+
+ covariance_estimator : estimator, default=None
+ If not None, `covariance_estimator` is used to estimate
+ the covariance matrices instead of relying on the empirical
+ covariance estimator (with potential shrinkage).
+ The object should have a fit method and a ``covariance_`` attribute
+ like the estimators in :mod:`sklearn.covariance``.
+ if None the shrinkage parameter drives the estimate.
+
+ .. versionadded:: 0.24
+
Returns
-------
s : ndarray of shape (n_features, n_features)
Estimated covariance matrix.
"""
- shrinkage = "empirical" if shrinkage is None else shrinkage
- if isinstance(shrinkage, str):
- if shrinkage == 'auto':
- sc = StandardScaler() # standardize features
- X = sc.fit_transform(X)
- s = ledoit_wolf(X)[0]
- # rescale
- s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :]
- elif shrinkage == 'empirical':
- s = empirical_covariance(X)
+ if covariance_estimator is None:
+ shrinkage = "empirical" if shrinkage is None else shrinkage
+ if isinstance(shrinkage, str):
+ if shrinkage == 'auto':
+ sc = StandardScaler() # standardize features
+ X = sc.fit_transform(X)
+ s = ledoit_wolf(X)[0]
+ # rescale
+ s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :]
+ elif shrinkage == 'empirical':
+ s = empirical_covariance(X)
+ else:
+ raise ValueError('unknown shrinkage parameter')
+ elif isinstance(shrinkage, float) or isinstance(shrinkage, int):
+ if shrinkage < 0 or shrinkage > 1:
+ raise ValueError('shrinkage parameter must be between 0 and 1')
+ s = shrunk_covariance(empirical_covariance(X), shrinkage)
else:
- raise ValueError('unknown shrinkage parameter')
- elif isinstance(shrinkage, float) or isinstance(shrinkage, int):
- if shrinkage < 0 or shrinkage > 1:
- raise ValueError('shrinkage parameter must be between 0 and 1')
- s = shrunk_covariance(empirical_covariance(X), shrinkage)
+ raise TypeError('shrinkage must be a float or a string')
else:
- raise TypeError('shrinkage must be of string or int type')
+ if shrinkage is not None and shrinkage != 0:
+ raise ValueError("covariance_estimator and shrinkage parameters "
+ "are not None. Only one of the two can be set.")
+ covariance_estimator.fit(X)
+ if not hasattr(covariance_estimator, 'covariance_'):
+ raise ValueError("%s does not have a covariance_ attribute" %
+ covariance_estimator.__class__.__name__)
+ s = covariance_estimator.covariance_
return s
@@ -93,7 +115,7 @@ def _class_means(X, y):
return means
-def _class_cov(X, y, priors, shrinkage=None):
+def _class_cov(X, y, priors, shrinkage=None, covariance_estimator=None):
"""Compute weighted within-class covariance matrix.
The per-class covariance are weighted by the class priors.
@@ -115,6 +137,18 @@ def _class_cov(X, y, priors, shrinkage=None):
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage parameter.
+ Shrinkage parameter is ignored if `covariance_estimator` is not None.
+
+ covariance_estimator : estimator, default=None
+ If not None, `covariance_estimator` is used to estimate
+ the covariance matrices instead of relying the empirical
+ covariance estimator (with potential shrinkage).
+ The object should have a fit method and a ``covariance_`` attribute
+ like the estimators in sklearn.covariance.
+ If None, the shrinkage parameter drives the estimate.
+
+ .. versionadded:: 0.24
+
Returns
-------
cov : array-like of shape (n_features, n_features)
@@ -124,7 +158,8 @@ def _class_cov(X, y, priors, shrinkage=None):
cov = np.zeros(shape=(X.shape[1], X.shape[1]))
for idx, group in enumerate(classes):
Xg = X[y == group, :]
- cov += priors[idx] * np.atleast_2d(_cov(Xg, shrinkage))
+ cov += priors[idx] * np.atleast_2d(
+ _cov(Xg, shrinkage, covariance_estimator))
return cov
@@ -155,8 +190,10 @@ class LinearDiscriminantAnalysis(LinearClassifierMixin,
- 'svd': Singular value decomposition (default).
Does not compute the covariance matrix, therefore this solver is
recommended for data with a large number of features.
- - 'lsqr': Least squares solution, can be combined with shrinkage.
- - 'eigen': Eigenvalue decomposition, can be combined with shrinkage.
+ - 'lsqr': Least squares solution.
+ Can be combined with shrinkage or custom covariance estimator.
+ - 'eigen': Eigenvalue decomposition.
+ Can be combined with shrinkage or custom covariance estimator.
shrinkage : 'auto' or float, default=None
Shrinkage parameter, possible values:
@@ -164,6 +201,7 @@ class LinearDiscriminantAnalysis(LinearClassifierMixin,
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage parameter.
+ This should be left to None if `covariance_estimator` is used.
Note that shrinkage works only with 'lsqr' and 'eigen' solvers.
priors : array-like of shape (n_classes,), default=None
@@ -191,6 +229,20 @@ class LinearDiscriminantAnalysis(LinearClassifierMixin,
.. versionadded:: 0.17
+ covariance_estimator : covariance estimator, default=None
+ If not None, `covariance_estimator` is used to estimate
+ the covariance matrices instead of relying on the empirical
+ covariance estimator (with potential shrinkage).
+ The object should have a fit method and a ``covariance_`` attribute
+ like the estimators in :mod:`sklearn.covariance`.
+ if None the shrinkage parameter drives the estimate.
+
+ This should be left to None if `shrinkage` is used.
+ Note that `covariance_estimator` works only with 'lsqr' and 'eigen'
+ solvers.
+
+ .. versionadded:: 0.24
+
Attributes
----------
coef_ : ndarray of shape (n_features,) or (n_classes, n_features)
@@ -244,22 +296,25 @@ class LinearDiscriminantAnalysis(LinearClassifierMixin,
>>> print(clf.predict([[-0.8, -1]]))
[1]
"""
- @_deprecate_positional_args
- def __init__(self, *, solver='svd', shrinkage=None, priors=None,
- n_components=None, store_covariance=False, tol=1e-4):
+
+ def __init__(self, solver='svd', shrinkage=None, priors=None,
+ n_components=None, store_covariance=False, tol=1e-4,
+ covariance_estimator=None):
self.solver = solver
self.shrinkage = shrinkage
self.priors = priors
self.n_components = n_components
self.store_covariance = store_covariance # used only in svd solver
self.tol = tol # used only in svd solver
+ self.covariance_estimator = covariance_estimator
- def _solve_lsqr(self, X, y, shrinkage):
+ def _solve_lsqr(self, X, y, shrinkage, covariance_estimator):
"""Least squares solver.
The least squares solver computes a straightforward solution of the
optimal decision rule based directly on the discriminant functions. It
- can only be used for classification (with optional shrinkage), because
+ can only be used for classification (with any covariance estimator),
+ because
estimation of eigenvectors is not performed. Therefore, dimensionality
reduction with the transform is not supported.
@@ -277,6 +332,19 @@ def _solve_lsqr(self, X, y, shrinkage):
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage parameter.
+ Shrinkage parameter is ignored if `covariance_estimator` i
+ not None
+
+ covariance_estimator : estimator, default=None
+ If not None, `covariance_estimator` is used to estimate
+ the covariance matrices instead of relying the empirical
+ covariance estimator (with potential shrinkage).
+ The object should have a fit method and a ``covariance_`` attribute
+ like the estimators in sklearn.covariance.
+ if None the shrinkage parameter drives the estimate.
+
+ .. versionadded:: 0.24
+
Notes
-----
This solver is based on [1]_, section 2.6.2, pp. 39-41.
@@ -288,18 +356,20 @@ def _solve_lsqr(self, X, y, shrinkage):
0-471-05669-3.
"""
self.means_ = _class_means(X, y)
- self.covariance_ = _class_cov(X, y, self.priors_, shrinkage)
+ self.covariance_ = _class_cov(X, y, self.priors_, shrinkage,
+ covariance_estimator)
self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T
self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) +
np.log(self.priors_))
- def _solve_eigen(self, X, y, shrinkage):
+ def _solve_eigen(self, X, y, shrinkage,
+ covariance_estimator):
"""Eigenvalue solver.
The eigenvalue solver computes the optimal solution of the Rayleigh
coefficient (basically the ratio of between class scatter to within
class scatter). This solver supports both classification and
- dimensionality reduction (with optional shrinkage).
+ dimensionality reduction (with any covariance estimator).
Parameters
----------
@@ -315,6 +385,19 @@ class scatter). This solver supports both classification and
- 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
- float between 0 and 1: fixed shrinkage constant.
+ Shrinkage parameter is ignored if `covariance_estimator` i
+ not None
+
+ covariance_estimator : estimator, default=None
+ If not None, `covariance_estimator` is used to estimate
+ the covariance matrices instead of relying the empirical
+ covariance estimator (with potential shrinkage).
+ The object should have a fit method and a ``covariance_`` attribute
+ like the estimators in sklearn.covariance.
+ if None the shrinkage parameter drives the estimate.
+
+ .. versionadded:: 0.24
+
Notes
-----
This solver is based on [1]_, section 3.8.3, pp. 121-124.
@@ -326,10 +409,11 @@ class scatter). This solver supports both classification and
0-471-05669-3.
"""
self.means_ = _class_means(X, y)
- self.covariance_ = _class_cov(X, y, self.priors_, shrinkage)
+ self.covariance_ = _class_cov(X, y, self.priors_, shrinkage,
+ covariance_estimator)
Sw = self.covariance_ # within scatter
- St = _cov(X, shrinkage) # total scatter
+ St = _cov(X, shrinkage, covariance_estimator) # total scatter
Sb = St - Sw # between scatter
evals, evecs = linalg.eigh(Sb, Sw)
@@ -461,11 +545,19 @@ def fit(self, X, y):
if self.solver == 'svd':
if self.shrinkage is not None:
raise NotImplementedError('shrinkage not supported')
+ if self.covariance_estimator is not None:
+ raise ValueError(
+ 'covariance estimator '
+ 'is not supported '
+ 'with svd solver. Try another solver')
self._solve_svd(X, y)
elif self.solver == 'lsqr':
- self._solve_lsqr(X, y, shrinkage=self.shrinkage)
+ self._solve_lsqr(X, y, shrinkage=self.shrinkage,
+ covariance_estimator=self.covariance_estimator)
elif self.solver == 'eigen':
- self._solve_eigen(X, y, shrinkage=self.shrinkage)
+ self._solve_eigen(X, y,
+ shrinkage=self.shrinkage,
+ covariance_estimator=self.covariance_estimator)
else:
raise ValueError("unknown solver {} (valid solvers are 'svd', "
"'lsqr', and 'eigen').".format(self.solver))
|
diff --git a/sklearn/tests/test_discriminant_analysis.py b/sklearn/tests/test_discriminant_analysis.py
index fec9df61f79a0..18364ce156f87 100644
--- a/sklearn/tests/test_discriminant_analysis.py
+++ b/sklearn/tests/test_discriminant_analysis.py
@@ -18,7 +18,13 @@
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.discriminant_analysis import _cov
+from sklearn.covariance import ledoit_wolf
+from sklearn.cluster import KMeans
+from sklearn.covariance import ShrunkCovariance
+from sklearn.covariance import LedoitWolf
+
+from sklearn.preprocessing import StandardScaler
# Data is just 6 separable points in the plane
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f')
@@ -88,10 +94,36 @@ def test_lda_predict():
assert_raises(ValueError, clf.fit, X, y)
clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto")
assert_raises(NotImplementedError, clf.fit, X, y)
+ clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=np.array([1, 2]))
+ with pytest.raises(TypeError,
+ match="shrinkage must be a float or a string"):
+ clf.fit(X, y)
+ clf = LinearDiscriminantAnalysis(solver="lsqr",
+ shrinkage=0.1,
+ covariance_estimator=ShrunkCovariance())
+ with pytest.raises(ValueError,
+ match=("covariance_estimator and shrinkage "
+ "parameters are not None. "
+ "Only one of the two can be set.")):
+ clf.fit(X, y)
# Test unknown solver
clf = LinearDiscriminantAnalysis(solver="dummy")
assert_raises(ValueError, clf.fit, X, y)
+ # test bad solver with covariance_estimator
+ clf = LinearDiscriminantAnalysis(solver="svd",
+ covariance_estimator=LedoitWolf())
+ with pytest.raises(ValueError,
+ match="covariance estimator is not supported with svd"):
+ clf.fit(X, y)
+
+ # test bad covariance estimator
+ clf = LinearDiscriminantAnalysis(solver="lsqr",
+ covariance_estimator=KMeans(n_clusters=2))
+ with pytest.raises(ValueError,
+ match="KMeans does not have a covariance_ attribute"):
+ clf.fit(X, y)
+
@pytest.mark.parametrize("n_classes", [2, 3])
@pytest.mark.parametrize("solver", ["svd", "lsqr", "eigen"])
@@ -327,6 +359,57 @@ def test_lda_store_covariance():
)
[email protected]('seed', range(10))
+def test_lda_shrinkage(seed):
+ # Test that shrunk covariance estimator and shrinkage parameter behave the
+ # same
+ rng = np.random.RandomState(seed)
+ X = rng.rand(100, 10)
+ y = rng.randint(3, size=(100))
+ c1 = LinearDiscriminantAnalysis(store_covariance=True, shrinkage=0.5,
+ solver="lsqr")
+ c2 = LinearDiscriminantAnalysis(
+ store_covariance=True,
+ covariance_estimator=ShrunkCovariance(shrinkage=0.5),
+ solver="lsqr")
+ c1.fit(X, y)
+ c2.fit(X, y)
+ assert_allclose(c1.means_, c2.means_)
+ assert_allclose(c1.covariance_, c2.covariance_)
+
+
+def test_lda_ledoitwolf():
+ # When shrinkage="auto" current implementation uses ledoitwolf estimation
+ # of covariance after standardizing the data. This checks that it is indeed
+ # the case
+ class StandardizedLedoitWolf():
+ def fit(self, X):
+ sc = StandardScaler() # standardize features
+ X_sc = sc.fit_transform(X)
+ s = ledoit_wolf(X_sc)[0]
+ # rescale
+ s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :]
+ self.covariance_ = s
+
+ rng = np.random.RandomState(0)
+ X = rng.rand(100, 10)
+ y = rng.randint(3, size=(100,))
+ c1 = LinearDiscriminantAnalysis(
+ store_covariance=True,
+ shrinkage="auto",
+ solver="lsqr"
+ )
+ c2 = LinearDiscriminantAnalysis(
+ store_covariance=True,
+ covariance_estimator=StandardizedLedoitWolf(),
+ solver="lsqr"
+ )
+ c1.fit(X, y)
+ c2.fit(X, y)
+ assert_allclose(c1.means_, c2.means_)
+ assert_allclose(c1.covariance_, c2.covariance_)
+
+
@pytest.mark.parametrize('n_features', [3, 5])
@pytest.mark.parametrize('n_classes', [5, 3])
def test_lda_dimension_warning(n_classes, n_features):
|
[
{
"path": "doc/modules/lda_qda.rst",
"old_path": "a/doc/modules/lda_qda.rst",
"new_path": "b/doc/modules/lda_qda.rst",
"metadata": "diff --git a/doc/modules/lda_qda.rst b/doc/modules/lda_qda.rst\nindex c3ac94dedefa9..e8f25d2c66930 100644\n--- a/doc/modules/lda_qda.rst\n+++ b/doc/modules/lda_qda.rst\n@@ -163,8 +163,8 @@ transformed class means :math:`\\mu^*_k`). This :math:`L` corresponds to the\n :func:`~discriminant_analysis.LinearDiscriminantAnalysis.transform` method. See\n [1]_ for more details.\n \n-Shrinkage\n-=========\n+Shrinkage and Covariance Estimator\n+==================================\n \n Shrinkage is a form of regularization used to improve the estimation of\n covariance matrices in situations where the number of training samples is\n@@ -187,12 +187,33 @@ an estimate for the covariance matrix). Setting this parameter to a value\n between these two extrema will estimate a shrunk version of the covariance\n matrix.\n \n+The shrinked Ledoit and Wolf estimator of covariance may not always be the\n+best choice. For example if the distribution of the data\n+is normally distributed, the\n+Oracle Shrinkage Approximating estimator :class:`sklearn.covariance.OAS`\n+yields a smaller Mean Squared Error than the one given by Ledoit and Wolf's\n+formula used with shrinkage=\"auto\". In LDA, the data are assumed to be gaussian\n+conditionally to the class. If these assumptions hold, using LDA with\n+the OAS estimator of covariance will yield a better classification \n+accuracy than if Ledoit and Wolf or the empirical covariance estimator is used.\n+\n+The covariance estimator can be chosen using with the ``covariance_estimator``\n+parameter of the :class:`discriminant_analysis.LinearDiscriminantAnalysis`\n+class. A covariance estimator should have a :term:`fit` method and a\n+``covariance_`` attribute like all covariance estimators in the\n+:mod:`sklearn.covariance` module.\n+\n+\n .. |shrinkage| image:: ../auto_examples/classification/images/sphx_glr_plot_lda_001.png\n :target: ../auto_examples/classification/plot_lda.html\n :scale: 75\n \n .. centered:: |shrinkage|\n \n+.. topic:: Examples:\n+\n+ :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers\n+ with Empirical, Ledoit Wolf and OAS covariance estimator.\n \n Estimation algorithms\n =====================\n@@ -220,7 +241,8 @@ and the SVD of the class-wise mean vectors.\n \n The 'lsqr' solver is an efficient algorithm that only works for\n classification. It needs to explicitly compute the covariance matrix\n-:math:`\\Sigma`, and supports shrinkage. This solver computes the coefficients\n+:math:`\\Sigma`, and supports shrinkage and custom covariance estimators.\n+This solver computes the coefficients\n :math:`\\omega_k = \\Sigma^{-1}\\mu_k` by solving for :math:`\\Sigma \\omega =\n \\mu_k`, thus avoiding the explicit computation of the inverse\n :math:`\\Sigma^{-1}`.\n@@ -231,11 +253,6 @@ transform, and it supports shrinkage. However, the 'eigen' solver needs to\n compute the covariance matrix, so it might not be suitable for situations with\n a high number of features.\n \n-.. topic:: Examples:\n-\n- :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers\n- with and without shrinkage.\n-\n .. topic:: References:\n \n .. [1] \"The Elements of Statistical Learning\", Hastie T., Tibshirani R.,\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex e8225811194cc..98ccc5d143bcb 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -180,6 +180,13 @@ Changelog\n :func:`decomposition.NMF.non_negative_factorization`.\n :pr:`17414` by :user:`Bharat Raghunathan <Bharat123rox>`.\n \n+:mod:`sklearn.discriminant_analysis`\n+....................................\n+\n+- |Enhancement| :class:`discriminant_analysis.LinearDiscriminantAnalysis` can\n+ now use custom covariance estimate by setting the `covariance_estimator`\n+ parameter. :pr:`14446` by :user:`Hugo Richard <hugorichard>`\n+\n :mod:`sklearn.ensemble`\n .......................\n \n"
}
] |
0.24
|
ab3dc9fdf31f35854b390168ac68fb304951305f
|
[
"sklearn/tests/test_discriminant_analysis.py::test_lda_orthogonality",
"sklearn/tests/test_discriminant_analysis.py::test_raises_value_error_on_same_number_of_classes_and_samples[svd, lsqr]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_dimension_warning[3-5]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[float64-float64]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_dimension_warning[3-3]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_dimension_warning[5-5]",
"sklearn/tests/test_discriminant_analysis.py::test_covariance",
"sklearn/tests/test_discriminant_analysis.py::test_lda_priors",
"sklearn/tests/test_discriminant_analysis.py::test_qda_regularization",
"sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[svd-3]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_explained_variance_ratio",
"sklearn/tests/test_discriminant_analysis.py::test_lda_numeric_consistency_float32_float64",
"sklearn/tests/test_discriminant_analysis.py::test_lda_coefs",
"sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[svd-2]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_store_covariance",
"sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[float32-float32]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[lsqr-3]",
"sklearn/tests/test_discriminant_analysis.py::test_qda_priors",
"sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[eigen-2]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[int64-float64]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[lsqr-2]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_transform",
"sklearn/tests/test_discriminant_analysis.py::test_raises_value_error_on_same_number_of_classes_and_samples[eigen]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_dimension_warning[5-3]",
"sklearn/tests/test_discriminant_analysis.py::test_qda",
"sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[eigen-3]",
"sklearn/tests/test_discriminant_analysis.py::test_qda_store_covariance",
"sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[int32-float64]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_scaling"
] |
[
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[7]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_predict",
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[1]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_ledoitwolf",
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[5]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[9]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[6]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[0]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[3]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[2]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[8]",
"sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[4]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "error_msg",
"name": "shrinkage must be a float or a string"
}
]
}
|
[
{
"path": "doc/modules/lda_qda.rst",
"old_path": "a/doc/modules/lda_qda.rst",
"new_path": "b/doc/modules/lda_qda.rst",
"metadata": "diff --git a/doc/modules/lda_qda.rst b/doc/modules/lda_qda.rst\nindex c3ac94dedefa9..e8f25d2c66930 100644\n--- a/doc/modules/lda_qda.rst\n+++ b/doc/modules/lda_qda.rst\n@@ -163,8 +163,8 @@ transformed class means :math:`\\mu^*_k`). This :math:`L` corresponds to the\n :func:`~discriminant_analysis.LinearDiscriminantAnalysis.transform` method. See\n [1]_ for more details.\n \n-Shrinkage\n-=========\n+Shrinkage and Covariance Estimator\n+==================================\n \n Shrinkage is a form of regularization used to improve the estimation of\n covariance matrices in situations where the number of training samples is\n@@ -187,12 +187,33 @@ an estimate for the covariance matrix). Setting this parameter to a value\n between these two extrema will estimate a shrunk version of the covariance\n matrix.\n \n+The shrinked Ledoit and Wolf estimator of covariance may not always be the\n+best choice. For example if the distribution of the data\n+is normally distributed, the\n+Oracle Shrinkage Approximating estimator :class:`sklearn.covariance.OAS`\n+yields a smaller Mean Squared Error than the one given by Ledoit and Wolf's\n+formula used with shrinkage=\"auto\". In LDA, the data are assumed to be gaussian\n+conditionally to the class. If these assumptions hold, using LDA with\n+the OAS estimator of covariance will yield a better classification \n+accuracy than if Ledoit and Wolf or the empirical covariance estimator is used.\n+\n+The covariance estimator can be chosen using with the ``covariance_estimator``\n+parameter of the :class:`discriminant_analysis.LinearDiscriminantAnalysis`\n+class. A covariance estimator should have a :term:`fit` method and a\n+``covariance_`` attribute like all covariance estimators in the\n+:mod:`sklearn.covariance` module.\n+\n+\n .. |shrinkage| image:: ../auto_examples/classification/images/sphx_glr_plot_lda_001.png\n :target: ../auto_examples/classification/plot_lda.html\n :scale: 75\n \n .. centered:: |shrinkage|\n \n+.. topic:: Examples:\n+\n+ :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers\n+ with Empirical, Ledoit Wolf and OAS covariance estimator.\n \n Estimation algorithms\n =====================\n@@ -220,7 +241,8 @@ and the SVD of the class-wise mean vectors.\n \n The 'lsqr' solver is an efficient algorithm that only works for\n classification. It needs to explicitly compute the covariance matrix\n-:math:`\\Sigma`, and supports shrinkage. This solver computes the coefficients\n+:math:`\\Sigma`, and supports shrinkage and custom covariance estimators.\n+This solver computes the coefficients\n :math:`\\omega_k = \\Sigma^{-1}\\mu_k` by solving for :math:`\\Sigma \\omega =\n \\mu_k`, thus avoiding the explicit computation of the inverse\n :math:`\\Sigma^{-1}`.\n@@ -231,11 +253,6 @@ transform, and it supports shrinkage. However, the 'eigen' solver needs to\n compute the covariance matrix, so it might not be suitable for situations with\n a high number of features.\n \n-.. topic:: Examples:\n-\n- :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers\n- with and without shrinkage.\n-\n .. topic:: References:\n \n .. [1] \"The Elements of Statistical Learning\", Hastie T., Tibshirani R.,\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex e8225811194cc..98ccc5d143bcb 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -180,6 +180,13 @@ Changelog\n :func:`decomposition.NMF.non_negative_factorization`.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.discriminant_analysis`\n+....................................\n+\n+- |Enhancement| :class:`discriminant_analysis.LinearDiscriminantAnalysis` can\n+ now use custom covariance estimate by setting the `covariance_estimator`\n+ parameter. :pr:`<PRID>` by :user:`<NAME>`\n+\n :mod:`sklearn.ensemble`\n .......................\n \n"
}
] |
diff --git a/doc/modules/lda_qda.rst b/doc/modules/lda_qda.rst
index c3ac94dedefa9..e8f25d2c66930 100644
--- a/doc/modules/lda_qda.rst
+++ b/doc/modules/lda_qda.rst
@@ -163,8 +163,8 @@ transformed class means :math:`\mu^*_k`). This :math:`L` corresponds to the
:func:`~discriminant_analysis.LinearDiscriminantAnalysis.transform` method. See
[1]_ for more details.
-Shrinkage
-=========
+Shrinkage and Covariance Estimator
+==================================
Shrinkage is a form of regularization used to improve the estimation of
covariance matrices in situations where the number of training samples is
@@ -187,12 +187,33 @@ an estimate for the covariance matrix). Setting this parameter to a value
between these two extrema will estimate a shrunk version of the covariance
matrix.
+The shrinked Ledoit and Wolf estimator of covariance may not always be the
+best choice. For example if the distribution of the data
+is normally distributed, the
+Oracle Shrinkage Approximating estimator :class:`sklearn.covariance.OAS`
+yields a smaller Mean Squared Error than the one given by Ledoit and Wolf's
+formula used with shrinkage="auto". In LDA, the data are assumed to be gaussian
+conditionally to the class. If these assumptions hold, using LDA with
+the OAS estimator of covariance will yield a better classification
+accuracy than if Ledoit and Wolf or the empirical covariance estimator is used.
+
+The covariance estimator can be chosen using with the ``covariance_estimator``
+parameter of the :class:`discriminant_analysis.LinearDiscriminantAnalysis`
+class. A covariance estimator should have a :term:`fit` method and a
+``covariance_`` attribute like all covariance estimators in the
+:mod:`sklearn.covariance` module.
+
+
.. |shrinkage| image:: ../auto_examples/classification/images/sphx_glr_plot_lda_001.png
:target: ../auto_examples/classification/plot_lda.html
:scale: 75
.. centered:: |shrinkage|
+.. topic:: Examples:
+
+ :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers
+ with Empirical, Ledoit Wolf and OAS covariance estimator.
Estimation algorithms
=====================
@@ -220,7 +241,8 @@ and the SVD of the class-wise mean vectors.
The 'lsqr' solver is an efficient algorithm that only works for
classification. It needs to explicitly compute the covariance matrix
-:math:`\Sigma`, and supports shrinkage. This solver computes the coefficients
+:math:`\Sigma`, and supports shrinkage and custom covariance estimators.
+This solver computes the coefficients
:math:`\omega_k = \Sigma^{-1}\mu_k` by solving for :math:`\Sigma \omega =
\mu_k`, thus avoiding the explicit computation of the inverse
:math:`\Sigma^{-1}`.
@@ -231,11 +253,6 @@ transform, and it supports shrinkage. However, the 'eigen' solver needs to
compute the covariance matrix, so it might not be suitable for situations with
a high number of features.
-.. topic:: Examples:
-
- :ref:`sphx_glr_auto_examples_classification_plot_lda.py`: Comparison of LDA classifiers
- with and without shrinkage.
-
.. topic:: References:
.. [1] "The Elements of Statistical Learning", Hastie T., Tibshirani R.,
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index e8225811194cc..98ccc5d143bcb 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -180,6 +180,13 @@ Changelog
:func:`decomposition.NMF.non_negative_factorization`.
:pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.discriminant_analysis`
+....................................
+
+- |Enhancement| :class:`discriminant_analysis.LinearDiscriminantAnalysis` can
+ now use custom covariance estimate by setting the `covariance_estimator`
+ parameter. :pr:`<PRID>` by :user:`<NAME>`
+
:mod:`sklearn.ensemble`
.......................
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'error_msg', 'name': 'shrinkage must be a float or a string'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17414
|
https://github.com/scikit-learn/scikit-learn/pull/17414
|
diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst
index 6d441004f8ae6..7e8e79d9d8bdd 100644
--- a/doc/modules/decomposition.rst
+++ b/doc/modules/decomposition.rst
@@ -759,9 +759,9 @@ and the regularized objective function is:
+ \frac{\alpha(1-\rho)}{2} ||W||_{\mathrm{Fro}} ^ 2
+ \frac{\alpha(1-\rho)}{2} ||H||_{\mathrm{Fro}} ^ 2
-:class:`NMF` regularizes both W and H. The public function
-:func:`non_negative_factorization` allows a finer control through the
-:attr:`regularization` attribute, and may regularize only W, only H, or both.
+:class:`NMF` regularizes both W and H by default. The :attr:`regularization`
+parameter allows for finer control, with which only W, only H,
+or both can be regularized.
NMF with a beta-divergence
--------------------------
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 217e0ed61cfde..c46bb51793ad1 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -114,6 +114,12 @@ Changelog
argument `rotation`, which can take the value `None`, `'varimax'` or `'quartimax'.`
:pr:`11064` by :user:`Jona Sassenhagen <jona-sassenhagen>`.
+- |Enhancement| :class:`decomposition.NMF` now supports the optional parameter
+ `regularization`, which can take the values `None`, `components`,
+ `transformation` or `both`, in accordance with
+ :func:`decomposition.NMF.non_negative_factorization`.
+ :pr:`17414` by :user:`Bharat Raghunathan <Bharat123rox>`.
+
:mod:`sklearn.ensemble`
.......................
diff --git a/sklearn/decomposition/_nmf.py b/sklearn/decomposition/_nmf.py
index 24993102bb424..ebc905a7fbcb3 100644
--- a/sklearn/decomposition/_nmf.py
+++ b/sklearn/decomposition/_nmf.py
@@ -1081,7 +1081,7 @@ def non_negative_factorization(X, W=None, H=None, n_components=None, *,
class NMF(TransformerMixin, BaseEstimator):
- r"""Non-Negative Matrix Factorization (NMF)
+ """Non-Negative Matrix Factorization (NMF)
Find two non-negative matrices (W, H) whose product approximates the non-
negative matrix X. This factorization can be used for example for
@@ -1097,8 +1097,8 @@ class NMF(TransformerMixin, BaseEstimator):
Where::
- ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
- ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)
+ ||A||_Fro^2 = \\sum_{i,j} A_{ij}^2 (Frobenius norm)
+ ||vec(A)||_1 = \\sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)
For multiplicative-update ('mu') solver, the Frobenius norm
(0.5 * ||X - WH||_Fro^2) can be changed into another beta-divergence loss,
@@ -1198,6 +1198,13 @@ class NMF(TransformerMixin, BaseEstimator):
.. versionadded:: 0.17
*shuffle* parameter used in the Coordinate Descent solver.
+ regularization : {'both', 'components', 'transformation', None}, \
+ default='both'
+ Select whether the regularization affects the components (H), the
+ transformation (W), both or none of them.
+
+ .. versionadded:: 0.24
+
Attributes
----------
components_ : array, [n_components, n_features]
@@ -1239,7 +1246,7 @@ class NMF(TransformerMixin, BaseEstimator):
def __init__(self, n_components=None, *, init=None, solver='cd',
beta_loss='frobenius', tol=1e-4, max_iter=200,
random_state=None, alpha=0., l1_ratio=0., verbose=0,
- shuffle=False):
+ shuffle=False, regularization='both'):
self.n_components = n_components
self.init = init
self.solver = solver
@@ -1251,6 +1258,7 @@ def __init__(self, n_components=None, *, init=None, solver='cd',
self.l1_ratio = l1_ratio
self.verbose = verbose
self.shuffle = shuffle
+ self.regularization = regularization
def _more_tags(self):
return {'requires_positive_X': True}
@@ -1285,7 +1293,7 @@ def fit_transform(self, X, y=None, W=None, H=None):
X=X, W=W, H=H, n_components=self.n_components, init=self.init,
update_H=True, solver=self.solver, beta_loss=self.beta_loss,
tol=self.tol, max_iter=self.max_iter, alpha=self.alpha,
- l1_ratio=self.l1_ratio, regularization='both',
+ l1_ratio=self.l1_ratio, regularization=self.regularization,
random_state=self.random_state, verbose=self.verbose,
shuffle=self.shuffle)
@@ -1334,9 +1342,10 @@ def transform(self, X):
X=X, W=None, H=self.components_, n_components=self.n_components_,
init=self.init, update_H=False, solver=self.solver,
beta_loss=self.beta_loss, tol=self.tol, max_iter=self.max_iter,
- alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both',
- random_state=self.random_state, verbose=self.verbose,
- shuffle=self.shuffle)
+ alpha=self.alpha, l1_ratio=self.l1_ratio,
+ regularization=self.regularization,
+ random_state=self.random_state,
+ verbose=self.verbose, shuffle=self.shuffle)
return W
|
diff --git a/sklearn/decomposition/tests/test_nmf.py b/sklearn/decomposition/tests/test_nmf.py
index 439ad0697031f..ea48be660a734 100644
--- a/sklearn/decomposition/tests/test_nmf.py
+++ b/sklearn/decomposition/tests/test_nmf.py
@@ -20,12 +20,14 @@
@pytest.mark.parametrize('solver', ['cd', 'mu'])
-def test_convergence_warning(solver):
[email protected]('regularization',
+ [None, 'both', 'components', 'transformation'])
+def test_convergence_warning(solver, regularization):
convergence_warning = ("Maximum number of iterations 1 reached. "
"Increase it to improve convergence.")
A = np.ones((2, 2))
with pytest.warns(ConvergenceWarning, match=convergence_warning):
- NMF(solver=solver, max_iter=1).fit(A)
+ NMF(solver=solver, regularization=regularization, max_iter=1).fit(A)
def test_initialize_nn_output():
@@ -44,6 +46,8 @@ def test_parameter_checking():
assert_raise_message(ValueError, msg, NMF(solver=name).fit, A)
msg = "Invalid init parameter: got 'spam' instead of one of"
assert_raise_message(ValueError, msg, NMF(init=name).fit, A)
+ msg = "Invalid regularization parameter: got 'spam' instead of one of"
+ assert_raise_message(ValueError, msg, NMF(regularization=name).fit, A)
msg = "Invalid beta_loss parameter: got 'spam' instead of one"
assert_raise_message(ValueError, msg, NMF(solver='mu',
beta_loss=name).fit, A)
@@ -97,36 +101,43 @@ def test_initialize_variants():
# ignore UserWarning raised when both solver='mu' and init='nndsvd'
@ignore_warnings(category=UserWarning)
-def test_nmf_fit_nn_output():
[email protected]('solver', ('cd', 'mu'))
[email protected]('init',
+ (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'))
[email protected]('regularization',
+ (None, 'both', 'components', 'transformation'))
+def test_nmf_fit_nn_output(solver, init, regularization):
# Test that the decomposition does not contain negative values
A = np.c_[5. - np.arange(1, 6),
5. + np.arange(1, 6)]
- for solver in ('cd', 'mu'):
- for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'):
- model = NMF(n_components=2, solver=solver, init=init,
- random_state=0)
- transf = model.fit_transform(A)
- assert not((model.components_ < 0).any() or
- (transf < 0).any())
+ model = NMF(n_components=2, solver=solver, init=init,
+ regularization=regularization, random_state=0)
+ transf = model.fit_transform(A)
+ assert not((model.components_ < 0).any() or
+ (transf < 0).any())
@pytest.mark.parametrize('solver', ('cd', 'mu'))
-def test_nmf_fit_close(solver):
[email protected]('regularization',
+ (None, 'both', 'components', 'transformation'))
+def test_nmf_fit_close(solver, regularization):
rng = np.random.mtrand.RandomState(42)
# Test that the fit is not too far away
pnmf = NMF(5, solver=solver, init='nndsvdar', random_state=0,
- max_iter=600)
+ regularization=regularization, max_iter=600)
X = np.abs(rng.randn(6, 5))
assert pnmf.fit(X).reconstruction_err_ < 0.1
@pytest.mark.parametrize('solver', ('cd', 'mu'))
-def test_nmf_transform(solver):
[email protected]('regularization',
+ (None, 'both', 'components', 'transformation'))
+def test_nmf_transform(solver, regularization):
# Test that NMF.transform returns close values
rng = np.random.mtrand.RandomState(42)
A = np.abs(rng.randn(6, 5))
m = NMF(solver=solver, n_components=3, init='random',
- random_state=0, tol=1e-5)
+ regularization=regularization, random_state=0, tol=1e-5)
ft = m.fit_transform(A)
t = m.transform(A)
assert_array_almost_equal(ft, t, decimal=2)
@@ -148,12 +159,14 @@ def test_nmf_transform_custom_init():
@pytest.mark.parametrize('solver', ('cd', 'mu'))
-def test_nmf_inverse_transform(solver):
[email protected]('regularization',
+ (None, 'both', 'components', 'transformation'))
+def test_nmf_inverse_transform(solver, regularization):
# Test that NMF.inverse_transform returns close values
random_state = np.random.RandomState(0)
A = np.abs(random_state.randn(6, 4))
m = NMF(solver=solver, n_components=4, init='random', random_state=0,
- max_iter=1000)
+ regularization=regularization, max_iter=1000)
ft = m.fit_transform(A)
A_new = m.inverse_transform(ft)
assert_array_almost_equal(A, A_new, decimal=2)
@@ -167,7 +180,9 @@ def test_n_components_greater_n_features():
@pytest.mark.parametrize('solver', ['cd', 'mu'])
-def test_nmf_sparse_input(solver):
[email protected]('regularization',
+ [None, 'both', 'components', 'transformation'])
+def test_nmf_sparse_input(solver, regularization):
# Test that sparse matrices are accepted as input
from scipy.sparse import csc_matrix
@@ -177,7 +192,8 @@ def test_nmf_sparse_input(solver):
A_sparse = csc_matrix(A)
est1 = NMF(solver=solver, n_components=5, init='random',
- random_state=0, tol=1e-2)
+ regularization=regularization, random_state=0,
+ tol=1e-2)
est2 = clone(est1)
W1 = est1.fit_transform(A)
@@ -204,28 +220,32 @@ def test_nmf_sparse_transform():
assert_array_almost_equal(A_fit_tr, A_tr, decimal=1)
-def test_non_negative_factorization_consistency():
[email protected]('init', ['random', 'nndsvd'])
[email protected]('solver', ('cd', 'mu'))
[email protected]('regularization',
+ (None, 'both', 'components', 'transformation'))
+def test_non_negative_factorization_consistency(init, solver, regularization):
# Test that the function is called in the same way, either directly
# or through the NMF class
rng = np.random.mtrand.RandomState(42)
A = np.abs(rng.randn(10, 10))
A[:, 2 * np.arange(5)] = 0
- for init in ['random', 'nndsvd']:
- for solver in ('cd', 'mu'):
- W_nmf, H, _ = non_negative_factorization(
- A, init=init, solver=solver, random_state=1, tol=1e-2)
- W_nmf_2, _, _ = non_negative_factorization(
- A, H=H, update_H=False, init=init, solver=solver,
- random_state=1, tol=1e-2)
+ W_nmf, H, _ = non_negative_factorization(
+ A, init=init, solver=solver,
+ regularization=regularization, random_state=1, tol=1e-2)
+ W_nmf_2, _, _ = non_negative_factorization(
+ A, H=H, update_H=False, init=init, solver=solver,
+ regularization=regularization, random_state=1, tol=1e-2)
- model_class = NMF(init=init, solver=solver, random_state=1,
- tol=1e-2)
- W_cls = model_class.fit_transform(A)
- W_cls_2 = model_class.transform(A)
+ model_class = NMF(init=init, solver=solver,
+ regularization=regularization,
+ random_state=1, tol=1e-2)
+ W_cls = model_class.fit_transform(A)
+ W_cls_2 = model_class.transform(A)
- assert_array_almost_equal(W_nmf, W_cls, decimal=10)
- assert_array_almost_equal(W_nmf_2, W_cls_2, decimal=10)
+ assert_array_almost_equal(W_nmf, W_cls, decimal=10)
+ assert_array_almost_equal(W_nmf_2, W_cls_2, decimal=10)
def test_non_negative_factorization_checking():
@@ -515,11 +535,13 @@ def test_nmf_underflow():
(np.int32, np.float64),
(np.int64, np.float64)])
@pytest.mark.parametrize("solver", ["cd", "mu"])
-def test_nmf_dtype_match(dtype_in, dtype_out, solver):
[email protected]("regularization",
+ (None, "both", "components", "transformation"))
+def test_nmf_dtype_match(dtype_in, dtype_out, solver, regularization):
# Check that NMF preserves dtype (float32 and float64)
X = np.random.RandomState(0).randn(20, 15).astype(dtype_in, copy=False)
np.abs(X, out=X)
- nmf = NMF(solver=solver)
+ nmf = NMF(solver=solver, regularization=regularization)
assert nmf.fit(X).transform(X).dtype == dtype_out
assert nmf.fit_transform(X).dtype == dtype_out
@@ -527,13 +549,15 @@ def test_nmf_dtype_match(dtype_in, dtype_out, solver):
@pytest.mark.parametrize("solver", ["cd", "mu"])
-def test_nmf_float32_float64_consistency(solver):
[email protected]("regularization",
+ (None, "both", "components", "transformation"))
+def test_nmf_float32_float64_consistency(solver, regularization):
# Check that the result of NMF is the same between float32 and float64
X = np.random.RandomState(0).randn(50, 7)
np.abs(X, out=X)
- nmf32 = NMF(solver=solver, random_state=0)
+ nmf32 = NMF(solver=solver, regularization=regularization, random_state=0)
W32 = nmf32.fit_transform(X.astype(np.float32))
- nmf64 = NMF(solver=solver, random_state=0)
+ nmf64 = NMF(solver=solver, regularization=regularization, random_state=0)
W64 = nmf64.fit_transform(X)
assert_allclose(W32, W64, rtol=1e-6, atol=1e-5)
|
[
{
"path": "doc/modules/decomposition.rst",
"old_path": "a/doc/modules/decomposition.rst",
"new_path": "b/doc/modules/decomposition.rst",
"metadata": "diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst\nindex 6d441004f8ae6..7e8e79d9d8bdd 100644\n--- a/doc/modules/decomposition.rst\n+++ b/doc/modules/decomposition.rst\n@@ -759,9 +759,9 @@ and the regularized objective function is:\n + \\frac{\\alpha(1-\\rho)}{2} ||W||_{\\mathrm{Fro}} ^ 2\n + \\frac{\\alpha(1-\\rho)}{2} ||H||_{\\mathrm{Fro}} ^ 2\n \n-:class:`NMF` regularizes both W and H. The public function\n-:func:`non_negative_factorization` allows a finer control through the\n-:attr:`regularization` attribute, and may regularize only W, only H, or both.\n+:class:`NMF` regularizes both W and H by default. The :attr:`regularization`\n+parameter allows for finer control, with which only W, only H,\n+or both can be regularized.\n \n NMF with a beta-divergence\n --------------------------\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 217e0ed61cfde..c46bb51793ad1 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -114,6 +114,12 @@ Changelog\n argument `rotation`, which can take the value `None`, `'varimax'` or `'quartimax'.`\n :pr:`11064` by :user:`Jona Sassenhagen <jona-sassenhagen>`.\n \n+- |Enhancement| :class:`decomposition.NMF` now supports the optional parameter\n+ `regularization`, which can take the values `None`, `components`,\n+ `transformation` or `both`, in accordance with\n+ :func:`decomposition.NMF.non_negative_factorization`.\n+ :pr:`17414` by :user:`Bharat Raghunathan <Bharat123rox>`.\n+\n :mod:`sklearn.ensemble`\n .......................\n \n"
}
] |
0.24
|
b2a7d3646d406b50dd46bab0cc685971601a3de3
|
[
"sklearn/decomposition/tests/test_nmf.py::test_special_sparse_dot",
"sklearn/decomposition/tests/test_nmf.py::test_beta_divergence",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_multiplicative_update_sparse",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_negative_beta_loss",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_decreasing",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_custom_init_dtype_error",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_underflow",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_checking",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_regularization",
"sklearn/decomposition/tests/test_nmf.py::test_initialize_variants",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_transform",
"sklearn/decomposition/tests/test_nmf.py::test_initialize_nn_output",
"sklearn/decomposition/tests/test_nmf.py::test_initialize_close",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform_custom_init",
"sklearn/decomposition/tests/test_nmf.py::test_n_components_greater_n_features"
] |
[
"sklearn/decomposition/tests/test_nmf.py::test_parameter_checking",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[both-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[components-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[components-mu-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[None-cd-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-nndsvd-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[components-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[transformation-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[components-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[both-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[transformation-cd-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[transformation-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[transformation-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-random-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[transformation-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[both-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[components-cd-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-nndsvdar-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[both-mu-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[transformation-mu-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[None-cd-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[both-cd-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-nndsvdar-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-nndsvdar-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[both-cd-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[components-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[components-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-nndsvda-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-nndsvda-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-nndsvda-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[transformation-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[components-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[both-cd-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[components-cd-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-nndsvdar-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[None-mu-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[components-mu-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[components-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[transformation-mu-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[transformation-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[both-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[both-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-nndsvd-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[both-cd-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[components-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[None-cd-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[transformation-mu-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-nndsvdar-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[transformation-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[None-mu-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[components-cd-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-random-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-random-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-random-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[both-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[both-mu-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[None-mu-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-nndsvd-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-nndsvd-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[transformation-mu-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-nndsvd-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[components-cd-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-random-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[transformation-cd-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-nndsvdar-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-nndsvda-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[components-mu-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[components-mu-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[None-mu-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-nndsvda-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-random-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[both-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[both-mu-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[None-cd-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[None-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-nndsvd-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[both-random-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-nndsvda-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[transformation-mu-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_sparse_input[components-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[transformation-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[None-cd-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-nndsvdar-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[components-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[components-cd-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-random-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[both-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[None-mu-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-nndsvd-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[both-mu-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[transformation-cd-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[components-mu-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[transformation-cd-float64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[components-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[transformation-cd-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-nndsvd-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[transformation-nndsvdar-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[both-cd-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[both-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[both-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[both-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[transformation-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[None-cd-random]",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[both-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[components-cd-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_transform[transformation-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[both-mu-int32-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_close[None-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[both-mu-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_float32_float64_consistency[transformation-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[None-mu-nndsvd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_inverse_transform[transformation-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[components-mu-float32-float32]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[transformation-mu-int64-float64]",
"sklearn/decomposition/tests/test_nmf.py::test_non_negative_factorization_consistency[transformation-cd-random]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[components-nndsvda-mu]",
"sklearn/decomposition/tests/test_nmf.py::test_convergence_warning[components-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_fit_nn_output[None-nndsvda-cd]",
"sklearn/decomposition/tests/test_nmf.py::test_nmf_dtype_match[both-cd-float32-float32]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/decomposition.rst",
"old_path": "a/doc/modules/decomposition.rst",
"new_path": "b/doc/modules/decomposition.rst",
"metadata": "diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst\nindex 6d441004f8ae6..7e8e79d9d8bdd 100644\n--- a/doc/modules/decomposition.rst\n+++ b/doc/modules/decomposition.rst\n@@ -759,9 +759,9 @@ and the regularized objective function is:\n + \\frac{\\alpha(1-\\rho)}{2} ||W||_{\\mathrm{Fro}} ^ 2\n + \\frac{\\alpha(1-\\rho)}{2} ||H||_{\\mathrm{Fro}} ^ 2\n \n-:class:`NMF` regularizes both W and H. The public function\n-:func:`non_negative_factorization` allows a finer control through the\n-:attr:`regularization` attribute, and may regularize only W, only H, or both.\n+:class:`NMF` regularizes both W and H by default. The :attr:`regularization`\n+parameter allows for finer control, with which only W, only H,\n+or both can be regularized.\n \n NMF with a beta-divergence\n --------------------------\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 217e0ed61cfde..c46bb51793ad1 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -114,6 +114,12 @@ Changelog\n argument `rotation`, which can take the value `None`, `'varimax'` or `'quartimax'.`\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Enhancement| :class:`decomposition.NMF` now supports the optional parameter\n+ `regularization`, which can take the values `None`, `components`,\n+ `transformation` or `both`, in accordance with\n+ :func:`decomposition.NMF.non_negative_factorization`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.ensemble`\n .......................\n \n"
}
] |
diff --git a/doc/modules/decomposition.rst b/doc/modules/decomposition.rst
index 6d441004f8ae6..7e8e79d9d8bdd 100644
--- a/doc/modules/decomposition.rst
+++ b/doc/modules/decomposition.rst
@@ -759,9 +759,9 @@ and the regularized objective function is:
+ \frac{\alpha(1-\rho)}{2} ||W||_{\mathrm{Fro}} ^ 2
+ \frac{\alpha(1-\rho)}{2} ||H||_{\mathrm{Fro}} ^ 2
-:class:`NMF` regularizes both W and H. The public function
-:func:`non_negative_factorization` allows a finer control through the
-:attr:`regularization` attribute, and may regularize only W, only H, or both.
+:class:`NMF` regularizes both W and H by default. The :attr:`regularization`
+parameter allows for finer control, with which only W, only H,
+or both can be regularized.
NMF with a beta-divergence
--------------------------
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 217e0ed61cfde..c46bb51793ad1 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -114,6 +114,12 @@ Changelog
argument `rotation`, which can take the value `None`, `'varimax'` or `'quartimax'.`
:pr:`<PRID>` by :user:`<NAME>`.
+- |Enhancement| :class:`decomposition.NMF` now supports the optional parameter
+ `regularization`, which can take the values `None`, `components`,
+ `transformation` or `both`, in accordance with
+ :func:`decomposition.NMF.non_negative_factorization`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.ensemble`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20619
|
https://github.com/scikit-learn/scikit-learn/pull/20619
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 2f7e7590a1c6b..6685ca582428a 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -488,6 +488,9 @@ Changelog
:pr:`18649` by :user:`Leandro Hermida <hermidalc>` and
:user:`Rodion Martynov <marrodion>`.
+- |Enhancement| warn only once in the main process for per-split fit failures
+ in cross-validation. :pr:`20619` by :user:`Loïc Estève <lesteve>`
+
:mod:`sklearn.naive_bayes`
..........................
diff --git a/sklearn/model_selection/_search.py b/sklearn/model_selection/_search.py
index decb88212933a..93e481ba0b77d 100644
--- a/sklearn/model_selection/_search.py
+++ b/sklearn/model_selection/_search.py
@@ -31,6 +31,7 @@
from ._validation import _aggregate_score_dicts
from ._validation import _insert_error_scores
from ._validation import _normalize_score_results
+from ._validation import _warn_about_fit_failures
from ..exceptions import NotFittedError
from joblib import Parallel
from ..utils import check_random_state
@@ -793,14 +794,18 @@ def evaluate_candidates(candidate_params, cv=None, more_results=None):
"splits, got {}".format(n_splits, len(out) // n_candidates)
)
+ _warn_about_fit_failures(out, self.error_score)
+
# For callable self.scoring, the return type is only know after
# calling. If the return type is a dictionary, the error scores
# can now be inserted with the correct key. The type checking
# of out will be done in `_insert_error_scores`.
if callable(self.scoring):
_insert_error_scores(out, self.error_score)
+
all_candidate_params.extend(candidate_params)
all_out.extend(out)
+
if more_results is not None:
for key, value in more_results.items():
all_more_results[key].extend(value)
diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py
index 90fd8963bb8ae..8650997c50f55 100644
--- a/sklearn/model_selection/_validation.py
+++ b/sklearn/model_selection/_validation.py
@@ -15,6 +15,7 @@
import time
from traceback import format_exc
from contextlib import suppress
+from collections import Counter
import numpy as np
import scipy.sparse as sp
@@ -281,6 +282,8 @@ def cross_validate(
for train, test in cv.split(X, y, groups)
)
+ _warn_about_fit_failures(results, error_score)
+
# For callabe scoring, the return type is only know after calling. If the
# return type is a dictionary, the error scores can now be inserted with
# the correct key.
@@ -318,7 +321,7 @@ def _insert_error_scores(results, error_score):
successful_score = None
failed_indices = []
for i, result in enumerate(results):
- if result["fit_failed"]:
+ if result["fit_error"] is not None:
failed_indices.append(i)
elif successful_score is None:
successful_score = result["test_scores"]
@@ -343,6 +346,31 @@ def _normalize_score_results(scores, scaler_score_key="score"):
return {scaler_score_key: scores}
+def _warn_about_fit_failures(results, error_score):
+ fit_errors = [
+ result["fit_error"] for result in results if result["fit_error"] is not None
+ ]
+ if fit_errors:
+ num_failed_fits = len(fit_errors)
+ num_fits = len(results)
+ fit_errors_counter = Counter(fit_errors)
+ delimiter = "-" * 80 + "\n"
+ fit_errors_summary = "\n".join(
+ f"{delimiter}{n} fits failed with the following error:\n{error}"
+ for error, n in fit_errors_counter.items()
+ )
+
+ some_fits_failed_message = (
+ f"\n{num_failed_fits} fits failed out of a total of {num_fits}.\n"
+ "The score on these train-test partitions for these parameters"
+ f" will be set to {error_score}.\n"
+ "If these failures are not expected, you can try to debug them "
+ "by setting error_score='raise'.\n\n"
+ f"Below are more details about the failures:\n{fit_errors_summary}"
+ )
+ warnings.warn(some_fits_failed_message, FitFailedWarning)
+
+
def cross_val_score(
estimator,
X,
@@ -598,8 +626,8 @@ def _fit_and_score(
The parameters that have been evaluated.
estimator : estimator object
The fitted estimator.
- fit_failed : bool
- The estimator failed to fit.
+ fit_error : str or None
+ Traceback str if the fit failed, None if the fit succeeded.
"""
if not isinstance(error_score, numbers.Number) and error_score != "raise":
raise ValueError(
@@ -666,15 +694,9 @@ def _fit_and_score(
test_scores = error_score
if return_train_score:
train_scores = error_score
- warnings.warn(
- "Estimator fit failed. The score on this train-test"
- " partition for these parameters will be set to %f. "
- "Details: \n%s" % (error_score, format_exc()),
- FitFailedWarning,
- )
- result["fit_failed"] = True
+ result["fit_error"] = format_exc()
else:
- result["fit_failed"] = False
+ result["fit_error"] = None
fit_time = time.time() - start_time
test_scores = _score(estimator, X_test, y_test, scorer, error_score)
|
diff --git a/sklearn/model_selection/tests/test_search.py b/sklearn/model_selection/tests/test_search.py
index e878eca519467..5c9048658faba 100644
--- a/sklearn/model_selection/tests/test_search.py
+++ b/sklearn/model_selection/tests/test_search.py
@@ -1565,9 +1565,13 @@ def test_grid_search_failing_classifier():
refit=False,
error_score=0.0,
)
- warning_message = (
- "Estimator fit failed. The score on this train-test partition "
- "for these parameters will be set to 0.0.*."
+
+ warning_message = re.compile(
+ "5 fits failed.+total of 15.+The score on these"
+ r" train-test partitions for these parameters will be set to 0\.0.+"
+ "5 fits failed with the following error.+ValueError.+Failing classifier failed"
+ " as required",
+ flags=re.DOTALL,
)
with pytest.warns(FitFailedWarning, match=warning_message):
gs.fit(X, y)
@@ -1598,9 +1602,12 @@ def get_cand_scores(i):
refit=False,
error_score=float("nan"),
)
- warning_message = (
- "Estimator fit failed. The score on this train-test partition "
- "for these parameters will be set to nan."
+ warning_message = re.compile(
+ "5 fits failed.+total of 15.+The score on these"
+ r" train-test partitions for these parameters will be set to nan.+"
+ "5 fits failed with the following error.+ValueError.+Failing classifier failed"
+ " as required",
+ flags=re.DOTALL,
)
with pytest.warns(FitFailedWarning, match=warning_message):
gs.fit(X, y)
@@ -2112,7 +2119,12 @@ def custom_scorer(est, X, y):
error_score=0.1,
)
- with pytest.warns(FitFailedWarning, match="Estimator fit failed"):
+ warning_message = re.compile(
+ "5 fits failed.+total of 15.+The score on these"
+ r" train-test partitions for these parameters will be set to 0\.1",
+ flags=re.DOTALL,
+ )
+ with pytest.warns(FitFailedWarning, match=warning_message):
gs.fit(X, y)
assert_allclose(gs.cv_results_["mean_test_acc"], [1, 1, 0.1])
@@ -2135,9 +2147,10 @@ def custom_scorer(est, X, y):
error_score=0.1,
)
- with pytest.warns(FitFailedWarning, match="Estimator fit failed"), pytest.raises(
- NotFittedError, match="All estimators failed to fit"
- ):
+ with pytest.warns(
+ FitFailedWarning,
+ match="15 fits failed.+total of 15",
+ ), pytest.raises(NotFittedError, match="All estimators failed to fit"):
gs.fit(X, y)
diff --git a/sklearn/model_selection/tests/test_validation.py b/sklearn/model_selection/tests/test_validation.py
index e9252715a8a64..ebfbfec1092f7 100644
--- a/sklearn/model_selection/tests/test_validation.py
+++ b/sklearn/model_selection/tests/test_validation.py
@@ -2082,37 +2082,6 @@ def test_fit_and_score_failing():
y = np.ones(9)
fit_and_score_args = [failing_clf, X, None, dict(), None, None, 0, None, None]
# passing error score to trigger the warning message
- fit_and_score_kwargs = {"error_score": 0}
- # check if the warning message type is as expected
- warning_message = (
- "Estimator fit failed. The score on this train-test partition for "
- "these parameters will be set to %f." % (fit_and_score_kwargs["error_score"])
- )
- with pytest.warns(FitFailedWarning, match=warning_message):
- _fit_and_score(*fit_and_score_args, **fit_and_score_kwargs)
- # since we're using FailingClassfier, our error will be the following
- error_message = "ValueError: Failing classifier failed as required"
- # the warning message we're expecting to see
- warning_message = (
- "Estimator fit failed. The score on this train-test "
- "partition for these parameters will be set to %f. "
- "Details: \n%s" % (fit_and_score_kwargs["error_score"], error_message)
- )
-
- def test_warn_trace(msg):
- assert "Traceback (most recent call last):\n" in msg
- split = msg.splitlines() # note: handles more than '\n'
- mtb = split[0] + "\n" + split[-1]
- return warning_message in mtb
-
- # check traceback is included
- warning_message = (
- "Estimator fit failed. The score on this train-test partition for "
- "these parameters will be set to %f." % (fit_and_score_kwargs["error_score"])
- )
- with pytest.warns(FitFailedWarning, match=warning_message):
- _fit_and_score(*fit_and_score_args, **fit_and_score_kwargs)
-
fit_and_score_kwargs = {"error_score": "raise"}
# check if exception was raised, with default error_score='raise'
with pytest.raises(ValueError, match="Failing classifier failed as required"):
@@ -2161,6 +2130,41 @@ def test_fit_and_score_working():
assert result["parameters"] == fit_and_score_kwargs["parameters"]
[email protected]("error_score", [np.nan, 0])
+def test_cross_validate_failing_fits_warnings(error_score):
+ # Create a failing classifier to deliberately fail
+ failing_clf = FailingClassifier(FailingClassifier.FAILING_PARAMETER)
+ # dummy X data
+ X = np.arange(1, 10)
+ y = np.ones(9)
+ # fit_and_score_args = [failing_clf, X, None, dict(), None, None, 0, None, None]
+ # passing error score to trigger the warning message
+ cross_validate_args = [failing_clf, X, y]
+ cross_validate_kwargs = {"cv": 7, "error_score": error_score}
+ # check if the warning message type is as expected
+ warning_message = re.compile(
+ "7 fits failed.+total of 7.+The score on these"
+ " train-test partitions for these parameters will be set to"
+ f" {cross_validate_kwargs['error_score']}.",
+ flags=re.DOTALL,
+ )
+
+ with pytest.warns(FitFailedWarning, match=warning_message):
+ cross_validate(*cross_validate_args, **cross_validate_kwargs)
+
+ # since we're using FailingClassfier, our error will be the following
+ error_message = "ValueError: Failing classifier failed as required"
+
+ # check traceback is included
+ warning_message = re.compile(
+ "The score on these train-test partitions for these parameters will be set"
+ f" to {cross_validate_kwargs['error_score']}.+{error_message}",
+ re.DOTALL,
+ )
+ with pytest.warns(FitFailedWarning, match=warning_message):
+ cross_validate(*cross_validate_args, **cross_validate_kwargs)
+
+
def _failing_scorer(estimator, X, y, error_msg):
raise ValueError(error_msg)
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 2f7e7590a1c6b..6685ca582428a 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -488,6 +488,9 @@ Changelog\n :pr:`18649` by :user:`Leandro Hermida <hermidalc>` and\n :user:`Rodion Martynov <marrodion>`.\n \n+- |Enhancement| warn only once in the main process for per-split fit failures\n+ in cross-validation. :pr:`20619` by :user:`Loïc Estève <lesteve>`\n+\n :mod:`sklearn.naive_bayes`\n ..........................\n \n"
}
] |
1.00
|
39f37bb63d395dd2b97be7f8231ddd2113825c42
|
[
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_same_as_list_of_strings",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_proba_shape",
"sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[RandomizedSearchCV]",
"sklearn/model_selection/tests/test_search.py::test_search_default_iid[GridSearchCV-specialized_params0]",
"sklearn/model_selection/tests/test_search.py::test_y_as_list",
"sklearn/model_selection/tests/test_search.py::test_scalar_fit_param[GridSearchCV-param_search0]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_delegated_to_base_estimator[True]",
"sklearn/model_selection/tests/test_validation.py::test_score_memmap",
"sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[RandomizedSearchCV-param_search1]",
"sklearn/model_selection/tests/test_search.py::test_random_search_bad_cv",
"sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-False]",
"sklearn/model_selection/tests/test_search.py::test_X_as_list",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_clone_estimator",
"sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-RandomizedSearchCV]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_error",
"sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-GridSearchCV]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_precomputed_kernel_error_nonsquare",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-nan]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_results_none_param",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_pandas",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-scorer2-10-split_prg2-cdt_prg2-\\\\[CV 2/3; 1/1\\\\] END ....... sc1: \\\\(test=3.421\\\\) sc2: \\\\(test=3.421\\\\) total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[input2-TypeError-Parameter.* value is not iterable .*\\\\(key='foo', value=0\\\\)-ParameterGrid]",
"sklearn/model_selection/tests/test_search.py::test__custom_fit_no_run_search",
"sklearn/model_selection/tests/test_search.py::test_grid_search_cv_splits_consistency",
"sklearn/model_selection/tests/test_search.py::test_callable_single_metric_same_as_single_string",
"sklearn/model_selection/tests/test_search.py::test_pickle",
"sklearn/model_selection/tests/test_search.py::test_predict_proba_disabled",
"sklearn/model_selection/tests/test_search.py::test_n_features_in",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_sparse_fit_params",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_cv_splits_consistency",
"sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv0]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_verbose",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-raise]",
"sklearn/model_selection/tests/test_search.py::test_refit_callable",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_invalid_scoring_param",
"sklearn/model_selection/tests/test_search.py::test_grid_search_bad_param_grid",
"sklearn/model_selection/tests/test_search.py::test_search_cv_timing",
"sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results",
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_error_on_invalid_key",
"sklearn/model_selection/tests/test_search.py::test_transform_inverse_transform_round_trip",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_score_func",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_y_none",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_batch_and_incremental_learning_are_equal",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_class_subset",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[raise]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_predict_groups",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_pandas",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-nan]",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_working",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV-2]",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_allow_nans",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_failing",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_multi_metric",
"sklearn/model_selection/tests/test_search.py::test_trivial_cv_results_attr",
"sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[True]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_many_jobs",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[True-scorer1-3-split_prg1-cdt_prg1-\\\\[CV 2/3\\\\] END sc1: \\\\(train=3.421, test=3.421\\\\) sc2: \\\\(train=3.421, test=3.421\\\\) total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_one_grid_point",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_fit_params",
"sklearn/model_selection/tests/test_search.py::test_search_cv__pairwise_property_delegated_to_base_estimator",
"sklearn/model_selection/tests/test_search.py::test_no_refit",
"sklearn/model_selection/tests/test_search.py::test_grid_search_sparse",
"sklearn/model_selection/tests/test_validation.py::test_permutation_score",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_allow_nans",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_regression",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_nested_estimator",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[input1-TypeError-Parameter .* is not a dict \\\\(0\\\\)-klass1]",
"sklearn/model_selection/tests/test_validation.py::test_gridsearchcv_cross_val_predict_with_method",
"sklearn/model_selection/tests/test_search.py::test_search_default_iid[RandomizedSearchCV-specialized_params1]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_n_sample_range_out_of_bounds",
"sklearn/model_selection/tests/test_search.py::test_gridsearch_no_predict",
"sklearn/model_selection/tests/test_search.py::test_param_sampler",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_rare_class",
"sklearn/model_selection/tests/test_search.py::test_grid_search_groups",
"sklearn/model_selection/tests/test_search.py::test_gridsearch_nd",
"sklearn/model_selection/tests/test_validation.py::test_score",
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_confusion_matrix",
"sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-True]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV--1]",
"sklearn/model_selection/tests/test_search.py::test_scalar_fit_param[RandomizedSearchCV-param_search1]",
"sklearn/model_selection/tests/test_search.py::test_refit",
"sklearn/model_selection/tests/test_search.py::test_grid_search_with_multioutput_data",
"sklearn/model_selection/tests/test_validation.py::test_callable_multimetric_confusion_matrix_cross_validate",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-raise]",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[input2-TypeError-Parameter.* value is not iterable .*\\\\(key='foo', value=0\\\\)-klass1]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_equivalence_of_precomputed",
"sklearn/model_selection/tests/test_search.py::test_unsupervised_grid_search",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_shuffle",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_fit_params",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_unsupervised",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_precomputed",
"sklearn/model_selection/tests/test_search.py::test_grid_search_precomputed_kernel",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[0-TypeError-Parameter .* is not a dict or a list \\\\(0\\\\)-ParameterGrid]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-0]",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_fit_params",
"sklearn/model_selection/tests/test_search.py::test_SearchCV_with_fit_params[GridSearchCV]",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[input1-TypeError-Parameter .* is not a dict \\\\(0\\\\)-ParameterGrid]",
"sklearn/model_selection/tests/test_validation.py::test_check_is_permutation",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_fit_params",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV--1]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_classification",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf",
"sklearn/model_selection/tests/test_search.py::test_random_search_cv_results",
"sklearn/model_selection/tests/test_search.py::test_search_train_scores_set_to_false",
"sklearn/model_selection/tests/test_search.py::test_custom_run_search",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_pandas",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV-2]",
"sklearn/model_selection/tests/test_search.py::test_classes__property",
"sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier-RandomizedSearchCV]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_when_param_grid_includes_range",
"sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring",
"sklearn/model_selection/tests/test_search.py::test_grid_search_cv_results_multimetric",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-three_params_scorer-2-split_prg0-cdt_prg0-\\\\[CV\\\\] END .................................................... total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_multilabel",
"sklearn/model_selection/tests/test_search.py::test_grid_search_allows_nans",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_unsupervised",
"sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier_raise",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_log_proba_shape",
"sklearn/model_selection/tests/test_search.py::test_scalar_fit_param_compat[GridSearchCV-param_search0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf_rare_class",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_fit_params",
"sklearn/model_selection/tests/test_search.py::test_stochastic_gradient_loss_param",
"sklearn/model_selection/tests/test_search.py::test_grid_search_no_score",
"sklearn/model_selection/tests/test_search.py::test_refit_callable_invalid_type",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_mask",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_boolean_indices",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_errors",
"sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_delegated_to_base_estimator[False]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction",
"sklearn/model_selection/tests/test_search.py::test_validate_parameter_input[0-TypeError-Parameter .* is not a dict or a list \\\\(0\\\\)-klass1]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[False]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_pipeline_steps",
"sklearn/model_selection/tests/test_search.py::test_parameter_grid",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_not_possible",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-nan]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-0]",
"sklearn/model_selection/tests/test_search.py::test_grid_search",
"sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-True]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor-GridSearchCV]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_method_checking",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-raise]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_remove_duplicate_sample_sizes",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[nan]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_correct_score_results",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_unbalanced",
"sklearn/model_selection/tests/test_search.py::test_parameters_sampler_replacement",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-raise]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-nan]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_results_rank_tie_breaking",
"sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-False]",
"sklearn/model_selection/tests/test_search.py::test_grid_search_score_method",
"sklearn/model_selection/tests/test_search.py::test_pandas_input",
"sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv0]",
"sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv1]",
"sklearn/model_selection/tests/test_search.py::test_empty_cv_iterator_error",
"sklearn/model_selection/tests/test_search.py::test_random_search_cv_results_multimetric",
"sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv1]"
] |
[
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_fits_warnings[nan]",
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_clf_all_fails",
"sklearn/model_selection/tests/test_search.py::test_grid_search_failing_classifier",
"sklearn/model_selection/tests/test_search.py::test_callable_multimetric_error_failing_clf",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_fits_warnings[0]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 2f7e7590a1c6b..6685ca582428a 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -488,6 +488,9 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n \n+- |Enhancement| warn only once in the main process for per-split fit failures\n+ in cross-validation. :pr:`<PRID>` by :user:`<NAME>`\n+\n :mod:`sklearn.naive_bayes`\n ..........................\n \n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 2f7e7590a1c6b..6685ca582428a 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -488,6 +488,9 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
+- |Enhancement| warn only once in the main process for per-split fit failures
+ in cross-validation. :pr:`<PRID>` by :user:`<NAME>`
+
:mod:`sklearn.naive_bayes`
..........................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17367
|
https://github.com/scikit-learn/scikit-learn/pull/17367
|
diff --git a/doc/modules/feature_extraction.rst b/doc/modules/feature_extraction.rst
index cedc43c23c16c..5091930ec0348 100644
--- a/doc/modules/feature_extraction.rst
+++ b/doc/modules/feature_extraction.rst
@@ -56,6 +56,27 @@ is a traditional numerical feature::
>>> vec.get_feature_names()
['city=Dubai', 'city=London', 'city=San Francisco', 'temperature']
+:class:`DictVectorizer` accepts multiple string values for one
+feature, like, e.g., multiple categories for a movie.
+
+Assume a database classifies each movie using some categories (not mandatories)
+and its year of release.
+
+ >>> movie_entry = [{'category': ['thriller', 'drama'], 'year': 2003},
+ ... {'category': ['animation', 'family'], 'year': 2011},
+ ... {'year': 1974}]
+ >>> vec.fit_transform(movie_entry).toarray()
+ array([[0.000e+00, 1.000e+00, 0.000e+00, 1.000e+00, 2.003e+03],
+ [1.000e+00, 0.000e+00, 1.000e+00, 0.000e+00, 2.011e+03],
+ [0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 1.974e+03]])
+ >>> vec.get_feature_names() == ['category=animation', 'category=drama',
+ ... 'category=family', 'category=thriller',
+ ... 'year']
+ True
+ >>> vec.transform({'category': ['thriller'],
+ ... 'unseen_feature': '3'}).toarray()
+ array([[0., 0., 0., 1., 0.]])
+
:class:`DictVectorizer` is also a useful representation transformation
for training sequence classifiers in Natural Language Processing models
that typically work by extracting feature windows around a particular
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 53cbe13161151..de236edc0187c 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -162,6 +162,13 @@ Changelog
:class:`exceptions.NonBLASDotWarning` are deprecated and will be removed in
v0.26, :pr:`17804` by `Adrin Jalali`_.
+:mod:`sklearn.feature_extraction`
+.................................
+
+- |Enhancement| :class:`feature_extraction.DictVectorizer` accepts multiple
+ values for one categorical feature. :pr:`17367` by :user:`Peng Yu <yupbank>`
+ and :user:`Chiara Marmo <cmarmo>`
+
:mod:`sklearn.feature_selection`
................................
diff --git a/sklearn/feature_extraction/_dict_vectorizer.py b/sklearn/feature_extraction/_dict_vectorizer.py
index 1e7d53aa3c5a0..bd6486a9b1717 100644
--- a/sklearn/feature_extraction/_dict_vectorizer.py
+++ b/sklearn/feature_extraction/_dict_vectorizer.py
@@ -3,8 +3,9 @@
# License: BSD 3 clause
from array import array
-from collections.abc import Mapping
+from collections.abc import Mapping, Iterable
from operator import itemgetter
+from numbers import Number
import numpy as np
import scipy.sparse as sp
@@ -35,10 +36,15 @@ class DictVectorizer(TransformerMixin, BaseEstimator):
a feature "f" that can take on the values "ham" and "spam" will become two
features in the output, one signifying "f=ham", the other "f=spam".
+ If a feature value is a sequence or set of strings, this transformer
+ will iterate over the values and will count the occurrences of each string
+ value.
+
However, note that this transformer will only do a binary one-hot encoding
when feature values are of type string. If categorical features are
- represented as numeric values such as int, the DictVectorizer can be
- followed by :class:`~sklearn.preprocessing.OneHotEncoder` to complete
+ represented as numeric values such as int or iterables of strings, the
+ DictVectorizer can be followed by
+ :class:`~sklearn.preprocessing.OneHotEncoder` to complete
binary one-hot encoding.
Features that do not occur in a sample (mapping) will have a zero value
@@ -78,8 +84,8 @@ class DictVectorizer(TransformerMixin, BaseEstimator):
>>> X
array([[2., 0., 1.],
[0., 1., 3.]])
- >>> v.inverse_transform(X) == \
- [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}]
+ >>> v.inverse_transform(X) == [{'bar': 2.0, 'foo': 1.0},
+ ... {'baz': 1.0, 'foo': 3.0}]
True
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[0., 0., 4.]])
@@ -98,6 +104,28 @@ def __init__(self, *, dtype=np.float64, separator="=", sparse=True,
self.sparse = sparse
self.sort = sort
+ def _add_iterable_element(self, f, v, feature_names, vocab, *,
+ fitting=True, transforming=False,
+ indices=None, values=None):
+ """Add feature names for iterable of strings"""
+ for vv in v:
+ if isinstance(vv, str):
+ feature_name = "%s%s%s" % (f, self.separator, vv)
+ vv = 1
+ else:
+ raise TypeError(f'Unsupported type {type(vv)} in iterable '
+ 'value. Only iterables of string are '
+ 'supported.')
+ if fitting and feature_name not in vocab:
+ vocab[feature_name] = len(feature_names)
+ feature_names.append(feature_name)
+
+ if transforming and feature_name in vocab:
+ indices.append(vocab[feature_name])
+ values.append(self.dtype(vv))
+
+ return
+
def fit(self, X, y=None):
"""Learn a list of feature name -> indices mappings.
@@ -106,6 +134,10 @@ def fit(self, X, y=None):
X : Mapping or iterable over Mappings
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
+
+ .. versionchanged:: 0.24
+ Accepts multiple string values for one categorical feature.
+
y : (ignored)
Returns
@@ -118,10 +150,22 @@ def fit(self, X, y=None):
for x in X:
for f, v in x.items():
if isinstance(v, str):
- f = "%s%s%s" % (f, self.separator, v)
- if f not in vocab:
- feature_names.append(f)
- vocab[f] = len(vocab)
+ feature_name = "%s%s%s" % (f, self.separator, v)
+ v = 1
+ elif isinstance(v, Number) or (v is None):
+ feature_name = f
+ elif isinstance(v, Mapping):
+ raise TypeError(f'Unsupported value type {type(v)} '
+ f'for {f}: {v}.\n'
+ 'Mapping objects are not supported.')
+ elif isinstance(v, Iterable):
+ feature_name = None
+ self._add_iterable_element(f, v, feature_names, vocab)
+
+ if feature_name is not None:
+ if feature_name not in vocab:
+ vocab[feature_name] = len(feature_names)
+ feature_names.append(feature_name)
if self.sort:
feature_names.sort()
@@ -150,6 +194,8 @@ def _transform(self, X, fitting):
feature_names = self.feature_names_
vocab = self.vocabulary_
+ transforming = True
+
# Process everything as sparse regardless of setting
X = [X] if isinstance(X, Mapping) else X
@@ -164,17 +210,29 @@ def _transform(self, X, fitting):
for x in X:
for f, v in x.items():
if isinstance(v, str):
- f = "%s%s%s" % (f, self.separator, v)
+ feature_name = "%s%s%s" % (f, self.separator, v)
v = 1
- if f in vocab:
- indices.append(vocab[f])
- values.append(dtype(v))
- else:
- if fitting:
- feature_names.append(f)
- vocab[f] = len(vocab)
- indices.append(vocab[f])
- values.append(dtype(v))
+ elif isinstance(v, Number) or (v is None):
+ feature_name = f
+ elif isinstance(v, Mapping):
+ raise TypeError(f'Unsupported value Type {type(v)} '
+ f'for {f}: {v}.\n'
+ 'Mapping objects are not supported.')
+ elif isinstance(v, Iterable):
+ feature_name = None
+ self._add_iterable_element(f, v, feature_names, vocab,
+ fitting=fitting,
+ transforming=transforming,
+ indices=indices, values=values)
+
+ if feature_name is not None:
+ if fitting and feature_name not in vocab:
+ vocab[feature_name] = len(feature_names)
+ feature_names.append(feature_name)
+
+ if feature_name in vocab:
+ indices.append(vocab[feature_name])
+ values.append(self.dtype(v))
indptr.append(len(indices))
@@ -218,6 +276,10 @@ def fit_transform(self, X, y=None):
X : Mapping or iterable over Mappings
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
+
+ .. versionchanged:: 0.24
+ Accepts multiple string values for one categorical feature.
+
y : (ignored)
Returns
|
diff --git a/sklearn/feature_extraction/tests/test_dict_vectorizer.py b/sklearn/feature_extraction/tests/test_dict_vectorizer.py
index 22a7402908cf1..519201b580598 100644
--- a/sklearn/feature_extraction/tests/test_dict_vectorizer.py
+++ b/sklearn/feature_extraction/tests/test_dict_vectorizer.py
@@ -76,6 +76,52 @@ def test_one_of_k():
assert "version" not in names
+def test_iterable_value():
+ D_names = ['ham', 'spam', 'version=1', 'version=2', 'version=3']
+ X_expected = [[2.0, 0.0, 2.0, 1.0, 0.0],
+ [0.0, 0.3, 0.0, 1.0, 0.0],
+ [0.0, -1.0, 0.0, 0.0, 1.0]]
+ D_in = [{"version": ["1", "2", "1"], "ham": 2},
+ {"version": "2", "spam": .3},
+ {"version=3": True, "spam": -1}]
+ v = DictVectorizer()
+ X = v.fit_transform(D_in)
+ X = X.toarray()
+ assert_array_equal(X, X_expected)
+
+ D_out = v.inverse_transform(X)
+ assert D_out[0] == {"version=1": 2, "version=2": 1, "ham": 2}
+
+ names = v.get_feature_names()
+
+ assert names == D_names
+
+
+def test_iterable_not_string_error():
+ error_value = ("Unsupported type <class 'int'> in iterable value. "
+ "Only iterables of string are supported.")
+ D2 = [{'foo': '1', 'bar': '2'},
+ {'foo': '3', 'baz': '1'},
+ {'foo': [1, 'three']}]
+ v = DictVectorizer(sparse=False)
+ with pytest.raises(TypeError) as error:
+ v.fit(D2)
+ assert str(error.value) == error_value
+
+
+def test_mapping_error():
+ error_value = ("Unsupported value type <class 'dict'> "
+ "for foo: {'one': 1, 'three': 3}.\n"
+ "Mapping objects are not supported.")
+ D2 = [{'foo': '1', 'bar': '2'},
+ {'foo': '3', 'baz': '1'},
+ {'foo': {'one': 1, 'three': 3}}]
+ v = DictVectorizer(sparse=False)
+ with pytest.raises(TypeError) as error:
+ v.fit(D2)
+ assert str(error.value) == error_value
+
+
def test_unseen_or_no_features():
D = [{"camelot": 0, "spamalot": 1}]
for sparse in [True, False]:
|
[
{
"path": "doc/modules/feature_extraction.rst",
"old_path": "a/doc/modules/feature_extraction.rst",
"new_path": "b/doc/modules/feature_extraction.rst",
"metadata": "diff --git a/doc/modules/feature_extraction.rst b/doc/modules/feature_extraction.rst\nindex cedc43c23c16c..5091930ec0348 100644\n--- a/doc/modules/feature_extraction.rst\n+++ b/doc/modules/feature_extraction.rst\n@@ -56,6 +56,27 @@ is a traditional numerical feature::\n >>> vec.get_feature_names()\n ['city=Dubai', 'city=London', 'city=San Francisco', 'temperature']\n \n+:class:`DictVectorizer` accepts multiple string values for one\n+feature, like, e.g., multiple categories for a movie.\n+\n+Assume a database classifies each movie using some categories (not mandatories)\n+and its year of release.\n+\n+ >>> movie_entry = [{'category': ['thriller', 'drama'], 'year': 2003},\n+ ... {'category': ['animation', 'family'], 'year': 2011},\n+ ... {'year': 1974}]\n+ >>> vec.fit_transform(movie_entry).toarray()\n+ array([[0.000e+00, 1.000e+00, 0.000e+00, 1.000e+00, 2.003e+03],\n+ [1.000e+00, 0.000e+00, 1.000e+00, 0.000e+00, 2.011e+03],\n+ [0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 1.974e+03]])\n+ >>> vec.get_feature_names() == ['category=animation', 'category=drama',\n+ ... 'category=family', 'category=thriller',\n+ ... 'year']\n+ True\n+ >>> vec.transform({'category': ['thriller'],\n+ ... 'unseen_feature': '3'}).toarray()\n+ array([[0., 0., 0., 1., 0.]])\n+\n :class:`DictVectorizer` is also a useful representation transformation\n for training sequence classifiers in Natural Language Processing models\n that typically work by extracting feature windows around a particular\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 53cbe13161151..de236edc0187c 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -162,6 +162,13 @@ Changelog\n :class:`exceptions.NonBLASDotWarning` are deprecated and will be removed in\n v0.26, :pr:`17804` by `Adrin Jalali`_.\n \n+:mod:`sklearn.feature_extraction`\n+.................................\n+\n+- |Enhancement| :class:`feature_extraction.DictVectorizer` accepts multiple\n+ values for one categorical feature. :pr:`17367` by :user:`Peng Yu <yupbank>`\n+ and :user:`Chiara Marmo <cmarmo>`\n+\n :mod:`sklearn.feature_selection`\n ................................\n \n"
}
] |
0.24
|
e087f8a395f9db97145654c2429b7bdd107fd440
|
[
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-int16-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-int-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-float32-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_unseen_or_no_features",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_feature_selection",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-float32-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-int16-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-int16-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-float32-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-float32-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_one_of_k",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_deterministic_vocabulary",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-int16-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-int-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_n_features_in",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-int-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-int-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-int16-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-int-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-float32-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-float32-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-int16-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-float32-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-int-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-float32-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-int-False]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-int16-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-int-True]",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-int16-False]"
] |
[
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_mapping_error",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_iterable_not_string_error",
"sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_iterable_value"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/feature_extraction.rst",
"old_path": "a/doc/modules/feature_extraction.rst",
"new_path": "b/doc/modules/feature_extraction.rst",
"metadata": "diff --git a/doc/modules/feature_extraction.rst b/doc/modules/feature_extraction.rst\nindex cedc43c23c16c..5091930ec0348 100644\n--- a/doc/modules/feature_extraction.rst\n+++ b/doc/modules/feature_extraction.rst\n@@ -56,6 +56,27 @@ is a traditional numerical feature::\n >>> vec.get_feature_names()\n ['city=Dubai', 'city=London', 'city=San Francisco', 'temperature']\n \n+:class:`DictVectorizer` accepts multiple string values for one\n+feature, like, e.g., multiple categories for a movie.\n+\n+Assume a database classifies each movie using some categories (not mandatories)\n+and its year of release.\n+\n+ >>> movie_entry = [{'category': ['thriller', 'drama'], 'year': 2003},\n+ ... {'category': ['animation', 'family'], 'year': 2011},\n+ ... {'year': 1974}]\n+ >>> vec.fit_transform(movie_entry).toarray()\n+ array([[0.000e+00, 1.000e+00, 0.000e+00, 1.000e+00, 2.003e+03],\n+ [1.000e+00, 0.000e+00, 1.000e+00, 0.000e+00, 2.011e+03],\n+ [0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 1.974e+03]])\n+ >>> vec.get_feature_names() == ['category=animation', 'category=drama',\n+ ... 'category=family', 'category=thriller',\n+ ... 'year']\n+ True\n+ >>> vec.transform({'category': ['thriller'],\n+ ... 'unseen_feature': '3'}).toarray()\n+ array([[0., 0., 0., 1., 0.]])\n+\n :class:`DictVectorizer` is also a useful representation transformation\n for training sequence classifiers in Natural Language Processing models\n that typically work by extracting feature windows around a particular\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 53cbe13161151..de236edc0187c 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -162,6 +162,13 @@ Changelog\n :class:`exceptions.NonBLASDotWarning` are deprecated and will be removed in\n v0.26, :pr:`<PRID>` by `<NAME>`_.\n \n+:mod:`sklearn.feature_extraction`\n+.................................\n+\n+- |Enhancement| :class:`feature_extraction.DictVectorizer` accepts multiple\n+ values for one categorical feature. :pr:`<PRID>` by :user:`<NAME>`\n+ and :user:`<NAME>`\n+\n :mod:`sklearn.feature_selection`\n ................................\n \n"
}
] |
diff --git a/doc/modules/feature_extraction.rst b/doc/modules/feature_extraction.rst
index cedc43c23c16c..5091930ec0348 100644
--- a/doc/modules/feature_extraction.rst
+++ b/doc/modules/feature_extraction.rst
@@ -56,6 +56,27 @@ is a traditional numerical feature::
>>> vec.get_feature_names()
['city=Dubai', 'city=London', 'city=San Francisco', 'temperature']
+:class:`DictVectorizer` accepts multiple string values for one
+feature, like, e.g., multiple categories for a movie.
+
+Assume a database classifies each movie using some categories (not mandatories)
+and its year of release.
+
+ >>> movie_entry = [{'category': ['thriller', 'drama'], 'year': 2003},
+ ... {'category': ['animation', 'family'], 'year': 2011},
+ ... {'year': 1974}]
+ >>> vec.fit_transform(movie_entry).toarray()
+ array([[0.000e+00, 1.000e+00, 0.000e+00, 1.000e+00, 2.003e+03],
+ [1.000e+00, 0.000e+00, 1.000e+00, 0.000e+00, 2.011e+03],
+ [0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 1.974e+03]])
+ >>> vec.get_feature_names() == ['category=animation', 'category=drama',
+ ... 'category=family', 'category=thriller',
+ ... 'year']
+ True
+ >>> vec.transform({'category': ['thriller'],
+ ... 'unseen_feature': '3'}).toarray()
+ array([[0., 0., 0., 1., 0.]])
+
:class:`DictVectorizer` is also a useful representation transformation
for training sequence classifiers in Natural Language Processing models
that typically work by extracting feature windows around a particular
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 53cbe13161151..de236edc0187c 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -162,6 +162,13 @@ Changelog
:class:`exceptions.NonBLASDotWarning` are deprecated and will be removed in
v0.26, :pr:`<PRID>` by `<NAME>`_.
+:mod:`sklearn.feature_extraction`
+.................................
+
+- |Enhancement| :class:`feature_extraction.DictVectorizer` accepts multiple
+ values for one categorical feature. :pr:`<PRID>` by :user:`<NAME>`
+ and :user:`<NAME>`
+
:mod:`sklearn.feature_selection`
................................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17379
|
https://github.com/scikit-learn/scikit-learn/pull/17379
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 9e31762d62c29..b5d0145af4822 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -158,6 +158,9 @@ Changelog
:pr:`16289` by :user:`Masashi Kishimoto <kishimoto-banana>` and
:user:`Olivier Grisel <ogrisel>`.
+- |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as
+ input array. :pr:`17379` by :user:`Jiaxiang <fujiaxiang>`.
+
:mod:`sklearn.metrics`
......................
diff --git a/sklearn/isotonic.py b/sklearn/isotonic.py
index 50fa0654f7585..905528d3b25f0 100644
--- a/sklearn/isotonic.py
+++ b/sklearn/isotonic.py
@@ -211,7 +211,7 @@ class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
>>> from sklearn.datasets import make_regression
>>> from sklearn.isotonic import IsotonicRegression
>>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
- >>> iso_reg = IsotonicRegression().fit(X.flatten(), y)
+ >>> iso_reg = IsotonicRegression().fit(X, y)
>>> iso_reg.predict([.1, .2])
array([1.8628..., 3.7256...])
"""
@@ -223,9 +223,11 @@ def __init__(self, *, y_min=None, y_max=None, increasing=True,
self.increasing = increasing
self.out_of_bounds = out_of_bounds
- def _check_fit_data(self, X, y, sample_weight=None):
- if len(X.shape) != 1:
- raise ValueError("X should be a 1d array")
+ def _check_input_data_shape(self, X):
+ if not (X.ndim == 1 or (X.ndim == 2 and X.shape[1] == 1)):
+ msg = "Isotonic regression input X should be a 1d array or " \
+ "2d array with 1 feature"
+ raise ValueError(msg)
def _build_f(self, X, y):
"""Build the f_ interp1d function."""
@@ -246,7 +248,8 @@ def _build_f(self, X, y):
def _build_y(self, X, y, sample_weight, trim_duplicates=True):
"""Build the y_ IsotonicRegression."""
- self._check_fit_data(X, y, sample_weight)
+ self._check_input_data_shape(X)
+ X = X.reshape(-1) # use 1d view
# Determine increasing if auto-determination requested
if self.increasing == 'auto':
@@ -295,7 +298,7 @@ def fit(self, X, y, sample_weight=None):
Parameters
----------
- X : array-like of shape (n_samples,)
+ X : array-like of shape (n_samples,) or (n_samples, 1)
Training data.
y : array-like of shape (n_samples,)
@@ -339,7 +342,7 @@ def transform(self, T):
Parameters
----------
- T : array-like of shape (n_samples,)
+ T : array-like of shape (n_samples,) or (n_samples, 1)
Data to transform.
Returns
@@ -355,8 +358,8 @@ def transform(self, T):
T = check_array(T, dtype=dtype, ensure_2d=False)
- if len(T.shape) != 1:
- raise ValueError("Isotonic regression input should be a 1d array")
+ self._check_input_data_shape(T)
+ T = T.reshape(-1) # use 1d view
# Handle the out_of_bounds argument by clipping if needed
if self.out_of_bounds not in ["raise", "nan", "clip"]:
@@ -379,7 +382,7 @@ def predict(self, T):
Parameters
----------
- T : array-like of shape (n_samples,)
+ T : array-like of shape (n_samples,) or (n_samples, 1)
Data to transform.
Returns
|
diff --git a/sklearn/tests/test_isotonic.py b/sklearn/tests/test_isotonic.py
index 3da76c1f0bb88..66892370f06f0 100644
--- a/sklearn/tests/test_isotonic.py
+++ b/sklearn/tests/test_isotonic.py
@@ -9,7 +9,8 @@
IsotonicRegression, _make_unique)
from sklearn.utils.validation import check_array
-from sklearn.utils._testing import (assert_raises, assert_array_equal,
+from sklearn.utils._testing import (assert_raises, assert_allclose,
+ assert_array_equal,
assert_array_almost_equal,
assert_warns_message, assert_no_warnings)
from sklearn.utils import shuffle
@@ -535,3 +536,43 @@ def test_isotonic_thresholds(increasing):
assert all(np.diff(y_thresholds) >= 0)
else:
assert all(np.diff(y_thresholds) <= 0)
+
+
+def test_input_shape_validation():
+ # Test from #15012
+ # Check that IsotonicRegression can handle 2darray with only 1 feature
+ X = np.arange(10)
+ X_2d = X.reshape(-1, 1)
+ y = np.arange(10)
+
+ iso_reg = IsotonicRegression().fit(X, y)
+ iso_reg_2d = IsotonicRegression().fit(X_2d, y)
+
+ assert iso_reg.X_max_ == iso_reg_2d.X_max_
+ assert iso_reg.X_min_ == iso_reg_2d.X_min_
+ assert iso_reg.y_max == iso_reg_2d.y_max
+ assert iso_reg.y_min == iso_reg_2d.y_min
+ assert_array_equal(iso_reg.X_thresholds_, iso_reg_2d.X_thresholds_)
+ assert_array_equal(iso_reg.y_thresholds_, iso_reg_2d.y_thresholds_)
+
+ y_pred1 = iso_reg.predict(X)
+ y_pred2 = iso_reg_2d.predict(X_2d)
+ assert_allclose(y_pred1, y_pred2)
+
+
+def test_isotonic_2darray_more_than_1_feature():
+ # Ensure IsotonicRegression raises error if input has more than 1 feature
+ X = np.arange(10)
+ X_2d = np.c_[X, X]
+ y = np.arange(10)
+
+ msg = "should be a 1d array or 2d array with 1 feature"
+ with pytest.raises(ValueError, match=msg):
+ IsotonicRegression().fit(X_2d, y)
+
+ iso_reg = IsotonicRegression().fit(X, y)
+ with pytest.raises(ValueError, match=msg):
+ iso_reg.predict(X_2d)
+
+ with pytest.raises(ValueError, match=msg):
+ iso_reg.transform(X_2d)
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 9e31762d62c29..b5d0145af4822 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -158,6 +158,9 @@ Changelog\n :pr:`16289` by :user:`Masashi Kishimoto <kishimoto-banana>` and\n :user:`Olivier Grisel <ogrisel>`.\n \n+- |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as\n+ input array. :pr:`17379` by :user:`Jiaxiang <fujiaxiang>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n"
}
] |
0.24
|
3a49e5f209f08c00f73d8895cf27d228fbae25f1
|
[
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_bad",
"sklearn/tests/test_isotonic.py::test_check_increasing_down_extreme",
"sklearn/tests/test_isotonic.py::test_isotonic_thresholds[True]",
"sklearn/tests/test_isotonic.py::test_isotonic_sample_weight_parameter_default_value",
"sklearn/tests/test_isotonic.py::test_isotonic_sample_weight",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_raise",
"sklearn/tests/test_isotonic.py::test_check_increasing_down",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_nan",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_clip",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_pickle",
"sklearn/tests/test_isotonic.py::test_isotonic_ymin_ymax",
"sklearn/tests/test_isotonic.py::test_make_unique_dtype",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_auto_decreasing",
"sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[float64]",
"sklearn/tests/test_isotonic.py::test_check_increasing_up_extreme",
"sklearn/tests/test_isotonic.py::test_isotonic_zero_weight_loop",
"sklearn/tests/test_isotonic.py::test_check_increasing_up",
"sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[int32]",
"sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[float32]",
"sklearn/tests/test_isotonic.py::test_isotonic_duplicate_min_entry",
"sklearn/tests/test_isotonic.py::test_isotonic_min_max_boundaries",
"sklearn/tests/test_isotonic.py::test_assert_raises_exceptions",
"sklearn/tests/test_isotonic.py::test_check_ci_warn",
"sklearn/tests/test_isotonic.py::test_isotonic_copy_before_fit",
"sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[int64]",
"sklearn/tests/test_isotonic.py::test_isotonic_regression",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_secondary_",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_with_ties_in_differently_sized_groups",
"sklearn/tests/test_isotonic.py::test_fast_predict",
"sklearn/tests/test_isotonic.py::test_isotonic_thresholds[False]",
"sklearn/tests/test_isotonic.py::test_permutation_invariance",
"sklearn/tests/test_isotonic.py::test_check_increasing_small_number_of_samples",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_max",
"sklearn/tests/test_isotonic.py::test_isotonic_dtype",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_reversed",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_min",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_bad_after",
"sklearn/tests/test_isotonic.py::test_isotonic_regression_auto_increasing"
] |
[
"sklearn/tests/test_isotonic.py::test_input_shape_validation",
"sklearn/tests/test_isotonic.py::test_isotonic_2darray_more_than_1_feature"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 9e31762d62c29..b5d0145af4822 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -158,6 +158,9 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n \n+- |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as\n+ input array. :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 9e31762d62c29..b5d0145af4822 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -158,6 +158,9 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
+- |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as
+ input array. :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.metrics`
......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-16906
|
https://github.com/scikit-learn/scikit-learn/pull/16906
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index fcdd2b77c3c8c..07b59a7bed715 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -174,6 +174,10 @@ Changelog
``kind`` parameter.
:pr:`16619` by :user:`Madhura Jayratne <madhuracj>`.
+- |Feature| Add `sample_weight` parameter to
+ :func:`inspection.permutation_importance`. :pr:`16906` by
+ :user:`Roei Kahny <RoeiKa>`.
+
:mod:`sklearn.isotonic`
.......................
diff --git a/sklearn/inspection/_permutation_importance.py b/sklearn/inspection/_permutation_importance.py
index 8aa8766b727aa..616073194aa90 100644
--- a/sklearn/inspection/_permutation_importance.py
+++ b/sklearn/inspection/_permutation_importance.py
@@ -10,8 +10,14 @@
from ..utils.validation import _deprecate_positional_args
-def _calculate_permutation_scores(estimator, X, y, col_idx, random_state,
- n_repeats, scorer):
+def _weights_scorer(scorer, estimator, X, y, sample_weight):
+ if sample_weight is not None:
+ return scorer(estimator, X, y, sample_weight)
+ return scorer(estimator, X, y)
+
+
+def _calculate_permutation_scores(estimator, X, y, sample_weight, col_idx,
+ random_state, n_repeats, scorer):
"""Calculate score when `col_idx` is permuted."""
random_state = check_random_state(random_state)
@@ -32,7 +38,9 @@ def _calculate_permutation_scores(estimator, X, y, col_idx, random_state,
X_permuted.iloc[:, col_idx] = col
else:
X_permuted[:, col_idx] = X_permuted[shuffling_idx, col_idx]
- feature_score = scorer(estimator, X_permuted, y)
+ feature_score = _weights_scorer(
+ scorer, estimator, X_permuted, y, sample_weight
+ )
scores[n_round] = feature_score
return scores
@@ -40,7 +48,7 @@ def _calculate_permutation_scores(estimator, X, y, col_idx, random_state,
@_deprecate_positional_args
def permutation_importance(estimator, X, y, *, scoring=None, n_repeats=5,
- n_jobs=None, random_state=None):
+ n_jobs=None, random_state=None, sample_weight=None):
"""Permutation importance for feature evaluation [BRE]_.
The :term:`estimator` is required to be a fitted estimator. `X` can be the
@@ -87,6 +95,9 @@ def permutation_importance(estimator, X, y, *, scoring=None, n_repeats=5,
Pass an int to get reproducible results across function calls.
See :term: `Glossary <random_state>`.
+ sample_weight : array-like of shape (n_samples,), default=None
+ Sample weights used in scoring.
+
Returns
-------
result : :class:`~sklearn.utils.Bunch`
@@ -131,10 +142,10 @@ def permutation_importance(estimator, X, y, *, scoring=None, n_repeats=5,
random_seed = random_state.randint(np.iinfo(np.int32).max + 1)
scorer = check_scoring(estimator, scoring=scoring)
- baseline_score = scorer(estimator, X, y)
+ baseline_score = _weights_scorer(scorer, estimator, X, y, sample_weight)
scores = Parallel(n_jobs=n_jobs)(delayed(_calculate_permutation_scores)(
- estimator, X, y, col_idx, random_seed, n_repeats, scorer
+ estimator, X, y, sample_weight, col_idx, random_seed, n_repeats, scorer
) for col_idx in range(X.shape[1]))
importances = baseline_score - np.array(scores)
|
diff --git a/sklearn/inspection/tests/test_permutation_importance.py b/sklearn/inspection/tests/test_permutation_importance.py
index 2b381e9a20b1a..99a1d09f4a7bf 100644
--- a/sklearn/inspection/tests/test_permutation_importance.py
+++ b/sklearn/inspection/tests/test_permutation_importance.py
@@ -351,3 +351,87 @@ def test_permutation_importance_large_memmaped_data(input_type):
# permutating feature should not change the predictions
expected_importances = np.zeros((n_features, n_repeats))
assert_allclose(expected_importances, r.importances)
+
+
+def test_permutation_importance_sample_weight():
+ # Creating data with 2 features and 1000 samples, where the target
+ # variable is a linear combination of the two features, such that
+ # in half of the samples the impact of feature 1 is twice the impact of
+ # feature 2, and vice versa on the other half of the samples.
+ rng = np.random.RandomState(1)
+ n_samples = 1000
+ n_features = 2
+ n_half_samples = n_samples // 2
+ x = rng.normal(0.0, 0.001, (n_samples, n_features))
+ y = np.zeros(n_samples)
+ y[:n_half_samples] = 2 * x[:n_half_samples, 0] + x[:n_half_samples, 1]
+ y[n_half_samples:] = x[n_half_samples:, 0] + 2 * x[n_half_samples:, 1]
+
+ # Fitting linear regression with perfect prediction
+ lr = LinearRegression(fit_intercept=False)
+ lr.fit(x, y)
+
+ # When all samples are weighted with the same weights, the ratio of
+ # the two features importance should equal to 1 on expectation (when using
+ # mean absolutes error as the loss function).
+ pi = permutation_importance(lr, x, y, random_state=1,
+ scoring='neg_mean_absolute_error',
+ n_repeats=200)
+ x1_x2_imp_ratio_w_none = pi.importances_mean[0] / pi.importances_mean[1]
+ assert x1_x2_imp_ratio_w_none == pytest.approx(1, 0.01)
+
+ # When passing a vector of ones as the sample_weight, results should be
+ # the same as in the case that sample_weight=None.
+ w = np.ones(n_samples)
+ pi = permutation_importance(lr, x, y, random_state=1,
+ scoring='neg_mean_absolute_error',
+ n_repeats=200, sample_weight=w)
+ x1_x2_imp_ratio_w_ones = pi.importances_mean[0] / pi.importances_mean[1]
+ assert x1_x2_imp_ratio_w_ones == pytest.approx(
+ x1_x2_imp_ratio_w_none, 0.01)
+
+ # When the ratio between the weights of the first half of the samples and
+ # the second half of the samples approaches to infinity, the ratio of
+ # the two features importance should equal to 2 on expectation (when using
+ # mean absolutes error as the loss function).
+ w = np.hstack([np.repeat(10.0 ** 10, n_half_samples),
+ np.repeat(1.0, n_half_samples)])
+ lr.fit(x, y, w)
+ pi = permutation_importance(lr, x, y, random_state=1,
+ scoring='neg_mean_absolute_error',
+ n_repeats=200,
+ sample_weight=w)
+ x1_x2_imp_ratio_w = pi.importances_mean[0] / pi.importances_mean[1]
+ assert x1_x2_imp_ratio_w / x1_x2_imp_ratio_w_none == pytest.approx(2, 0.01)
+
+
+def test_permutation_importance_no_weights_scoring_function():
+ # Creating a scorer function that does not takes sample_weight
+ def my_scorer(estimator, X, y):
+ return 1
+
+ # Creating some data and estimator for the permutation test
+ x = np.array([[1, 2], [3, 4]])
+ y = np.array([1, 2])
+ w = np.array([1, 1])
+ lr = LinearRegression()
+ lr.fit(x, y)
+
+ # test that permutation_importance does not return error when
+ # sample_weight is None
+ try:
+ permutation_importance(lr, x, y, random_state=1,
+ scoring=my_scorer,
+ n_repeats=1)
+ except TypeError:
+ pytest.fail("permutation_test raised an error when using a scorer "
+ "function that does not accept sample_weight even though "
+ "sample_weight was None")
+
+ # test that permutation_importance raise exception when sample_weight is
+ # not None
+ with pytest.raises(TypeError):
+ permutation_importance(lr, x, y, random_state=1,
+ scoring=my_scorer,
+ n_repeats=1,
+ sample_weight=w)
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex fcdd2b77c3c8c..07b59a7bed715 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -174,6 +174,10 @@ Changelog\n ``kind`` parameter.\n :pr:`16619` by :user:`Madhura Jayratne <madhuracj>`.\n \n+- |Feature| Add `sample_weight` parameter to\n+ :func:`inspection.permutation_importance`. :pr:`16906` by\n+ :user:`Roei Kahny <RoeiKa>`.\n+\n :mod:`sklearn.isotonic`\n .......................\n \n"
}
] |
0.24
|
b4678ca8aa0687575e1e1d2809355aa6c6975b16
|
[
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_no_weights_scoring_function",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[array]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[dataframe]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_linear_regresssion",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression[1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types",
"sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[1]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[None]",
"sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[2]",
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_sequential_parallel"
] |
[
"sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_sample_weight"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex fcdd2b77c3c8c..07b59a7bed715 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -174,6 +174,10 @@ Changelog\n ``kind`` parameter.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Feature| Add `sample_weight` parameter to\n+ :func:`inspection.permutation_importance`. :pr:`<PRID>` by\n+ :user:`<NAME>`.\n+\n :mod:`sklearn.isotonic`\n .......................\n \n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index fcdd2b77c3c8c..07b59a7bed715 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -174,6 +174,10 @@ Changelog
``kind`` parameter.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Feature| Add `sample_weight` parameter to
+ :func:`inspection.permutation_importance`. :pr:`<PRID>` by
+ :user:`<NAME>`.
+
:mod:`sklearn.isotonic`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17578
|
https://github.com/scikit-learn/scikit-learn/pull/17578
|
diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst
index c4767d0cb2d64..0120f0f69fafd 100644
--- a/doc/modules/linear_model.rst
+++ b/doc/modules/linear_model.rst
@@ -43,6 +43,8 @@ and will store the coefficients :math:`w` of the linear model in its
>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
+ >>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
+ LinearRegression()
>>> reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression()
>>> reg.coef_
@@ -61,6 +63,19 @@ example, when data are collected without an experimental design.
* :ref:`sphx_glr_auto_examples_linear_model_plot_ols.py`
+Non-Negative Least Squares
+--------------------------
+
+It is possible to constrain all the coefficients to be non-negative, which may
+be useful when they represent some physical or naturally non-negative
+quantities (e.g., frequency counts or prices of goods).
+:class:`LinearRegression` accepts a boolean ``positive``
+parameter: when set to `True` `Non Negative Least Squares
+<https://en.wikipedia.org/wiki/Non-negative_least_squares>`_ are then applied.
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_linear_model_plot_nnls.py`
Ordinary Least Squares Complexity
---------------------------------
diff --git a/doc/tutorial/statistical_inference/supervised_learning.rst b/doc/tutorial/statistical_inference/supervised_learning.rst
index 9913829f8f054..18a7f1336da11 100644
--- a/doc/tutorial/statistical_inference/supervised_learning.rst
+++ b/doc/tutorial/statistical_inference/supervised_learning.rst
@@ -173,7 +173,7 @@ Linear models: :math:`y = X\beta + \epsilon`
>>> regr = linear_model.LinearRegression()
>>> regr.fit(diabetes_X_train, diabetes_y_train)
LinearRegression()
- >>> print(regr.coef_) # doctest: +SKIP
+ >>> print(regr.coef_)
[ 0.30349955 -237.63931533 510.53060544 327.73698041 -814.13170937
492.81458798 102.84845219 184.60648906 743.51961675 76.09517222]
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index a1a81b7571e28..b67004f1e8b00 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -203,6 +203,14 @@ Changelog
- |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as
input array. :pr:`17379` by :user:`Jiaxiang <fujiaxiang>`.
+:mod:`sklearn.linear_model`
+...........................
+
+- |Feature| :class:`linear_model.LinearRegression` now forces coefficients
+ to be all positive when ``positive`` is set to ``True``.
+ :pr:`17578` by :user:`Joseph Knox <jknox13>`, :user:`Nelle Varoquaux <NelleV>`
+ and :user:`Chiara Marmo <cmarmo>`.
+
:mod:`sklearn.manifold`
.......................
diff --git a/examples/linear_model/plot_nnls.py b/examples/linear_model/plot_nnls.py
new file mode 100644
index 0000000000000..56f357c4214a6
--- /dev/null
+++ b/examples/linear_model/plot_nnls.py
@@ -0,0 +1,67 @@
+"""
+==========================
+Non-negative least squares
+==========================
+
+In this example, we fit a linear model with positive constraints on the
+regression coefficients and compare the estimated coefficients to a classic
+linear regression.
+"""
+print(__doc__)
+import numpy as np
+import matplotlib.pyplot as plt
+from sklearn.metrics import r2_score
+
+# %%
+# Generate some random data
+np.random.seed(42)
+
+n_samples, n_features = 200, 50
+X = np.random.randn(n_samples, n_features)
+true_coef = 3 * np.random.randn(n_features)
+# Threshold coefficients to render them non-negative
+true_coef[true_coef < 0] = 0
+y = np.dot(X, true_coef)
+
+# Add some noise
+y += 5 * np.random.normal(size=(n_samples, ))
+
+# %%
+# Split the data in train set and test set
+from sklearn.model_selection import train_test_split
+
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
+
+# %%
+# Fit the Non-Negative least squares.
+from sklearn.linear_model import LinearRegression
+
+reg_nnls = LinearRegression(positive=True)
+y_pred_nnls = reg_nnls.fit(X_train, y_train).predict(X_test)
+r2_score_nnls = r2_score(y_test, y_pred_nnls)
+print("NNLS R2 score", r2_score_nnls)
+
+# %%
+# Fit an OLS.
+reg_ols = LinearRegression()
+y_pred_ols = reg_ols.fit(X_train, y_train).predict(X_test)
+r2_score_ols = r2_score(y_test, y_pred_ols)
+print("OLS R2 score", r2_score_ols)
+
+
+# %%
+# Comparing the regression coefficients between OLS and NNLS, we can observe
+# they are highly correlated (the dashed line is the identity relation),
+# but the non-negative constraint shrinks some to 0.
+# The Non-Negative Least squares inherently yield sparse results.
+
+fig, ax = plt.subplots()
+ax.plot(reg_ols.coef_, reg_nnls.coef_, linewidth=0, marker=".")
+
+low_x, high_x = ax.get_xlim()
+low_y, high_y = ax.get_ylim()
+low = max(low_x, low_y)
+high = min(high_x, high_y)
+ax.plot([low, high], [low, high], ls="--", c=".3", alpha=.5)
+ax.set_xlabel("OLS regression coefficients", fontweight="bold")
+ax.set_ylabel("NNLS regression coefficients", fontweight="bold")
diff --git a/sklearn/linear_model/_base.py b/sklearn/linear_model/_base.py
index 4ab797578dbde..d39308c97866e 100644
--- a/sklearn/linear_model/_base.py
+++ b/sklearn/linear_model/_base.py
@@ -20,6 +20,7 @@
import numpy as np
import scipy.sparse as sp
from scipy import linalg
+from scipy import optimize
from scipy import sparse
from scipy.special import expit
from joblib import Parallel, delayed
@@ -419,6 +420,12 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
+ positive : bool, default=False
+ When set to ``True``, forces the coefficients to be positive. This
+ option is only supported for dense arrays.
+
+ .. versionadded:: 0.24
+
Attributes
----------
coef_ : array of shape (n_features, ) or (n_targets, n_features)
@@ -451,7 +458,8 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):
Notes
-----
From the implementation point of view, this is just plain Ordinary
- Least Squares (scipy.linalg.lstsq) wrapped as a predictor object.
+ Least Squares (scipy.linalg.lstsq) or Non Negative Least Squares
+ (scipy.optimize.nnls) wrapped as a predictor object.
Examples
--------
@@ -472,11 +480,12 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):
"""
@_deprecate_positional_args
def __init__(self, *, fit_intercept=True, normalize=False, copy_X=True,
- n_jobs=None):
+ n_jobs=None, positive=False):
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
self.n_jobs = n_jobs
+ self.positive = positive
def fit(self, X, y, sample_weight=None):
"""
@@ -502,7 +511,10 @@ def fit(self, X, y, sample_weight=None):
"""
n_jobs_ = self.n_jobs
- X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
+
+ accept_sparse = False if self.positive else ['csr', 'csc', 'coo']
+
+ X, y = self._validate_data(X, y, accept_sparse=accept_sparse,
y_numeric=True, multi_output=True)
if sample_weight is not None:
@@ -518,7 +530,16 @@ def fit(self, X, y, sample_weight=None):
# Sample weight can be implemented via a simple rescaling.
X, y = _rescale_data(X, y, sample_weight)
- if sp.issparse(X):
+ if self.positive:
+ if y.ndim < 2:
+ self.coef_, self._residues = optimize.nnls(X, y)
+ else:
+ # scipy.optimize.nnls cannot handle y with shape (M, K)
+ outs = Parallel(n_jobs=n_jobs_)(
+ delayed(optimize.nnls)(X, y[:, j])
+ for j in range(y.shape[1]))
+ self.coef_, self._residues = map(np.vstack, zip(*outs))
+ elif sp.issparse(X):
X_offset_scale = X_offset / X_scale
def matvec(b):
|
diff --git a/sklearn/linear_model/tests/test_base.py b/sklearn/linear_model/tests/test_base.py
index af76826715241..c7990bfde8bd9 100644
--- a/sklearn/linear_model/tests/test_base.py
+++ b/sklearn/linear_model/tests/test_base.py
@@ -13,13 +13,13 @@
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_allclose
+from sklearn.utils import check_random_state
from sklearn.utils.fixes import parse_version
from sklearn.linear_model import LinearRegression
from sklearn.linear_model._base import _preprocess_data
from sklearn.linear_model._base import _rescale_data
from sklearn.linear_model._base import make_dataset
-from sklearn.utils import check_random_state
from sklearn.datasets import make_sparse_uncorrelated
from sklearn.datasets import make_regression
from sklearn.datasets import load_iris
@@ -94,6 +94,18 @@ def test_linear_regression_sample_weights():
assert_almost_equal(inter1, coefs2[0])
+def test_raises_value_error_if_positive_and_sparse():
+ error_msg = ('A sparse matrix was passed, '
+ 'but dense data is required.')
+ # X must not be sparse if positive == True
+ X = sparse.eye(10)
+ y = np.ones(10)
+
+ reg = LinearRegression(positive=True)
+
+ with pytest.raises(TypeError, match=error_msg):
+ reg.fit(X, y)
+
def test_raises_value_error_if_sample_weights_greater_than_1d():
# Sample weights must be either scalar or 1D
@@ -206,6 +218,74 @@ def test_linear_regression_sparse_multiple_outcome(random_state=0):
assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
+def test_linear_regression_positive():
+ # Test nonnegative LinearRegression on a simple dataset.
+ X = [[1], [2]]
+ y = [1, 2]
+
+ reg = LinearRegression(positive=True)
+ reg.fit(X, y)
+
+ assert_array_almost_equal(reg.coef_, [1])
+ assert_array_almost_equal(reg.intercept_, [0])
+ assert_array_almost_equal(reg.predict(X), [1, 2])
+
+ # test it also for degenerate input
+ X = [[1]]
+ y = [0]
+
+ reg = LinearRegression(positive=True)
+ reg.fit(X, y)
+ assert_allclose(reg.coef_, [0])
+ assert_allclose(reg.intercept_, [0])
+ assert_allclose(reg.predict(X), [0])
+
+
+def test_linear_regression_positive_multiple_outcome(random_state=0):
+ # Test multiple-outcome nonnegative linear regressions
+ random_state = check_random_state(random_state)
+ X, y = make_sparse_uncorrelated(random_state=random_state)
+ Y = np.vstack((y, y)).T
+ n_features = X.shape[1]
+
+ ols = LinearRegression(positive=True)
+ ols.fit(X, Y)
+ assert ols.coef_.shape == (2, n_features)
+ assert np.all(ols.coef_ >= 0.)
+ Y_pred = ols.predict(X)
+ ols.fit(X, y.ravel())
+ y_pred = ols.predict(X)
+ assert_allclose(np.vstack((y_pred, y_pred)).T, Y_pred)
+
+
+def test_linear_regression_positive_vs_nonpositive():
+ # Test differences with LinearRegression when positive=False.
+ X, y = make_sparse_uncorrelated(random_state=0)
+
+ reg = LinearRegression(positive=True)
+ reg.fit(X, y)
+ regn = LinearRegression(positive=False)
+ regn.fit(X, y)
+
+ assert np.mean((reg.coef_ - regn.coef_)**2) > 1e-3
+
+
+def test_linear_regression_positive_vs_nonpositive_when_positive():
+ # Test LinearRegression fitted coefficients
+ # when the problem is positive.
+ n_samples = 200
+ n_features = 4
+ X = rng.rand(n_samples, n_features)
+ y = X[:, 0] + 2 * X[:, 1] + 3 * X[:, 2] + 1.5 * X[:, 3]
+
+ reg = LinearRegression(positive=True)
+ reg.fit(X, y)
+ regn = LinearRegression(positive=False)
+ regn.fit(X, y)
+
+ assert np.mean((reg.coef_ - regn.coef_)**2) < 1e-6
+
+
def test_linear_regression_pd_sparse_dataframe_warning():
pd = pytest.importorskip('pandas')
# restrict the pd versions < '0.24.0' as they have a bug in is_sparse func
|
[
{
"path": "doc/modules/linear_model.rst",
"old_path": "a/doc/modules/linear_model.rst",
"new_path": "b/doc/modules/linear_model.rst",
"metadata": "diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst\nindex c4767d0cb2d64..0120f0f69fafd 100644\n--- a/doc/modules/linear_model.rst\n+++ b/doc/modules/linear_model.rst\n@@ -43,6 +43,8 @@ and will store the coefficients :math:`w` of the linear model in its\n \n >>> from sklearn import linear_model\n >>> reg = linear_model.LinearRegression()\n+ >>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])\n+ LinearRegression()\n >>> reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])\n LinearRegression()\n >>> reg.coef_\n@@ -61,6 +63,19 @@ example, when data are collected without an experimental design.\n \n * :ref:`sphx_glr_auto_examples_linear_model_plot_ols.py`\n \n+Non-Negative Least Squares\n+--------------------------\n+\n+It is possible to constrain all the coefficients to be non-negative, which may\n+be useful when they represent some physical or naturally non-negative\n+quantities (e.g., frequency counts or prices of goods).\n+:class:`LinearRegression` accepts a boolean ``positive``\n+parameter: when set to `True` `Non Negative Least Squares\n+<https://en.wikipedia.org/wiki/Non-negative_least_squares>`_ are then applied.\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_linear_model_plot_nnls.py`\n \n Ordinary Least Squares Complexity\n ---------------------------------\n"
},
{
"path": "doc/tutorial/statistical_inference/supervised_learning.rst",
"old_path": "a/doc/tutorial/statistical_inference/supervised_learning.rst",
"new_path": "b/doc/tutorial/statistical_inference/supervised_learning.rst",
"metadata": "diff --git a/doc/tutorial/statistical_inference/supervised_learning.rst b/doc/tutorial/statistical_inference/supervised_learning.rst\nindex 9913829f8f054..18a7f1336da11 100644\n--- a/doc/tutorial/statistical_inference/supervised_learning.rst\n+++ b/doc/tutorial/statistical_inference/supervised_learning.rst\n@@ -173,7 +173,7 @@ Linear models: :math:`y = X\\beta + \\epsilon`\n >>> regr = linear_model.LinearRegression()\n >>> regr.fit(diabetes_X_train, diabetes_y_train)\n LinearRegression()\n- >>> print(regr.coef_) # doctest: +SKIP\n+ >>> print(regr.coef_)\n [ 0.30349955 -237.63931533 510.53060544 327.73698041 -814.13170937\n 492.81458798 102.84845219 184.60648906 743.51961675 76.09517222]\n \n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex a1a81b7571e28..b67004f1e8b00 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -203,6 +203,14 @@ Changelog\n - |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as\n input array. :pr:`17379` by :user:`Jiaxiang <fujiaxiang>`.\n \n+:mod:`sklearn.linear_model`\n+...........................\n+\n+- |Feature| :class:`linear_model.LinearRegression` now forces coefficients\n+ to be all positive when ``positive`` is set to ``True``.\n+ :pr:`17578` by :user:`Joseph Knox <jknox13>`, :user:`Nelle Varoquaux <NelleV>`\n+ and :user:`Chiara Marmo <cmarmo>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
0.24
|
febdd191f554555c3dfc9728e40766f178296ee5
|
[
"sklearn/linear_model/tests/test_base.py::test_linear_regression_multiple_outcome",
"sklearn/linear_model/tests/test_base.py::test_preprocess_copy_data_no_checks[True-False]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_data",
"sklearn/linear_model/tests/test_base.py::test_preprocess_copy_data_no_checks[True-True]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_data_weighted",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[False-True]",
"sklearn/linear_model/tests/test_base.py::test_fit_intercept",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[True-True]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_data_multioutput",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[False-False]",
"sklearn/linear_model/tests/test_base.py::test_fused_types_make_dataset",
"sklearn/linear_model/tests/test_base.py::test_csr_preprocess_data",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights",
"sklearn/linear_model/tests/test_base.py::test_sparse_preprocess_data_with_return_mean",
"sklearn/linear_model/tests/test_base.py::test_dtype_preprocess_data",
"sklearn/linear_model/tests/test_base.py::test_preprocess_copy_data_no_checks[False-True]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_multiple_outcome",
"sklearn/linear_model/tests/test_base.py::test_rescale_data_dense[None]",
"sklearn/linear_model/tests/test_base.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[True-False]",
"sklearn/linear_model/tests/test_base.py::test_preprocess_copy_data_no_checks[False-False]",
"sklearn/linear_model/tests/test_base.py::test_linear_regression",
"sklearn/linear_model/tests/test_base.py::test_rescale_data_dense[2]"
] |
[
"sklearn/linear_model/tests/test_base.py::test_raises_value_error_if_positive_and_sparse",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_positive_multiple_outcome",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_positive",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_positive_vs_nonpositive_when_positive",
"sklearn/linear_model/tests/test_base.py::test_linear_regression_positive_vs_nonpositive"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "examples/linear_model/plot_nnls.py"
}
]
}
|
[
{
"path": "doc/modules/linear_model.rst",
"old_path": "a/doc/modules/linear_model.rst",
"new_path": "b/doc/modules/linear_model.rst",
"metadata": "diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst\nindex c4767d0cb2d64..0120f0f69fafd 100644\n--- a/doc/modules/linear_model.rst\n+++ b/doc/modules/linear_model.rst\n@@ -43,6 +43,8 @@ and will store the coefficients :math:`w` of the linear model in its\n \n >>> from sklearn import linear_model\n >>> reg = linear_model.LinearRegression()\n+ >>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])\n+ LinearRegression()\n >>> reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])\n LinearRegression()\n >>> reg.coef_\n@@ -61,6 +63,19 @@ example, when data are collected without an experimental design.\n \n * :ref:`sphx_glr_auto_examples_linear_model_plot_ols.py`\n \n+Non-Negative Least Squares\n+--------------------------\n+\n+It is possible to constrain all the coefficients to be non-negative, which may\n+be useful when they represent some physical or naturally non-negative\n+quantities (e.g., frequency counts or prices of goods).\n+:class:`LinearRegression` accepts a boolean ``positive``\n+parameter: when set to `True` `Non Negative Least Squares\n+<https://en.wikipedia.org/wiki/Non-negative_least_squares>`_ are then applied.\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_linear_model_plot_nnls.py`\n \n Ordinary Least Squares Complexity\n ---------------------------------\n"
},
{
"path": "doc/tutorial/statistical_inference/supervised_learning.rst",
"old_path": "a/doc/tutorial/statistical_inference/supervised_learning.rst",
"new_path": "b/doc/tutorial/statistical_inference/supervised_learning.rst",
"metadata": "diff --git a/doc/tutorial/statistical_inference/supervised_learning.rst b/doc/tutorial/statistical_inference/supervised_learning.rst\nindex 9913829f8f054..18a7f1336da11 100644\n--- a/doc/tutorial/statistical_inference/supervised_learning.rst\n+++ b/doc/tutorial/statistical_inference/supervised_learning.rst\n@@ -173,7 +173,7 @@ Linear models: :math:`y = X\\beta + \\epsilon`\n >>> regr = linear_model.LinearRegression()\n >>> regr.fit(diabetes_X_train, diabetes_y_train)\n LinearRegression()\n- >>> print(regr.coef_) # doctest: +SKIP\n+ >>> print(regr.coef_)\n [ 0.30349955 -237.63931533 510.53060544 327.73698041 -814.13170937\n 492.81458798 102.84845219 184.60648906 743.51961675 76.09517222]\n \n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex a1a81b7571e28..b67004f1e8b00 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -203,6 +203,14 @@ Changelog\n - |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as\n input array. :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.linear_model`\n+...........................\n+\n+- |Feature| :class:`linear_model.LinearRegression` now forces coefficients\n+ to be all positive when ``positive`` is set to ``True``.\n+ :pr:`<PRID>` by :user:`<NAME>`, :user:`<NAME>`\n+ and :user:`<NAME>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst
index c4767d0cb2d64..0120f0f69fafd 100644
--- a/doc/modules/linear_model.rst
+++ b/doc/modules/linear_model.rst
@@ -43,6 +43,8 @@ and will store the coefficients :math:`w` of the linear model in its
>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
+ >>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
+ LinearRegression()
>>> reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression()
>>> reg.coef_
@@ -61,6 +63,19 @@ example, when data are collected without an experimental design.
* :ref:`sphx_glr_auto_examples_linear_model_plot_ols.py`
+Non-Negative Least Squares
+--------------------------
+
+It is possible to constrain all the coefficients to be non-negative, which may
+be useful when they represent some physical or naturally non-negative
+quantities (e.g., frequency counts or prices of goods).
+:class:`LinearRegression` accepts a boolean ``positive``
+parameter: when set to `True` `Non Negative Least Squares
+<https://en.wikipedia.org/wiki/Non-negative_least_squares>`_ are then applied.
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_linear_model_plot_nnls.py`
Ordinary Least Squares Complexity
---------------------------------
diff --git a/doc/tutorial/statistical_inference/supervised_learning.rst b/doc/tutorial/statistical_inference/supervised_learning.rst
index 9913829f8f054..18a7f1336da11 100644
--- a/doc/tutorial/statistical_inference/supervised_learning.rst
+++ b/doc/tutorial/statistical_inference/supervised_learning.rst
@@ -173,7 +173,7 @@ Linear models: :math:`y = X\beta + \epsilon`
>>> regr = linear_model.LinearRegression()
>>> regr.fit(diabetes_X_train, diabetes_y_train)
LinearRegression()
- >>> print(regr.coef_) # doctest: +SKIP
+ >>> print(regr.coef_)
[ 0.30349955 -237.63931533 510.53060544 327.73698041 -814.13170937
492.81458798 102.84845219 184.60648906 743.51961675 76.09517222]
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index a1a81b7571e28..b67004f1e8b00 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -203,6 +203,14 @@ Changelog
- |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as
input array. :pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.linear_model`
+...........................
+
+- |Feature| :class:`linear_model.LinearRegression` now forces coefficients
+ to be all positive when ``positive`` is set to ``True``.
+ :pr:`<PRID>` by :user:`<NAME>`, :user:`<NAME>`
+ and :user:`<NAME>`.
+
:mod:`sklearn.manifold`
.......................
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'examples/linear_model/plot_nnls.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-6624
|
https://github.com/scikit-learn/scikit-learn/pull/6624
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index b67004f1e8b00..94328dafdeaa2 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -211,6 +211,12 @@ Changelog
:pr:`17578` by :user:`Joseph Knox <jknox13>`, :user:`Nelle Varoquaux <NelleV>`
and :user:`Chiara Marmo <cmarmo>`.
+- |Enhancement| :class:`linear_model.RidgeCV` now supports finding an optimal
+ regularization value `alpha` for each target separately by setting
+ ``alpha_per_target=True``. This is only supported when using the default
+ efficient leave-one-out cross-validation scheme ``cv=None``. :pr:`6624` by
+ :user:`Marijn van Vliet <wmvanvliet>`.
+
:mod:`sklearn.manifold`
.......................
diff --git a/sklearn/linear_model/_ridge.py b/sklearn/linear_model/_ridge.py
index cd8d18b6e53bc..544d330caad42 100644
--- a/sklearn/linear_model/_ridge.py
+++ b/sklearn/linear_model/_ridge.py
@@ -1120,7 +1120,7 @@ def __init__(self, alphas=(0.1, 1.0, 10.0), *,
fit_intercept=True, normalize=False,
scoring=None, copy_X=True,
gcv_mode=None, store_cv_values=False,
- is_clf=False):
+ is_clf=False, alpha_per_target=False):
self.alphas = np.asarray(alphas)
self.fit_intercept = fit_intercept
self.normalize = normalize
@@ -1129,6 +1129,7 @@ def __init__(self, alphas=(0.1, 1.0, 10.0), *,
self.gcv_mode = gcv_mode
self.store_cv_values = store_cv_values
self.is_clf = is_clf
+ self.alpha_per_target = alpha_per_target
@staticmethod
def _decomp_diag(v_prime, Q):
@@ -1456,6 +1457,11 @@ def fit(self, X, y, sample_weight=None):
dtype=[np.float64],
multi_output=True, y_numeric=True)
+ # alpha_per_target cannot be used in classifier mode. All subclasses
+ # of _RidgeGCV that are classifiers keep alpha_per_target at its
+ # default value: False, so the condition below should never happen.
+ assert not (self.is_clf and self.alpha_per_target)
+
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X,
dtype=X.dtype)
@@ -1496,19 +1502,23 @@ def fit(self, X, y, sample_weight=None):
error = scorer is None
n_y = 1 if len(y.shape) == 1 else y.shape[1]
+ n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas)
if self.store_cv_values:
self.cv_values_ = np.empty(
- (n_samples * n_y, len(self.alphas)), dtype=X.dtype)
+ (n_samples * n_y, n_alphas), dtype=X.dtype)
best_coef, best_score, best_alpha = None, None, None
- for i, alpha in enumerate(self.alphas):
+ for i, alpha in enumerate(np.atleast_1d(self.alphas)):
G_inverse_diag, c = solve(
float(alpha), y, sqrt_sw, X_mean, *decomposition)
if error:
squared_errors = (c / G_inverse_diag) ** 2
- alpha_score = -squared_errors.mean()
+ if self.alpha_per_target:
+ alpha_score = -squared_errors.mean(axis=0)
+ else:
+ alpha_score = -squared_errors.mean()
if self.store_cv_values:
self.cv_values_[:, i] = squared_errors.ravel()
else:
@@ -1520,15 +1530,40 @@ def fit(self, X, y, sample_weight=None):
identity_estimator = _IdentityClassifier(
classes=np.arange(n_y)
)
- predictions_, y_ = predictions, y.argmax(axis=1)
+ alpha_score = scorer(identity_estimator,
+ predictions, y.argmax(axis=1))
else:
identity_estimator = _IdentityRegressor()
- predictions_, y_ = predictions.ravel(), y.ravel()
-
- alpha_score = scorer(identity_estimator, predictions_, y_)
-
- if (best_score is None) or (alpha_score > best_score):
- best_coef, best_score, best_alpha = c, alpha_score, alpha
+ if self.alpha_per_target:
+ alpha_score = np.array([
+ scorer(identity_estimator,
+ predictions[:, j], y[:, j])
+ for j in range(n_y)
+ ])
+ else:
+ alpha_score = scorer(identity_estimator,
+ predictions.ravel(), y.ravel())
+
+ # Keep track of the best model
+ if best_score is None:
+ # initialize
+ if self.alpha_per_target and n_y > 1:
+ best_coef = c
+ best_score = np.atleast_1d(alpha_score)
+ best_alpha = np.full(n_y, alpha)
+ else:
+ best_coef = c
+ best_score = alpha_score
+ best_alpha = alpha
+ else:
+ # update
+ if self.alpha_per_target and n_y > 1:
+ to_update = alpha_score > best_score
+ best_coef[:, to_update] = c[:, to_update]
+ best_score[to_update] = alpha_score[to_update]
+ best_alpha[to_update] = alpha
+ elif alpha_score > best_score:
+ best_coef, best_score, best_alpha = c, alpha_score, alpha
self.alpha_ = best_alpha
self.best_score_ = best_score
@@ -1540,9 +1575,9 @@ def fit(self, X, y, sample_weight=None):
if self.store_cv_values:
if len(y.shape) == 1:
- cv_values_shape = n_samples, len(self.alphas)
+ cv_values_shape = n_samples, n_alphas
else:
- cv_values_shape = n_samples, n_y, len(self.alphas)
+ cv_values_shape = n_samples, n_y, n_alphas
self.cv_values_ = self.cv_values_.reshape(cv_values_shape)
return self
@@ -1552,8 +1587,8 @@ class _BaseRidgeCV(LinearModel):
@_deprecate_positional_args
def __init__(self, alphas=(0.1, 1.0, 10.0), *,
fit_intercept=True, normalize=False, scoring=None,
- cv=None, gcv_mode=None,
- store_cv_values=False):
+ cv=None, gcv_mode=None, store_cv_values=False,
+ alpha_per_target=False):
self.alphas = np.asarray(alphas)
self.fit_intercept = fit_intercept
self.normalize = normalize
@@ -1561,6 +1596,7 @@ def __init__(self, alphas=(0.1, 1.0, 10.0), *,
self.cv = cv
self.gcv_mode = gcv_mode
self.store_cv_values = store_cv_values
+ self.alpha_per_target = alpha_per_target
def fit(self, X, y, sample_weight=None):
"""Fit Ridge regression model with cv.
@@ -1598,7 +1634,8 @@ def fit(self, X, y, sample_weight=None):
scoring=self.scoring,
gcv_mode=self.gcv_mode,
store_cv_values=self.store_cv_values,
- is_clf=is_classifier(self))
+ is_clf=is_classifier(self),
+ alpha_per_target=self.alpha_per_target)
estimator.fit(X, y, sample_weight=sample_weight)
self.alpha_ = estimator.alpha_
self.best_score_ = estimator.best_score_
@@ -1606,7 +1643,10 @@ def fit(self, X, y, sample_weight=None):
self.cv_values_ = estimator.cv_values_
else:
if self.store_cv_values:
- raise ValueError("cv!=None and store_cv_values=True "
+ raise ValueError("cv!=None and store_cv_values=True"
+ " are incompatible")
+ if self.alpha_per_target:
+ raise ValueError("cv!=None and alpha_per_target=True"
" are incompatible")
parameters = {'alpha': self.alphas}
solver = 'sparse_cg' if sparse.issparse(X) else 'auto'
@@ -1704,14 +1744,21 @@ class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV):
below). This flag is only compatible with ``cv=None`` (i.e. using
Generalized Cross-Validation).
+ alpha_per_target : bool, default=False
+ Flag indicating whether to optimize the alpha value (picked from the
+ `alphas` parameter list) for each target separately (for multi-output
+ settings: multiple prediction targets). When set to `True`, after
+ fitting, the `alpha_` attribute will contain a value for each target.
+ When set to `False`, a single alpha is used for all targets.
+
Attributes
----------
cv_values_ : ndarray of shape (n_samples, n_alphas) or \
shape (n_samples, n_targets, n_alphas), optional
- Cross-validation values for each alpha (only available if \
- ``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been \
- called, this attribute will contain the mean squared errors \
- (by default) or the values of the ``{loss,score}_func`` function \
+ Cross-validation values for each alpha (only available if
+ ``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been
+ called, this attribute will contain the mean squared errors
+ (by default) or the values of the ``{loss,score}_func`` function
(if provided in the constructor).
coef_ : ndarray of shape (n_features) or (n_targets, n_features)
@@ -1721,11 +1768,13 @@ class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV):
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
- alpha_ : float
- Estimated regularization parameter.
+ alpha_ : float or ndarray of shape (n_targets,)
+ Estimated regularization parameter, or, if ``alpha_per_target=True``,
+ the estimated regularization parameter for each target.
- best_score_ : float
- Score of base estimator with best alpha.
+ best_score_ : float or ndarray of shape (n_targets,)
+ Score of base estimator with best alpha, or, if
+ ``alpha_per_target=True``, a score for each target.
Examples
--------
|
diff --git a/sklearn/linear_model/tests/test_ridge.py b/sklearn/linear_model/tests/test_ridge.py
index 0a10e5f23f562..7d52de903aee5 100644
--- a/sklearn/linear_model/tests/test_ridge.py
+++ b/sklearn/linear_model/tests/test_ridge.py
@@ -37,7 +37,10 @@
from sklearn.datasets import make_classification
from sklearn.model_selection import GridSearchCV
-from sklearn.model_selection import KFold, GroupKFold, cross_val_predict
+from sklearn.model_selection import KFold
+from sklearn.model_selection import GroupKFold
+from sklearn.model_selection import cross_val_predict
+from sklearn.model_selection import LeaveOneOut
from sklearn.utils import check_random_state
from sklearn.datasets import make_multilabel_classification
@@ -693,6 +696,74 @@ def test_ridge_best_score(ridge, make_dataset, cv):
assert isinstance(ridge.best_score_, float)
+def test_ridge_cv_individual_penalties():
+ # Tests the ridge_cv object optimizing individual penalties for each target
+
+ rng = np.random.RandomState(42)
+
+ # Create random dataset with multiple targets. Each target should have
+ # a different optimal alpha.
+ n_samples, n_features, n_targets = 20, 5, 3
+ y = rng.randn(n_samples, n_targets)
+ X = (np.dot(y[:, [0]], np.ones((1, n_features))) +
+ np.dot(y[:, [1]], 0.05 * np.ones((1, n_features))) +
+ np.dot(y[:, [2]], 0.001 * np.ones((1, n_features))) +
+ rng.randn(n_samples, n_features))
+
+ alphas = (1, 100, 1000)
+
+ # Find optimal alpha for each target
+ optimal_alphas = [RidgeCV(alphas=alphas).fit(X, target).alpha_
+ for target in y.T]
+
+ # Find optimal alphas for all targets simultaneously
+ ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True).fit(X, y)
+ assert_array_equal(optimal_alphas, ridge_cv.alpha_)
+
+ # The resulting regression weights should incorporate the different
+ # alpha values.
+ assert_array_almost_equal(Ridge(alpha=ridge_cv.alpha_).fit(X, y).coef_,
+ ridge_cv.coef_)
+
+ # Test shape of alpha_ and cv_values_
+ ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True,
+ store_cv_values=True).fit(X, y)
+ assert ridge_cv.alpha_.shape == (n_targets,)
+ assert ridge_cv.best_score_.shape == (n_targets,)
+ assert ridge_cv.cv_values_.shape == (n_samples, len(alphas), n_targets)
+
+ # Test edge case of there being only one alpha value
+ ridge_cv = RidgeCV(alphas=1, alpha_per_target=True,
+ store_cv_values=True).fit(X, y)
+ assert ridge_cv.alpha_.shape == (n_targets,)
+ assert ridge_cv.best_score_.shape == (n_targets,)
+ assert ridge_cv.cv_values_.shape == (n_samples, n_targets, 1)
+
+ # Test edge case of there being only one target
+ ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True,
+ store_cv_values=True).fit(X, y[:, 0])
+ assert np.isscalar(ridge_cv.alpha_)
+ assert np.isscalar(ridge_cv.best_score_)
+ assert ridge_cv.cv_values_.shape == (n_samples, len(alphas))
+
+ # Try with a custom scoring function
+ ridge_cv = RidgeCV(alphas=alphas, alpha_per_target=True,
+ scoring='r2').fit(X, y)
+ assert_array_equal(optimal_alphas, ridge_cv.alpha_)
+ assert_array_almost_equal(Ridge(alpha=ridge_cv.alpha_).fit(X, y).coef_,
+ ridge_cv.coef_)
+
+ # Using a custom CV object should throw an error in combination with
+ # alpha_per_target=True
+ ridge_cv = RidgeCV(alphas=alphas, cv=LeaveOneOut(), alpha_per_target=True)
+ msg = "cv!=None and alpha_per_target=True are incompatible"
+ with pytest.raises(ValueError, match=msg):
+ ridge_cv.fit(X, y)
+ ridge_cv = RidgeCV(alphas=alphas, cv=6, alpha_per_target=True)
+ with pytest.raises(ValueError, match=msg):
+ ridge_cv.fit(X, y)
+
+
def _test_ridge_diabetes(filter_):
ridge = Ridge(fit_intercept=False)
ridge.fit(filter_(X_diabetes), y_diabetes)
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex b67004f1e8b00..94328dafdeaa2 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -211,6 +211,12 @@ Changelog\n :pr:`17578` by :user:`Joseph Knox <jknox13>`, :user:`Nelle Varoquaux <NelleV>`\n and :user:`Chiara Marmo <cmarmo>`.\n \n+- |Enhancement| :class:`linear_model.RidgeCV` now supports finding an optimal\n+ regularization value `alpha` for each target separately by setting\n+ ``alpha_per_target=True``. This is only supported when using the default\n+ efficient leave-one-out cross-validation scheme ``cv=None``. :pr:`6624` by\n+ :user:`Marijn van Vliet <wmvanvliet>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
0.24
|
075d4245681110386cb4312cbdbd0c82776290ac
|
[
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>1-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[gcv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[<lambda>0-None]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_tolerance]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_no_support_multilabel",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>1-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_sample_weights_greater_than_1d",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_sample_weight",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifierCV]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_multi_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[<lambda>0-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_shapes",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[5]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col0]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[<lambda>1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col2]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_vs_lstsq",
"sklearn/linear_model/tests/test_ridge.py::test_X_CenterStackOp[n_col1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_design_with_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_raises_value_error_if_solver_not_supported",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>1-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_toy_ridge_object",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_primal_dual_relationship",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>1-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[neg_mean_squared_error]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>0-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_singular",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>0-None-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_loo]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape1-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape0]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_n_iter",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_negative_alphas",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[<lambda>1-cv1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_values_not_stored[ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_classifiers]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[None-svd-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_individual_penalties",
"sklearn/linear_model/tests/test_ridge.py::test_sparse_cg_max_iter",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>1-None-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sparse_svd",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[None]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_intercept",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weights_cv",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape0-True-1.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-8-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>0-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_sag_with_X_fortran",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape3-False-30.0-20-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[sparse_cg]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-saga]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[bad]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_loo_cv_asym_scoring",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-cholesky-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[eigen-eigen-eigen-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[auto-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-20-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>0-cv1-accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-array-None-True]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[True-shape4]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_int_alphas",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge0-make_regression]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv_normalize]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-sparse_cg-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_convergence_fail",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-20-float32-0.1-saga-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[cholesky]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_covariance[False-shape2]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[True-shape1]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float32-0.1-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-20-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_error[True]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[svd-svd-svd-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-csr_matrix-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_dtype_stability[0-lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-20-float64-0.2-sparse_cg-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_check_gcv_mode_choice[auto-svd-eigen-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-ridgecv-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridgecv_store_cv_values[_mean_squared_error_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float32-0.1-ridgecv-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape1-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed1-20-float64-0.2-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match_cholesky",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sparse_cg-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[lsqr-array-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[sag-csr_matrix-sample_weight1-False]",
"sklearn/linear_model/tests/test_ridge.py::test_compute_gram[False-shape3]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed2-40-float32-1.0-lsqr-False]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-array-None-False]",
"sklearn/linear_model/tests/test_ridge.py::test_solver_consistency[seed0-40-float32-1.0-sag-False]",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_diabetes]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_sample_weights",
"sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[_test_ridge_cv]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>1-cv1-_accuracy_callable]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifier]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape2-True-150.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[saga-csr_matrix-sample_weight1-True]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_fit_intercept_sparse_error[saga]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>0-cv1-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-True-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape2-False-150.0-True-X_shape0-asarray-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_values[accuracy]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[<lambda>0-None-None]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape1-False-30.0-True-X_shape1-asarray-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_vs_ridge_loo_cv[y_shape0-True-1.0-False-X_shape0-csr_matrix-eigen]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_sample_weights[y_shape1-True-20.0-8-csr_matrix-svd]",
"sklearn/linear_model/tests/test_ridge.py::test_dtype_match[lsqr]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge[sag]",
"sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_check_arguments_validity[cholesky-csr_matrix-None-False]"
] |
[
"sklearn/linear_model/tests/test_ridge.py::test_ridge_cv_individual_penalties"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex b67004f1e8b00..94328dafdeaa2 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -211,6 +211,12 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`, :user:`<NAME>`\n and :user:`<NAME>`.\n \n+- |Enhancement| :class:`linear_model.RidgeCV` now supports finding an optimal\n+ regularization value `alpha` for each target separately by setting\n+ ``alpha_per_target=True``. This is only supported when using the default\n+ efficient leave-one-out cross-validation scheme ``cv=None``. :pr:`<PRID>` by\n+ :user:`<NAME>`.\n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index b67004f1e8b00..94328dafdeaa2 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -211,6 +211,12 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`, :user:`<NAME>`
and :user:`<NAME>`.
+- |Enhancement| :class:`linear_model.RidgeCV` now supports finding an optimal
+ regularization value `alpha` for each target separately by setting
+ ``alpha_per_target=True``. This is only supported when using the default
+ efficient leave-one-out cross-validation scheme ``cv=None``. :pr:`<PRID>` by
+ :user:`<NAME>`.
+
:mod:`sklearn.manifold`
.......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-13003
|
https://github.com/scikit-learn/scikit-learn/pull/13003
|
diff --git a/benchmarks/bench_plot_polynomial_kernel_approximation.py b/benchmarks/bench_plot_polynomial_kernel_approximation.py
new file mode 100644
index 0000000000000..2b7556f37320e
--- /dev/null
+++ b/benchmarks/bench_plot_polynomial_kernel_approximation.py
@@ -0,0 +1,156 @@
+"""
+========================================================================
+Benchmark for explicit feature map approximation of polynomial kernels
+========================================================================
+
+An example illustrating the approximation of the feature map
+of an Homogeneous Polynomial kernel.
+
+.. currentmodule:: sklearn.kernel_approximation
+
+It shows how to use :class:`PolynomialCountSketch` and :class:`Nystroem` to
+approximate the feature map of a polynomial kernel for
+classification with an SVM on the digits dataset. Results using a linear
+SVM in the original space, a linear SVM using the approximate mappings
+and a kernelized SVM are compared.
+
+The first plot shows the classification accuracy of Nystroem [2] and
+PolynomialCountSketch [1] as the output dimension (n_components) grows.
+It also shows the accuracy of a linear SVM and a polynomial kernel SVM
+on the same data.
+
+The second plot explores the scalability of PolynomialCountSketch
+and Nystroem. For a sufficiently large output dimension,
+PolynomialCountSketch should be faster as it is O(n(d+klog k))
+while Nystroem is O(n(dk+k^2)). In addition, Nystroem requires
+a time-consuming training phase, while training is almost immediate
+for PolynomialCountSketch, whose training phase boils down to
+initializing some random variables (because is data-independent).
+
+[1] Pham, N., & Pagh, R. (2013, August). Fast and scalable polynomial
+kernels via explicit feature maps. In Proceedings of the 19th ACM SIGKDD
+international conference on Knowledge discovery and data mining (pp. 239-247)
+(http://chbrown.github.io/kdd-2013-usb/kdd/p239.pdf)
+
+[2] Charikar, M., Chen, K., & Farach-Colton, M. (2002, July). Finding frequent
+items in data streams. In International Colloquium on Automata, Languages, and
+Programming (pp. 693-703). Springer, Berlin, Heidelberg.
+(http://www.vldb.org/pvldb/1/1454225.pdf)
+
+"""
+# Author: Daniel Lopez-Sanchez <[email protected]>
+# License: BSD 3 clause
+
+# Load data manipulation functions
+from sklearn.datasets import load_digits
+from sklearn.model_selection import train_test_split
+
+# Some common libraries
+import matplotlib.pyplot as plt
+import numpy as np
+
+# Will use this for timing results
+from time import time
+
+# Import SVM classifiers and feature map approximation algorithms
+from sklearn.svm import LinearSVC, SVC
+from sklearn.kernel_approximation import Nystroem, PolynomialCountSketch
+from sklearn.pipeline import Pipeline
+
+# Split data in train and test sets
+X, y = load_digits()["data"], load_digits()["target"]
+X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7)
+
+# Set the range of n_components for our experiments
+out_dims = range(20, 400, 20)
+
+# Evaluate Linear SVM
+lsvm = LinearSVC().fit(X_train, y_train)
+lsvm_score = 100*lsvm.score(X_test, y_test)
+
+# Evaluate kernelized SVM
+ksvm = SVC(kernel="poly", degree=2, gamma=1.).fit(X_train, y_train)
+ksvm_score = 100*ksvm.score(X_test, y_test)
+
+# Evaluate PolynomialCountSketch + LinearSVM
+ps_svm_scores = []
+n_runs = 5
+
+# To compensate for the stochasticity of the method, we make n_tets runs
+for k in out_dims:
+ score_avg = 0
+ for _ in range(n_runs):
+ ps_svm = Pipeline([("PS", PolynomialCountSketch(degree=2,
+ n_components=k)),
+ ("SVM", LinearSVC())])
+ score_avg += ps_svm.fit(X_train, y_train).score(X_test, y_test)
+ ps_svm_scores.append(100*score_avg/n_runs)
+
+# Evaluate Nystroem + LinearSVM
+ny_svm_scores = []
+n_runs = 5
+
+for k in out_dims:
+ score_avg = 0
+ for _ in range(n_runs):
+ ny_svm = Pipeline([("NY", Nystroem(kernel="poly", gamma=1., degree=2,
+ coef0=0, n_components=k)),
+ ("SVM", LinearSVC())])
+ score_avg += ny_svm.fit(X_train, y_train).score(X_test, y_test)
+ ny_svm_scores.append(100*score_avg/n_runs)
+
+# Show results
+fig, ax = plt.subplots(figsize=(6, 4))
+ax.set_title("Accuracy results")
+ax.plot(out_dims, ps_svm_scores, label="PolynomialCountSketch + linear SVM",
+ c="orange")
+ax.plot(out_dims, ny_svm_scores, label="Nystroem + linear SVM",
+ c="blue")
+ax.plot([out_dims[0], out_dims[-1]], [lsvm_score, lsvm_score],
+ label="Linear SVM", c="black", dashes=[2, 2])
+ax.plot([out_dims[0], out_dims[-1]], [ksvm_score, ksvm_score],
+ label="Poly-kernel SVM", c="red", dashes=[2, 2])
+ax.legend()
+ax.set_xlabel("N_components for PolynomialCountSketch and Nystroem")
+ax.set_ylabel("Accuracy (%)")
+ax.set_xlim([out_dims[0], out_dims[-1]])
+fig.tight_layout()
+
+# Now lets evaluate the scalability of PolynomialCountSketch vs Nystroem
+# First we generate some fake data with a lot of samples
+
+fakeData = np.random.randn(10000, 100)
+fakeDataY = np.random.randint(0, high=10, size=(10000))
+
+out_dims = range(500, 6000, 500)
+
+# Evaluate scalability of PolynomialCountSketch as n_components grows
+ps_svm_times = []
+for k in out_dims:
+ ps = PolynomialCountSketch(degree=2, n_components=k)
+
+ start = time()
+ ps.fit_transform(fakeData, None)
+ ps_svm_times.append(time() - start)
+
+# Evaluate scalability of Nystroem as n_components grows
+# This can take a while due to the inefficient training phase
+ny_svm_times = []
+for k in out_dims:
+ ny = Nystroem(kernel="poly", gamma=1., degree=2, coef0=0, n_components=k)
+
+ start = time()
+ ny.fit_transform(fakeData, None)
+ ny_svm_times.append(time() - start)
+
+# Show results
+fig, ax = plt.subplots(figsize=(6, 4))
+ax.set_title("Scalability results")
+ax.plot(out_dims, ps_svm_times, label="PolynomialCountSketch", c="orange")
+ax.plot(out_dims, ny_svm_times, label="Nystroem", c="blue")
+ax.legend()
+ax.set_xlabel("N_components for PolynomialCountSketch and Nystroem")
+ax.set_ylabel("fit_transform time \n(s/10.000 samples)")
+ax.set_xlim([out_dims[0], out_dims[-1]])
+fig.tight_layout()
+plt.show()
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 2e54d000a13aa..70a5174629f37 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -706,6 +706,7 @@ Plotting
kernel_approximation.AdditiveChi2Sampler
kernel_approximation.Nystroem
+ kernel_approximation.PolynomialCountSketch
kernel_approximation.RBFSampler
kernel_approximation.SkewedChi2Sampler
diff --git a/doc/modules/kernel_approximation.rst b/doc/modules/kernel_approximation.rst
index fb3843c6bc045..4f5ee46a42057 100644
--- a/doc/modules/kernel_approximation.rst
+++ b/doc/modules/kernel_approximation.rst
@@ -149,6 +149,51 @@ above for the :class:`RBFSampler`. The only difference is in the free
parameter, that is called :math:`c`.
For a motivation for this mapping and the mathematical details see [LS2010]_.
+.. _polynomial_kernel_approx:
+
+Polynomial Kernel Approximation via Tensor Sketch
+-------------------------------------------------
+
+The :ref:`polynomial kernel <polynomial_kernel>` is a popular type of kernel
+function given by:
+
+.. math::
+
+ k(x, y) = (\gamma x^\top y +c_0)^d
+
+where:
+
+ * ``x``, ``y`` are the input vectors
+ * ``d`` is the kernel degree
+
+Intuitively, the feature space of the polynomial kernel of degree `d`
+consists of all possible degree-`d` products among input features, which enables
+learning algorithms using this kernel to account for interactions between features.
+
+The TensorSketch [PP2013]_ method, as implemented in :class:`PolynomialCountSketch`, is a
+scalable, input data independent method for polynomial kernel approximation.
+It is based on the concept of Count sketch [WIKICS]_ [CCF2002]_ , a dimensionality
+reduction technique similar to feature hashing, which instead uses several
+independent hash functions. TensorSketch obtains a Count Sketch of the outer product
+of two vectors (or a vector with itself), which can be used as an approximation of the
+polynomial kernel feature space. In particular, instead of explicitly computing
+the outer product, TensorSketch computes the Count Sketch of the vectors and then
+uses polynomial multiplication via the Fast Fourier Transform to compute the
+Count Sketch of their outer product.
+
+Conveniently, the training phase of TensorSketch simply consists of initializing
+some random variables. It is thus independent of the input data, i.e. it only
+depends on the number of input features, but not the data values.
+In addition, this method can transform samples in
+:math:`\mathcal{O}(n_{\text{samples}}(n_{\text{features}} + n_{\text{components}} \log(n_{\text{components}})))`
+time, where :math:`n_{\text{components}}` is the desired output dimension,
+determined by ``n_components``.
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_plot_scalable_poly_kernels.py`
+
+.. _tensor_sketch_kernel_approx:
Mathematical Details
--------------------
@@ -201,3 +246,11 @@ or store training examples.
.. [VVZ2010] `"Generalized RBF feature maps for Efficient Detection"
<https://www.robots.ox.ac.uk/~vgg/publications/2010/Sreekanth10/sreekanth10.pdf>`_
Vempati, S. and Vedaldi, A. and Zisserman, A. and Jawahar, CV - 2010
+ .. [PP2013] `"Fast and scalable polynomial kernels via explicit feature maps"
+ <https://doi.org/10.1145/2487575.2487591>`_
+ Pham, N., & Pagh, R. - 2013
+ .. [CCF2002] `"Finding frequent items in data streams"
+ <http://www.cs.princeton.edu/courses/archive/spring04/cos598B/bib/CharikarCF.pdf>`_
+ Charikar, M., Chen, K., & Farach-Colton - 2002
+ .. [WIKICS] `"Wikipedia: Count sketch"
+ <https://en.wikipedia.org/wiki/Count_sketch>`_
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 2682902a20983..c73f1a373a86b 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -221,6 +221,15 @@ Changelog
- |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as
input array. :pr:`17379` by :user:`Jiaxiang <fujiaxiang>`.
+:mod:`sklearn.kernel_approximation`
+...................................
+
+- |Feature| Added class :class:`kernel_approximation.PolynomialCountSketch`
+ which implements the Tensor Sketch algorithm for polynomial kernel feature
+ map approximation.
+ :pr:`13003` by :user:`Daniel López Sánchez <lopeLH>`.
+
+
:mod:`sklearn.linear_model`
...........................
@@ -235,6 +244,7 @@ Changelog
efficient leave-one-out cross-validation scheme ``cv=None``. :pr:`6624` by
:user:`Marijn van Vliet <wmvanvliet>`.
+
:mod:`sklearn.manifold`
.......................
diff --git a/examples/plot_scalable_poly_kernels.py b/examples/plot_scalable_poly_kernels.py
new file mode 100644
index 0000000000000..845ba1fdf3050
--- /dev/null
+++ b/examples/plot_scalable_poly_kernels.py
@@ -0,0 +1,186 @@
+"""
+=======================================================
+Scalable learning with polynomial kernel aproximation
+=======================================================
+
+This example illustrates the use of :class:`PolynomialCountSketch` to
+efficiently generate polynomial kernel feature-space approximations.
+This is used to train linear classifiers that approximate the accuracy
+of kernelized ones.
+
+.. currentmodule:: sklearn.kernel_approximation
+
+We use the Covtype dataset [2], trying to reproduce the experiments on the
+original paper of Tensor Sketch [1], i.e. the algorithm implemented by
+:class:`PolynomialCountSketch`.
+
+First, we compute the accuracy of a linear classifier on the original
+features. Then, we train linear classifiers on different numbers of
+features (`n_components`) generated by :class:`PolynomialCountSketch`,
+approximating the accuracy of a kernelized classifier in a scalable manner.
+"""
+print(__doc__)
+
+# Author: Daniel Lopez-Sanchez <[email protected]>
+# License: BSD 3 clause
+import matplotlib.pyplot as plt
+from sklearn.datasets import fetch_covtype
+from sklearn.model_selection import train_test_split
+from sklearn.preprocessing import MinMaxScaler, Normalizer
+from sklearn.svm import LinearSVC
+from sklearn.kernel_approximation import PolynomialCountSketch
+from sklearn.pipeline import Pipeline, make_pipeline
+import time
+
+# %%
+# Load the Covtype dataset, which contains 581,012 samples
+# with 54 features each, distributed among 6 classes. The goal of this dataset
+# is to predict forest cover type from cartographic variables only
+# (no remotely sensed data). After loading, we transform it into a binary
+# classification problem to match the version of the dataset in the
+# LIBSVM webpage [2], which was the one used in [1].
+
+X, y = fetch_covtype(return_X_y=True)
+
+y[y != 2] = 0
+y[y == 2] = 1 # We will try to separate class 2 from the other 6 classes.
+
+# %%
+# Here we select 5,000 samples for training and 10,000 for testing.
+# To actually reproduce the results in the original Tensor Sketch paper,
+# select 100,000 for training.
+
+X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=5_000,
+ test_size=10_000,
+ random_state=42)
+
+# %%
+# Now scale features to the range [0, 1] to match the format of the dataset in
+# the LIBSVM webpage, and then normalize to unit length as done in the
+# original Tensor Sketch paper [1].
+
+mm = make_pipeline(MinMaxScaler(), Normalizer())
+X_train = mm.fit_transform(X_train)
+X_test = mm.transform(X_test)
+
+
+# %%
+# As a baseline, train a linear SVM on the original features and print the
+# accuracy. We also measure and store accuracies and training times to
+# plot them latter.
+
+results = {}
+
+lsvm = LinearSVC()
+start = time.time()
+lsvm.fit(X_train, y_train)
+lsvm_time = time.time() - start
+lsvm_score = 100 * lsvm.score(X_test, y_test)
+
+results["LSVM"] = {"time": lsvm_time, "score": lsvm_score}
+print(f"Linear SVM score on raw features: {lsvm_score:.2f}%")
+
+# %%
+# Then we train linear SVMs on the features generated by
+# :class:`PolynomialCountSketch` with different values for `n_components`,
+# showing that these kernel feature approximations improve the accuracy
+# of linear classification. In typical application scenarios, `n_components`
+# should be larger than the number of features in the input representation
+# in order to achieve an improvement with respect to linear classification.
+# As a rule of thumb, the optimum of evaluation score / run time cost is
+# typically achieved at around `n_components` = 10 * `n_features`, though this
+# might depend on the specific dataset being handled. Note that, since the
+# original samples have 54 features, the explicit feature map of the
+# polynomial kernel of degree four would have approximately 8.5 million
+# features (precisely, 54^4). Thanks to :class:`PolynomialCountSketch`, we can
+# condense most of the discriminative information of that feature space into a
+# much more compact representation. We repeat the experiment 5 times to
+# compensate for the stochastic nature of :class:`PolynomialCountSketch`.
+
+n_runs = 3
+for n_components in [250, 500, 1000, 2000]:
+
+ ps_lsvm_time = 0
+ ps_lsvm_score = 0
+ for _ in range(n_runs):
+
+ pipeline = Pipeline(steps=[("kernel_approximator",
+ PolynomialCountSketch(
+ n_components=n_components,
+ degree=4)),
+ ("linear_classifier", LinearSVC())])
+
+ start = time.time()
+ pipeline.fit(X_train, y_train)
+ ps_lsvm_time += time.time() - start
+ ps_lsvm_score += 100 * pipeline.score(X_test, y_test)
+
+ ps_lsvm_time /= n_runs
+ ps_lsvm_score /= n_runs
+
+ results[f"LSVM + PS({n_components})"] = {
+ "time": ps_lsvm_time, "score": ps_lsvm_score
+ }
+ print(f"Linear SVM score on {n_components} PolynomialCountSketch " +
+ f"features: {ps_lsvm_score:.2f}%")
+
+# %%
+# Train a kernelized SVM to see how well :class:`PolynomialCountSketch`
+# is approximating the performance of the kernel. This, of course, may take
+# some time, as the SVC class has a relatively poor scalability. This is the
+# reason why kernel approximators are so useful:
+
+from sklearn.svm import SVC
+
+ksvm = SVC(C=500., kernel="poly", degree=4, coef0=0, gamma=1.)
+
+start = time.time()
+ksvm.fit(X_train, y_train)
+ksvm_time = time.time() - start
+ksvm_score = 100 * ksvm.score(X_test, y_test)
+
+results["KSVM"] = {"time": ksvm_time, "score": ksvm_score}
+print(f"Kernel-SVM score on raw featrues: {ksvm_score:.2f}%")
+
+# %%
+# Finally, plot the resuts of the different methods against their training
+# times. As we can see, the kernelized SVM achieves a higher accuracy,
+# but its training time is much larger and, most importantly, will grow
+# much faster if the number of training samples increases.
+
+N_COMPONENTS = [250, 500, 1000, 2000]
+
+fig, ax = plt.subplots(figsize=(7, 7))
+ax.scatter([results["LSVM"]["time"], ], [results["LSVM"]["score"], ],
+ label="Linear SVM", c="green", marker="^")
+
+ax.scatter([results["LSVM + PS(250)"]["time"], ],
+ [results["LSVM + PS(250)"]["score"], ],
+ label="Linear SVM + PolynomialCountSketch", c="blue")
+for n_components in N_COMPONENTS:
+ ax.scatter([results[f"LSVM + PS({n_components})"]["time"], ],
+ [results[f"LSVM + PS({n_components})"]["score"], ],
+ c="blue")
+ ax.annotate(f"n_comp.={n_components}",
+ (results[f"LSVM + PS({n_components})"]["time"],
+ results[f"LSVM + PS({n_components})"]["score"]),
+ xytext=(-30, 10), textcoords="offset pixels")
+
+ax.scatter([results["KSVM"]["time"], ], [results["KSVM"]["score"], ],
+ label="Kernel SVM", c="red", marker="x")
+
+ax.set_xlabel("Training time (s)")
+ax.set_ylabel("Accurary (%)")
+ax.legend()
+plt.show()
+
+# %%
+# References
+# ==========
+#
+# [1] Pham, Ninh and Rasmus Pagh. "Fast and scalable polynomial kernels via
+# explicit feature maps." KDD '13 (2013).
+# https://doi.org/10.1145/2487575.2487591
+#
+# [2] LIBSVM binary datasets repository
+# https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
diff --git a/sklearn/kernel_approximation.py b/sklearn/kernel_approximation.py
index 0310523e63213..19b2c432a758f 100644
--- a/sklearn/kernel_approximation.py
+++ b/sklearn/kernel_approximation.py
@@ -1,10 +1,11 @@
"""
The :mod:`sklearn.kernel_approximation` module implements several
-approximate kernel feature maps base on Fourier transforms.
+approximate kernel feature maps based on Fourier transforms and Count Sketches.
"""
# Author: Andreas Mueller <[email protected]>
-#
+# Daniel Lopez-Sanchez (TensorSketch) <[email protected]>
+
# License: BSD 3 clause
import warnings
@@ -12,6 +13,10 @@
import numpy as np
import scipy.sparse as sp
from scipy.linalg import svd
+try:
+ from scipy.fft import fft, ifft
+except ImportError: # scipy < 1.4
+ from scipy.fftpack import fft, ifft
from .base import BaseEstimator
from .base import TransformerMixin
@@ -22,6 +27,171 @@
from .utils.validation import check_non_negative, _deprecate_positional_args
+class PolynomialCountSketch(BaseEstimator, TransformerMixin):
+ """Polynomial kernel approximation via Tensor Sketch.
+
+ Implements Tensor Sketch, which approximates the feature map
+ of the polynomial kernel::
+
+ K(X, Y) = (gamma * <X, Y> + coef0)^degree
+
+ by efficiently computing a Count Sketch of the outer product of a
+ vector with itself using Fast Fourier Transforms (FFT). Read more in the
+ :ref:`User Guide <polynomial_kernel_approx>`.
+
+ Parameters
+ ----------
+ gamma : float, default=1.0
+ Parameter of the polynomial kernel whose feature map
+ will be approximated.
+
+ degree : int, default=2
+ Degree of the polynomial kernel whose feature map
+ will be approximated.
+
+ coef0 : int, default=0
+ Constant term of the polynomial kernel whose feature map
+ will be approximated.
+
+ n_components : int, default=100
+ Dimensionality of the output feature space. Usually, n_components
+ should be greater than the number of features in input samples in
+ order to achieve good performance. The optimal score / run time
+ balance is typically achieved around n_components = 10 * n_features,
+ but this depends on the specific dataset being used.
+
+ random_state : int, RandomState instance, default=None
+ Determines random number generation for indexHash and bitHash
+ initialization. Pass an int for reproducible results across multiple
+ function calls. See :term:`Glossary <random_state>`.
+
+ Attributes
+ ----------
+ indexHash_ : ndarray of shape (degree, n_features), dtype=int64
+ Array of indexes in range [0, n_components) used to represent
+ the 2-wise independent hash functions for Count Sketch computation.
+
+ bitHash_ : ndarray of shape (degree, n_features), dtype=float32
+ Array with random entries in {+1, -1}, used to represent
+ the 2-wise independent hash functions for Count Sketch computation.
+
+ Examples
+ --------
+ >>> from sklearn.kernel_approximation import PolynomialCountSketch
+ >>> from sklearn.linear_model import SGDClassifier
+ >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
+ >>> y = [0, 0, 1, 1]
+ >>> ps = PolynomialCountSketch(degree=3, random_state=1)
+ >>> X_features = ps.fit_transform(X)
+ >>> clf = SGDClassifier(max_iter=10, tol=1e-3)
+ >>> clf.fit(X_features, y)
+ SGDClassifier(max_iter=10)
+ >>> clf.score(X_features, y)
+ 1.0
+ """
+
+ def __init__(self, *, gamma=1., degree=2, coef0=0, n_components=100,
+ random_state=None):
+ self.gamma = gamma
+ self.degree = degree
+ self.coef0 = coef0
+ self.n_components = n_components
+ self.random_state = random_state
+
+ def fit(self, X, y=None):
+ """Fit the model with X.
+
+ Initializes the internal variables. The method needs no information
+ about the distribution of data, so we only care about n_features in X.
+
+ Parameters
+ ----------
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ Training data, where n_samples in the number of samples
+ and n_features is the number of features.
+
+ Returns
+ -------
+ self : object
+ Returns the transformer.
+ """
+ if not self.degree >= 1:
+ raise ValueError(f"degree={self.degree} should be >=1.")
+
+ X = self._validate_data(X, accept_sparse="csc")
+ random_state = check_random_state(self.random_state)
+
+ n_features = X.shape[1]
+ if self.coef0 != 0:
+ n_features += 1
+
+ self.indexHash_ = random_state.randint(0, high=self.n_components,
+ size=(self.degree, n_features))
+
+ self.bitHash_ = random_state.choice(a=[-1, 1],
+ size=(self.degree, n_features))
+ return self
+
+ def transform(self, X):
+ """Generate the feature map approximation for X.
+
+ Parameters
+ ----------
+ X : {array-like}, shape (n_samples, n_features)
+ New data, where n_samples in the number of samples
+ and n_features is the number of features.
+
+ Returns
+ -------
+ X_new : array-like, shape (n_samples, n_components)
+ """
+
+ check_is_fitted(self)
+ X = self._validate_data(X, accept_sparse="csc")
+
+ X_gamma = np.sqrt(self.gamma) * X
+
+ if sp.issparse(X_gamma) and self.coef0 != 0:
+ X_gamma = sp.hstack([X_gamma, np.sqrt(self.coef0) *
+ np.ones((X_gamma.shape[0], 1))],
+ format="csc")
+
+ elif not sp.issparse(X_gamma) and self.coef0 != 0:
+ X_gamma = np.hstack([X_gamma, np.sqrt(self.coef0) *
+ np.ones((X_gamma.shape[0], 1))])
+
+ if X_gamma.shape[1] != self.indexHash_.shape[1]:
+ raise ValueError("Number of features of test samples does not"
+ " match that of training samples.")
+
+ count_sketches = np.zeros(
+ (X_gamma.shape[0], self.degree, self.n_components))
+
+ if sp.issparse(X_gamma):
+ for j in range(X_gamma.shape[1]):
+ for d in range(self.degree):
+ iHashIndex = self.indexHash_[d, j]
+ iHashBit = self.bitHash_[d, j]
+ count_sketches[:, d, iHashIndex] += \
+ (iHashBit * X_gamma[:, j]).toarray().ravel()
+
+ else:
+ for j in range(X_gamma.shape[1]):
+ for d in range(self.degree):
+ iHashIndex = self.indexHash_[d, j]
+ iHashBit = self.bitHash_[d, j]
+ count_sketches[:, d, iHashIndex] += \
+ iHashBit * X_gamma[:, j]
+
+ # For each same, compute a count sketch of phi(x) using the polynomial
+ # multiplication (via FFT) of p count sketches of x.
+ count_sketches_fft = fft(count_sketches, axis=2, overwrite_x=True)
+ count_sketches_fft_prod = np.prod(count_sketches_fft, axis=1)
+ data_sketch = np.real(ifft(count_sketches_fft_prod, overwrite_x=True))
+
+ return data_sketch
+
+
class RBFSampler(TransformerMixin, BaseEstimator):
"""Approximates feature map of an RBF kernel by Monte Carlo approximation
of its Fourier transform.
|
diff --git a/sklearn/tests/test_kernel_approximation.py b/sklearn/tests/test_kernel_approximation.py
index 8d37ce218f227..0cee04f9f2d0a 100644
--- a/sklearn/tests/test_kernel_approximation.py
+++ b/sklearn/tests/test_kernel_approximation.py
@@ -10,6 +10,7 @@
from sklearn.kernel_approximation import AdditiveChi2Sampler
from sklearn.kernel_approximation import SkewedChi2Sampler
from sklearn.kernel_approximation import Nystroem
+from sklearn.kernel_approximation import PolynomialCountSketch
from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel, chi2_kernel
# generate data
@@ -20,6 +21,40 @@
Y /= Y.sum(axis=1)[:, np.newaxis]
[email protected]('degree', [-1, 0])
+def test_polynomial_count_sketch_raises_if_degree_lower_than_one(degree):
+ with pytest.raises(ValueError, match=f'degree={degree} should be >=1.'):
+ ps_transform = PolynomialCountSketch(degree=degree)
+ ps_transform.fit(X, Y)
+
+
[email protected]('X', [X, csr_matrix(X)])
[email protected]('Y', [Y, csr_matrix(Y)])
[email protected]('gamma', [0.1, 1, 2.5])
[email protected]('degree', [1, 2, 3])
[email protected]('coef0', [0, 1, 2.5])
+def test_polynomial_count_sketch(X, Y, gamma, degree, coef0):
+ # test that PolynomialCountSketch approximates polynomial
+ # kernel on random data
+
+ # compute exact kernel
+ kernel = polynomial_kernel(X, Y, gamma=gamma, degree=degree, coef0=coef0)
+
+ # approximate kernel mapping
+ ps_transform = PolynomialCountSketch(n_components=5000, gamma=gamma,
+ coef0=coef0, degree=degree,
+ random_state=42)
+ X_trans = ps_transform.fit_transform(X)
+ Y_trans = ps_transform.transform(Y)
+ kernel_approx = np.dot(X_trans, Y_trans.T)
+
+ error = kernel - kernel_approx
+ assert np.abs(np.mean(error)) <= 0.05 # close to unbiased
+ np.abs(error, out=error)
+ assert np.max(error) <= 0.1 # nothing too far off
+ assert np.mean(error) <= 0.05 # mean is fairly close
+
+
def _linear_kernel(X, Y):
return np.dot(X, Y.T)
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 2e54d000a13aa..70a5174629f37 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -706,6 +706,7 @@ Plotting\n \n kernel_approximation.AdditiveChi2Sampler\n kernel_approximation.Nystroem\n+ kernel_approximation.PolynomialCountSketch\n kernel_approximation.RBFSampler\n kernel_approximation.SkewedChi2Sampler\n \n"
},
{
"path": "doc/modules/kernel_approximation.rst",
"old_path": "a/doc/modules/kernel_approximation.rst",
"new_path": "b/doc/modules/kernel_approximation.rst",
"metadata": "diff --git a/doc/modules/kernel_approximation.rst b/doc/modules/kernel_approximation.rst\nindex fb3843c6bc045..4f5ee46a42057 100644\n--- a/doc/modules/kernel_approximation.rst\n+++ b/doc/modules/kernel_approximation.rst\n@@ -149,6 +149,51 @@ above for the :class:`RBFSampler`. The only difference is in the free\n parameter, that is called :math:`c`.\n For a motivation for this mapping and the mathematical details see [LS2010]_.\n \n+.. _polynomial_kernel_approx:\n+\n+Polynomial Kernel Approximation via Tensor Sketch\n+-------------------------------------------------\n+\n+The :ref:`polynomial kernel <polynomial_kernel>` is a popular type of kernel\n+function given by:\n+\n+.. math::\n+\n+ k(x, y) = (\\gamma x^\\top y +c_0)^d\n+\n+where:\n+\n+ * ``x``, ``y`` are the input vectors\n+ * ``d`` is the kernel degree\n+\n+Intuitively, the feature space of the polynomial kernel of degree `d`\n+consists of all possible degree-`d` products among input features, which enables\n+learning algorithms using this kernel to account for interactions between features.\n+\n+The TensorSketch [PP2013]_ method, as implemented in :class:`PolynomialCountSketch`, is a\n+scalable, input data independent method for polynomial kernel approximation.\n+It is based on the concept of Count sketch [WIKICS]_ [CCF2002]_ , a dimensionality\n+reduction technique similar to feature hashing, which instead uses several\n+independent hash functions. TensorSketch obtains a Count Sketch of the outer product\n+of two vectors (or a vector with itself), which can be used as an approximation of the\n+polynomial kernel feature space. In particular, instead of explicitly computing\n+the outer product, TensorSketch computes the Count Sketch of the vectors and then\n+uses polynomial multiplication via the Fast Fourier Transform to compute the\n+Count Sketch of their outer product.\n+\n+Conveniently, the training phase of TensorSketch simply consists of initializing\n+some random variables. It is thus independent of the input data, i.e. it only\n+depends on the number of input features, but not the data values.\n+In addition, this method can transform samples in\n+:math:`\\mathcal{O}(n_{\\text{samples}}(n_{\\text{features}} + n_{\\text{components}} \\log(n_{\\text{components}})))`\n+time, where :math:`n_{\\text{components}}` is the desired output dimension,\n+determined by ``n_components``.\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_plot_scalable_poly_kernels.py`\n+\n+.. _tensor_sketch_kernel_approx:\n \n Mathematical Details\n --------------------\n@@ -201,3 +246,11 @@ or store training examples.\n .. [VVZ2010] `\"Generalized RBF feature maps for Efficient Detection\"\n <https://www.robots.ox.ac.uk/~vgg/publications/2010/Sreekanth10/sreekanth10.pdf>`_\n Vempati, S. and Vedaldi, A. and Zisserman, A. and Jawahar, CV - 2010\n+ .. [PP2013] `\"Fast and scalable polynomial kernels via explicit feature maps\"\n+ <https://doi.org/10.1145/2487575.2487591>`_\n+ Pham, N., & Pagh, R. - 2013\n+ .. [CCF2002] `\"Finding frequent items in data streams\"\n+ <http://www.cs.princeton.edu/courses/archive/spring04/cos598B/bib/CharikarCF.pdf>`_\n+ Charikar, M., Chen, K., & Farach-Colton - 2002\n+ .. [WIKICS] `\"Wikipedia: Count sketch\"\n+ <https://en.wikipedia.org/wiki/Count_sketch>`_\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 2682902a20983..c73f1a373a86b 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -221,6 +221,15 @@ Changelog\n - |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as\n input array. :pr:`17379` by :user:`Jiaxiang <fujiaxiang>`.\n \n+:mod:`sklearn.kernel_approximation`\n+...................................\n+\n+- |Feature| Added class :class:`kernel_approximation.PolynomialCountSketch`\n+ which implements the Tensor Sketch algorithm for polynomial kernel feature\n+ map approximation.\n+ :pr:`13003` by :user:`Daniel López Sánchez <lopeLH>`.\n+\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n@@ -235,6 +244,7 @@ Changelog\n efficient leave-one-out cross-validation scheme ``cv=None``. :pr:`6624` by\n :user:`Marijn van Vliet <wmvanvliet>`.\n \n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
0.24
|
57bd85ed6a613028c2abb5e27dcf30263f0daa4b
|
[] |
[
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_poly_kernel_params",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_skewed_chi2_sampler",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_singular_kernel",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_precomputed_kernel",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_raises_if_degree_lower_than_one[0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_rbf_sampler",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_callable",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-2-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-3-1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_additive_chi2_sampler_exceptions",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_default_parameters",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-0.1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-1-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-0.1-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-0.1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-0.1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-3-2.5-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-2.5-Y1-X0]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[1-1-1-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-1-1-Y0-X0]",
"sklearn/tests/test_kernel_approximation.py::test_input_validation",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-3-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-2-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[0-1-2.5-Y0-X1]",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch[2.5-2-2.5-Y1-X1]",
"sklearn/tests/test_kernel_approximation.py::test_nystroem_approximation",
"sklearn/tests/test_kernel_approximation.py::test_polynomial_count_sketch_raises_if_degree_lower_than_one[-1]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "benchmarks/bench_plot_polynomial_kernel_approximation.py"
},
{
"type": "file",
"name": "examples/plot_scalable_poly_kernels.py"
}
]
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 2e54d000a13aa..70a5174629f37 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -706,6 +706,7 @@ Plotting\n \n kernel_approximation.AdditiveChi2Sampler\n kernel_approximation.Nystroem\n+ kernel_approximation.PolynomialCountSketch\n kernel_approximation.RBFSampler\n kernel_approximation.SkewedChi2Sampler\n \n"
},
{
"path": "doc/modules/kernel_approximation.rst",
"old_path": "a/doc/modules/kernel_approximation.rst",
"new_path": "b/doc/modules/kernel_approximation.rst",
"metadata": "diff --git a/doc/modules/kernel_approximation.rst b/doc/modules/kernel_approximation.rst\nindex fb3843c6bc045..4f5ee46a42057 100644\n--- a/doc/modules/kernel_approximation.rst\n+++ b/doc/modules/kernel_approximation.rst\n@@ -149,6 +149,51 @@ above for the :class:`RBFSampler`. The only difference is in the free\n parameter, that is called :math:`c`.\n For a motivation for this mapping and the mathematical details see [LS2010]_.\n \n+.. _polynomial_kernel_approx:\n+\n+Polynomial Kernel Approximation via Tensor Sketch\n+-------------------------------------------------\n+\n+The :ref:`polynomial kernel <polynomial_kernel>` is a popular type of kernel\n+function given by:\n+\n+.. math::\n+\n+ k(x, y) = (\\gamma x^\\top y +c_0)^d\n+\n+where:\n+\n+ * ``x``, ``y`` are the input vectors\n+ * ``d`` is the kernel degree\n+\n+Intuitively, the feature space of the polynomial kernel of degree `d`\n+consists of all possible degree-`d` products among input features, which enables\n+learning algorithms using this kernel to account for interactions between features.\n+\n+The TensorSketch [PP2013]_ method, as implemented in :class:`PolynomialCountSketch`, is a\n+scalable, input data independent method for polynomial kernel approximation.\n+It is based on the concept of Count sketch [WIKICS]_ [CCF2002]_ , a dimensionality\n+reduction technique similar to feature hashing, which instead uses several\n+independent hash functions. TensorSketch obtains a Count Sketch of the outer product\n+of two vectors (or a vector with itself), which can be used as an approximation of the\n+polynomial kernel feature space. In particular, instead of explicitly computing\n+the outer product, TensorSketch computes the Count Sketch of the vectors and then\n+uses polynomial multiplication via the Fast Fourier Transform to compute the\n+Count Sketch of their outer product.\n+\n+Conveniently, the training phase of TensorSketch simply consists of initializing\n+some random variables. It is thus independent of the input data, i.e. it only\n+depends on the number of input features, but not the data values.\n+In addition, this method can transform samples in\n+:math:`\\mathcal{O}(n_{\\text{samples}}(n_{\\text{features}} + n_{\\text{components}} \\log(n_{\\text{components}})))`\n+time, where :math:`n_{\\text{components}}` is the desired output dimension,\n+determined by ``n_components``.\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_plot_scalable_poly_kernels.py`\n+\n+.. _tensor_sketch_kernel_approx:\n \n Mathematical Details\n --------------------\n@@ -201,3 +246,11 @@ or store training examples.\n .. [VVZ2010] `\"Generalized RBF feature maps for Efficient Detection\"\n <https://www.robots.ox.ac.uk/~vgg/publications/2010/Sreekanth10/sreekanth10.pdf>`_\n Vempati, S. and Vedaldi, A. and Zisserman, A. and Jawahar, CV - 2010\n+ .. [PP2013] `\"Fast and scalable polynomial kernels via explicit feature maps\"\n+ <https://doi.org/10.1145/2487575.2487591>`_\n+ Pham, N., & Pagh, R. - 2013\n+ .. [CCF2002] `\"Finding frequent items in data streams\"\n+ <http://www.cs.princeton.edu/courses/archive/spring04/cos598B/bib/CharikarCF.pdf>`_\n+ Charikar, M., Chen, K., & Farach-Colton - 2002\n+ .. [WIKICS] `\"Wikipedia: Count sketch\"\n+ <https://en.wikipedia.org/wiki/Count_sketch>`_\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 2682902a20983..c73f1a373a86b 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -221,6 +221,15 @@ Changelog\n - |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as\n input array. :pr:`<PRID>` by :user:`<NAME>`.\n \n+:mod:`sklearn.kernel_approximation`\n+...................................\n+\n+- |Feature| Added class :class:`kernel_approximation.PolynomialCountSketch`\n+ which implements the Tensor Sketch algorithm for polynomial kernel feature\n+ map approximation.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n+\n :mod:`sklearn.linear_model`\n ...........................\n \n@@ -235,6 +244,7 @@ Changelog\n efficient leave-one-out cross-validation scheme ``cv=None``. :pr:`<PRID>` by\n :user:`<NAME>`.\n \n+\n :mod:`sklearn.manifold`\n .......................\n \n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 2e54d000a13aa..70a5174629f37 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -706,6 +706,7 @@ Plotting
kernel_approximation.AdditiveChi2Sampler
kernel_approximation.Nystroem
+ kernel_approximation.PolynomialCountSketch
kernel_approximation.RBFSampler
kernel_approximation.SkewedChi2Sampler
diff --git a/doc/modules/kernel_approximation.rst b/doc/modules/kernel_approximation.rst
index fb3843c6bc045..4f5ee46a42057 100644
--- a/doc/modules/kernel_approximation.rst
+++ b/doc/modules/kernel_approximation.rst
@@ -149,6 +149,51 @@ above for the :class:`RBFSampler`. The only difference is in the free
parameter, that is called :math:`c`.
For a motivation for this mapping and the mathematical details see [LS2010]_.
+.. _polynomial_kernel_approx:
+
+Polynomial Kernel Approximation via Tensor Sketch
+-------------------------------------------------
+
+The :ref:`polynomial kernel <polynomial_kernel>` is a popular type of kernel
+function given by:
+
+.. math::
+
+ k(x, y) = (\gamma x^\top y +c_0)^d
+
+where:
+
+ * ``x``, ``y`` are the input vectors
+ * ``d`` is the kernel degree
+
+Intuitively, the feature space of the polynomial kernel of degree `d`
+consists of all possible degree-`d` products among input features, which enables
+learning algorithms using this kernel to account for interactions between features.
+
+The TensorSketch [PP2013]_ method, as implemented in :class:`PolynomialCountSketch`, is a
+scalable, input data independent method for polynomial kernel approximation.
+It is based on the concept of Count sketch [WIKICS]_ [CCF2002]_ , a dimensionality
+reduction technique similar to feature hashing, which instead uses several
+independent hash functions. TensorSketch obtains a Count Sketch of the outer product
+of two vectors (or a vector with itself), which can be used as an approximation of the
+polynomial kernel feature space. In particular, instead of explicitly computing
+the outer product, TensorSketch computes the Count Sketch of the vectors and then
+uses polynomial multiplication via the Fast Fourier Transform to compute the
+Count Sketch of their outer product.
+
+Conveniently, the training phase of TensorSketch simply consists of initializing
+some random variables. It is thus independent of the input data, i.e. it only
+depends on the number of input features, but not the data values.
+In addition, this method can transform samples in
+:math:`\mathcal{O}(n_{\text{samples}}(n_{\text{features}} + n_{\text{components}} \log(n_{\text{components}})))`
+time, where :math:`n_{\text{components}}` is the desired output dimension,
+determined by ``n_components``.
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_plot_scalable_poly_kernels.py`
+
+.. _tensor_sketch_kernel_approx:
Mathematical Details
--------------------
@@ -201,3 +246,11 @@ or store training examples.
.. [VVZ2010] `"Generalized RBF feature maps for Efficient Detection"
<https://www.robots.ox.ac.uk/~vgg/publications/2010/Sreekanth10/sreekanth10.pdf>`_
Vempati, S. and Vedaldi, A. and Zisserman, A. and Jawahar, CV - 2010
+ .. [PP2013] `"Fast and scalable polynomial kernels via explicit feature maps"
+ <https://doi.org/10.1145/2487575.2487591>`_
+ Pham, N., & Pagh, R. - 2013
+ .. [CCF2002] `"Finding frequent items in data streams"
+ <http://www.cs.princeton.edu/courses/archive/spring04/cos598B/bib/CharikarCF.pdf>`_
+ Charikar, M., Chen, K., & Farach-Colton - 2002
+ .. [WIKICS] `"Wikipedia: Count sketch"
+ <https://en.wikipedia.org/wiki/Count_sketch>`_
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 2682902a20983..c73f1a373a86b 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -221,6 +221,15 @@ Changelog
- |Enhancement| :class:`isotonic.IsotonicRegression` now accepts 2darray with 1 feature as
input array. :pr:`<PRID>` by :user:`<NAME>`.
+:mod:`sklearn.kernel_approximation`
+...................................
+
+- |Feature| Added class :class:`kernel_approximation.PolynomialCountSketch`
+ which implements the Tensor Sketch algorithm for polynomial kernel feature
+ map approximation.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
+
:mod:`sklearn.linear_model`
...........................
@@ -235,6 +244,7 @@ Changelog
efficient leave-one-out cross-validation scheme ``cv=None``. :pr:`<PRID>` by
:user:`<NAME>`.
+
:mod:`sklearn.manifold`
.......................
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'benchmarks/bench_plot_polynomial_kernel_approximation.py'}, {'type': 'file', 'name': 'examples/plot_scalable_poly_kernels.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-10591
|
https://github.com/scikit-learn/scikit-learn/pull/10591
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 2e54d000a13aa..2fd1366e18434 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -946,6 +946,7 @@ details.
metrics.cohen_kappa_score
metrics.confusion_matrix
metrics.dcg_score
+ metrics.detection_error_tradeoff_curve
metrics.f1_score
metrics.fbeta_score
metrics.hamming_loss
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index f8874869a0274..decd0f42383eb 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -306,6 +306,7 @@ Some of these are restricted to the binary classification case:
precision_recall_curve
roc_curve
+ detection_error_tradeoff_curve
Others also work in the multiclass case:
@@ -1437,6 +1438,93 @@ to the given limit.
In Data Mining, 2001.
Proceedings IEEE International Conference, pp. 131-138.
+.. _det_curve:
+
+Detection error tradeoff (DET)
+------------------------------
+
+The function :func:`detection_error_tradeoff_curve` computes the
+detection error tradeoff curve (DET) curve [WikipediaDET2017]_.
+Quoting Wikipedia:
+
+ "A detection error tradeoff (DET) graph is a graphical plot of error rates for
+ binary classification systems, plotting false reject rate vs. false accept
+ rate. The x- and y-axes are scaled non-linearly by their standard normal
+ deviates (or just by logarithmic transformation), yielding tradeoff curves
+ that are more linear than ROC curves, and use most of the image area to
+ highlight the differences of importance in the critical operating region."
+
+DET curves are a variation of receiver operating characteristic (ROC) curves
+where False Negative Rate is plotted on the ordinate instead of True Positive
+Rate.
+DET curves are commonly plotted in normal deviate scale by transformation with
+:math:`\phi^{-1}` (with :math:`\phi` being the cumulative distribution
+function).
+The resulting performance curves explicitly visualize the tradeoff of error
+types for given classification algorithms.
+See [Martin1997]_ for examples and further motivation.
+
+This figure compares the ROC and DET curves of two example classifiers on the
+same classification task:
+
+.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_det_001.png
+ :target: ../auto_examples/model_selection/plot_det.html
+ :scale: 75
+ :align: center
+
+**Properties:**
+
+* DET curves form a linear curve in normal deviate scale if the detection
+ scores are normally (or close-to normally) distributed.
+ It was shown by [Navratil2007]_ that the reverse it not necessarily true and even more
+ general distributions are able produce linear DET curves.
+
+* The normal deviate scale transformation spreads out the points such that a
+ comparatively larger space of plot is occupied.
+ Therefore curves with similar classification performance might be easier to
+ distinguish on a DET plot.
+
+* With False Negative Rate being "inverse" to True Positive Rate the point
+ of perfection for DET curves is the origin (in contrast to the top left corner
+ for ROC curves).
+
+**Applications and limitations:**
+
+DET curves are intuitive to read and hence allow quick visual assessment of a
+classifier's performance.
+Additionally DET curves can be consulted for threshold analysis and operating
+point selection.
+This is particularly helpful if a comparison of error types is required.
+
+One the other hand DET curves do not provide their metric as a single number.
+Therefore for either automated evaluation or comparison to other
+classification tasks metrics like the derived area under ROC curve might be
+better suited.
+
+.. topic:: Examples:
+
+ * See :ref:`sphx_glr_auto_examples_model_selection_plot_det.py`
+ for an example comparison between receiver operating characteristic (ROC)
+ curves and Detection error tradeoff (DET) curves.
+
+.. topic:: References:
+
+ .. [WikipediaDET2017] Wikipedia contributors. Detection error tradeoff.
+ Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC.
+ Available at: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054.
+ Accessed February 19, 2018.
+
+ .. [Martin1997] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,
+ `The DET Curve in Assessment of Detection Task Performance
+ <http://www.dtic.mil/docs/citations/ADA530509>`_,
+ NIST 1997.
+
+ .. [Navratil2007] J. Navractil and D. Klusacek,
+ "`On Linear DETs,
+ <http://www.research.ibm.com/CBG/papers/icassp07_navratil.pdf>`_"
+ 2007 IEEE International Conference on Acoustics,
+ Speech and Signal Processing - ICASSP '07, Honolulu,
+ HI, 2007, pp. IV-229-IV-232.
.. _zero_one_loss:
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index cf3347c0ee8cd..ff8149142f3b3 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -212,6 +212,11 @@ Changelog
:mod:`sklearn.metrics`
......................
+- |Feature| Added :func:`metrics.detection_error_tradeoff_curve` to compute
+ Detection Error Tradeoff curve classification metric.
+ :pr:`10591` by :user:`Jeremy Karnowski <jkarnows>` and
+ :user:`Daniel Mohns <dmohns>`.
+
- |Feature| Added :func:`metrics.mean_absolute_percentage_error` metric and
the associated scorer for regression problems. :issue:`10708` fixed with the
PR :pr:`15007` by :user:`Ashutosh Hathidara <ashutosh1919>`. The scorer and
diff --git a/examples/model_selection/plot_det.py b/examples/model_selection/plot_det.py
new file mode 100644
index 0000000000000..6cfac7e5ce0ca
--- /dev/null
+++ b/examples/model_selection/plot_det.py
@@ -0,0 +1,145 @@
+"""
+=======================================
+Detection error tradeoff (DET) curve
+=======================================
+
+In this example, we compare receiver operating characteristic (ROC) and
+detection error tradeoff (DET) curves for different classification algorithms
+for the same classification task.
+
+DET curves are commonly plotted in normal deviate scale.
+To achieve this we transform the errors rates as returned by the
+``detection_error_tradeoff_curve`` function and the axis scale using
+``scipy.stats.norm``.
+
+The point of this example is to demonstrate two properties of DET curves,
+namely:
+
+1. It might be easier to visually assess the overall performance of different
+ classification algorithms using DET curves over ROC curves.
+ Due to the linear scale used for plotting ROC curves, different classifiers
+ usually only differ in the top left corner of the graph and appear similar
+ for a large part of the plot. On the other hand, because DET curves
+ represent straight lines in normal deviate scale. As such, they tend to be
+ distinguishable as a whole and the area of interest spans a large part of
+ the plot.
+2. DET curves give the user direct feedback of the detection error tradeoff to
+ aid in operating point analysis.
+ The user can deduct directly from the DET-curve plot at which rate
+ false-negative error rate will improve when willing to accept an increase in
+ false-positive error rate (or vice-versa).
+
+The plots in this example compare ROC curves on the left side to corresponding
+DET curves on the right.
+There is no particular reason why these classifiers have been chosen for the
+example plot over other classifiers available in scikit-learn.
+
+.. note::
+
+ - See :func:`sklearn.metrics.roc_curve` for further information about ROC
+ curves.
+
+ - See :func:`sklearn.metrics.detection_error_tradeoff_curve` for further
+ information about DET curves.
+
+ - This example is loosely based on
+ :ref:`sphx_glr_auto_examples_classification_plot_classifier_comparison.py`
+ .
+
+"""
+import matplotlib.pyplot as plt
+
+from sklearn.model_selection import train_test_split
+from sklearn.preprocessing import StandardScaler
+from sklearn.datasets import make_classification
+from sklearn.svm import SVC
+from sklearn.ensemble import RandomForestClassifier
+from sklearn.metrics import detection_error_tradeoff_curve
+from sklearn.metrics import roc_curve
+
+from scipy.stats import norm
+from matplotlib.ticker import FuncFormatter
+
+N_SAMPLES = 1000
+
+names = [
+ "Linear SVM",
+ "Random Forest",
+]
+
+classifiers = [
+ SVC(kernel="linear", C=0.025),
+ RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
+]
+
+X, y = make_classification(
+ n_samples=N_SAMPLES, n_features=2, n_redundant=0, n_informative=2,
+ random_state=1, n_clusters_per_class=1)
+
+# preprocess dataset, split into training and test part
+X = StandardScaler().fit_transform(X)
+
+X_train, X_test, y_train, y_test = train_test_split(
+ X, y, test_size=.4, random_state=0)
+
+# prepare plots
+fig, [ax_roc, ax_det] = plt.subplots(1, 2, figsize=(10, 5))
+
+# first prepare the ROC curve
+ax_roc.set_title('Receiver Operating Characteristic (ROC) curves')
+ax_roc.set_xlabel('False Positive Rate')
+ax_roc.set_ylabel('True Positive Rate')
+ax_roc.set_xlim(0, 1)
+ax_roc.set_ylim(0, 1)
+ax_roc.grid(linestyle='--')
+ax_roc.yaxis.set_major_formatter(
+ FuncFormatter(lambda y, _: '{:.0%}'.format(y)))
+ax_roc.xaxis.set_major_formatter(
+ FuncFormatter(lambda y, _: '{:.0%}'.format(y)))
+
+# second prepare the DET curve
+ax_det.set_title('Detection Error Tradeoff (DET) curves')
+ax_det.set_xlabel('False Positive Rate')
+ax_det.set_ylabel('False Negative Rate')
+ax_det.set_xlim(-3, 3)
+ax_det.set_ylim(-3, 3)
+ax_det.grid(linestyle='--')
+
+# customized ticks for DET curve plot to represent normal deviate scale
+ticks = [0.001, 0.01, 0.05, 0.20, 0.5, 0.80, 0.95, 0.99, 0.999]
+tick_locs = norm.ppf(ticks)
+tick_lbls = [
+ '{:.0%}'.format(s) if (100*s).is_integer() else '{:.1%}'.format(s)
+ for s in ticks
+]
+plt.sca(ax_det)
+plt.xticks(tick_locs, tick_lbls)
+plt.yticks(tick_locs, tick_lbls)
+
+# iterate over classifiers
+for name, clf in zip(names, classifiers):
+ clf.fit(X_train, y_train)
+
+ if hasattr(clf, "decision_function"):
+ y_score = clf.decision_function(X_test)
+ else:
+ y_score = clf.predict_proba(X_test)[:, 1]
+
+ roc_fpr, roc_tpr, _ = roc_curve(y_test, y_score)
+ det_fpr, det_fnr, _ = detection_error_tradeoff_curve(y_test, y_score)
+
+ ax_roc.plot(roc_fpr, roc_tpr)
+
+ # transform errors into normal deviate scale
+ ax_det.plot(
+ norm.ppf(det_fpr),
+ norm.ppf(det_fnr)
+ )
+
+# add a single legend
+plt.sca(ax_det)
+plt.legend(names, loc="upper right")
+
+# plot
+plt.tight_layout()
+plt.show()
diff --git a/sklearn/metrics/__init__.py b/sklearn/metrics/__init__.py
index be28005631963..a69d5c618c20f 100644
--- a/sklearn/metrics/__init__.py
+++ b/sklearn/metrics/__init__.py
@@ -7,6 +7,7 @@
from ._ranking import auc
from ._ranking import average_precision_score
from ._ranking import coverage_error
+from ._ranking import detection_error_tradeoff_curve
from ._ranking import dcg_score
from ._ranking import label_ranking_average_precision_score
from ._ranking import label_ranking_loss
@@ -104,6 +105,7 @@
'coverage_error',
'dcg_score',
'davies_bouldin_score',
+ 'detection_error_tradeoff_curve',
'euclidean_distances',
'explained_variance_score',
'f1_score',
diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py
index e07f61a92d478..5c58920e3ffd4 100644
--- a/sklearn/metrics/_ranking.py
+++ b/sklearn/metrics/_ranking.py
@@ -218,6 +218,94 @@ def _binary_uninterpolated_average_precision(
average, sample_weight=sample_weight)
+def detection_error_tradeoff_curve(y_true, y_score, pos_label=None,
+ sample_weight=None):
+ """Compute error rates for different probability thresholds.
+
+ Note: This metrics is used for ranking evaluation of a binary
+ classification task.
+
+ Read more in the :ref:`User Guide <det_curve>`.
+
+ Parameters
+ ----------
+ y_true : array, shape = [n_samples]
+ True targets of binary classification in range {-1, 1} or {0, 1}.
+
+ y_score : array, shape = [n_samples]
+ Estimated probabilities or decision function.
+
+ pos_label : int, optional (default=None)
+ The label of the positive class
+
+ sample_weight : array-like of shape = [n_samples], optional
+ Sample weights.
+
+ Returns
+ -------
+ fpr : array, shape = [n_thresholds]
+ False positive rate (FPR) such that element i is the false positive
+ rate of predictions with score >= thresholds[i]. This is occasionally
+ referred to as false acceptance propability or fall-out.
+
+ fnr : array, shape = [n_thresholds]
+ False negative rate (FNR) such that element i is the false negative
+ rate of predictions with score >= thresholds[i]. This is occasionally
+ referred to as false rejection or miss rate.
+
+ thresholds : array, shape = [n_thresholds]
+ Decreasing score values.
+
+ See also
+ --------
+ roc_curve : Compute Receiver operating characteristic (ROC) curve
+ precision_recall_curve : Compute precision-recall curve
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from sklearn.metrics import detection_error_tradeoff_curve
+ >>> y_true = np.array([0, 0, 1, 1])
+ >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
+ >>> fpr, fnr, thresholds = detection_error_tradeoff_curve(y_true, y_scores)
+ >>> fpr
+ array([0.5, 0.5, 0. ])
+ >>> fnr
+ array([0. , 0.5, 0.5])
+ >>> thresholds
+ array([0.35, 0.4 , 0.8 ])
+
+ """
+ if len(np.unique(y_true)) != 2:
+ raise ValueError("Only one class present in y_true. Detection error "
+ "tradeoff curve is not defined in that case.")
+
+ fps, tps, thresholds = _binary_clf_curve(y_true, y_score,
+ pos_label=pos_label,
+ sample_weight=sample_weight)
+
+ fns = tps[-1] - tps
+ p_count = tps[-1]
+ n_count = fps[-1]
+
+ # start with false positives zero
+ first_ind = (
+ fps.searchsorted(fps[0], side='right') - 1
+ if fps.searchsorted(fps[0], side='right') > 0
+ else None
+ )
+ # stop with false negatives zero
+ last_ind = tps.searchsorted(tps[-1]) + 1
+ sl = slice(first_ind, last_ind)
+
+ # reverse the output such that list of false positives is decreasing
+ return (
+ fps[sl][::-1] / n_count,
+ fns[sl][::-1] / p_count,
+ thresholds[sl][::-1]
+ )
+
+
def _binary_roc_auc_score(y_true, y_score, sample_weight=None, max_fpr=None):
"""Binary roc auc score"""
if len(np.unique(y_true)) != 2:
|
diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py
index 3f2ba83b474c7..24f01d46610a7 100644
--- a/sklearn/metrics/tests/test_common.py
+++ b/sklearn/metrics/tests/test_common.py
@@ -29,6 +29,7 @@
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import coverage_error
+from sklearn.metrics import detection_error_tradeoff_curve
from sklearn.metrics import explained_variance_score
from sklearn.metrics import f1_score
from sklearn.metrics import fbeta_score
@@ -205,6 +206,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
CURVE_METRICS = {
"roc_curve": roc_curve,
"precision_recall_curve": precision_recall_curve_padded_thresholds,
+ "detection_error_tradeoff_curve": detection_error_tradeoff_curve,
}
THRESHOLDED_METRICS = {
@@ -301,6 +303,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
# curves
"roc_curve",
"precision_recall_curve",
+ "detection_error_tradeoff_curve",
}
# Metric undefined with "binary" or "multiclass" input
@@ -322,6 +325,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
METRICS_WITH_POS_LABEL = {
"roc_curve",
"precision_recall_curve",
+ "detection_error_tradeoff_curve",
"brier_score_loss",
@@ -352,6 +356,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"normalized_confusion_matrix",
"roc_curve",
"precision_recall_curve",
+ "detection_error_tradeoff_curve",
"precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score",
"jaccard_score",
@@ -464,6 +469,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"normalized_confusion_matrix",
"roc_curve",
"precision_recall_curve",
+ "detection_error_tradeoff_curve",
"precision_score", "recall_score", "f2_score", "f0.5_score",
diff --git a/sklearn/metrics/tests/test_ranking.py b/sklearn/metrics/tests/test_ranking.py
index 3daafa8d196d3..e08a8909cfe72 100644
--- a/sklearn/metrics/tests/test_ranking.py
+++ b/sklearn/metrics/tests/test_ranking.py
@@ -16,11 +16,13 @@
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
+from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
from sklearn.metrics import coverage_error
+from sklearn.metrics import detection_error_tradeoff_curve
from sklearn.metrics import label_ranking_average_precision_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import label_ranking_loss
@@ -925,6 +927,111 @@ def test_score_scale_invariance():
assert pr_auc == pr_auc_shifted
[email protected]("y_true,y_score,expected_fpr,expected_fnr", [
+ ([0, 0, 1], [0, 0.5, 1], [0], [0]),
+ ([0, 0, 1], [0, 0.25, 0.5], [0], [0]),
+ ([0, 0, 1], [0.5, 0.75, 1], [0], [0]),
+ ([0, 0, 1], [0.25, 0.5, 0.75], [0], [0]),
+ ([0, 1, 0], [0, 0.5, 1], [0.5], [0]),
+ ([0, 1, 0], [0, 0.25, 0.5], [0.5], [0]),
+ ([0, 1, 0], [0.5, 0.75, 1], [0.5], [0]),
+ ([0, 1, 0], [0.25, 0.5, 0.75], [0.5], [0]),
+ ([0, 1, 1], [0, 0.5, 1], [0.0], [0]),
+ ([0, 1, 1], [0, 0.25, 0.5], [0], [0]),
+ ([0, 1, 1], [0.5, 0.75, 1], [0], [0]),
+ ([0, 1, 1], [0.25, 0.5, 0.75], [0], [0]),
+ ([1, 0, 0], [0, 0.5, 1], [1, 1, 0.5], [0, 1, 1]),
+ ([1, 0, 0], [0, 0.25, 0.5], [1, 1, 0.5], [0, 1, 1]),
+ ([1, 0, 0], [0.5, 0.75, 1], [1, 1, 0.5], [0, 1, 1]),
+ ([1, 0, 0], [0.25, 0.5, 0.75], [1, 1, 0.5], [0, 1, 1]),
+ ([1, 0, 1], [0, 0.5, 1], [1, 1, 0], [0, 0.5, 0.5]),
+ ([1, 0, 1], [0, 0.25, 0.5], [1, 1, 0], [0, 0.5, 0.5]),
+ ([1, 0, 1], [0.5, 0.75, 1], [1, 1, 0], [0, 0.5, 0.5]),
+ ([1, 0, 1], [0.25, 0.5, 0.75], [1, 1, 0], [0, 0.5, 0.5]),
+])
+def test_detection_error_tradeoff_curve_toydata(y_true, y_score,
+ expected_fpr, expected_fnr):
+ # Check on a batch of small examples.
+ fpr, fnr, _ = detection_error_tradeoff_curve(y_true, y_score)
+
+ assert_array_almost_equal(fpr, expected_fpr)
+ assert_array_almost_equal(fnr, expected_fnr)
+
+
[email protected]("y_true,y_score,expected_fpr,expected_fnr", [
+ ([1, 0], [0.5, 0.5], [1], [0]),
+ ([0, 1], [0.5, 0.5], [1], [0]),
+ ([0, 0, 1], [0.25, 0.5, 0.5], [0.5], [0]),
+ ([0, 1, 0], [0.25, 0.5, 0.5], [0.5], [0]),
+ ([0, 1, 1], [0.25, 0.5, 0.5], [0], [0]),
+ ([1, 0, 0], [0.25, 0.5, 0.5], [1], [0]),
+ ([1, 0, 1], [0.25, 0.5, 0.5], [1], [0]),
+ ([1, 1, 0], [0.25, 0.5, 0.5], [1], [0]),
+])
+def test_detection_error_tradeoff_curve_tie_handling(y_true, y_score,
+ expected_fpr,
+ expected_fnr):
+ fpr, fnr, _ = detection_error_tradeoff_curve(y_true, y_score)
+
+ assert_array_almost_equal(fpr, expected_fpr)
+ assert_array_almost_equal(fnr, expected_fnr)
+
+
+def test_detection_error_tradeoff_curve_sanity_check():
+ # Exactly duplicated inputs yield the same result.
+ assert_array_almost_equal(
+ detection_error_tradeoff_curve([0, 0, 1], [0, 0.5, 1]),
+ detection_error_tradeoff_curve(
+ [0, 0, 0, 0, 1, 1], [0, 0, 0.5, 0.5, 1, 1])
+ )
+
+
[email protected]("y_score", [
+ (0), (0.25), (0.5), (0.75), (1)
+])
+def test_detection_error_tradeoff_curve_constant_scores(y_score):
+ fpr, fnr, threshold = detection_error_tradeoff_curve(
+ y_true=[0, 1, 0, 1, 0, 1],
+ y_score=np.full(6, y_score)
+ )
+
+ assert_array_almost_equal(fpr, [1])
+ assert_array_almost_equal(fnr, [0])
+ assert_array_almost_equal(threshold, [y_score])
+
+
[email protected]("y_true", [
+ ([0, 0, 0, 0, 0, 1]),
+ ([0, 0, 0, 0, 1, 1]),
+ ([0, 0, 0, 1, 1, 1]),
+ ([0, 0, 1, 1, 1, 1]),
+ ([0, 1, 1, 1, 1, 1]),
+])
+def test_detection_error_tradeoff_curve_perfect_scores(y_true):
+ fpr, fnr, _ = detection_error_tradeoff_curve(
+ y_true=y_true,
+ y_score=y_true
+ )
+
+ assert_array_almost_equal(fpr, [0])
+ assert_array_almost_equal(fnr, [0])
+
+
+def test_detection_error_tradeoff_curve_bad_input():
+ # input variables with inconsistent numbers of samples
+ assert_raises(ValueError, detection_error_tradeoff_curve,
+ [0, 1], [0, 0.5, 1])
+ assert_raises(ValueError, detection_error_tradeoff_curve,
+ [0, 1, 1], [0, 0.5])
+
+ # When the y_true values are all the same a detection error tradeoff cannot
+ # be computed.
+ assert_raises(ValueError, detection_error_tradeoff_curve,
+ [0, 0, 0], [0, 0.5, 1])
+ assert_raises(ValueError, detection_error_tradeoff_curve,
+ [1, 1, 1], [0, 0.5, 1])
+
+
def check_lrap_toy(lrap_score):
# Check on several small example that it works
assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1)
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 2e54d000a13aa..2fd1366e18434 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -946,6 +946,7 @@ details.\n metrics.cohen_kappa_score\n metrics.confusion_matrix\n metrics.dcg_score\n+ metrics.detection_error_tradeoff_curve\n metrics.f1_score\n metrics.fbeta_score\n metrics.hamming_loss\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex f8874869a0274..decd0f42383eb 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -306,6 +306,7 @@ Some of these are restricted to the binary classification case:\n \n precision_recall_curve\n roc_curve\n+ detection_error_tradeoff_curve\n \n \n Others also work in the multiclass case:\n@@ -1437,6 +1438,93 @@ to the given limit.\n In Data Mining, 2001.\n Proceedings IEEE International Conference, pp. 131-138.\n \n+.. _det_curve:\n+\n+Detection error tradeoff (DET)\n+------------------------------\n+\n+The function :func:`detection_error_tradeoff_curve` computes the\n+detection error tradeoff curve (DET) curve [WikipediaDET2017]_.\n+Quoting Wikipedia:\n+\n+ \"A detection error tradeoff (DET) graph is a graphical plot of error rates for\n+ binary classification systems, plotting false reject rate vs. false accept\n+ rate. The x- and y-axes are scaled non-linearly by their standard normal\n+ deviates (or just by logarithmic transformation), yielding tradeoff curves\n+ that are more linear than ROC curves, and use most of the image area to\n+ highlight the differences of importance in the critical operating region.\"\n+\n+DET curves are a variation of receiver operating characteristic (ROC) curves\n+where False Negative Rate is plotted on the ordinate instead of True Positive\n+Rate.\n+DET curves are commonly plotted in normal deviate scale by transformation with\n+:math:`\\phi^{-1}` (with :math:`\\phi` being the cumulative distribution\n+function).\n+The resulting performance curves explicitly visualize the tradeoff of error\n+types for given classification algorithms.\n+See [Martin1997]_ for examples and further motivation.\n+\n+This figure compares the ROC and DET curves of two example classifiers on the\n+same classification task:\n+\n+.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_det_001.png\n+ :target: ../auto_examples/model_selection/plot_det.html\n+ :scale: 75\n+ :align: center\n+\n+**Properties:**\n+\n+* DET curves form a linear curve in normal deviate scale if the detection\n+ scores are normally (or close-to normally) distributed.\n+ It was shown by [Navratil2007]_ that the reverse it not necessarily true and even more\n+ general distributions are able produce linear DET curves.\n+\n+* The normal deviate scale transformation spreads out the points such that a\n+ comparatively larger space of plot is occupied.\n+ Therefore curves with similar classification performance might be easier to\n+ distinguish on a DET plot.\n+\n+* With False Negative Rate being \"inverse\" to True Positive Rate the point\n+ of perfection for DET curves is the origin (in contrast to the top left corner\n+ for ROC curves).\n+\n+**Applications and limitations:**\n+\n+DET curves are intuitive to read and hence allow quick visual assessment of a\n+classifier's performance.\n+Additionally DET curves can be consulted for threshold analysis and operating\n+point selection.\n+This is particularly helpful if a comparison of error types is required.\n+\n+One the other hand DET curves do not provide their metric as a single number.\n+Therefore for either automated evaluation or comparison to other\n+classification tasks metrics like the derived area under ROC curve might be\n+better suited.\n+\n+.. topic:: Examples:\n+\n+ * See :ref:`sphx_glr_auto_examples_model_selection_plot_det.py`\n+ for an example comparison between receiver operating characteristic (ROC)\n+ curves and Detection error tradeoff (DET) curves.\n+\n+.. topic:: References:\n+\n+ .. [WikipediaDET2017] Wikipedia contributors. Detection error tradeoff.\n+ Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC.\n+ Available at: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054.\n+ Accessed February 19, 2018.\n+\n+ .. [Martin1997] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,\n+ `The DET Curve in Assessment of Detection Task Performance\n+ <http://www.dtic.mil/docs/citations/ADA530509>`_,\n+ NIST 1997.\n+\n+ .. [Navratil2007] J. Navractil and D. Klusacek,\n+ \"`On Linear DETs,\n+ <http://www.research.ibm.com/CBG/papers/icassp07_navratil.pdf>`_\"\n+ 2007 IEEE International Conference on Acoustics,\n+ Speech and Signal Processing - ICASSP '07, Honolulu,\n+ HI, 2007, pp. IV-229-IV-232.\n \n .. _zero_one_loss:\n \n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex cf3347c0ee8cd..ff8149142f3b3 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -212,6 +212,11 @@ Changelog\n :mod:`sklearn.metrics`\n ......................\n \n+- |Feature| Added :func:`metrics.detection_error_tradeoff_curve` to compute\n+ Detection Error Tradeoff curve classification metric.\n+ :pr:`10591` by :user:`Jeremy Karnowski <jkarnows>` and\n+ :user:`Daniel Mohns <dmohns>`.\n+\n - |Feature| Added :func:`metrics.mean_absolute_percentage_error` metric and\n the associated scorer for regression problems. :issue:`10708` fixed with the\n PR :pr:`15007` by :user:`Ashutosh Hathidara <ashutosh1919>`. The scorer and\n"
}
] |
0.24
|
0550793bd61b84beb60d3a92c3eb90cc788a27a8
|
[] |
[
"sklearn/metrics/tests/test_common.py::test_single_sample[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[Partial AUC computation not available in multiclass setting, 'max_fpr' must be set to `None`, received `max_fpr=0.5` instead-kwargs3]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_dcg_score",
"sklearn/metrics/tests/test_common.py::test_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_errors",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[max_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric17]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric19]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_hard",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric18]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric11]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric20]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_toydata",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric32]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_tie_handling[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric8]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric27]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[recall_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[False]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true19-y_score19-expected_fpr19-expected_fnr19]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_perfect_scores[y_true0]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[precision_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[True]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[log_loss]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[detection_error_tradeoff_curve]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_drop_intermediate",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_auc",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric39]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted'\\\\) for multiclass problems-kwargs0]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-2]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true3-labels3]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_toy]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-1]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_one_label",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted'\\\\) for multiclass problems-kwargs1]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric35]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_ranking.py::test_dcg_ties",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_auc_errors",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true11-y_score11-expected_fpr11-expected_fnr11]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[<lambda>]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[max_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric32]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric12]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true1-None]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_multiclass_error",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_log_loss]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true16-y_score16-expected_fpr16-expected_fnr16]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_lrap_error_raised",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_lrap_sample_weighting_zero_labels",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-2]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-20]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[hamming_loss]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-20]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[r2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_partial_roc_auc_score",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true17-y_score17-expected_fpr17-expected_fnr17]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-8]",
"sklearn/metrics/tests/test_common.py::test_single_sample[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric13]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_constant_values",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true15-y_score15-expected_fpr15-expected_fnr15]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true10-y_score10-expected_fpr10-expected_fnr10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric15]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-1]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true12-y_score12-expected_fpr12-expected_fnr12]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric14]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_constant_scores[0.75]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric9]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-20]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric23]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetry_consistency",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true3-None]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_score_pos_label_errors",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true13-y_score13-expected_fpr13-expected_fnr13]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_tie_handling[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[recall_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric38]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[dcg_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_tie_handling[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric26]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_tie_handling[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[median_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[sample_weight is not supported for multiclass one-vs-one ROC AUC, 'sample_weight' must be None in this case-kwargs2]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric34]",
"sklearn/metrics/tests/test_common.py::test_single_sample[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric41]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_sanity_check",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_recall_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_score",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_tie_handling[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric25]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-1]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric40]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_tie_handling[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_poisson_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_auc_score_non_binary_class",
"sklearn/metrics/tests/test_common.py::test_single_sample[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric37]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_only_ties]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_normal_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_constant_scores[0]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_tie_handling[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[r2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true1-labels1]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_perfect_scores[y_true2]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-8]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_toydata",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_perfect_scores[y_true3]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_multi",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric18]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric30]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric31]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[balanced_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_ranking_appropriate_input_shape",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric16]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true9-y_score9-expected_fpr9-expected_fnr9]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_confidence",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_common.py::test_averaging_binary_multilabel_all_zeroes",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_loss",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[True]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[r2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_error",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_toy]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[max_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-8]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs5]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_only_ties]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[roc_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class='ovp' is not supported for multiclass ROC AUC, multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs4]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_gamma_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true18-y_score18-expected_fpr18-expected_fnr18]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_perfect_scores[y_true1]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric2]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric22]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-2]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_constant_scores[0.25]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true14-y_score14-expected_fpr14-expected_fnr14]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_representation_invariance",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_bad_input",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[cohen_kappa_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_ignore_ties_with_k",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true0-None]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_score_scale_invariance",
"sklearn/metrics/tests/test_common.py::test_single_sample[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_constant_scores[1]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_perfect_scores[y_true4]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true1-None]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_invariant",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric16]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_normal_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_roc_returns_consistency",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[max_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_ranking_loss_ties_handling",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_tie_handling[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_constant_scores[0.5]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_no_averaging_labels",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[max_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric36]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric28]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[median_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_end_points",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_gamma_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_fpr_tpr_increasing",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[ndcg_score]",
"sklearn/metrics/tests/test_ranking.py::test_detection_error_tradeoff_curve_toydata[y_true8-y_score8-expected_fpr8-expected_fnr8]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_tie_handling",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[detection_error_tradeoff_curve]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric24]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_loss]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "examples/model_selection/plot_det.py"
}
]
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex 2e54d000a13aa..2fd1366e18434 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -946,6 +946,7 @@ details.\n metrics.cohen_kappa_score\n metrics.confusion_matrix\n metrics.dcg_score\n+ metrics.detection_error_tradeoff_curve\n metrics.f1_score\n metrics.fbeta_score\n metrics.hamming_loss\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex f8874869a0274..decd0f42383eb 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -306,6 +306,7 @@ Some of these are restricted to the binary classification case:\n \n precision_recall_curve\n roc_curve\n+ detection_error_tradeoff_curve\n \n \n Others also work in the multiclass case:\n@@ -1437,6 +1438,93 @@ to the given limit.\n In Data Mining, 2001.\n Proceedings IEEE International Conference, pp. 131-138.\n \n+.. _det_curve:\n+\n+Detection error tradeoff (DET)\n+------------------------------\n+\n+The function :func:`detection_error_tradeoff_curve` computes the\n+detection error tradeoff curve (DET) curve [WikipediaDET2017]_.\n+Quoting Wikipedia:\n+\n+ \"A detection error tradeoff (DET) graph is a graphical plot of error rates for\n+ binary classification systems, plotting false reject rate vs. false accept\n+ rate. The x- and y-axes are scaled non-linearly by their standard normal\n+ deviates (or just by logarithmic transformation), yielding tradeoff curves\n+ that are more linear than ROC curves, and use most of the image area to\n+ highlight the differences of importance in the critical operating region.\"\n+\n+DET curves are a variation of receiver operating characteristic (ROC) curves\n+where False Negative Rate is plotted on the ordinate instead of True Positive\n+Rate.\n+DET curves are commonly plotted in normal deviate scale by transformation with\n+:math:`\\phi^{-1}` (with :math:`\\phi` being the cumulative distribution\n+function).\n+The resulting performance curves explicitly visualize the tradeoff of error\n+types for given classification algorithms.\n+See [Martin1997]_ for examples and further motivation.\n+\n+This figure compares the ROC and DET curves of two example classifiers on the\n+same classification task:\n+\n+.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_det_001.png\n+ :target: ../auto_examples/model_selection/plot_det.html\n+ :scale: 75\n+ :align: center\n+\n+**Properties:**\n+\n+* DET curves form a linear curve in normal deviate scale if the detection\n+ scores are normally (or close-to normally) distributed.\n+ It was shown by [Navratil2007]_ that the reverse it not necessarily true and even more\n+ general distributions are able produce linear DET curves.\n+\n+* The normal deviate scale transformation spreads out the points such that a\n+ comparatively larger space of plot is occupied.\n+ Therefore curves with similar classification performance might be easier to\n+ distinguish on a DET plot.\n+\n+* With False Negative Rate being \"inverse\" to True Positive Rate the point\n+ of perfection for DET curves is the origin (in contrast to the top left corner\n+ for ROC curves).\n+\n+**Applications and limitations:**\n+\n+DET curves are intuitive to read and hence allow quick visual assessment of a\n+classifier's performance.\n+Additionally DET curves can be consulted for threshold analysis and operating\n+point selection.\n+This is particularly helpful if a comparison of error types is required.\n+\n+One the other hand DET curves do not provide their metric as a single number.\n+Therefore for either automated evaluation or comparison to other\n+classification tasks metrics like the derived area under ROC curve might be\n+better suited.\n+\n+.. topic:: Examples:\n+\n+ * See :ref:`sphx_glr_auto_examples_model_selection_plot_det.py`\n+ for an example comparison between receiver operating characteristic (ROC)\n+ curves and Detection error tradeoff (DET) curves.\n+\n+.. topic:: References:\n+\n+ .. [WikipediaDET2017] Wikipedia contributors. Detection error tradeoff.\n+ Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC.\n+ Available at: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054.\n+ Accessed February 19, 2018.\n+\n+ .. [Martin1997] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,\n+ `The DET Curve in Assessment of Detection Task Performance\n+ <http://www.dtic.mil/docs/citations/ADA530509>`_,\n+ NIST 1997.\n+\n+ .. [Navratil2007] J. Navractil and D. Klusacek,\n+ \"`On Linear DETs,\n+ <http://www.research.ibm.com/CBG/papers/icassp07_navratil.pdf>`_\"\n+ 2007 IEEE International Conference on Acoustics,\n+ Speech and Signal Processing - ICASSP '07, Honolulu,\n+ HI, 2007, pp. IV-229-IV-232.\n \n .. _zero_one_loss:\n \n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex cf3347c0ee8cd..ff8149142f3b3 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -212,6 +212,11 @@ Changelog\n :mod:`sklearn.metrics`\n ......................\n \n+- |Feature| Added :func:`metrics.detection_error_tradeoff_curve` to compute\n+ Detection Error Tradeoff curve classification metric.\n+ :pr:`<PRID>` by :user:`<NAME>` and\n+ :user:`<NAME>`.\n+\n - |Feature| Added :func:`metrics.mean_absolute_percentage_error` metric and\n the associated scorer for regression problems. :issue:`<PRID>` fixed with the\n PR :pr:`<PRID>` by :user:`<NAME>`. The scorer and\n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index 2e54d000a13aa..2fd1366e18434 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -946,6 +946,7 @@ details.
metrics.cohen_kappa_score
metrics.confusion_matrix
metrics.dcg_score
+ metrics.detection_error_tradeoff_curve
metrics.f1_score
metrics.fbeta_score
metrics.hamming_loss
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index f8874869a0274..decd0f42383eb 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -306,6 +306,7 @@ Some of these are restricted to the binary classification case:
precision_recall_curve
roc_curve
+ detection_error_tradeoff_curve
Others also work in the multiclass case:
@@ -1437,6 +1438,93 @@ to the given limit.
In Data Mining, 2001.
Proceedings IEEE International Conference, pp. 131-138.
+.. _det_curve:
+
+Detection error tradeoff (DET)
+------------------------------
+
+The function :func:`detection_error_tradeoff_curve` computes the
+detection error tradeoff curve (DET) curve [WikipediaDET2017]_.
+Quoting Wikipedia:
+
+ "A detection error tradeoff (DET) graph is a graphical plot of error rates for
+ binary classification systems, plotting false reject rate vs. false accept
+ rate. The x- and y-axes are scaled non-linearly by their standard normal
+ deviates (or just by logarithmic transformation), yielding tradeoff curves
+ that are more linear than ROC curves, and use most of the image area to
+ highlight the differences of importance in the critical operating region."
+
+DET curves are a variation of receiver operating characteristic (ROC) curves
+where False Negative Rate is plotted on the ordinate instead of True Positive
+Rate.
+DET curves are commonly plotted in normal deviate scale by transformation with
+:math:`\phi^{-1}` (with :math:`\phi` being the cumulative distribution
+function).
+The resulting performance curves explicitly visualize the tradeoff of error
+types for given classification algorithms.
+See [Martin1997]_ for examples and further motivation.
+
+This figure compares the ROC and DET curves of two example classifiers on the
+same classification task:
+
+.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_det_001.png
+ :target: ../auto_examples/model_selection/plot_det.html
+ :scale: 75
+ :align: center
+
+**Properties:**
+
+* DET curves form a linear curve in normal deviate scale if the detection
+ scores are normally (or close-to normally) distributed.
+ It was shown by [Navratil2007]_ that the reverse it not necessarily true and even more
+ general distributions are able produce linear DET curves.
+
+* The normal deviate scale transformation spreads out the points such that a
+ comparatively larger space of plot is occupied.
+ Therefore curves with similar classification performance might be easier to
+ distinguish on a DET plot.
+
+* With False Negative Rate being "inverse" to True Positive Rate the point
+ of perfection for DET curves is the origin (in contrast to the top left corner
+ for ROC curves).
+
+**Applications and limitations:**
+
+DET curves are intuitive to read and hence allow quick visual assessment of a
+classifier's performance.
+Additionally DET curves can be consulted for threshold analysis and operating
+point selection.
+This is particularly helpful if a comparison of error types is required.
+
+One the other hand DET curves do not provide their metric as a single number.
+Therefore for either automated evaluation or comparison to other
+classification tasks metrics like the derived area under ROC curve might be
+better suited.
+
+.. topic:: Examples:
+
+ * See :ref:`sphx_glr_auto_examples_model_selection_plot_det.py`
+ for an example comparison between receiver operating characteristic (ROC)
+ curves and Detection error tradeoff (DET) curves.
+
+.. topic:: References:
+
+ .. [WikipediaDET2017] Wikipedia contributors. Detection error tradeoff.
+ Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC.
+ Available at: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054.
+ Accessed February 19, 2018.
+
+ .. [Martin1997] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,
+ `The DET Curve in Assessment of Detection Task Performance
+ <http://www.dtic.mil/docs/citations/ADA530509>`_,
+ NIST 1997.
+
+ .. [Navratil2007] J. Navractil and D. Klusacek,
+ "`On Linear DETs,
+ <http://www.research.ibm.com/CBG/papers/icassp07_navratil.pdf>`_"
+ 2007 IEEE International Conference on Acoustics,
+ Speech and Signal Processing - ICASSP '07, Honolulu,
+ HI, 2007, pp. IV-229-IV-232.
.. _zero_one_loss:
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index cf3347c0ee8cd..ff8149142f3b3 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -212,6 +212,11 @@ Changelog
:mod:`sklearn.metrics`
......................
+- |Feature| Added :func:`metrics.detection_error_tradeoff_curve` to compute
+ Detection Error Tradeoff curve classification metric.
+ :pr:`<PRID>` by :user:`<NAME>` and
+ :user:`<NAME>`.
+
- |Feature| Added :func:`metrics.mean_absolute_percentage_error` metric and
the associated scorer for regression problems. :issue:`<PRID>` fixed with the
PR :pr:`<PRID>` by :user:`<NAME>`. The scorer and
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'examples/model_selection/plot_det.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-16625
|
https://github.com/scikit-learn/scikit-learn/pull/16625
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index e05d08781181f..6dbab18d94a0c 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -966,6 +966,7 @@ details.
metrics.recall_score
metrics.roc_auc_score
metrics.roc_curve
+ metrics.top_k_accuracy_score
metrics.zero_one_loss
Regression metrics
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index 05750222ad0ca..96fe4d396dc5d 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -60,6 +60,7 @@ Scoring Function
**Classification**
'accuracy' :func:`metrics.accuracy_score`
'balanced_accuracy' :func:`metrics.balanced_accuracy_score`
+'top_k_accuracy' :func:`metrics.top_k_accuracy_score`
'average_precision' :func:`metrics.average_precision_score`
'neg_brier_score' :func:`metrics.brier_score_loss`
'f1' :func:`metrics.f1_score` for binary targets
@@ -318,6 +319,7 @@ Others also work in the multiclass case:
hinge_loss
matthews_corrcoef
roc_auc_score
+ top_k_accuracy_score
Some also work in the multilabel case:
@@ -438,6 +440,44 @@ In the multilabel case with binary label indicators::
for an example of accuracy score usage using permutations of
the dataset.
+.. _top_k_accuracy_score:
+
+Top-k accuracy score
+--------------------
+
+The :func:`top_k_accuracy_score` function is a generalization of
+:func:`accuracy_score`. The difference is that a prediction is considered
+correct as long as the true label is associated with one of the ``k`` highest
+predicted scores. :func:`accuracy_score` is the special case of `k = 1`.
+
+The function covers the binary and multiclass classification cases but not the
+multilabel case.
+
+If :math:`\hat{f}_{i,j}` is the predicted class for the :math:`i`-th sample
+corresponding to the :math:`j`-th largest predicted score and :math:`y_i` is the
+corresponding true value, then the fraction of correct predictions over
+:math:`n_\text{samples}` is defined as
+
+.. math::
+
+ \texttt{top-k accuracy}(y, \hat{f}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} \sum_{j=1}^{k} 1(\hat{f}_{i,j} = y_i)
+
+where :math:`k` is the number of guesses allowed and :math:`1(x)` is the
+`indicator function <https://en.wikipedia.org/wiki/Indicator_function>`_.
+
+ >>> import numpy as np
+ >>> from sklearn.metrics import top_k_accuracy_score
+ >>> y_true = np.array([0, 1, 2, 2])
+ >>> y_score = np.array([[0.5, 0.2, 0.2],
+ ... [0.3, 0.4, 0.2],
+ ... [0.2, 0.4, 0.3],
+ ... [0.7, 0.2, 0.1]])
+ >>> top_k_accuracy_score(y_true, y_score, k=2)
+ 0.75
+ >>> # Not normalizing gives the number of "correctly" classified samples
+ >>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
+ 3
+
.. _balanced_accuracy_score:
Balanced accuracy score
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index bd7f368b023a9..68f6addbcad94 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -157,6 +157,10 @@ Changelog
:pr:`18280` by :user:`Alex Liang <tianchuliang>` and
`Guillaume Lemaitre`_.
+- |Feature| :func:`datasets.fetch_openml` now validates md5checksum of arff
+ files downloaded or cached to ensure data integrity.
+ :pr:`14800` by :user:`Shashank Singh <shashanksingh28>` and `Joel Nothman`_.
+
- |API| The default value of `as_frame` in :func:`datasets.fetch_openml` is
changed from False to 'auto'.
:pr:`17610` by :user:`Jiaxiang <fujiaxiang>`.
@@ -378,11 +382,18 @@ Changelog
:mod:`sklearn.metrics`
......................
+- |Feature| new metric :func:`metrics.top_k_accuracy_score`. It's a
+ generalization of :func:`metrics.top_k_accuracy_score`, the difference is
+ that a prediction is considered correct as long as the true label is
+ associated with one of the `k` highest predicted scores.
+ :func:`accuracy_score` is the special case of `k = 1`.
+ :pr:`16625` by :user:`Geoffrey Bolmier <gbolmier>`.
+
- |Feature| Added :func:`metrics.det_curve` to compute Detection Error Tradeoff
curve classification metric.
:pr:`10591` by :user:`Jeremy Karnowski <jkarnows>` and
:user:`Daniel Mohns <dmohns>`.
-
+
- |Feature| Added :func:`metrics.plot_det_curve` and
:class:`metrics.DetCurveDisplay` to ease the plot of DET curves.
:pr:`18176` by :user:`Guillaume Lemaitre <glemaitre>`.
@@ -406,6 +417,10 @@ Changelog
class to be used when computing the precision and recall statistics.
:pr:`17569` by :user:`Guillaume Lemaitre <glemaitre>`.
+- |Feature| :func:`metrics.plot_confusion_matrix` now supports making colorbar
+ optional in the matplotlib plot by setting colorbar=False. :pr:`17192` by
+ :user:`Avi Gupta <avigupta2612>`
+
- |Enhancement| Add `pos_label` parameter in
:func:`metrics.plot_roc_curve` in order to specify the positive
class to be used when computing the roc auc statistics.
diff --git a/sklearn/metrics/__init__.py b/sklearn/metrics/__init__.py
index a8beea4f8c2f9..ebe9affb5e3e3 100644
--- a/sklearn/metrics/__init__.py
+++ b/sklearn/metrics/__init__.py
@@ -15,6 +15,7 @@
from ._ranking import precision_recall_curve
from ._ranking import roc_auc_score
from ._ranking import roc_curve
+from ._ranking import top_k_accuracy_score
from ._classification import accuracy_score
from ._classification import balanced_accuracy_score
@@ -160,6 +161,7 @@
'SCORERS',
'silhouette_samples',
'silhouette_score',
+ 'top_k_accuracy_score',
'v_measure_score',
'zero_one_loss',
'brier_score_loss',
diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py
index b9e693b1e0905..1687d693e7ee0 100644
--- a/sklearn/metrics/_ranking.py
+++ b/sklearn/metrics/_ranking.py
@@ -1567,3 +1567,151 @@ def ndcg_score(y_true, y_score, *, k=None, sample_weight=None,
_check_dcg_target_type(y_true)
gain = _ndcg_sample_scores(y_true, y_score, k=k, ignore_ties=ignore_ties)
return np.average(gain, weights=sample_weight)
+
+
+def top_k_accuracy_score(y_true, y_score, *, k=2, normalize=True,
+ sample_weight=None, labels=None):
+ """Top-k Accuracy classification score.
+
+ This metric computes the number of times where the correct label is among
+ the top `k` labels predicted (ranked by predicted scores). Note that the
+ multilabel case isn't covered here.
+
+ Read more in the :ref:`User Guide <top_k_accuracy_score>`
+
+ Parameters
+ ----------
+ y_true : array-like of shape (n_samples,)
+ True labels.
+
+ y_score : array-like of shape (n_samples,) or (n_samples, n_classes)
+ Target scores. These can be either probability estimates or
+ non-thresholded decision values (as returned by
+ :term:`decision_function` on some classifiers). The binary case expects
+ scores with shape (n_samples,) while the multiclass case expects scores
+ with shape (n_samples, n_classes). In the nulticlass case, the order of
+ the class scores must correspond to the order of ``labels``, if
+ provided, or else to the numerical or lexicographical order of the
+ labels in ``y_true``.
+
+ k : int, default=2
+ Number of most likely outcomes considered to find the correct label.
+
+ normalize : bool, default=True
+ If `True`, return the fraction of correctly classified samples.
+ Otherwise, return the number of correctly classified samples.
+
+ sample_weight : array-like of shape (n_samples,), default=None
+ Sample weights. If `None`, all samples are given the same weight.
+
+ labels : array-like of shape (n_classes,), default=None
+ Multiclass only. List of labels that index the classes in ``y_score``.
+ If ``None``, the numerical or lexicographical order of the labels in
+ ``y_true`` is used.
+
+ Returns
+ -------
+ score : float
+ The top-k accuracy score. The best performance is 1 with
+ `normalize == True` and the number of samples with
+ `normalize == False`.
+
+ See also
+ --------
+ accuracy_score
+
+ Notes
+ -----
+ In cases where two or more labels are assigned equal predicted scores,
+ the labels with the highest indices will be chosen first. This might
+ impact the result if the correct label falls after the threshold because
+ of that.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from sklearn.metrics import top_k_accuracy_score
+ >>> y_true = np.array([0, 1, 2, 2])
+ >>> y_score = np.array([[0.5, 0.2, 0.2], # 0 is in top 2
+ ... [0.3, 0.4, 0.2], # 1 is in top 2
+ ... [0.2, 0.4, 0.3], # 2 is in top 2
+ ... [0.7, 0.2, 0.1]]) # 2 isn't in top 2
+ >>> top_k_accuracy_score(y_true, y_score, k=2)
+ 0.75
+ >>> # Not normalizing gives the number of "correctly" classified samples
+ >>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
+ 3
+
+ """
+ y_true = check_array(y_true, ensure_2d=False, dtype=None)
+ y_true = column_or_1d(y_true)
+ y_type = type_of_target(y_true)
+ y_score = check_array(y_score, ensure_2d=False)
+ y_score = column_or_1d(y_score) if y_type == 'binary' else y_score
+ check_consistent_length(y_true, y_score, sample_weight)
+
+ if y_type not in {'binary', 'multiclass'}:
+ raise ValueError(
+ f"y type must be 'binary' or 'multiclass', got '{y_type}' instead."
+ )
+
+ y_score_n_classes = y_score.shape[1] if y_score.ndim == 2 else 2
+
+ if labels is None:
+ classes = _unique(y_true)
+ n_classes = len(classes)
+
+ if n_classes != y_score_n_classes:
+ raise ValueError(
+ f"Number of classes in 'y_true' ({n_classes}) not equal "
+ f"to the number of classes in 'y_score' ({y_score_n_classes})."
+ )
+ else:
+ labels = column_or_1d(labels)
+ classes = _unique(labels)
+ n_labels = len(labels)
+ n_classes = len(classes)
+
+ if n_classes != n_labels:
+ raise ValueError("Parameter 'labels' must be unique.")
+
+ if not np.array_equal(classes, labels):
+ raise ValueError("Parameter 'labels' must be ordered.")
+
+ if n_classes != y_score_n_classes:
+ raise ValueError(
+ f"Number of given labels ({n_classes}) not equal to the "
+ f"number of classes in 'y_score' ({y_score_n_classes})."
+ )
+
+ if len(np.setdiff1d(y_true, classes)):
+ raise ValueError(
+ "'y_true' contains labels not in parameter 'labels'."
+ )
+
+ if k >= n_classes:
+ warnings.warn(
+ f"'k' ({k}) greater than or equal to 'n_classes' ({n_classes}) "
+ "will result in a perfect score and is therefore meaningless.",
+ UndefinedMetricWarning
+ )
+
+ y_true_encoded = _encode(y_true, uniques=classes)
+
+ if y_type == 'binary':
+ if k == 1:
+ threshold = .5 if y_score.min() >= 0 and y_score.max() <= 1 else 0
+ y_pred = (y_score > threshold).astype(np.int)
+ hits = y_pred == y_true_encoded
+ else:
+ hits = np.ones_like(y_score, dtype=np.bool_)
+ elif y_type == 'multiclass':
+ sorted_pred = np.argsort(y_score, axis=1, kind='mergesort')[:, ::-1]
+ hits = (y_true_encoded == sorted_pred[:, :k].T).any(axis=0)
+
+ if normalize:
+ return np.average(hits, weights=sample_weight)
+ elif sample_weight is None:
+ return np.sum(hits)
+ else:
+ return np.dot(hits, sample_weight)
diff --git a/sklearn/metrics/_scorer.py b/sklearn/metrics/_scorer.py
index 1010480495982..170e85d78f02f 100644
--- a/sklearn/metrics/_scorer.py
+++ b/sklearn/metrics/_scorer.py
@@ -27,9 +27,9 @@
from . import (r2_score, median_absolute_error, max_error, mean_absolute_error,
mean_squared_error, mean_squared_log_error,
mean_poisson_deviance, mean_gamma_deviance, accuracy_score,
- f1_score, roc_auc_score, average_precision_score,
- precision_score, recall_score, log_loss,
- balanced_accuracy_score, explained_variance_score,
+ top_k_accuracy_score, f1_score, roc_auc_score,
+ average_precision_score, precision_score, recall_score,
+ log_loss, balanced_accuracy_score, explained_variance_score,
brier_score_loss, jaccard_score, mean_absolute_percentage_error)
from .cluster import adjusted_rand_score
@@ -653,6 +653,9 @@ def make_scorer(score_func, *, greater_is_better=True, needs_proba=False,
balanced_accuracy_scorer = make_scorer(balanced_accuracy_score)
# Score functions that need decision values
+top_k_accuracy_scorer = make_scorer(top_k_accuracy_score,
+ greater_is_better=True,
+ needs_threshold=True)
roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True,
needs_threshold=True)
average_precision_scorer = make_scorer(average_precision_score,
@@ -701,7 +704,9 @@ def make_scorer(score_func, *, greater_is_better=True, needs_proba=False,
neg_root_mean_squared_error=neg_root_mean_squared_error_scorer,
neg_mean_poisson_deviance=neg_mean_poisson_deviance_scorer,
neg_mean_gamma_deviance=neg_mean_gamma_deviance_scorer,
- accuracy=accuracy_scorer, roc_auc=roc_auc_scorer,
+ accuracy=accuracy_scorer,
+ top_k_accuracy=top_k_accuracy_scorer,
+ roc_auc=roc_auc_scorer,
roc_auc_ovr=roc_auc_ovr_scorer,
roc_auc_ovo=roc_auc_ovo_scorer,
roc_auc_ovr_weighted=roc_auc_ovr_weighted_scorer,
|
diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py
index e503a64a47769..6688ddc2aa834 100644
--- a/sklearn/metrics/tests/test_common.py
+++ b/sklearn/metrics/tests/test_common.py
@@ -59,6 +59,7 @@
from sklearn.metrics import zero_one_loss
from sklearn.metrics import ndcg_score
from sklearn.metrics import dcg_score
+from sklearn.metrics import top_k_accuracy_score
from sklearn.metrics._base import _average_binary_score
@@ -243,7 +244,9 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"label_ranking_average_precision_score":
label_ranking_average_precision_score,
"ndcg_score": ndcg_score,
- "dcg_score": dcg_score
+ "dcg_score": dcg_score,
+
+ "top_k_accuracy_score": top_k_accuracy_score
}
ALL_METRICS = dict()
@@ -383,6 +386,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
# Metrics with a "normalize" option
METRICS_WITH_NORMALIZE_OPTION = {
"accuracy_score",
+ "top_k_accuracy_score",
"zero_one_loss",
}
@@ -573,6 +577,7 @@ def test_sample_order_invariance(name):
random_state = check_random_state(0)
y_true = random_state.randint(0, 2, size=(20, ))
y_pred = random_state.randint(0, 2, size=(20, ))
+
if name in METRICS_REQUIRE_POSITIVE_Y:
y_true, y_pred = _require_positive_targets(y_true, y_pred)
@@ -961,41 +966,59 @@ def test_raise_value_error_multilabel_sequences(name):
@pytest.mark.parametrize('name', sorted(METRICS_WITH_NORMALIZE_OPTION))
def test_normalize_option_binary_classification(name):
# Test in the binary case
+ n_classes = 2
n_samples = 20
random_state = check_random_state(0)
- y_true = random_state.randint(0, 2, size=(n_samples, ))
- y_pred = random_state.randint(0, 2, size=(n_samples, ))
+
+ y_true = random_state.randint(0, n_classes, size=(n_samples, ))
+ y_pred = random_state.randint(0, n_classes, size=(n_samples, ))
+ y_score = random_state.normal(size=y_true.shape)
metrics = ALL_METRICS[name]
- measure = metrics(y_true, y_pred, normalize=True)
- assert_array_less(-1.0 * measure, 0,
+ pred = y_score if name in THRESHOLDED_METRICS else y_pred
+ measure_normalized = metrics(y_true, pred, normalize=True)
+ measure_not_normalized = metrics(y_true, pred, normalize=False)
+
+ assert_array_less(-1.0 * measure_normalized, 0,
err_msg="We failed to test correctly the normalize "
"option")
- assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
- measure)
+
+ assert_allclose(measure_normalized, measure_not_normalized / n_samples,
+ err_msg=f"Failed with {name}")
@pytest.mark.parametrize('name', sorted(METRICS_WITH_NORMALIZE_OPTION))
def test_normalize_option_multiclass_classification(name):
# Test in the multiclass case
+ n_classes = 4
+ n_samples = 20
random_state = check_random_state(0)
- y_true = random_state.randint(0, 4, size=(20, ))
- y_pred = random_state.randint(0, 4, size=(20, ))
- n_samples = y_true.shape[0]
+
+ y_true = random_state.randint(0, n_classes, size=(n_samples, ))
+ y_pred = random_state.randint(0, n_classes, size=(n_samples, ))
+ y_score = random_state.uniform(size=(n_samples, n_classes))
metrics = ALL_METRICS[name]
- measure = metrics(y_true, y_pred, normalize=True)
- assert_array_less(-1.0 * measure, 0,
+ pred = y_score if name in THRESHOLDED_METRICS else y_pred
+ measure_normalized = metrics(y_true, pred, normalize=True)
+ measure_not_normalized = metrics(y_true, pred, normalize=False)
+
+ assert_array_less(-1.0 * measure_normalized, 0,
err_msg="We failed to test correctly the normalize "
"option")
- assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
- measure)
+ assert_allclose(measure_normalized, measure_not_normalized / n_samples,
+ err_msg=f"Failed with {name}")
-def test_normalize_option_multilabel_classification():
+
[email protected]('name', sorted(
+ METRICS_WITH_NORMALIZE_OPTION.intersection(MULTILABELS_METRICS)
+))
+def test_normalize_option_multilabel_classification(name):
# Test in the multilabel case
n_classes = 4
n_samples = 100
+ random_state = check_random_state(0)
# for both random_state 0 and 1, y_true and y_pred has at least one
# unlabelled entry
@@ -1010,18 +1033,23 @@ def test_normalize_option_multilabel_classification():
allow_unlabeled=True,
n_samples=n_samples)
+ y_score = random_state.uniform(size=y_true.shape)
+
# To make sure at least one empty label is present
y_true += [0]*n_classes
y_pred += [0]*n_classes
- for name in METRICS_WITH_NORMALIZE_OPTION:
- metrics = ALL_METRICS[name]
- measure = metrics(y_true, y_pred, normalize=True)
- assert_array_less(-1.0 * measure, 0,
- err_msg="We failed to test correctly the normalize "
- "option")
- assert_allclose(metrics(y_true, y_pred, normalize=False) / n_samples,
- measure, err_msg="Failed with %s" % name)
+ metrics = ALL_METRICS[name]
+ pred = y_score if name in THRESHOLDED_METRICS else y_pred
+ measure_normalized = metrics(y_true, pred, normalize=True)
+ measure_not_normalized = metrics(y_true, pred, normalize=False)
+
+ assert_array_less(-1.0 * measure_normalized, 0,
+ err_msg="We failed to test correctly the normalize "
+ "option")
+
+ assert_allclose(measure_normalized, measure_not_normalized / n_samples,
+ err_msg=f"Failed with {name}")
@ignore_warnings
@@ -1160,6 +1188,10 @@ def check_sample_weight_invariance(name, metric, y1, y2):
rng = np.random.RandomState(0)
sample_weight = rng.randint(1, 10, size=len(y1))
+ # top_k_accuracy_score always lead to a perfect score for k > 1 in the
+ # binary case
+ metric = partial(metric, k=1) if name == "top_k_accuracy_score" else metric
+
# check that unit weights gives the same score as no weight
unweighted_score = metric(y1, y2, sample_weight=None)
diff --git a/sklearn/metrics/tests/test_ranking.py b/sklearn/metrics/tests/test_ranking.py
index 9637162142b2c..db8a50f7d27a8 100644
--- a/sklearn/metrics/tests/test_ranking.py
+++ b/sklearn/metrics/tests/test_ranking.py
@@ -19,6 +19,7 @@
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_warns
+from sklearn.metrics import accuracy_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
from sklearn.metrics import coverage_error
@@ -30,8 +31,11 @@
from sklearn.metrics import roc_curve
from sklearn.metrics._ranking import _ndcg_sample_scores, _dcg_sample_scores
from sklearn.metrics import ndcg_score, dcg_score
+from sklearn.metrics import top_k_accuracy_score
from sklearn.exceptions import UndefinedMetricWarning
+from sklearn.model_selection import train_test_split
+from sklearn.linear_model import LogisticRegression
###############################################################################
@@ -1608,3 +1612,136 @@ def test_partial_roc_auc_score():
assert_almost_equal(
roc_auc_score(y_true, y_pred, max_fpr=max_fpr),
_partial_roc_auc_score(y_true, y_pred, max_fpr))
+
+
[email protected]('y_true, k, true_score', [
+ ([0, 1, 2, 3], 1, 0.25),
+ ([0, 1, 2, 3], 2, 0.5),
+ ([0, 1, 2, 3], 3, 0.75),
+])
+def test_top_k_accuracy_score(y_true, k, true_score):
+ y_score = np.array([
+ [0.4, 0.3, 0.2, 0.1],
+ [0.1, 0.3, 0.4, 0.2],
+ [0.4, 0.1, 0.2, 0.3],
+ [0.3, 0.2, 0.4, 0.1],
+ ])
+ score = top_k_accuracy_score(y_true, y_score, k=k)
+ assert score == pytest.approx(true_score)
+
+
[email protected]('y_score, k, true_score', [
+ (np.array([-1, -1, 1, 1]), 1, 1),
+ (np.array([-1, 1, -1, 1]), 1, 0.5),
+ (np.array([-1, 1, -1, 1]), 2, 1),
+ (np.array([.2, .2, .7, .7]), 1, 1),
+ (np.array([.2, .7, .2, .7]), 1, 0.5),
+ (np.array([.2, .7, .2, .7]), 2, 1),
+])
+def test_top_k_accuracy_score_binary(y_score, k, true_score):
+ y_true = [0, 0, 1, 1]
+
+ threshold = .5 if y_score.min() >= 0 and y_score.max() <= 1 else 0
+ y_pred = (y_score > threshold).astype(np.int) if k == 1 else y_true
+
+ score = top_k_accuracy_score(y_true, y_score, k=k)
+ score_acc = accuracy_score(y_true, y_pred)
+
+ assert score == score_acc == pytest.approx(true_score)
+
+
+def test_top_k_accuracy_score_increasing():
+ # Make sure increasing k leads to a higher score
+ X, y = datasets.make_classification(n_classes=10, n_samples=1000,
+ n_informative=10, random_state=0)
+
+ X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
+
+ clf = LogisticRegression(random_state=0)
+ clf.fit(X_train, y_train)
+
+ for X, y in zip((X_train, X_test), (y_train, y_test)):
+ scores = [
+ top_k_accuracy_score(y, clf.predict_proba(X), k=k)
+ for k in range(2, 10)
+ ]
+
+ assert np.all(np.diff(scores) > 0)
+
+
[email protected]('y_true, k, true_score', [
+ ([0, 1, 2, 3], 1, 0.25),
+ ([0, 1, 2, 3], 2, 0.5),
+ ([0, 1, 2, 3], 3, 1),
+])
+def test_top_k_accuracy_score_ties(y_true, k, true_score):
+ # Make sure highest indices labels are chosen first in case of ties
+ y_score = np.array([
+ [5, 5, 7, 0],
+ [1, 5, 5, 5],
+ [0, 0, 3, 3],
+ [1, 1, 1, 1],
+ ])
+ assert top_k_accuracy_score(y_true, y_score,
+ k=k) == pytest.approx(true_score)
+
+
[email protected]('y_true, k', [
+ ([0, 1, 2, 3], 4),
+ ([0, 1, 2, 3], 5),
+])
+def test_top_k_accuracy_score_warning(y_true, k):
+ y_score = np.array([
+ [0.4, 0.3, 0.2, 0.1],
+ [0.1, 0.4, 0.3, 0.2],
+ [0.2, 0.1, 0.4, 0.3],
+ [0.3, 0.2, 0.1, 0.4],
+ ])
+ w = UndefinedMetricWarning
+ score = assert_warns(w, top_k_accuracy_score, y_true, y_score, k=k)
+ assert score == 1
+
+
[email protected]('y_true, labels, msg', [
+ (
+ [0, .57, 1, 2],
+ None,
+ "y type must be 'binary' or 'multiclass', got 'continuous'"
+ ),
+ (
+ [0, 1, 2, 3],
+ None,
+ r"Number of classes in 'y_true' \(4\) not equal to the number of "
+ r"classes in 'y_score' \(3\)."
+ ),
+ (
+ ['c', 'c', 'a', 'b'],
+ ['a', 'b', 'c', 'c'],
+ "Parameter 'labels' must be unique."
+ ),
+ (
+ ['c', 'c', 'a', 'b'],
+ ['a', 'c', 'b'],
+ "Parameter 'labels' must be ordered."
+ ),
+ (
+ [0, 0, 1, 2],
+ [0, 1, 2, 3],
+ r"Number of given labels \(4\) not equal to the number of classes in "
+ r"'y_score' \(3\)."
+ ),
+ (
+ [0, 0, 1, 2],
+ [0, 1, 3],
+ "'y_true' contains labels not in parameter 'labels'."
+ ),
+])
+def test_top_k_accuracy_score_error(y_true, labels, msg):
+ y_score = np.array([
+ [0.2, 0.1, 0.7],
+ [0.4, 0.3, 0.3],
+ [0.3, 0.4, 0.3],
+ [0.4, 0.5, 0.1],
+ ])
+ with pytest.raises(ValueError, match=msg):
+ top_k_accuracy_score(y_true, y_score, k=2, labels=labels)
diff --git a/sklearn/metrics/tests/test_score_objects.py b/sklearn/metrics/tests/test_score_objects.py
index f379d0e2d7397..5597931990239 100644
--- a/sklearn/metrics/tests/test_score_objects.py
+++ b/sklearn/metrics/tests/test_score_objects.py
@@ -63,7 +63,7 @@
'max_error', 'neg_mean_poisson_deviance',
'neg_mean_gamma_deviance']
-CLF_SCORERS = ['accuracy', 'balanced_accuracy',
+CLF_SCORERS = ['accuracy', 'balanced_accuracy', 'top_k_accuracy',
'f1', 'f1_weighted', 'f1_macro', 'f1_micro',
'roc_auc', 'average_precision', 'precision',
'precision_weighted', 'precision_macro', 'precision_micro',
@@ -506,6 +506,9 @@ def test_classification_scorer_sample_weight():
if name in REGRESSION_SCORERS:
# skip the regression scores
continue
+ if name == 'top_k_accuracy':
+ # in the binary case k > 1 will always lead to a perfect score
+ scorer._kwargs = {'k': 1}
if name in MULTILABEL_ONLY_SCORERS:
target = y_ml_test
else:
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex e05d08781181f..6dbab18d94a0c 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -966,6 +966,7 @@ details.\n metrics.recall_score\n metrics.roc_auc_score\n metrics.roc_curve\n+ metrics.top_k_accuracy_score\n metrics.zero_one_loss\n \n Regression metrics\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex 05750222ad0ca..96fe4d396dc5d 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -60,6 +60,7 @@ Scoring Function\n **Classification**\n 'accuracy' :func:`metrics.accuracy_score`\n 'balanced_accuracy' :func:`metrics.balanced_accuracy_score`\n+'top_k_accuracy' :func:`metrics.top_k_accuracy_score`\n 'average_precision' :func:`metrics.average_precision_score`\n 'neg_brier_score' :func:`metrics.brier_score_loss`\n 'f1' :func:`metrics.f1_score` for binary targets\n@@ -318,6 +319,7 @@ Others also work in the multiclass case:\n hinge_loss\n matthews_corrcoef\n roc_auc_score\n+ top_k_accuracy_score\n \n \n Some also work in the multilabel case:\n@@ -438,6 +440,44 @@ In the multilabel case with binary label indicators::\n for an example of accuracy score usage using permutations of\n the dataset.\n \n+.. _top_k_accuracy_score:\n+\n+Top-k accuracy score\n+--------------------\n+\n+The :func:`top_k_accuracy_score` function is a generalization of\n+:func:`accuracy_score`. The difference is that a prediction is considered\n+correct as long as the true label is associated with one of the ``k`` highest\n+predicted scores. :func:`accuracy_score` is the special case of `k = 1`.\n+\n+The function covers the binary and multiclass classification cases but not the\n+multilabel case.\n+\n+If :math:`\\hat{f}_{i,j}` is the predicted class for the :math:`i`-th sample\n+corresponding to the :math:`j`-th largest predicted score and :math:`y_i` is the\n+corresponding true value, then the fraction of correct predictions over\n+:math:`n_\\text{samples}` is defined as\n+\n+.. math::\n+\n+ \\texttt{top-k accuracy}(y, \\hat{f}) = \\frac{1}{n_\\text{samples}} \\sum_{i=0}^{n_\\text{samples}-1} \\sum_{j=1}^{k} 1(\\hat{f}_{i,j} = y_i)\n+\n+where :math:`k` is the number of guesses allowed and :math:`1(x)` is the\n+`indicator function <https://en.wikipedia.org/wiki/Indicator_function>`_.\n+\n+ >>> import numpy as np\n+ >>> from sklearn.metrics import top_k_accuracy_score\n+ >>> y_true = np.array([0, 1, 2, 2])\n+ >>> y_score = np.array([[0.5, 0.2, 0.2],\n+ ... [0.3, 0.4, 0.2],\n+ ... [0.2, 0.4, 0.3],\n+ ... [0.7, 0.2, 0.1]])\n+ >>> top_k_accuracy_score(y_true, y_score, k=2)\n+ 0.75\n+ >>> # Not normalizing gives the number of \"correctly\" classified samples\n+ >>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)\n+ 3\n+\n .. _balanced_accuracy_score:\n \n Balanced accuracy score\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex bd7f368b023a9..68f6addbcad94 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -157,6 +157,10 @@ Changelog\n :pr:`18280` by :user:`Alex Liang <tianchuliang>` and\n `Guillaume Lemaitre`_.\n \n+- |Feature| :func:`datasets.fetch_openml` now validates md5checksum of arff\n+ files downloaded or cached to ensure data integrity.\n+ :pr:`14800` by :user:`Shashank Singh <shashanksingh28>` and `Joel Nothman`_.\n+\n - |API| The default value of `as_frame` in :func:`datasets.fetch_openml` is\n changed from False to 'auto'.\n :pr:`17610` by :user:`Jiaxiang <fujiaxiang>`.\n@@ -378,11 +382,18 @@ Changelog\n :mod:`sklearn.metrics`\n ......................\n \n+- |Feature| new metric :func:`metrics.top_k_accuracy_score`. It's a\n+ generalization of :func:`metrics.top_k_accuracy_score`, the difference is\n+ that a prediction is considered correct as long as the true label is\n+ associated with one of the `k` highest predicted scores.\n+ :func:`accuracy_score` is the special case of `k = 1`.\n+ :pr:`16625` by :user:`Geoffrey Bolmier <gbolmier>`.\n+\n - |Feature| Added :func:`metrics.det_curve` to compute Detection Error Tradeoff\n curve classification metric.\n :pr:`10591` by :user:`Jeremy Karnowski <jkarnows>` and\n :user:`Daniel Mohns <dmohns>`.\n-\n+ \n - |Feature| Added :func:`metrics.plot_det_curve` and\n :class:`metrics.DetCurveDisplay` to ease the plot of DET curves.\n :pr:`18176` by :user:`Guillaume Lemaitre <glemaitre>`.\n@@ -406,6 +417,10 @@ Changelog\n class to be used when computing the precision and recall statistics.\n :pr:`17569` by :user:`Guillaume Lemaitre <glemaitre>`.\n \n+- |Feature| :func:`metrics.plot_confusion_matrix` now supports making colorbar\n+ optional in the matplotlib plot by setting colorbar=False. :pr:`17192` by\n+ :user:`Avi Gupta <avigupta2612>`\n+\n - |Enhancement| Add `pos_label` parameter in\n :func:`metrics.plot_roc_curve` in order to specify the positive\n class to be used when computing the roc auc statistics.\n"
}
] |
0.24
|
6ca9eab67e1054a1f9508dfa286e0542c8bab5e3
|
[
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[completeness_score]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_tuple]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_tuple]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[empty dict]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[mutual_info_score]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_str]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_select_proba_error[ProbaScorer]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_mutual_info_score]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[non-string key dict]",
"sklearn/metrics/tests/test_score_objects.py::test_supervised_cluster_scorers",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[homogeneity_score]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_list]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers0-1-1-1]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_no_op_multiclass_select_proba",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_error]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_poisson_deviance]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_log_loss]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[non-unique str]",
"sklearn/metrics/tests/test_score_objects.py::test_scoring_is_not_metric",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[balanced_accuracy]",
"sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_select_proba_error[PredictScorer]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_rand_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[f1_score]",
"sklearn/metrics/tests/test_score_objects.py::test_brier_score_loss_pos_label",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo_weighted-metric3]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_list]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr-metric0]",
"sklearn/metrics/tests/test_score_objects.py::test_make_scorer",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer_label",
"sklearn/metrics/tests/test_score_objects.py::test_average_precision_pos_label",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[accuracy]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_median_absolute_error]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[list of int]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[normalized_mutual_info_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_regression_scorer_sample_weight",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[average_precision]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[explained_variance]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_brier_score]",
"sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[jaccard_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_regression_scorers",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[precision_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[v_measure_score]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers2-1-1-0]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_select_proba_error[ThresholdScorer]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr_weighted-metric2]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[r2]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_root_mean_squared_error]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[tuple of one callable]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1]",
"sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data",
"sklearn/metrics/tests/test_score_objects.py::test_raises_on_score_list",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo-metric1]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[max_error]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[tuple of callables]",
"sklearn/metrics/tests/test_score_objects.py::test_all_scorers_repr",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[fowlkes_mallows_score]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_callable]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring_errors[empty tuple]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers1-1-0-1]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_scores",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_gamma_deviance]",
"sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[recall_score]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_gridsearchcv",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_regressor_threshold",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_log_error]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_error]"
] |
[
"sklearn/metrics/tests/test_common.py::test_single_sample[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score2-2-1]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[dcg_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[Partial AUC computation not available in multiclass setting, 'max_fpr' must be set to `None`, received `max_fpr=0.5` instead-kwargs3]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_dcg_score",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_errors",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[max_error]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true13-y_score13-expected_fpr13-expected_fnr13]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric17]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-recall_score-False]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric19]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_hard",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric18]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric11]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric20]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true16-y_score16-expected_fpr16-expected_fnr16]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_toydata",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric32]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric8]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric27]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true19-y_score19-expected_fpr19-expected_fnr19]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[recall_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[False]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[1]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score5-2-1]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-average_precision_score-True]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[True]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_ties[y_true1-2-0.5]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true2]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_drop_intermediate",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score[y_true2-3-0.75]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true0-y_pred0-inconsistent numbers of samples]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score0-1-1]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_auc",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric39]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted'\\\\) for multiclass problems-kwargs0]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-2]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true3-labels3]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_toy]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true9-y_score9-expected_fpr9-expected_fnr9]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_one_label",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.75]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true1-y_pred1-inconsistent numbers of samples]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted'\\\\) for multiclass problems-kwargs1]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric35]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_ranking.py::test_dcg_ties",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_auc_errors",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[<lambda>]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[max_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true3]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric12]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true1-None]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_multiclass_error",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[det_curve]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[top_k_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_lrap_error_raised",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_lrap_sample_weighting_zero_labels",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-2]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_normal_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true3-y_pred3-Only one class present in y_true]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-average_precision_score-True]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true4]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-20]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[hamming_loss]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-20]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true1-None-Number of classes in 'y_true' \\\\(4\\\\) not equal to the number of classes in 'y_score' \\\\(3\\\\).]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[r2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_partial_roc_auc_score",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-8]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric13]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_constant_values",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-metric3-False]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true1]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric30]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric15]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-1]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_score-False]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric14]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score[y_true0-1-0.25]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric9]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-20]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric23]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetry_consistency",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true3-None]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true4-labels4-Number of given labels \\\\(4\\\\) not equal to the number of classes in 'y_score' \\\\(3\\\\).]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_score_pos_label_errors",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true17-y_score17-expected_fpr17-expected_fnr17]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[recall_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric38]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true0]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric26]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_score-False]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-precision_recall_curve-True]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[median_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[sample_weight is not supported for multiclass one-vs-one ROC AUC, 'sample_weight' must be None in this case-kwargs2]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score[y_true1-2-0.5]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric34]",
"sklearn/metrics/tests/test_common.py::test_single_sample[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric41]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_recall_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_score",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric25]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-jaccard_score-False]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-1]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[explained_variance_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric40]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true18-y_score18-expected_fpr18-expected_fnr18]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-metric3-False]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_poisson_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_auc_score_non_binary_class",
"sklearn/metrics/tests/test_common.py::test_single_sample[explained_variance_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true2-y_pred2-Only one class present in y_true]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true12-y_score12-expected_fpr12-expected_fnr12]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric37]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_only_ties]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_normal_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true14-y_score14-expected_fpr14-expected_fnr14]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true5-labels5-'y_true' contains labels not in parameter 'labels'.]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[r2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true1-labels1]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-8]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_toydata",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_multi",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric18]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-f1_score-False]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric30]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric31]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[balanced_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_ranking_appropriate_input_shape",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric16]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_sanity_check",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_confidence",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_common.py::test_averaging_binary_multilabel_all_zeroes",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_loss",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.25]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-recall_score-False]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f1_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[top_k_accuracy]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[True]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[balanced_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_warning[y_true0-4]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[r2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[object-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_error",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_pos_label",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_ties[y_true2-3-1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true8-y_score8-expected_fpr8-expected_fnr8]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_increasing",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_toy]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[max_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score1-1-0.5]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric21]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_ties[y_true0-1-0.25]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true0-None-y type must be 'binary' or 'multiclass', got 'continuous']",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-8]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs5]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_only_ties]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[roc_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class='ovp' is not supported for multiclass ROC AUC, multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs4]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric2]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric22]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true11-y_score11-expected_fpr11-expected_fnr11]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-2]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_warning[y_true1-5]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score3-1-1]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-brier_score_loss-True]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_representation_invariance",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-roc_curve-True]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[cohen_kappa_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_ignore_ties_with_k",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true0-None]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_multilabel_confusion_matrix_sample]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_score_scale_invariance",
"sklearn/metrics/tests/test_common.py::test_single_sample[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true15-y_score15-expected_fpr15-expected_fnr15]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true1-None]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric33]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true2-labels2-Parameter 'labels' must be unique.]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_invariant",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true10-y_score10-expected_fpr10-expected_fnr10]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_error[y_true3-labels3-Parameter 'labels' must be ordered.]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[top_k_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric16]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true4-y_pred4-pos_label is not specified]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[det_curve]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[cohen_kappa_score]",
"sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_binary[y_score4-1-0.5]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_normal_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_roc_returns_consistency",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[max_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_ranking_loss_ties_handling",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_no_averaging_labels",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[max_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric36]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.5]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric28]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-jaccard_score-False]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[median_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_end_points",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_pos_label_error_str[str-f1_score-False]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_gamma_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_fpr_tpr_increasing",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[hamming_loss]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_tie_handling",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_metrics_consistent_type_error[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric24]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_loss]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex e05d08781181f..6dbab18d94a0c 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -966,6 +966,7 @@ details.\n metrics.recall_score\n metrics.roc_auc_score\n metrics.roc_curve\n+ metrics.top_k_accuracy_score\n metrics.zero_one_loss\n \n Regression metrics\n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex 05750222ad0ca..96fe4d396dc5d 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -60,6 +60,7 @@ Scoring Function\n **Classification**\n 'accuracy' :func:`metrics.accuracy_score`\n 'balanced_accuracy' :func:`metrics.balanced_accuracy_score`\n+'top_k_accuracy' :func:`metrics.top_k_accuracy_score`\n 'average_precision' :func:`metrics.average_precision_score`\n 'neg_brier_score' :func:`metrics.brier_score_loss`\n 'f1' :func:`metrics.f1_score` for binary targets\n@@ -318,6 +319,7 @@ Others also work in the multiclass case:\n hinge_loss\n matthews_corrcoef\n roc_auc_score\n+ top_k_accuracy_score\n \n \n Some also work in the multilabel case:\n@@ -438,6 +440,44 @@ In the multilabel case with binary label indicators::\n for an example of accuracy score usage using permutations of\n the dataset.\n \n+.. _top_k_accuracy_score:\n+\n+Top-k accuracy score\n+--------------------\n+\n+The :func:`top_k_accuracy_score` function is a generalization of\n+:func:`accuracy_score`. The difference is that a prediction is considered\n+correct as long as the true label is associated with one of the ``k`` highest\n+predicted scores. :func:`accuracy_score` is the special case of `k = 1`.\n+\n+The function covers the binary and multiclass classification cases but not the\n+multilabel case.\n+\n+If :math:`\\hat{f}_{i,j}` is the predicted class for the :math:`i`-th sample\n+corresponding to the :math:`j`-th largest predicted score and :math:`y_i` is the\n+corresponding true value, then the fraction of correct predictions over\n+:math:`n_\\text{samples}` is defined as\n+\n+.. math::\n+\n+ \\texttt{top-k accuracy}(y, \\hat{f}) = \\frac{1}{n_\\text{samples}} \\sum_{i=0}^{n_\\text{samples}-1} \\sum_{j=1}^{k} 1(\\hat{f}_{i,j} = y_i)\n+\n+where :math:`k` is the number of guesses allowed and :math:`1(x)` is the\n+`indicator function <https://en.wikipedia.org/wiki/Indicator_function>`_.\n+\n+ >>> import numpy as np\n+ >>> from sklearn.metrics import top_k_accuracy_score\n+ >>> y_true = np.array([0, 1, 2, 2])\n+ >>> y_score = np.array([[0.5, 0.2, 0.2],\n+ ... [0.3, 0.4, 0.2],\n+ ... [0.2, 0.4, 0.3],\n+ ... [0.7, 0.2, 0.1]])\n+ >>> top_k_accuracy_score(y_true, y_score, k=2)\n+ 0.75\n+ >>> # Not normalizing gives the number of \"correctly\" classified samples\n+ >>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)\n+ 3\n+\n .. _balanced_accuracy_score:\n \n Balanced accuracy score\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex bd7f368b023a9..68f6addbcad94 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -157,6 +157,10 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>` and\n `Guillaume Lemaitre`_.\n \n+- |Feature| :func:`datasets.fetch_openml` now validates md5checksum of arff\n+ files downloaded or cached to ensure data integrity.\n+ :pr:`<PRID>` by :user:`<NAME>` and `Joel Nothman`_.\n+\n - |API| The default value of `as_frame` in :func:`datasets.fetch_openml` is\n changed from False to 'auto'.\n :pr:`<PRID>` by :user:`<NAME>`.\n@@ -378,11 +382,18 @@ Changelog\n :mod:`sklearn.metrics`\n ......................\n \n+- |Feature| new metric :func:`metrics.top_k_accuracy_score`. It's a\n+ generalization of :func:`metrics.top_k_accuracy_score`, the difference is\n+ that a prediction is considered correct as long as the true label is\n+ associated with one of the `k` highest predicted scores.\n+ :func:`accuracy_score` is the special case of `k = 1`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Feature| Added :func:`metrics.det_curve` to compute Detection Error Tradeoff\n curve classification metric.\n :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n-\n+ \n - |Feature| Added :func:`metrics.plot_det_curve` and\n :class:`metrics.DetCurveDisplay` to ease the plot of DET curves.\n :pr:`<PRID>` by :user:`<NAME>`.\n@@ -406,6 +417,10 @@ Changelog\n class to be used when computing the precision and recall statistics.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Feature| :func:`metrics.plot_confusion_matrix` now supports making colorbar\n+ optional in the matplotlib plot by setting colorbar=False. :pr:`<PRID>` by\n+ :user:`<NAME>`\n+\n - |Enhancement| Add `pos_label` parameter in\n :func:`metrics.plot_roc_curve` in order to specify the positive\n class to be used when computing the roc auc statistics.\n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index e05d08781181f..6dbab18d94a0c 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -966,6 +966,7 @@ details.
metrics.recall_score
metrics.roc_auc_score
metrics.roc_curve
+ metrics.top_k_accuracy_score
metrics.zero_one_loss
Regression metrics
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index 05750222ad0ca..96fe4d396dc5d 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -60,6 +60,7 @@ Scoring Function
**Classification**
'accuracy' :func:`metrics.accuracy_score`
'balanced_accuracy' :func:`metrics.balanced_accuracy_score`
+'top_k_accuracy' :func:`metrics.top_k_accuracy_score`
'average_precision' :func:`metrics.average_precision_score`
'neg_brier_score' :func:`metrics.brier_score_loss`
'f1' :func:`metrics.f1_score` for binary targets
@@ -318,6 +319,7 @@ Others also work in the multiclass case:
hinge_loss
matthews_corrcoef
roc_auc_score
+ top_k_accuracy_score
Some also work in the multilabel case:
@@ -438,6 +440,44 @@ In the multilabel case with binary label indicators::
for an example of accuracy score usage using permutations of
the dataset.
+.. _top_k_accuracy_score:
+
+Top-k accuracy score
+--------------------
+
+The :func:`top_k_accuracy_score` function is a generalization of
+:func:`accuracy_score`. The difference is that a prediction is considered
+correct as long as the true label is associated with one of the ``k`` highest
+predicted scores. :func:`accuracy_score` is the special case of `k = 1`.
+
+The function covers the binary and multiclass classification cases but not the
+multilabel case.
+
+If :math:`\hat{f}_{i,j}` is the predicted class for the :math:`i`-th sample
+corresponding to the :math:`j`-th largest predicted score and :math:`y_i` is the
+corresponding true value, then the fraction of correct predictions over
+:math:`n_\text{samples}` is defined as
+
+.. math::
+
+ \texttt{top-k accuracy}(y, \hat{f}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} \sum_{j=1}^{k} 1(\hat{f}_{i,j} = y_i)
+
+where :math:`k` is the number of guesses allowed and :math:`1(x)` is the
+`indicator function <https://en.wikipedia.org/wiki/Indicator_function>`_.
+
+ >>> import numpy as np
+ >>> from sklearn.metrics import top_k_accuracy_score
+ >>> y_true = np.array([0, 1, 2, 2])
+ >>> y_score = np.array([[0.5, 0.2, 0.2],
+ ... [0.3, 0.4, 0.2],
+ ... [0.2, 0.4, 0.3],
+ ... [0.7, 0.2, 0.1]])
+ >>> top_k_accuracy_score(y_true, y_score, k=2)
+ 0.75
+ >>> # Not normalizing gives the number of "correctly" classified samples
+ >>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
+ 3
+
.. _balanced_accuracy_score:
Balanced accuracy score
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index bd7f368b023a9..68f6addbcad94 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -157,6 +157,10 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>` and
`Guillaume Lemaitre`_.
+- |Feature| :func:`datasets.fetch_openml` now validates md5checksum of arff
+ files downloaded or cached to ensure data integrity.
+ :pr:`<PRID>` by :user:`<NAME>` and `Joel Nothman`_.
+
- |API| The default value of `as_frame` in :func:`datasets.fetch_openml` is
changed from False to 'auto'.
:pr:`<PRID>` by :user:`<NAME>`.
@@ -378,11 +382,18 @@ Changelog
:mod:`sklearn.metrics`
......................
+- |Feature| new metric :func:`metrics.top_k_accuracy_score`. It's a
+ generalization of :func:`metrics.top_k_accuracy_score`, the difference is
+ that a prediction is considered correct as long as the true label is
+ associated with one of the `k` highest predicted scores.
+ :func:`accuracy_score` is the special case of `k = 1`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Feature| Added :func:`metrics.det_curve` to compute Detection Error Tradeoff
curve classification metric.
:pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
-
+
- |Feature| Added :func:`metrics.plot_det_curve` and
:class:`metrics.DetCurveDisplay` to ease the plot of DET curves.
:pr:`<PRID>` by :user:`<NAME>`.
@@ -406,6 +417,10 @@ Changelog
class to be used when computing the precision and recall statistics.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Feature| :func:`metrics.plot_confusion_matrix` now supports making colorbar
+ optional in the matplotlib plot by setting colorbar=False. :pr:`<PRID>` by
+ :user:`<NAME>`
+
- |Enhancement| Add `pos_label` parameter in
:func:`metrics.plot_roc_curve` in order to specify the positive
class to be used when computing the roc auc statistics.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-18176
|
https://github.com/scikit-learn/scikit-learn/pull/18176
|
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index f5a0e71e07d1c..2ec617df85cc0 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -947,7 +947,7 @@ details.
metrics.cohen_kappa_score
metrics.confusion_matrix
metrics.dcg_score
- metrics.detection_error_tradeoff_curve
+ metrics.det_curve
metrics.f1_score
metrics.fbeta_score
metrics.hamming_loss
@@ -1100,6 +1100,7 @@ See the :ref:`visualizations` section of the user guide for further details.
:template: function.rst
metrics.plot_confusion_matrix
+ metrics.plot_det_curve
metrics.plot_precision_recall_curve
metrics.plot_roc_curve
@@ -1108,6 +1109,7 @@ See the :ref:`visualizations` section of the user guide for further details.
:template: class.rst
metrics.ConfusionMatrixDisplay
+ metrics.DetCurveDisplay
metrics.PrecisionRecallDisplay
metrics.RocCurveDisplay
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index e64aee2075e06..58c30d3091830 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -306,7 +306,7 @@ Some of these are restricted to the binary classification case:
precision_recall_curve
roc_curve
- detection_error_tradeoff_curve
+ det_curve
Others also work in the multiclass case:
@@ -1443,7 +1443,7 @@ to the given limit.
Detection error tradeoff (DET)
------------------------------
-The function :func:`detection_error_tradeoff_curve` computes the
+The function :func:`det_curve` computes the
detection error tradeoff curve (DET) curve [WikipediaDET2017]_.
Quoting Wikipedia:
diff --git a/doc/visualizations.rst b/doc/visualizations.rst
index ad316205b3c90..a2d40408b403f 100644
--- a/doc/visualizations.rst
+++ b/doc/visualizations.rst
@@ -78,6 +78,7 @@ Functions
inspection.plot_partial_dependence
metrics.plot_confusion_matrix
+ metrics.plot_det_curve
metrics.plot_precision_recall_curve
metrics.plot_roc_curve
@@ -91,5 +92,6 @@ Display Objects
inspection.PartialDependenceDisplay
metrics.ConfusionMatrixDisplay
+ metrics.DetCurveDisplay
metrics.PrecisionRecallDisplay
metrics.RocCurveDisplay
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index aaf86a2f0576d..1da9670307b75 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -280,11 +280,15 @@ Changelog
:mod:`sklearn.metrics`
......................
-- |Feature| Added :func:`metrics.detection_error_tradeoff_curve` to compute
- Detection Error Tradeoff curve classification metric.
+- |Feature| Added :func:`metrics.det_curve` to compute Detection Error Tradeoff
+ curve classification metric.
:pr:`10591` by :user:`Jeremy Karnowski <jkarnows>` and
:user:`Daniel Mohns <dmohns>`.
+- |Feature| Added :func:`metrics.plot_det_curve` and :class:`DetCurveDisplay`
+ to ease the plot of DET curves.
+ :pr:`18176` by :user:`Guillaume Lemaitre <glemaitre>`.
+
- |Feature| Added :func:`metrics.mean_absolute_percentage_error` metric and
the associated scorer for regression problems. :issue:`10708` fixed with the
PR :pr:`15007` by :user:`Ashutosh Hathidara <ashutosh1919>`. The scorer and
diff --git a/examples/model_selection/plot_det.py b/examples/model_selection/plot_det.py
index f4b1b96f947a2..2e27dd07ee684 100644
--- a/examples/model_selection/plot_det.py
+++ b/examples/model_selection/plot_det.py
@@ -8,9 +8,9 @@
for the same classification task.
DET curves are commonly plotted in normal deviate scale.
-To achieve this we transform the error rates as returned by the
-:func:`~sklearn.metrics.detection_error_tradeoff_curve` function and the axis
-scale using :func:`scipy.stats.norm`.
+To achieve this `plot_det_curve` transforms the error rates as returned by the
+:func:`~sklearn.metrics.det_curve` and the axis scale using
+:func:`scipy.stats.norm`.
The point of this example is to demonstrate two properties of DET curves,
namely:
@@ -39,8 +39,8 @@
- See :func:`sklearn.metrics.roc_curve` for further information about ROC
curves.
- - See :func:`sklearn.metrics.detection_error_tradeoff_curve` for further
- information about DET curves.
+ - See :func:`sklearn.metrics.det_curve` for further information about
+ DET curves.
- This example is loosely based on
:ref:`sphx_glr_auto_examples_classification_plot_classifier_comparison.py`
@@ -51,15 +51,13 @@
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
-from sklearn.metrics import detection_error_tradeoff_curve
+from sklearn.metrics import plot_det_curve
from sklearn.metrics import plot_roc_curve
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
-from scipy.stats import norm
-
N_SAMPLES = 1000
classifiers = {
@@ -79,43 +77,17 @@
# prepare plots
fig, [ax_roc, ax_det] = plt.subplots(1, 2, figsize=(11, 5))
-# first prepare the ROC curve
-ax_roc.set_title('Receiver Operating Characteristic (ROC) curves')
-ax_roc.grid(linestyle='--')
-
-# second prepare the DET curve
-ax_det.set_title('Detection Error Tradeoff (DET) curves')
-ax_det.set_xlabel('False Positive Rate')
-ax_det.set_ylabel('False Negative Rate')
-ax_det.set_xlim(-3, 3)
-ax_det.set_ylim(-3, 3)
-ax_det.grid(linestyle='--')
-
-# customized ticks for DET curve plot to represent normal deviate scale
-ticks = [0.001, 0.01, 0.05, 0.20, 0.5, 0.80, 0.95, 0.99, 0.999]
-tick_locs = norm.ppf(ticks)
-tick_lbls = [
- '{:.0%}'.format(s) if (100*s).is_integer() else '{:.1%}'.format(s)
- for s in ticks
-]
-plt.sca(ax_det)
-plt.xticks(tick_locs, tick_lbls)
-plt.yticks(tick_locs, tick_lbls)
-
-# iterate over classifiers
for name, clf in classifiers.items():
clf.fit(X_train, y_train)
- if hasattr(clf, "decision_function"):
- y_score = clf.decision_function(X_test)
- else:
- y_score = clf.predict_proba(X_test)[:, 1]
-
plot_roc_curve(clf, X_test, y_test, ax=ax_roc, name=name)
- det_fpr, det_fnr, _ = detection_error_tradeoff_curve(y_test, y_score)
+ plot_det_curve(clf, X_test, y_test, ax=ax_det, name=name)
+
+ax_roc.set_title('Receiver Operating Characteristic (ROC) curves')
+ax_det.set_title('Detection Error Tradeoff (DET) curves')
- # transform errors into normal deviate scale
- ax_det.plot(norm.ppf(det_fpr), norm.ppf(det_fnr), label=name)
+ax_roc.grid(linestyle='--')
+ax_det.grid(linestyle='--')
plt.legend()
plt.show()
diff --git a/sklearn/metrics/__init__.py b/sklearn/metrics/__init__.py
index a69d5c618c20f..a8beea4f8c2f9 100644
--- a/sklearn/metrics/__init__.py
+++ b/sklearn/metrics/__init__.py
@@ -7,7 +7,7 @@
from ._ranking import auc
from ._ranking import average_precision_score
from ._ranking import coverage_error
-from ._ranking import detection_error_tradeoff_curve
+from ._ranking import det_curve
from ._ranking import dcg_score
from ._ranking import label_ranking_average_precision_score
from ._ranking import label_ranking_loss
@@ -77,6 +77,8 @@
from ._scorer import SCORERS
from ._scorer import get_scorer
+from ._plot.det_curve import plot_det_curve
+from ._plot.det_curve import DetCurveDisplay
from ._plot.roc_curve import plot_roc_curve
from ._plot.roc_curve import RocCurveDisplay
from ._plot.precision_recall_curve import plot_precision_recall_curve
@@ -105,7 +107,8 @@
'coverage_error',
'dcg_score',
'davies_bouldin_score',
- 'detection_error_tradeoff_curve',
+ 'DetCurveDisplay',
+ 'det_curve',
'euclidean_distances',
'explained_variance_score',
'f1_score',
@@ -142,6 +145,7 @@
'pairwise_distances_chunked',
'pairwise_kernels',
'plot_confusion_matrix',
+ 'plot_det_curve',
'plot_precision_recall_curve',
'plot_roc_curve',
'PrecisionRecallDisplay',
diff --git a/sklearn/metrics/_plot/det_curve.py b/sklearn/metrics/_plot/det_curve.py
new file mode 100644
index 0000000000000..00ae0226ea6d3
--- /dev/null
+++ b/sklearn/metrics/_plot/det_curve.py
@@ -0,0 +1,224 @@
+import scipy as sp
+
+from .base import _get_response
+
+from .. import det_curve
+
+from ...utils import check_matplotlib_support
+
+
+class DetCurveDisplay:
+ """DET curve visualization.
+
+ It is recommend to use :func:`~sklearn.metrics.plot_det_curve` to create a
+ visualizer. All parameters are stored as attributes.
+
+ Read more in the :ref:`User Guide <visualizations>`.
+
+ .. versionadded:: 0.24
+
+ Parameters
+ ----------
+ fpr : ndarray
+ False positive rate.
+
+ tpr : ndarray
+ True positive rate.
+
+ estimator_name : str, default=None
+ Name of estimator. If None, the estimator name is not shown.
+
+ pos_label : str or int, default=None
+ The label of the positive class.
+
+ Attributes
+ ----------
+ line_ : matplotlib Artist
+ DET Curve.
+
+ ax_ : matplotlib Axes
+ Axes with DET Curve.
+
+ figure_ : matplotlib Figure
+ Figure containing the curve.
+
+ Examples
+ --------
+ >>> import matplotlib.pyplot as plt # doctest: +SKIP
+ >>> import numpy as np
+ >>> from sklearn import metrics
+ >>> y = np.array([0, 0, 1, 1])
+ >>> pred = np.array([0.1, 0.4, 0.35, 0.8])
+ >>> fpr, fnr, thresholds = metrics.det_curve(y, pred)
+ >>> display = metrics.DetCurveDisplay(
+ ... fpr=fpr, fnr=fnr, estimator_name='example estimator'
+ ... )
+ >>> display.plot() # doctest: +SKIP
+ >>> plt.show() # doctest: +SKIP
+ """
+ def __init__(self, *, fpr, fnr, estimator_name=None, pos_label=None):
+ self.fpr = fpr
+ self.fnr = fnr
+ self.estimator_name = estimator_name
+ self.pos_label = pos_label
+
+ def plot(self, ax=None, *, name=None, **kwargs):
+ """Plot visualization.
+
+ Parameters
+ ----------
+ ax : matplotlib axes, default=None
+ Axes object to plot on. If `None`, a new figure and axes is
+ created.
+
+ name : str, default=None
+ Name of DET curve for labeling. If `None`, use the name of the
+ estimator.
+
+ Returns
+ -------
+ display : :class:`~sklearn.metrics.plot.DetCurveDisplay`
+ Object that stores computed values.
+ """
+ check_matplotlib_support('DetCurveDisplay.plot')
+
+ name = self.estimator_name if name is None else name
+ line_kwargs = {} if name is None else {"label": name}
+ line_kwargs.update(**kwargs)
+
+ import matplotlib.pyplot as plt
+
+ if ax is None:
+ _, ax = plt.subplots()
+
+ self.line_, = ax.plot(
+ sp.stats.norm.ppf(self.fpr),
+ sp.stats.norm.ppf(self.fnr),
+ **line_kwargs,
+ )
+ info_pos_label = (f" (Positive label: {self.pos_label})"
+ if self.pos_label is not None else "")
+
+ xlabel = "False Positive Rate" + info_pos_label
+ ylabel = "False Negative Rate" + info_pos_label
+ ax.set(xlabel=xlabel, ylabel=ylabel)
+
+ if "label" in line_kwargs:
+ ax.legend(loc="lower right")
+
+ ticks = [0.001, 0.01, 0.05, 0.20, 0.5, 0.80, 0.95, 0.99, 0.999]
+ tick_locations = sp.stats.norm.ppf(ticks)
+ tick_labels = [
+ '{:.0%}'.format(s) if (100*s).is_integer() else '{:.1%}'.format(s)
+ for s in ticks
+ ]
+ ax.set_xticks(tick_locations)
+ ax.set_xticklabels(tick_labels)
+ ax.set_xlim(-3, 3)
+ ax.set_yticks(tick_locations)
+ ax.set_yticklabels(tick_labels)
+ ax.set_ylim(-3, 3)
+
+ self.ax_ = ax
+ self.figure_ = ax.figure
+ return self
+
+
+def plot_det_curve(
+ estimator,
+ X,
+ y,
+ *,
+ sample_weight=None,
+ response_method="auto",
+ name=None,
+ ax=None,
+ pos_label=None,
+ **kwargs
+):
+ """Plot detection error tradeoff (DET) curve.
+
+ Extra keyword arguments will be passed to matplotlib's `plot`.
+
+ Read more in the :ref:`User Guide <visualizations>`.
+
+ .. versionadded:: 0.24
+
+ Parameters
+ ----------
+ estimator : estimator instance
+ Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
+ in which the last estimator is a classifier.
+
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
+ Input values.
+
+ y : array-like of shape (n_samples,)
+ Target values.
+
+ sample_weight : array-like of shape (n_samples,), default=None
+ Sample weights.
+
+ response_method : {'predict_proba', 'decision_function', 'auto'} \
+ default='auto'
+ Specifies whether to use :term:`predict_proba` or
+ :term:`decision_function` as the predicted target response. If set to
+ 'auto', :term:`predict_proba` is tried first and if it does not exist
+ :term:`decision_function` is tried next.
+
+ name : str, default=None
+ Name of DET curve for labeling. If `None`, use the name of the
+ estimator.
+
+ ax : matplotlib axes, default=None
+ Axes object to plot on. If `None`, a new figure and axes is created.
+
+ pos_label : str or int, default=None
+ The label of the positive class.
+ When `pos_label=None`, if `y_true` is in {-1, 1} or {0, 1},
+ `pos_label` is set to 1, otherwise an error will be raised.
+
+ Returns
+ -------
+ display : :class:`~sklearn.metrics.DetCurveDisplay`
+ Object that stores computed values.
+
+ See Also
+ --------
+ det_curve : Compute error rates for different probability thresholds
+
+ plot_roc_curve : Plot Receiver operating characteristic (ROC) curve
+
+ Examples
+ --------
+ >>> import matplotlib.pyplot as plt # doctest: +SKIP
+ >>> from sklearn import datasets, metrics, model_selection, svm
+ >>> X, y = datasets.make_classification(random_state=0)
+ >>> X_train, X_test, y_train, y_test = model_selection.train_test_split(
+ ... X, y, random_state=0)
+ >>> clf = svm.SVC(random_state=0)
+ >>> clf.fit(X_train, y_train)
+ SVC(random_state=0)
+ >>> metrics.plot_det_curve(clf, X_test, y_test) # doctest: +SKIP
+ >>> plt.show() # doctest: +SKIP
+ """
+ check_matplotlib_support('plot_det_curve')
+
+ y_pred, pos_label = _get_response(
+ X, estimator, response_method, pos_label=pos_label
+ )
+
+ fpr, fnr, _ = det_curve(
+ y, y_pred, pos_label=pos_label, sample_weight=sample_weight,
+ )
+
+ name = estimator.__class__.__name__ if name is None else name
+
+ viz = DetCurveDisplay(
+ fpr=fpr,
+ fnr=fnr,
+ estimator_name=name,
+ pos_label=pos_label
+ )
+
+ return viz.plot(ax=ax, name=name, **kwargs)
diff --git a/sklearn/metrics/_ranking.py b/sklearn/metrics/_ranking.py
index 0d44600d272e3..8e6a2280eebd5 100644
--- a/sklearn/metrics/_ranking.py
+++ b/sklearn/metrics/_ranking.py
@@ -218,8 +218,7 @@ def _binary_uninterpolated_average_precision(
average, sample_weight=sample_weight)
-def detection_error_tradeoff_curve(y_true, y_score, pos_label=None,
- sample_weight=None):
+def det_curve(y_true, y_score, pos_label=None, sample_weight=None):
"""Compute error rates for different probability thresholds.
.. note::
@@ -273,10 +272,10 @@ def detection_error_tradeoff_curve(y_true, y_score, pos_label=None,
Examples
--------
>>> import numpy as np
- >>> from sklearn.metrics import detection_error_tradeoff_curve
+ >>> from sklearn.metrics import det_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
- >>> fpr, fnr, thresholds = detection_error_tradeoff_curve(y_true, y_scores)
+ >>> fpr, fnr, thresholds = det_curve(y_true, y_scores)
>>> fpr
array([0.5, 0.5, 0. ])
>>> fnr
@@ -747,14 +746,13 @@ def precision_recall_curve(y_true, probas_pred, *, pos_label=None,
thresholds : ndarray of shape (n_thresholds,)
Increasing thresholds on the decision function used to compute
- precision and recall. n_thresgolds <= len(np.unique(probas_pred)).
+ precision and recall. n_thresholds <= len(np.unique(probas_pred)).
See also
--------
average_precision_score : Compute average precision from prediction scores
- detection_error_tradeoff_curve: Compute error rates for different \
- probability thresholds
+ det_curve: Compute error rates for different probability thresholds
roc_curve : Compute Receiver operating characteristic (ROC) curve
@@ -846,8 +844,7 @@ def roc_curve(y_true, y_score, *, pos_label=None, sample_weight=None,
See Also
--------
- detection_error_tradeoff_curve: Compute error rates for different \
- probability thresholds
+ det_curve: Compute error rates for different probability thresholds
roc_auc_score : Compute the area under the ROC curve
|
diff --git a/sklearn/metrics/_plot/tests/test_plot_curve_common.py b/sklearn/metrics/_plot/tests/test_plot_curve_common.py
new file mode 100644
index 0000000000000..c3b56f1724372
--- /dev/null
+++ b/sklearn/metrics/_plot/tests/test_plot_curve_common.py
@@ -0,0 +1,103 @@
+import pytest
+
+from sklearn.base import ClassifierMixin
+from sklearn.base import clone
+from sklearn.compose import make_column_transformer
+from sklearn.datasets import load_iris
+from sklearn.exceptions import NotFittedError
+from sklearn.linear_model import LogisticRegression
+from sklearn.pipeline import make_pipeline
+from sklearn.preprocessing import StandardScaler
+from sklearn.tree import DecisionTreeClassifier
+
+from sklearn.metrics import plot_det_curve
+from sklearn.metrics import plot_roc_curve
+
+
[email protected](scope="module")
+def data():
+ return load_iris(return_X_y=True)
+
+
[email protected](scope="module")
+def data_binary(data):
+ X, y = data
+ return X[y < 2], y[y < 2]
+
+
[email protected]("plot_func", [plot_det_curve, plot_roc_curve])
+def test_plot_curve_error_non_binary(pyplot, data, plot_func):
+ X, y = data
+ clf = DecisionTreeClassifier()
+ clf.fit(X, y)
+
+ msg = "DecisionTreeClassifier should be a binary classifier"
+ with pytest.raises(ValueError, match=msg):
+ plot_func(clf, X, y)
+
+
[email protected](
+ "response_method, msg",
+ [("predict_proba", "response method predict_proba is not defined in "
+ "MyClassifier"),
+ ("decision_function", "response method decision_function is not defined "
+ "in MyClassifier"),
+ ("auto", "response method decision_function or predict_proba is not "
+ "defined in MyClassifier"),
+ ("bad_method", "response_method must be 'predict_proba', "
+ "'decision_function' or 'auto'")]
+)
[email protected]("plot_func", [plot_det_curve, plot_roc_curve])
+def test_plot_curve_error_no_response(
+ pyplot, data_binary, response_method, msg, plot_func,
+):
+ X, y = data_binary
+
+ class MyClassifier(ClassifierMixin):
+ def fit(self, X, y):
+ self.classes_ = [0, 1]
+ return self
+
+ clf = MyClassifier().fit(X, y)
+
+ with pytest.raises(ValueError, match=msg):
+ plot_func(clf, X, y, response_method=response_method)
+
+
[email protected]("plot_func", [plot_det_curve, plot_roc_curve])
+def test_plot_curve_estimator_name_multiple_calls(
+ pyplot, data_binary, plot_func
+):
+ # non-regression test checking that the `name` used when calling
+ # `plot_func` is used as well when calling `disp.plot()`
+ X, y = data_binary
+ clf_name = "my hand-crafted name"
+ clf = LogisticRegression().fit(X, y)
+ disp = plot_func(clf, X, y, name=clf_name)
+ assert disp.estimator_name == clf_name
+ pyplot.close("all")
+ disp.plot()
+ assert clf_name in disp.line_.get_label()
+ pyplot.close("all")
+ clf_name = "another_name"
+ disp.plot(name=clf_name)
+ assert clf_name in disp.line_.get_label()
+
+
[email protected](
+ "clf", [LogisticRegression(),
+ make_pipeline(StandardScaler(), LogisticRegression()),
+ make_pipeline(make_column_transformer((StandardScaler(), [0, 1])),
+ LogisticRegression())])
[email protected]("plot_func", [plot_det_curve, plot_roc_curve])
+def test_plot_det_curve_not_fitted_errors(pyplot, data_binary, clf, plot_func):
+ X, y = data_binary
+ # clone since we parametrize the test and the classifier will be fitted
+ # when testing the second and subsequent plotting function
+ model = clone(clf)
+ with pytest.raises(NotFittedError):
+ plot_func(model, X, y)
+ model.fit(X, y)
+ disp = plot_func(model, X, y)
+ assert model.__class__.__name__ in disp.line_.get_label()
+ assert disp.estimator_name == model.__class__.__name__
diff --git a/sklearn/metrics/_plot/tests/test_plot_det_curve.py b/sklearn/metrics/_plot/tests/test_plot_det_curve.py
new file mode 100644
index 0000000000000..9ef10237af879
--- /dev/null
+++ b/sklearn/metrics/_plot/tests/test_plot_det_curve.py
@@ -0,0 +1,84 @@
+import pytest
+import numpy as np
+from numpy.testing import assert_allclose
+
+from sklearn.datasets import load_iris
+from sklearn.linear_model import LogisticRegression
+
+from sklearn.metrics import det_curve
+from sklearn.metrics import plot_det_curve
+
+
[email protected](scope="module")
+def data():
+ return load_iris(return_X_y=True)
+
+
[email protected](scope="module")
+def data_binary(data):
+ X, y = data
+ return X[y < 2], y[y < 2]
+
+
[email protected](
+ "response_method", ["predict_proba", "decision_function"]
+)
[email protected]("with_sample_weight", [True, False])
[email protected]("with_strings", [True, False])
+def test_plot_det_curve(
+ pyplot,
+ response_method,
+ data_binary,
+ with_sample_weight,
+ with_strings
+):
+ X, y = data_binary
+
+ pos_label = None
+ if with_strings:
+ y = np.array(["c", "b"])[y]
+ pos_label = "c"
+
+ if with_sample_weight:
+ rng = np.random.RandomState(42)
+ sample_weight = rng.randint(1, 4, size=(X.shape[0]))
+ else:
+ sample_weight = None
+
+ lr = LogisticRegression()
+ lr.fit(X, y)
+
+ viz = plot_det_curve(
+ lr, X, y, alpha=0.8, sample_weight=sample_weight,
+ )
+
+ y_pred = getattr(lr, response_method)(X)
+ if y_pred.ndim == 2:
+ y_pred = y_pred[:, 1]
+
+ fpr, fnr, _ = det_curve(
+ y, y_pred, sample_weight=sample_weight, pos_label=pos_label,
+ )
+
+ assert_allclose(viz.fpr, fpr)
+ assert_allclose(viz.fnr, fnr)
+
+ assert viz.estimator_name == "LogisticRegression"
+
+ # cannot fail thanks to pyplot fixture
+ import matplotlib as mpl # noqal
+ assert isinstance(viz.line_, mpl.lines.Line2D)
+ assert viz.line_.get_alpha() == 0.8
+ assert isinstance(viz.ax_, mpl.axes.Axes)
+ assert isinstance(viz.figure_, mpl.figure.Figure)
+ assert viz.line_.get_label() == "LogisticRegression"
+
+ expected_pos_label = 1 if pos_label is None else pos_label
+ expected_ylabel = (
+ f"False Negative Rate (Positive label: {expected_pos_label})"
+ )
+ expected_xlabel = (
+ f"False Positive Rate (Positive label: {expected_pos_label})"
+ )
+ assert viz.ax_.get_ylabel() == expected_ylabel
+ assert viz.ax_.get_xlabel() == expected_xlabel
diff --git a/sklearn/metrics/_plot/tests/test_plot_roc_curve.py b/sklearn/metrics/_plot/tests/test_plot_roc_curve.py
index 76b7024f0dc7c..de5a23d81af19 100644
--- a/sklearn/metrics/_plot/tests/test_plot_roc_curve.py
+++ b/sklearn/metrics/_plot/tests/test_plot_roc_curve.py
@@ -2,7 +2,6 @@
import numpy as np
from numpy.testing import assert_allclose
-from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import plot_roc_curve
from sklearn.metrics import RocCurveDisplay
from sklearn.metrics import roc_curve
@@ -11,7 +10,6 @@
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
-from sklearn.base import ClassifierMixin
from sklearn.exceptions import NotFittedError
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
@@ -34,42 +32,6 @@ def data_binary(data):
X, y = data
return X[y < 2], y[y < 2]
-
-def test_plot_roc_curve_error_non_binary(pyplot, data):
- X, y = data
- clf = DecisionTreeClassifier()
- clf.fit(X, y)
-
- msg = "DecisionTreeClassifier should be a binary classifier"
- with pytest.raises(ValueError, match=msg):
- plot_roc_curve(clf, X, y)
-
-
[email protected](
- "response_method, msg",
- [("predict_proba", "response method predict_proba is not defined in "
- "MyClassifier"),
- ("decision_function", "response method decision_function is not defined "
- "in MyClassifier"),
- ("auto", "response method decision_function or predict_proba is not "
- "defined in MyClassifier"),
- ("bad_method", "response_method must be 'predict_proba', "
- "'decision_function' or 'auto'")])
-def test_plot_roc_curve_error_no_response(pyplot, data_binary, response_method,
- msg):
- X, y = data_binary
-
- class MyClassifier(ClassifierMixin):
- def fit(self, X, y):
- self.classes_ = [0, 1]
- return self
-
- clf = MyClassifier().fit(X, y)
-
- with pytest.raises(ValueError, match=msg):
- plot_roc_curve(clf, X, y, response_method=response_method)
-
-
@pytest.mark.parametrize("response_method",
["predict_proba", "decision_function"])
@pytest.mark.parametrize("with_sample_weight", [True, False])
@@ -146,23 +108,6 @@ def test_roc_curve_not_fitted_errors(pyplot, data_binary, clf):
assert disp.estimator_name == clf.__class__.__name__
-def test_plot_roc_curve_estimator_name_multiple_calls(pyplot, data_binary):
- # non-regression test checking that the `name` used when calling
- # `plot_roc_curve` is used as well when calling `disp.plot()`
- X, y = data_binary
- clf_name = "my hand-crafted name"
- clf = LogisticRegression().fit(X, y)
- disp = plot_roc_curve(clf, X, y, name=clf_name)
- assert disp.estimator_name == clf_name
- pyplot.close("all")
- disp.plot()
- assert clf_name in disp.line_.get_label()
- pyplot.close("all")
- clf_name = "another_name"
- disp.plot(name=clf_name)
- assert clf_name in disp.line_.get_label()
-
-
@pytest.mark.parametrize(
"roc_auc, estimator_name, expected_label",
[
diff --git a/sklearn/metrics/tests/test_common.py b/sklearn/metrics/tests/test_common.py
index 24f01d46610a7..5a8e4b3f69d8c 100644
--- a/sklearn/metrics/tests/test_common.py
+++ b/sklearn/metrics/tests/test_common.py
@@ -29,7 +29,7 @@
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import coverage_error
-from sklearn.metrics import detection_error_tradeoff_curve
+from sklearn.metrics import det_curve
from sklearn.metrics import explained_variance_score
from sklearn.metrics import f1_score
from sklearn.metrics import fbeta_score
@@ -206,7 +206,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
CURVE_METRICS = {
"roc_curve": roc_curve,
"precision_recall_curve": precision_recall_curve_padded_thresholds,
- "detection_error_tradeoff_curve": detection_error_tradeoff_curve,
+ "det_curve": det_curve,
}
THRESHOLDED_METRICS = {
@@ -303,7 +303,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
# curves
"roc_curve",
"precision_recall_curve",
- "detection_error_tradeoff_curve",
+ "det_curve",
}
# Metric undefined with "binary" or "multiclass" input
@@ -325,7 +325,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
METRICS_WITH_POS_LABEL = {
"roc_curve",
"precision_recall_curve",
- "detection_error_tradeoff_curve",
+ "det_curve",
"brier_score_loss",
@@ -356,7 +356,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"normalized_confusion_matrix",
"roc_curve",
"precision_recall_curve",
- "detection_error_tradeoff_curve",
+ "det_curve",
"precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score",
"jaccard_score",
@@ -469,7 +469,7 @@ def precision_recall_curve_padded_thresholds(*args, **kwargs):
"normalized_confusion_matrix",
"roc_curve",
"precision_recall_curve",
- "detection_error_tradeoff_curve",
+ "det_curve",
"precision_score", "recall_score", "f2_score", "f0.5_score",
diff --git a/sklearn/metrics/tests/test_ranking.py b/sklearn/metrics/tests/test_ranking.py
index 02d19aea1236c..166ff775e2690 100644
--- a/sklearn/metrics/tests/test_ranking.py
+++ b/sklearn/metrics/tests/test_ranking.py
@@ -22,7 +22,7 @@
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
from sklearn.metrics import coverage_error
-from sklearn.metrics import detection_error_tradeoff_curve
+from sklearn.metrics import det_curve
from sklearn.metrics import label_ranking_average_precision_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import label_ranking_loss
@@ -949,10 +949,10 @@ def test_score_scale_invariance():
([1, 0, 1], [0.5, 0.75, 1], [1, 1, 0], [0, 0.5, 0.5]),
([1, 0, 1], [0.25, 0.5, 0.75], [1, 1, 0], [0, 0.5, 0.5]),
])
-def test_detection_error_tradeoff_curve_toydata(y_true, y_score,
+def test_det_curve_toydata(y_true, y_score,
expected_fpr, expected_fnr):
# Check on a batch of small examples.
- fpr, fnr, _ = detection_error_tradeoff_curve(y_true, y_score)
+ fpr, fnr, _ = det_curve(y_true, y_score)
assert_allclose(fpr, expected_fpr)
assert_allclose(fnr, expected_fnr)
@@ -968,20 +968,20 @@ def test_detection_error_tradeoff_curve_toydata(y_true, y_score,
([1, 0, 1], [0.25, 0.5, 0.5], [1], [0]),
([1, 1, 0], [0.25, 0.5, 0.5], [1], [0]),
])
-def test_detection_error_tradeoff_curve_tie_handling(y_true, y_score,
+def test_det_curve_tie_handling(y_true, y_score,
expected_fpr,
expected_fnr):
- fpr, fnr, _ = detection_error_tradeoff_curve(y_true, y_score)
+ fpr, fnr, _ = det_curve(y_true, y_score)
assert_allclose(fpr, expected_fpr)
assert_allclose(fnr, expected_fnr)
-def test_detection_error_tradeoff_curve_sanity_check():
+def test_det_curve_sanity_check():
# Exactly duplicated inputs yield the same result.
assert_allclose(
- detection_error_tradeoff_curve([0, 0, 1], [0, 0.5, 1]),
- detection_error_tradeoff_curve(
+ det_curve([0, 0, 1], [0, 0.5, 1]),
+ det_curve(
[0, 0, 0, 0, 1, 1], [0, 0, 0.5, 0.5, 1, 1])
)
@@ -989,8 +989,8 @@ def test_detection_error_tradeoff_curve_sanity_check():
@pytest.mark.parametrize("y_score", [
(0), (0.25), (0.5), (0.75), (1)
])
-def test_detection_error_tradeoff_curve_constant_scores(y_score):
- fpr, fnr, threshold = detection_error_tradeoff_curve(
+def test_det_curve_constant_scores(y_score):
+ fpr, fnr, threshold = det_curve(
y_true=[0, 1, 0, 1, 0, 1],
y_score=np.full(6, y_score)
)
@@ -1007,8 +1007,8 @@ def test_detection_error_tradeoff_curve_constant_scores(y_score):
([0, 0, 1, 1, 1, 1]),
([0, 1, 1, 1, 1, 1]),
])
-def test_detection_error_tradeoff_curve_perfect_scores(y_true):
- fpr, fnr, _ = detection_error_tradeoff_curve(
+def test_det_curve_perfect_scores(y_true):
+ fpr, fnr, _ = det_curve(
y_true=y_true,
y_score=y_true
)
@@ -1031,13 +1031,13 @@ def test_detection_error_tradeoff_curve_perfect_scores(y_true):
),
],
)
-def test_detection_error_tradeoff_curve_bad_input(y_true, y_pred, err_msg):
+def test_det_curve_bad_input(y_true, y_pred, err_msg):
# input variables with inconsistent numbers of samples
with pytest.raises(ValueError, match=err_msg):
- detection_error_tradeoff_curve(y_true, y_pred)
+ det_curve(y_true, y_pred)
-def test_detection_error_tradeoff_curve_pos_label():
+def test_det_curve_pos_label():
y_true = ["cancer"] * 3 + ["not cancer"] * 7
y_pred_pos_not_cancer = np.array(
[0.1, 0.4, 0.6, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9]
@@ -1045,11 +1045,11 @@ def test_detection_error_tradeoff_curve_pos_label():
y_pred_pos_cancer = 1 - y_pred_pos_not_cancer
fpr_pos_cancer, fnr_pos_cancer, th_pos_cancer = \
- detection_error_tradeoff_curve(
+ det_curve(
y_true, y_pred_pos_cancer, pos_label="cancer",
)
fpr_pos_not_cancer, fnr_pos_not_cancer, th_pos_not_cancer = \
- detection_error_tradeoff_curve(
+ det_curve(
y_true, y_pred_pos_not_cancer, pos_label="not cancer",
)
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex f5a0e71e07d1c..2ec617df85cc0 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -947,7 +947,7 @@ details.\n metrics.cohen_kappa_score\n metrics.confusion_matrix\n metrics.dcg_score\n- metrics.detection_error_tradeoff_curve\n+ metrics.det_curve\n metrics.f1_score\n metrics.fbeta_score\n metrics.hamming_loss\n@@ -1100,6 +1100,7 @@ See the :ref:`visualizations` section of the user guide for further details.\n :template: function.rst\n \n metrics.plot_confusion_matrix\n+ metrics.plot_det_curve\n metrics.plot_precision_recall_curve\n metrics.plot_roc_curve\n \n@@ -1108,6 +1109,7 @@ See the :ref:`visualizations` section of the user guide for further details.\n :template: class.rst\n \n metrics.ConfusionMatrixDisplay\n+ metrics.DetCurveDisplay\n metrics.PrecisionRecallDisplay\n metrics.RocCurveDisplay\n \n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex e64aee2075e06..58c30d3091830 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -306,7 +306,7 @@ Some of these are restricted to the binary classification case:\n \n precision_recall_curve\n roc_curve\n- detection_error_tradeoff_curve\n+ det_curve\n \n \n Others also work in the multiclass case:\n@@ -1443,7 +1443,7 @@ to the given limit.\n Detection error tradeoff (DET)\n ------------------------------\n \n-The function :func:`detection_error_tradeoff_curve` computes the\n+The function :func:`det_curve` computes the\n detection error tradeoff curve (DET) curve [WikipediaDET2017]_.\n Quoting Wikipedia:\n \n"
},
{
"path": "doc/visualizations.rst",
"old_path": "a/doc/visualizations.rst",
"new_path": "b/doc/visualizations.rst",
"metadata": "diff --git a/doc/visualizations.rst b/doc/visualizations.rst\nindex ad316205b3c90..a2d40408b403f 100644\n--- a/doc/visualizations.rst\n+++ b/doc/visualizations.rst\n@@ -78,6 +78,7 @@ Functions\n \n inspection.plot_partial_dependence\n metrics.plot_confusion_matrix\n+ metrics.plot_det_curve\n metrics.plot_precision_recall_curve\n metrics.plot_roc_curve\n \n@@ -91,5 +92,6 @@ Display Objects\n \n inspection.PartialDependenceDisplay\n metrics.ConfusionMatrixDisplay\n+ metrics.DetCurveDisplay\n metrics.PrecisionRecallDisplay\n metrics.RocCurveDisplay\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex aaf86a2f0576d..1da9670307b75 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -280,11 +280,15 @@ Changelog\n :mod:`sklearn.metrics`\n ......................\n \n-- |Feature| Added :func:`metrics.detection_error_tradeoff_curve` to compute\n- Detection Error Tradeoff curve classification metric.\n+- |Feature| Added :func:`metrics.det_curve` to compute Detection Error Tradeoff\n+ curve classification metric.\n :pr:`10591` by :user:`Jeremy Karnowski <jkarnows>` and\n :user:`Daniel Mohns <dmohns>`.\n \n+- |Feature| Added :func:`metrics.plot_det_curve` and :class:`DetCurveDisplay`\n+ to ease the plot of DET curves.\n+ :pr:`18176` by :user:`Guillaume Lemaitre <glemaitre>`.\n+\n - |Feature| Added :func:`metrics.mean_absolute_percentage_error` metric and\n the associated scorer for regression problems. :issue:`10708` fixed with the\n PR :pr:`15007` by :user:`Ashutosh Hathidara <ashutosh1919>`. The scorer and\n"
}
] |
0.24
|
bf4714f40113ac4e6045d34d89905f146c5274b3
|
[
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[True-False-True-predict_proba]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[False-True-False-decision_function]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[True-False-True-decision_function]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[True-False-False-decision_function]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_default_labels[None-my_est-my_est]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_roc_curve_not_fitted_errors[clf0]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve_pos_label[decision_function]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[True-True-False-predict_proba]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_roc_curve_not_fitted_errors[clf2]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_roc_curve_not_fitted_errors[clf1]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[True-True-True-decision_function]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_default_labels[0.8-my_est2-my_est2 (AUC = 0.80)]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[False-False-True-decision_function]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[False-False-True-predict_proba]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[True-False-False-predict_proba]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[False-True-False-predict_proba]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[False-False-False-predict_proba]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_default_labels[0.9-None-AUC = 0.90]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[True-True-False-decision_function]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[False-False-False-decision_function]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[False-True-True-decision_function]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[False-True-True-predict_proba]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve[True-True-True-predict_proba]",
"sklearn/metrics/_plot/tests/test_plot_roc_curve.py::test_plot_roc_curve_pos_label[predict_proba]"
] |
[
"sklearn/metrics/tests/test_common.py::test_single_sample[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[Partial AUC computation not available in multiclass setting, 'max_fpr' must be set to `None`, received `max_fpr=0.5` instead-kwargs3]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_dcg_score",
"sklearn/metrics/_plot/tests/test_plot_det_curve.py::test_plot_det_curve[True-False-decision_function]",
"sklearn/metrics/tests/test_common.py::test_single_sample[r2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_errors",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[max_error]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true13-y_score13-expected_fpr13-expected_fnr13]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric17]",
"sklearn/metrics/_plot/tests/test_plot_det_curve.py::test_plot_det_curve[True-True-decision_function]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric19]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_hard",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric18]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric11]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric20]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[weighted_recall_score]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_no_response[plot_det_curve-decision_function-response method decision_function is not defined in MyClassifier]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true16-y_score16-expected_fpr16-expected_fnr16]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve_toydata",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric32]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric8]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric27]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true19-y_score19-expected_fpr19-expected_fnr19]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_no_response[plot_det_curve-predict_proba-response method predict_proba is not defined in MyClassifier]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[recall_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true4-labels4]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_jaccard_score]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_estimator_name_multiple_calls[plot_det_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[False]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[1]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f0.5_score]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_det_curve_not_fitted_errors[plot_det_curve-clf0]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[f1_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_det_curve_not_fitted_errors[plot_det_curve-clf2]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[precision_score]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_non_binary[plot_det_curve]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_no_response[plot_roc_curve-bad_method-response_method must be 'predict_proba', 'decision_function' or 'auto']",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[True]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_det_curve_not_fitted_errors[plot_roc_curve-clf1]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_no_response[plot_roc_curve-decision_function-response method decision_function is not defined in MyClassifier]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true2]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[dcg_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_drop_intermediate",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true0-y_pred0-inconsistent numbers of samples]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_auc",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_toy_examples[False]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric39]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multilabel_classification",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted'\\\\) for multiclass problems-kwargs0]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-2]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true3-labels3]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_toy]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-1]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true9-y_score9-expected_fpr9-expected_fnr9]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_one_label",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.75]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true1-y_pred1-inconsistent numbers of samples]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[average must be one of \\\\('macro', 'weighted'\\\\) for multiclass problems-kwargs1]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric35]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_ranking.py::test_dcg_ties",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_auc_errors",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[<lambda>]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[max_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true3]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric32]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric12]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true1-None]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_multiclass_error",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[det_curve]",
"sklearn/metrics/tests/test_ranking.py::test_lrap_error_raised",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_lrap_sample_weighting_zero_labels",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-2]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_normal_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true3-y_pred3-Only one class present in y_true]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of classes in y_true not equal to the number of columns in 'y_score'-y_true2-None]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_no_response[plot_det_curve-auto-response method decision_function or predict_proba is not defined in MyClassifier]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true4]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-20]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[hamming_loss]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-20]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[r2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-8]",
"sklearn/metrics/tests/test_ranking.py::test_partial_roc_auc_score",
"sklearn/metrics/tests/test_common.py::test_single_sample[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric13]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_constant_values",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true1]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_det_curve_not_fitted_errors[plot_det_curve-clf1]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric15]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_det_curve_not_fitted_errors[plot_roc_curve-clf2]",
"sklearn/metrics/_plot/tests/test_plot_det_curve.py::test_plot_det_curve[False-False-predict_proba]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-1]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric14]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric9]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-5-20]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric23]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_symmetry_consistency",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true3-None]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_average_precision_score_pos_label_errors",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true17-y_score17-expected_fpr17-expected_fnr17]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true6-y_score6-expected_fpr6-expected_fnr6]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[recall_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric38]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[dcg_score]",
"sklearn/metrics/_plot/tests/test_plot_det_curve.py::test_plot_det_curve[False-True-predict_proba]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_perfect_scores[y_true0]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric26]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[median_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[sample_weight is not supported for multiclass one-vs-one ROC AUC, 'sample_weight' must be None in this case-kwargs2]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric28]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric34]",
"sklearn/metrics/tests/test_common.py::test_single_sample[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric41]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_recall_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true8-labels8]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_score",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric25]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[precision_recall_curve]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_estimator_name_multiple_calls[plot_roc_curve]",
"sklearn/metrics/_plot/tests/test_plot_det_curve.py::test_plot_det_curve[True-False-predict_proba]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-1]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric40]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true18-y_score18-expected_fpr18-expected_fnr18]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_poisson_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_auc_score_non_binary_class",
"sklearn/metrics/tests/test_common.py::test_single_sample[explained_variance_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true2-y_pred2-Only one class present in y_true]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true12-y_score12-expected_fpr12-expected_fnr12]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric29]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric37]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_only_ties]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_no_response[plot_det_curve-bad_method-response_method must be 'predict_proba', 'decision_function' or 'auto']",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_normal_deviance]",
"sklearn/metrics/_plot/tests/test_plot_det_curve.py::test_plot_det_curve[False-True-decision_function]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 2, not equal to the number of columns in 'y_score', 3-y_true5-labels5]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true14-y_score14-expected_fpr14-expected_fnr14]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric7]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[r2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[micro_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata_binary[y_true1-labels1]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-2-8]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[average_precision_score]",
"sklearn/metrics/_plot/tests/test_plot_det_curve.py::test_plot_det_curve[True-True-predict_proba]",
"sklearn/metrics/tests/test_common.py::test_single_sample[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_toydata",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_multi",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric18]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric30]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true1-y_score1-expected_fpr1-expected_fnr1]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric31]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_normal_deviance]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[balanced_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_ranking_appropriate_input_shape",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric16]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_sanity_check",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_confidence",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[cohen_kappa_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true6-labels6]",
"sklearn/metrics/tests/test_common.py::test_averaging_binary_multilabel_all_zeroes",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_loss",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.25]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve[True]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[r2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_error",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_pos_label",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true8-y_score8-expected_fpr8-expected_fnr8]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be unique-y_true1-labels1]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_toy]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[max_error]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[brier_score_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric21]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-8]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs5]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_lrap_only_ties]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true3-y_score3-expected_fpr3-expected_fnr3]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true0-labels0]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[roc_curve]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_error[multi_class='ovp' is not supported for multiclass ROC AUC, multi_class must be in \\\\('ovo', 'ovr'\\\\)-kwargs4]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_gamma_deviance]",
"sklearn/metrics/_plot/tests/test_plot_det_curve.py::test_plot_det_curve[False-False-decision_function]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric10]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[micro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[f2_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric2]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric22]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[samples_average_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true11-y_score11-expected_fpr11-expected_fnr11]",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[label_ranking_average_precision_score-check_lrap_without_tie_and_increasing_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_alternative_lrap_implementation[0-10-2]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true7-y_score7-expected_fpr7-expected_fnr7]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[mean_compound_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[roc_curve]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[average_precision_score]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_non_binary[plot_roc_curve]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true10-labels10]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_multilabel_representation_invariance",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[unnormalized_zero_one_loss]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_zeroes[f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_poisson_deviance]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_f2_score]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_det_curve_not_fitted_errors[plot_roc_curve-clf0]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_binary_classification[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[median_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true4-y_score4-expected_fpr4-expected_fnr4]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[log_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[cohen_kappa_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Number of given labels, 4, not equal to the number of columns in 'y_score', 3-y_true7-labels7]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_ignore_ties_with_k",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[mean_gamma_deviance]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[roc_auc_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovr_roc_auc_toydata[y_true0-None]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[partial_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[metric3]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovo_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_score_scale_invariance",
"sklearn/metrics/tests/test_common.py::test_single_sample[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true15-y_score15-expected_fpr15-expected_fnr15]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[hamming_loss]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[precision_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[samples_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[mean_squared_error]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[micro_recall_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true1-None]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel_all_ones[recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[r2_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[adjusted_balanced_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_compound_poisson_deviance]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_no_response[plot_roc_curve-auto-response method decision_function or predict_proba is not defined in MyClassifier]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[micro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[mean_squared_error]",
"sklearn/metrics/tests/test_ranking.py::test_ndcg_invariant",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true10-y_score10-expected_fpr10-expected_fnr10]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[coverage_error]",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[matthews_corrcoef_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_absolute_percentage_error]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric16]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_bad_input[y_true4-y_pred4-pos_label is not specified]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[det_curve]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[macro_f2_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hinge_loss]",
"sklearn/metrics/tests/test_common.py::test_normalize_option_multiclass_classification[zero_one_loss]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true5-y_score5-expected_fpr5-expected_fnr5]",
"sklearn/metrics/tests/test_common.py::test_single_sample[mean_normal_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_roc_returns_consistency",
"sklearn/metrics/tests/test_common.py::test_single_sample[weighted_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_average_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[label_ranking_loss]",
"sklearn/metrics/tests/test_common.py::test_multioutput_number_of_output_differ[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[normalized_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[weighted_recall_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[log_loss]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric33]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[matthews_corrcoef]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[max_error]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[micro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[ovr_roc_auc]",
"sklearn/metrics/tests/test_ranking.py::test_ranking_loss_ties_handling",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[weighted_ovr_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_single_sample_multioutput[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_precision_recall_curve",
"sklearn/metrics/tests/test_ranking.py::test_binary_clf_curve_implicit_pos_label[precision_recall_curve]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_precision_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_log_loss]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[roc_auc_score]",
"sklearn/metrics/tests/test_common.py::test_classification_invariance_string_vs_numbers_labels[weighted_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_raise_value_error_multilabel_sequences[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_no_averaging_labels",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[weighted_precision_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[mean_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_regression_sample_weight_invariance[explained_variance_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[max_error]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_common.py::test_multilabel_label_permutations_invariance[macro_f1_score]",
"sklearn/metrics/tests/test_ranking.py::test_label_ranking_avp[_my_lrap-check_zero_or_all_relevant_labels]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric36]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_constant_scores[0.5]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric28]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[cohen_kappa_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[median_absolute_error]",
"sklearn/metrics/tests/test_common.py::test_multioutput_regression_invariance_to_dimension_shuffling[r2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovr-'y_true' contains labels not in parameter 'labels'-y_true9-labels9]",
"sklearn/metrics/tests/test_common.py::test_single_sample[micro_f0.5_score]",
"sklearn/metrics/tests/test_ranking.py::test_multiclass_ovo_roc_auc_toydata[y_true2-labels2]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_common.py::test_single_sample[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_averaging_multilabel[f2_score]",
"sklearn/metrics/tests/test_common.py::test_not_symmetric_metric[macro_f2_score]",
"sklearn/metrics/tests/test_ranking.py::test_roc_auc_score_multiclass_labels_error[ovo-Parameter 'labels' must be ordered-y_true3-labels3]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[samples_f2_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[median_absolute_error]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_end_points",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[micro_precision_score]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_tie_handling[y_true0-y_score0-expected_fpr0-expected_fnr0]",
"sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[weighted_f2_score]",
"sklearn/metrics/_plot/tests/test_plot_curve_common.py::test_plot_curve_error_no_response[plot_roc_curve-predict_proba-response method predict_proba is not defined in MyClassifier]",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[mean_gamma_deviance]",
"sklearn/metrics/tests/test_ranking.py::test_roc_curve_fpr_tpr_increasing",
"sklearn/metrics/tests/test_common.py::test_regression_thresholded_inf_nan_input[ndcg_score]",
"sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]",
"sklearn/metrics/tests/test_common.py::test_symmetric_metric[hamming_loss]",
"sklearn/metrics/tests/test_ranking.py::test_det_curve_toydata[y_true2-y_score2-expected_fpr2-expected_fnr2]",
"sklearn/metrics/tests/test_common.py::test_single_sample[macro_recall_score]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[macro_f0.5_score]",
"sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[ovo_roc_auc]",
"sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_multilabel_confusion_matrix]",
"sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[micro_jaccard_score]",
"sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_accuracy_score]",
"sklearn/metrics/tests/test_ranking.py::test_coverage_tie_handling",
"sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[macro_precision_score]",
"sklearn/metrics/tests/test_common.py::test_classification_inf_nan_input[metric24]",
"sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[label_ranking_loss]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "field",
"name": "fpr"
},
{
"type": "field",
"name": "response_method"
},
{
"type": "field",
"name": "line_"
},
{
"type": "field",
"name": "figure"
},
{
"type": "field",
"name": "fnr"
},
{
"type": "field",
"name": "name"
},
{
"type": "field",
"name": "self"
},
{
"type": "field",
"name": "estimator_name"
},
{
"type": "field",
"name": "__class__"
},
{
"type": "field",
"name": "y_pred"
},
{
"type": "field",
"name": "matplotlib"
},
{
"type": "field",
"name": "X"
},
{
"type": "field",
"name": "viz"
},
{
"type": "field",
"name": "base"
},
{
"type": "field",
"name": "pyplot"
},
{
"type": "field",
"name": "__name__"
},
{
"type": "field",
"name": "ax_"
},
{
"type": "field",
"name": "pos_label"
},
{
"type": "file",
"name": "sklearn/metrics/_plot/det_curve.py"
},
{
"type": "field",
"name": "sample_weight"
},
{
"type": "field",
"name": "figure_"
}
]
}
|
[
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex f5a0e71e07d1c..2ec617df85cc0 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -947,7 +947,7 @@ details.\n metrics.cohen_kappa_score\n metrics.confusion_matrix\n metrics.dcg_score\n- metrics.detection_error_tradeoff_curve\n+ metrics.det_curve\n metrics.f1_score\n metrics.fbeta_score\n metrics.hamming_loss\n@@ -1100,6 +1100,7 @@ See the :ref:`visualizations` section of the user guide for further details.\n :template: function.rst\n \n metrics.plot_confusion_matrix\n+ metrics.plot_det_curve\n metrics.plot_precision_recall_curve\n metrics.plot_roc_curve\n \n@@ -1108,6 +1109,7 @@ See the :ref:`visualizations` section of the user guide for further details.\n :template: class.rst\n \n metrics.ConfusionMatrixDisplay\n+ metrics.DetCurveDisplay\n metrics.PrecisionRecallDisplay\n metrics.RocCurveDisplay\n \n"
},
{
"path": "doc/modules/model_evaluation.rst",
"old_path": "a/doc/modules/model_evaluation.rst",
"new_path": "b/doc/modules/model_evaluation.rst",
"metadata": "diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst\nindex e64aee2075e06..58c30d3091830 100644\n--- a/doc/modules/model_evaluation.rst\n+++ b/doc/modules/model_evaluation.rst\n@@ -306,7 +306,7 @@ Some of these are restricted to the binary classification case:\n \n precision_recall_curve\n roc_curve\n- detection_error_tradeoff_curve\n+ det_curve\n \n \n Others also work in the multiclass case:\n@@ -1443,7 +1443,7 @@ to the given limit.\n Detection error tradeoff (DET)\n ------------------------------\n \n-The function :func:`detection_error_tradeoff_curve` computes the\n+The function :func:`det_curve` computes the\n detection error tradeoff curve (DET) curve [WikipediaDET2017]_.\n Quoting Wikipedia:\n \n"
},
{
"path": "doc/visualizations.rst",
"old_path": "a/doc/visualizations.rst",
"new_path": "b/doc/visualizations.rst",
"metadata": "diff --git a/doc/visualizations.rst b/doc/visualizations.rst\nindex ad316205b3c90..a2d40408b403f 100644\n--- a/doc/visualizations.rst\n+++ b/doc/visualizations.rst\n@@ -78,6 +78,7 @@ Functions\n \n inspection.plot_partial_dependence\n metrics.plot_confusion_matrix\n+ metrics.plot_det_curve\n metrics.plot_precision_recall_curve\n metrics.plot_roc_curve\n \n@@ -91,5 +92,6 @@ Display Objects\n \n inspection.PartialDependenceDisplay\n metrics.ConfusionMatrixDisplay\n+ metrics.DetCurveDisplay\n metrics.PrecisionRecallDisplay\n metrics.RocCurveDisplay\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex aaf86a2f0576d..1da9670307b75 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -280,11 +280,15 @@ Changelog\n :mod:`sklearn.metrics`\n ......................\n \n-- |Feature| Added :func:`metrics.detection_error_tradeoff_curve` to compute\n- Detection Error Tradeoff curve classification metric.\n+- |Feature| Added :func:`metrics.det_curve` to compute Detection Error Tradeoff\n+ curve classification metric.\n :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n \n+- |Feature| Added :func:`metrics.plot_det_curve` and :class:`DetCurveDisplay`\n+ to ease the plot of DET curves.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n - |Feature| Added :func:`metrics.mean_absolute_percentage_error` metric and\n the associated scorer for regression problems. :issue:`<PRID>` fixed with the\n PR :pr:`<PRID>` by :user:`<NAME>`. The scorer and\n"
}
] |
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index f5a0e71e07d1c..2ec617df85cc0 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -947,7 +947,7 @@ details.
metrics.cohen_kappa_score
metrics.confusion_matrix
metrics.dcg_score
- metrics.detection_error_tradeoff_curve
+ metrics.det_curve
metrics.f1_score
metrics.fbeta_score
metrics.hamming_loss
@@ -1100,6 +1100,7 @@ See the :ref:`visualizations` section of the user guide for further details.
:template: function.rst
metrics.plot_confusion_matrix
+ metrics.plot_det_curve
metrics.plot_precision_recall_curve
metrics.plot_roc_curve
@@ -1108,6 +1109,7 @@ See the :ref:`visualizations` section of the user guide for further details.
:template: class.rst
metrics.ConfusionMatrixDisplay
+ metrics.DetCurveDisplay
metrics.PrecisionRecallDisplay
metrics.RocCurveDisplay
diff --git a/doc/modules/model_evaluation.rst b/doc/modules/model_evaluation.rst
index e64aee2075e06..58c30d3091830 100644
--- a/doc/modules/model_evaluation.rst
+++ b/doc/modules/model_evaluation.rst
@@ -306,7 +306,7 @@ Some of these are restricted to the binary classification case:
precision_recall_curve
roc_curve
- detection_error_tradeoff_curve
+ det_curve
Others also work in the multiclass case:
@@ -1443,7 +1443,7 @@ to the given limit.
Detection error tradeoff (DET)
------------------------------
-The function :func:`detection_error_tradeoff_curve` computes the
+The function :func:`det_curve` computes the
detection error tradeoff curve (DET) curve [WikipediaDET2017]_.
Quoting Wikipedia:
diff --git a/doc/visualizations.rst b/doc/visualizations.rst
index ad316205b3c90..a2d40408b403f 100644
--- a/doc/visualizations.rst
+++ b/doc/visualizations.rst
@@ -78,6 +78,7 @@ Functions
inspection.plot_partial_dependence
metrics.plot_confusion_matrix
+ metrics.plot_det_curve
metrics.plot_precision_recall_curve
metrics.plot_roc_curve
@@ -91,5 +92,6 @@ Display Objects
inspection.PartialDependenceDisplay
metrics.ConfusionMatrixDisplay
+ metrics.DetCurveDisplay
metrics.PrecisionRecallDisplay
metrics.RocCurveDisplay
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index aaf86a2f0576d..1da9670307b75 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -280,11 +280,15 @@ Changelog
:mod:`sklearn.metrics`
......................
-- |Feature| Added :func:`metrics.detection_error_tradeoff_curve` to compute
- Detection Error Tradeoff curve classification metric.
+- |Feature| Added :func:`metrics.det_curve` to compute Detection Error Tradeoff
+ curve classification metric.
:pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
+- |Feature| Added :func:`metrics.plot_det_curve` and :class:`DetCurveDisplay`
+ to ease the plot of DET curves.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
- |Feature| Added :func:`metrics.mean_absolute_percentage_error` metric and
the associated scorer for regression problems. :issue:`<PRID>` fixed with the
PR :pr:`<PRID>` by :user:`<NAME>`. The scorer and
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'field', 'name': 'fpr'}, {'type': 'field', 'name': 'response_method'}, {'type': 'field', 'name': 'line_'}, {'type': 'field', 'name': 'figure'}, {'type': 'field', 'name': 'fnr'}, {'type': 'field', 'name': 'name'}, {'type': 'field', 'name': 'self'}, {'type': 'field', 'name': 'estimator_name'}, {'type': 'field', 'name': '__class__'}, {'type': 'field', 'name': 'y_pred'}, {'type': 'field', 'name': 'matplotlib'}, {'type': 'field', 'name': 'X'}, {'type': 'field', 'name': 'viz'}, {'type': 'field', 'name': 'base'}, {'type': 'field', 'name': 'pyplot'}, {'type': 'field', 'name': '__name__'}, {'type': 'field', 'name': 'ax_'}, {'type': 'field', 'name': 'pos_label'}, {'type': 'file', 'name': 'sklearn/metrics/_plot/det_curve.py'}, {'type': 'field', 'name': 'sample_weight'}, {'type': 'field', 'name': 'figure_'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-20657
|
https://github.com/scikit-learn/scikit-learn/pull/20657
|
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 9cf628dfda5f5..5f50465f5aef3 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -723,6 +723,12 @@ Changelog
unavailable on the basis of state, in a more readable way.
:pr:`19948` by `Joel Nothman`_.
+_ |Enhancement| :func:`utils.validation.check_is_fitted` now uses
+ ``__sklearn_is_fitted__`` if available, instead of checking for attributes ending with
+ an underscore. This also makes :class:`Pipeline` and
+ :class:`preprocessing.FunctionTransformer` pass
+ ``check_is_fitted(estimator)``. :pr:`20657` by `Adrin Jalali`_.
+
- |Fix| Fixed a bug in :func:`utils.sparsefuncs.mean_variance_axis` where the
precision of the computed variance was very poor when the real variance is
exactly zero. :pr:`19766` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py
index 0814632721ba4..35f0fa3768b45 100644
--- a/sklearn/pipeline.py
+++ b/sklearn/pipeline.py
@@ -26,7 +26,9 @@
from .utils.deprecation import deprecated
from .utils._tags import _safe_tags
from .utils.validation import check_memory
+from .utils.validation import check_is_fitted
from .utils.fixes import delayed
+from .exceptions import NotFittedError
from .utils.metaestimators import _BaseComposition
@@ -657,6 +659,18 @@ def n_features_in_(self):
# delegate to first step (which will call _check_is_fitted)
return self.steps[0][1].n_features_in_
+ def __sklearn_is_fitted__(self):
+ """Indicate whether pipeline has been fit."""
+ try:
+ # check if the last step of the pipeline is fitted
+ # we only check the last step since if the last step is fit, it
+ # means the previous steps should also be fit. This is faster than
+ # checking if every step of the pipeline is fit.
+ check_is_fitted(self.steps[-1][1])
+ return True
+ except NotFittedError:
+ return False
+
def _sk_visual_block_(self):
_, estimators = zip(*self.steps)
diff --git a/sklearn/preprocessing/_function_transformer.py b/sklearn/preprocessing/_function_transformer.py
index 345cc96bb1c2e..202b6ec2f6cdd 100644
--- a/sklearn/preprocessing/_function_transformer.py
+++ b/sklearn/preprocessing/_function_transformer.py
@@ -176,5 +176,9 @@ def _transform(self, X, func=None, kw_args=None):
return func(X, **(kw_args if kw_args else {}))
+ def __sklearn_is_fitted__(self):
+ """Return True since FunctionTransfomer is stateless."""
+ return True
+
def _more_tags(self):
return {"no_validation": not self.validate, "stateless": True}
diff --git a/sklearn/utils/estimator_checks.py b/sklearn/utils/estimator_checks.py
index 7749484ea5b22..612c61753a1cb 100644
--- a/sklearn/utils/estimator_checks.py
+++ b/sklearn/utils/estimator_checks.py
@@ -51,6 +51,7 @@
from ..model_selection import ShuffleSplit
from ..model_selection._validation import _safe_split
from ..metrics.pairwise import rbf_kernel, linear_kernel, pairwise_distances
+from ..utils.validation import check_is_fitted
from . import shuffle
from ._tags import (
@@ -305,6 +306,7 @@ def _yield_all_checks(estimator):
yield check_dict_unchanged
yield check_dont_overwrite_parameters
yield check_fit_idempotent
+ yield check_fit_check_is_fitted
if not tags["no_validation"]:
yield check_n_features_in
yield check_fit1d
@@ -3493,6 +3495,45 @@ def check_fit_idempotent(name, estimator_orig):
)
+def check_fit_check_is_fitted(name, estimator_orig):
+ # Make sure that estimator doesn't pass check_is_fitted before calling fit
+ # and that passes check_is_fitted once it's fit.
+
+ rng = np.random.RandomState(42)
+
+ estimator = clone(estimator_orig)
+ set_random_state(estimator)
+ if "warm_start" in estimator.get_params():
+ estimator.set_params(warm_start=False)
+
+ n_samples = 100
+ X = rng.normal(loc=100, size=(n_samples, 2))
+ X = _pairwise_estimator_convert_X(X, estimator)
+ if is_regressor(estimator_orig):
+ y = rng.normal(size=n_samples)
+ else:
+ y = rng.randint(low=0, high=2, size=n_samples)
+ y = _enforce_estimator_tags_y(estimator, y)
+
+ if not _safe_tags(estimator).get("stateless", False):
+ # stateless estimators (such as FunctionTransformer) are always "fit"!
+ try:
+ check_is_fitted(estimator)
+ raise AssertionError(
+ f"{estimator.__class__.__name__} passes check_is_fitted before being"
+ " fit!"
+ )
+ except NotFittedError:
+ pass
+ estimator.fit(X, y)
+ try:
+ check_is_fitted(estimator)
+ except NotFittedError as e:
+ raise NotFittedError(
+ "Estimator fails to pass `check_is_fitted` even though it has been fit."
+ ) from e
+
+
def check_n_features_in(name, estimator_orig):
# Make sure that n_features_in_ attribute doesn't exist until fit is
# called, and that its value is correct.
diff --git a/sklearn/utils/validation.py b/sklearn/utils/validation.py
index 98bf6ac8bdb6a..aa7a23ffcdf9c 100644
--- a/sklearn/utils/validation.py
+++ b/sklearn/utils/validation.py
@@ -1142,8 +1142,9 @@ def check_is_fitted(estimator, attributes=None, *, msg=None, all_or_any=all):
fitted attributes (ending with a trailing underscore) and otherwise
raises a NotFittedError with the given message.
- This utility is meant to be used internally by estimators themselves,
- typically in their own predict / transform methods.
+ If an estimator does not set any attributes with a trailing underscore, it
+ can define a ``__sklearn_is_fitted__`` method returning a boolean to specify if the
+ estimator is fitted or not.
Parameters
----------
@@ -1194,13 +1195,15 @@ def check_is_fitted(estimator, attributes=None, *, msg=None, all_or_any=all):
if attributes is not None:
if not isinstance(attributes, (list, tuple)):
attributes = [attributes]
- attrs = all_or_any([hasattr(estimator, attr) for attr in attributes])
+ fitted = all_or_any([hasattr(estimator, attr) for attr in attributes])
+ elif hasattr(estimator, "__sklearn_is_fitted__"):
+ fitted = estimator.__sklearn_is_fitted__()
else:
- attrs = [
+ fitted = [
v for v in vars(estimator) if v.endswith("_") and not v.startswith("__")
]
- if not attrs:
+ if not fitted:
raise NotFittedError(msg % {"name": type(estimator).__name__})
|
diff --git a/sklearn/tests/test_pipeline.py b/sklearn/tests/test_pipeline.py
index 4176e1a65f4b2..4ec5c7f081a15 100644
--- a/sklearn/tests/test_pipeline.py
+++ b/sklearn/tests/test_pipeline.py
@@ -21,7 +21,8 @@
MinimalRegressor,
MinimalTransformer,
)
-
+from sklearn.exceptions import NotFittedError
+from sklearn.utils.validation import check_is_fitted
from sklearn.base import clone, is_classifier, BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union
from sklearn.svm import SVC
@@ -1361,3 +1362,16 @@ def test_search_cv_using_minimal_compatible_estimator(Predictor):
else:
assert_allclose(y_pred, y.mean())
assert model.score(X, y) == pytest.approx(r2_score(y, y_pred))
+
+
+def test_pipeline_check_if_fitted():
+ class Estimator(BaseEstimator):
+ def fit(self, X, y):
+ self.fitted_ = True
+ return self
+
+ pipeline = Pipeline([("clf", Estimator())])
+ with pytest.raises(NotFittedError):
+ check_is_fitted(pipeline)
+ pipeline.fit(iris.data, iris.target)
+ check_is_fitted(pipeline)
diff --git a/sklearn/utils/tests/test_estimator_checks.py b/sklearn/utils/tests/test_estimator_checks.py
index ea158234ea785..89e2e43651088 100644
--- a/sklearn/utils/tests/test_estimator_checks.py
+++ b/sklearn/utils/tests/test_estimator_checks.py
@@ -34,6 +34,7 @@
from sklearn.utils.validation import check_array
from sklearn.utils import all_estimators
from sklearn.exceptions import SkipTestWarning
+from sklearn.utils.metaestimators import available_if
from sklearn.utils.estimator_checks import (
_NotAnArray,
@@ -51,6 +52,7 @@
check_regressor_data_not_an_array,
check_outlier_corruption,
set_random_state,
+ check_fit_check_is_fitted,
)
@@ -986,3 +988,28 @@ def test_minimal_class_implementation_checks():
minimal_estimators = [MinimalTransformer(), MinimalRegressor(), MinimalClassifier()]
for estimator in minimal_estimators:
check_estimator(estimator)
+
+
+def test_check_fit_check_is_fitted():
+ class Estimator(BaseEstimator):
+ def __init__(self, behavior="attribute"):
+ self.behavior = behavior
+
+ def fit(self, X, y, **kwargs):
+ if self.behavior == "attribute":
+ self.is_fitted_ = True
+ elif self.behavior == "method":
+ self._is_fitted = True
+ return self
+
+ @available_if(lambda self: self.behavior in {"method", "always-true"})
+ def __sklearn_is_fitted__(self):
+ if self.behavior == "always-true":
+ return True
+ return hasattr(self, "_is_fitted")
+
+ with raises(Exception, match="passes check_is_fitted before being fit"):
+ check_fit_check_is_fitted("estimator", Estimator(behavior="always-true"))
+
+ check_fit_check_is_fitted("estimator", Estimator(behavior="method"))
+ check_fit_check_is_fitted("estimator", Estimator(behavior="attribute"))
diff --git a/sklearn/utils/tests/test_validation.py b/sklearn/utils/tests/test_validation.py
index 1a1449ecc209f..35afff12b7ca4 100644
--- a/sklearn/utils/tests/test_validation.py
+++ b/sklearn/utils/tests/test_validation.py
@@ -51,7 +51,7 @@
FLOAT_DTYPES,
)
from sklearn.utils.validation import _check_fit_params
-
+from sklearn.base import BaseEstimator
import sklearn
from sklearn.exceptions import NotFittedError, PositiveSpectrumWarning
@@ -750,6 +750,20 @@ def test_check_symmetric():
assert_array_equal(output, arr_sym)
+def test_check_is_fitted_with_is_fitted():
+ class Estimator(BaseEstimator):
+ def fit(self, **kwargs):
+ self._is_fitted = True
+ return self
+
+ def __sklearn_is_fitted__(self):
+ return hasattr(self, "_is_fitted") and self._is_fitted
+
+ with pytest.raises(NotFittedError):
+ check_is_fitted(Estimator())
+ check_is_fitted(Estimator().fit())
+
+
def test_check_is_fitted():
# Check is TypeError raised when non estimator instance passed
with pytest.raises(TypeError):
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 9cf628dfda5f5..5f50465f5aef3 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -723,6 +723,12 @@ Changelog\n unavailable on the basis of state, in a more readable way.\n :pr:`19948` by `Joel Nothman`_.\n \n+_ |Enhancement| :func:`utils.validation.check_is_fitted` now uses\n+ ``__sklearn_is_fitted__`` if available, instead of checking for attributes ending with\n+ an underscore. This also makes :class:`Pipeline` and\n+ :class:`preprocessing.FunctionTransformer` pass\n+ ``check_is_fitted(estimator)``. :pr:`20657` by `Adrin Jalali`_.\n+\n - |Fix| Fixed a bug in :func:`utils.sparsefuncs.mean_variance_axis` where the\n precision of the computed variance was very poor when the real variance is\n exactly zero. :pr:`19766` by :user:`Jérémie du Boisberranger <jeremiedbb>`.\n"
}
] |
1.00
|
ec941a86c01e98dc0b41c406631f86b1caf3f2e0
|
[
"sklearn/utils/tests/test_validation.py::test_check_symmetric",
"sklearn/utils/tests/test_validation.py::test_ordering",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-int]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant pos]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X0]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_class",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-dict]",
"sklearn/tests/test_pipeline.py::test_fit_predict_with_intermediate_fit_params",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[array]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-int]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[coo]",
"sklearn/tests/test_pipeline.py::test_score_samples_on_pipeline_without_score_samples",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[None]",
"sklearn/utils/tests/test_validation.py::test_check_array_min_samples_and_features_messages",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-bool]",
"sklearn/tests/test_pipeline.py::test_pipeline_get_tags_none[None]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_warning",
"sklearn/tests/test_pipeline.py::test_pipeline_correctly_adjusts_steps[None]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[short-int16-integer]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-dict]",
"sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalRegressor]",
"sklearn/tests/test_pipeline.py::test_feature_union_fit_params",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint16-ushort-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[True]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[asarray]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-1-Input contains NaN, infinity]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[1-None]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float64]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[coo]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_type_exception",
"sklearn/tests/test_pipeline.py::test_verbose[est6-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_pipeline_sample_weight_unsupported",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant_imag]",
"sklearn/tests/test_pipeline.py::test_step_name_validation",
"sklearn/tests/test_pipeline.py::test_verbose[est15-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 1\\\\) Processing mult2.* total=.*\\\\n$-fit_transform]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int16-int32]",
"sklearn/utils/tests/test_validation.py::test_check_array_deprecated_matrix",
"sklearn/tests/test_pipeline.py::test_pipeline_with_cache_attribute",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[coo]",
"sklearn/tests/test_pipeline.py::test_verbose[est11-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit_transform]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int8]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[str]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X2]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[byte-uint16]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-int]",
"sklearn/utils/tests/test_validation.py::test_suppress_validation",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float32]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int16]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dok_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X4]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_fit_attribute",
"sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[list]",
"sklearn/tests/test_pipeline.py::test_fit_predict_on_pipeline_without_fit_predict",
"sklearn/tests/test_pipeline.py::test_make_pipeline",
"sklearn/tests/test_pipeline.py::test_make_pipeline_memory",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X0-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X1]",
"sklearn/utils/tests/test_validation.py::test_num_features[list]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X2-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/tests/test_pipeline.py::test_pipeline_methods_anova",
"sklearn/tests/test_pipeline.py::test_n_features_in_pipeline",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X3-cannot convert float NaN to integer]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-float]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-bool]",
"sklearn/tests/test_pipeline.py::test_pipeline_sample_weight_supported",
"sklearn/tests/test_pipeline.py::test_verbose[est13-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 2\\\\) Processing mult1.* total=.*\\\\n\\\\[FeatureUnion\\\\].*\\\\(step 2 of 2\\\\) Processing mult2.* total=.*\\\\n$-fit_transform]",
"sklearn/tests/test_pipeline.py::test_verbose[est9-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit_transform]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X1]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-str]",
"sklearn/utils/tests/test_validation.py::test_check_dataframe_mixed_float_dtypes",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-allow-nan]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[1-2]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-Int16]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name1-float-2-4-err_msg0]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-True-Input contains NaN, infinity]",
"sklearn/tests/test_pipeline.py::test_pipeline_missing_values_leniency",
"sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict_log_proba]",
"sklearn/utils/tests/test_validation.py::test_num_features[dataframe]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-float]",
"sklearn/tests/test_pipeline.py::test_pipeline_fit_params",
"sklearn/tests/test_pipeline.py::test_verbose[est5-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit_predict]",
"sklearn/tests/test_pipeline.py::test_pipeline_score_samples_pca_lof",
"sklearn/tests/test_pipeline.py::test_verbose[est4-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-dict]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csc]",
"sklearn/tests/test_pipeline.py::test_feature_union_warns_unknown_transformer_weight",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-bool]",
"sklearn/utils/tests/test_validation.py::test_check_array_complex_data_error",
"sklearn/tests/test_pipeline.py::test_pipeline_methods_pca_svm",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_numeric_errors[X3]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[tuple]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant_imag]",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csr]",
"sklearn/tests/test_pipeline.py::test_verbose[est14-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 1\\\\) Processing mult2.* total=.*\\\\n$-fit]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X0-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/tests/test_pipeline.py::test_feature_union_feature_names",
"sklearn/tests/test_pipeline.py::test_verbose[est3-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit_predict]",
"sklearn/tests/test_pipeline.py::test_pipeline_index",
"sklearn/tests/test_pipeline.py::test_pipeline_raise_set_params_error",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-inf-False]",
"sklearn/utils/tests/test_validation.py::test_check_array",
"sklearn/utils/tests/test_validation.py::test_check_X_y_informative_error",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[list-str]",
"sklearn/tests/test_pipeline.py::test_predict_methods_with_predict_params[predict_proba]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-float]",
"sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[passthrough]",
"sklearn/utils/tests/test_validation.py::test_check_consistent_length",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[int32-long]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function",
"sklearn/tests/test_pipeline.py::test_set_params_nested_pipeline",
"sklearn/tests/test_pipeline.py::test_set_pipeline_steps",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_sparse_no_exception",
"sklearn/tests/test_pipeline.py::test_pipeline_init_tuple",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted",
"sklearn/tests/test_pipeline.py::test_verbose[est0-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[1-3]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_casting",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[csr]",
"sklearn/utils/tests/test_validation.py::test_check_array_series",
"sklearn/tests/test_pipeline.py::test_verbose[est12-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 2\\\\) Processing mult1.* total=.*\\\\n\\\\[FeatureUnion\\\\].*\\\\(step 2 of 2\\\\) Processing mult2.* total=.*\\\\n$-fit]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[lil_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[1-test_name2-int-2-4-err_msg1]",
"sklearn/tests/test_pipeline.py::test_pipeline_fit_transform",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintp-ulonglong-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_num_features[sparse_csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X3-cannot convert float NaN to integer]",
"sklearn/tests/test_pipeline.py::test_make_union",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-True-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csr]",
"sklearn/tests/test_pipeline.py::test_pipeline_get_tags_none[passthrough]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-False]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-nan-1-Input contains NaN, infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_dtype_stability",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_raise_exception[bsr]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[True]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int8]",
"sklearn/tests/test_pipeline.py::test_make_union_kwargs",
"sklearn/tests/test_pipeline.py::test_verbose[est2-\\\\[Pipeline\\\\].*\\\\(step 1 of 3\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 3\\\\) Processing noop.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 3 of 3\\\\) Processing clf.* total=.*\\\\n$-fit]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X0]",
"sklearn/utils/tests/test_validation.py::test_has_fit_parameter",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[bsr_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_sparse_pandas_sp_format[csc]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[numeric-float64-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-inf-allow-nan-Input contains infinity]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[float]",
"sklearn/tests/test_pipeline.py::test_verbose[est7-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit_transform]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[0-2]",
"sklearn/tests/test_pipeline.py::test_set_pipeline_step_passthrough[None]",
"sklearn/utils/tests/test_validation.py::test_num_features[array]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-Int16]",
"sklearn/tests/test_pipeline.py::test_verbose[est8-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_attributes[single]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-UInt8]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X0]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_not_equals[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[coo_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X3]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-int]",
"sklearn/utils/tests/test_validation.py::test_check_scalar_invalid[5-test_name3-int-2-4-err_msg2]",
"sklearn/tests/test_pipeline.py::test_pipeline_ducktyping",
"sklearn/tests/test_pipeline.py::test_pipeline_wrong_memory",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[bool]",
"sklearn/tests/test_pipeline.py::test_fit_predict_on_pipeline",
"sklearn/tests/test_pipeline.py::test_classes_property",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csr]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X2-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[ushort-uint32]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-float]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[0-1]",
"sklearn/tests/test_pipeline.py::test_pipeline_param_error",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int_-intp-integer]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint32-uint64]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[ubyte-uint8-unsignedinteger]",
"sklearn/tests/test_pipeline.py::test_feature_union_weights",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[asarray-nan-False]",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_attributes",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[intc-int32-integer]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[all negative]",
"sklearn/tests/test_pipeline.py::test_feature_union_parallel",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[asarray-nan-allow-inf-force_all_finite should be a bool or \"allow-nan\"]",
"sklearn/utils/tests/test_validation.py::test_check_array_accept_large_sparse_no_exception[csc]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_equals[array]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[series-str]",
"sklearn/utils/tests/test_validation.py::test_as_float_array",
"sklearn/utils/tests/test_validation.py::test_memmap",
"sklearn/tests/test_pipeline.py::test_verbose[est10-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing mult.* total=.*\\\\n$-fit]",
"sklearn/utils/tests/test_validation.py::test_check_array_numeric_warns[X2]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[False-X1-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_retrieve_samples_from_non_standard_shape",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_valid[True-insignificant neg float64]",
"sklearn/utils/tests/test_validation.py::test_check_sample_weight",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uint-uint64-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_num_features[tuple]",
"sklearn/utils/tests/test_validation.py::test_check_array_memmap[False]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csr_matrix]",
"sklearn/tests/test_pipeline.py::test_pipeline_named_steps",
"sklearn/tests/test_pipeline.py::test_pipeline_correctly_adjusts_steps[passthrough]",
"sklearn/tests/test_pipeline.py::test_pipeline_memory",
"sklearn/utils/tests/test_validation.py::test_np_matrix",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-nan-allow-nan]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int64-longlong-integer]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int8-byte-integer]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_scalars[int]",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[None-None]",
"sklearn/utils/tests/test_validation.py::test_check_fit_params[indices1]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_invalid[uint8-int8]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_dtype_object_conversion",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-dict]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_object_unsafe_casting[True-X1-Input contains NaN, infinity or a value too large for.*int]",
"sklearn/utils/tests/test_validation.py::test_as_float_array_nan[X1]",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finite_valid[csr_matrix-inf-False]",
"sklearn/tests/test_pipeline.py::test_search_cv_using_minimal_compatible_estimator[MinimalClassifier]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[dtype0-float32-UInt16]",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[dia_matrix]",
"sklearn/utils/tests/test_validation.py::test_check_array_on_mock_dataframe",
"sklearn/tests/test_pipeline.py::test_pipeline_slice[None-1]",
"sklearn/tests/test_pipeline.py::test_pipeline_methods_preprocessing_svm",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[uintc-uint32-unsignedinteger]",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int0-long-integer]",
"sklearn/tests/test_pipeline.py::test_verbose[est1-\\\\[Pipeline\\\\].*\\\\(step 1 of 2\\\\) Processing transf.* total=.*\\\\n\\\\[Pipeline\\\\].*\\\\(step 2 of 2\\\\) Processing clf.* total=.*\\\\n$-fit_predict]",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[tuple-str]",
"sklearn/utils/tests/test_validation.py::test_check_psd_eigenvalues_invalid[significant neg float32]",
"sklearn/tests/test_pipeline.py::test_pipeline_transform",
"sklearn/utils/tests/test_validation.py::test_check_pandas_sparse_valid[int-long-integer]",
"sklearn/tests/test_pipeline.py::test_set_feature_union_steps",
"sklearn/utils/tests/test_validation.py::test_num_features_errors_1d_containers[array-bool]",
"sklearn/tests/test_pipeline.py::test_n_features_in_feature_union",
"sklearn/utils/tests/test_validation.py::test_check_non_negative[csc_matrix]",
"sklearn/utils/tests/test_validation.py::test_deprecate_positional_args_warns_for_function_version",
"sklearn/utils/tests/test_validation.py::test_check_array_force_all_finiteinvalid[csr_matrix-inf-allow-nan-Input contains infinity]",
"sklearn/utils/tests/test_validation.py::test_check_array_pandas_na_support[float64-float64-Int8]",
"sklearn/utils/tests/test_validation.py::test_allclose_dense_sparse_raise[csc_matrix]"
] |
[
"sklearn/tests/test_pipeline.py::test_pipeline_check_if_fitted",
"sklearn/utils/tests/test_validation.py::test_check_is_fitted_with_is_fitted"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v1.0.rst",
"old_path": "a/doc/whats_new/v1.0.rst",
"new_path": "b/doc/whats_new/v1.0.rst",
"metadata": "diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst\nindex 9cf628dfda5f5..5f50465f5aef3 100644\n--- a/doc/whats_new/v1.0.rst\n+++ b/doc/whats_new/v1.0.rst\n@@ -723,6 +723,12 @@ Changelog\n unavailable on the basis of state, in a more readable way.\n :pr:`<PRID>` by `<NAME>`_.\n \n+_ |Enhancement| :func:`utils.validation.check_is_fitted` now uses\n+ ``__sklearn_is_fitted__`` if available, instead of checking for attributes ending with\n+ an underscore. This also makes :class:`Pipeline` and\n+ :class:`preprocessing.FunctionTransformer` pass\n+ ``check_is_fitted(estimator)``. :pr:`<PRID>` by `<NAME>`_.\n+\n - |Fix| Fixed a bug in :func:`utils.sparsefuncs.mean_variance_axis` where the\n precision of the computed variance was very poor when the real variance is\n exactly zero. :pr:`<PRID>` by :user:`<NAME>`.\n"
}
] |
diff --git a/doc/whats_new/v1.0.rst b/doc/whats_new/v1.0.rst
index 9cf628dfda5f5..5f50465f5aef3 100644
--- a/doc/whats_new/v1.0.rst
+++ b/doc/whats_new/v1.0.rst
@@ -723,6 +723,12 @@ Changelog
unavailable on the basis of state, in a more readable way.
:pr:`<PRID>` by `<NAME>`_.
+_ |Enhancement| :func:`utils.validation.check_is_fitted` now uses
+ ``__sklearn_is_fitted__`` if available, instead of checking for attributes ending with
+ an underscore. This also makes :class:`Pipeline` and
+ :class:`preprocessing.FunctionTransformer` pass
+ ``check_is_fitted(estimator)``. :pr:`<PRID>` by `<NAME>`_.
+
- |Fix| Fixed a bug in :func:`utils.sparsefuncs.mean_variance_axis` where the
precision of the computed variance was very poor when the real variance is
exactly zero. :pr:`<PRID>` by :user:`<NAME>`.
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17526
|
https://github.com/scikit-learn/scikit-learn/pull/17526
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 848b415890452..9cd8902f0643f 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -61,6 +61,10 @@ Changelog
change since `None` was defaulting to these values already.
:pr:`16493` by :user:`Darshan N <DarshanGowda0>`.
+- |Feature| :class:`impute.SimpleImputer` now supports a list of strings
+ when ``strategy='most_frequent'`` or ``strategy='constant'``.
+ :pr:`17526` by :user:`Ayako YAGI <yagi-3>` and :user:`Juan Carlos Alfaro Jiménez <alfaro96>`.
+
:mod:`sklearn.metrics`
......................
diff --git a/sklearn/impute/_base.py b/sklearn/impute/_base.py
index 517de982d8478..cedc97872333c 100644
--- a/sklearn/impute/_base.py
+++ b/sklearn/impute/_base.py
@@ -228,7 +228,15 @@ def _validate_input(self, X, in_fit):
self.strategy))
if self.strategy in ("most_frequent", "constant"):
- dtype = None
+ # If input is a list of strings, dtype = object.
+ # Otherwise ValueError is raised in SimpleImputer
+ # with strategy='most_frequent' or 'constant'
+ # because the list is converted to Unicode numpy array
+ if isinstance(X, list) and \
+ any(isinstance(elem, str) for row in X for elem in row):
+ dtype = object
+ else:
+ dtype = None
else:
dtype = FLOAT_DTYPES
|
diff --git a/sklearn/impute/tests/test_impute.py b/sklearn/impute/tests/test_impute.py
index 960f671915e6a..53580f32c34ca 100644
--- a/sklearn/impute/tests/test_impute.py
+++ b/sklearn/impute/tests/test_impute.py
@@ -1342,6 +1342,25 @@ def test_simple_imputation_add_indicator_sparse_matrix(arr_type):
assert_allclose(X_trans.toarray(), X_true)
[email protected](
+ 'strategy, expected',
+ [('most_frequent', 'b'), ('constant', 'missing_value')]
+)
+def test_simple_imputation_string_list(strategy, expected):
+ X = [['a', 'b'],
+ ['c', np.nan]]
+
+ X_true = np.array([
+ ['a', 'b'],
+ ['c', expected]
+ ], dtype=object)
+
+ imputer = SimpleImputer(strategy=strategy)
+ X_trans = imputer.fit_transform(X)
+
+ assert_array_equal(X_trans, X_true)
+
+
@pytest.mark.parametrize(
"order, idx_order",
[
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 848b415890452..9cd8902f0643f 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -61,6 +61,10 @@ Changelog\n change since `None` was defaulting to these values already.\n :pr:`16493` by :user:`Darshan N <DarshanGowda0>`.\n \n+- |Feature| :class:`impute.SimpleImputer` now supports a list of strings\n+ when ``strategy='most_frequent'`` or ``strategy='constant'``.\n+ :pr:`17526` by :user:`Ayako YAGI <yagi-3>` and :user:`Juan Carlos Alfaro Jiménez <alfaro96>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n"
}
] |
0.24
|
53befd82e389da5fa1c96156759bd1bc908a8658
|
[
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-0-int32-array]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_no_missing",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-coo_matrix-auto]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[random]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[descending]",
"sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[mean]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_verbose",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[scalars]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[mean]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[constant]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-array]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[object]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_no_explicit_zeros",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-array-True]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[median]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_early_stopping",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[None-default]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[object]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype2-most_frequent]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-array]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_error_param[1--0.001-ValueError-should be a non-negative float]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype1-most_frequent]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_string",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[0-array-True]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csr_matrix-auto]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-array-False]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X0]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip_truncnorm",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[mean]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator3]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X0-a-X_trans_exp0]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[min_value2-max_value2-_value' should be of shape]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X1]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[nan]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_additive_matrix",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[0]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csc_matrix-True]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[-1--1-types are expected to be both numerical.-IterativeImputer]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-array]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit3-X_trans3-params3-MissingIndicator does not support data with dtype]",
"sklearn/impute/tests/test_impute.py::test_imputation_order[ascending-idx_order0]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csr_matrix-False]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[SimpleImputer]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-array]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[Scalar-vs-vector]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-lil_matrix-False]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_error_param[-1-0.001-ValueError-should be a positive integer]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[str-median]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator4]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[median]",
"sklearn/impute/tests/test_impute.py::test_imputation_order[descending-idx_order1]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[NAN]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[object-mean]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[-1--1-types are expected to be both numerical.-SimpleImputer]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[3]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_truncated_normal_posterior",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[inf--inf-min_value >= max_value.]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[str-most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype2-constant]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-0-int32-array]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_float[asarray]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[0-array-auto]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_all_missing",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_rank_one",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[False]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[0]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[None-median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X3-None-X_trans_exp3]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[None]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[object-median]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[dataframe-median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator1]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[ascending]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_invalid_strategy[101]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-array-auto]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[NAN]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[None-vs-inf]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[arabic]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[True]",
"sklearn/impute/tests/test_impute.py::test_imputation_copy",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[inf]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[roman]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-coo_matrix-True]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[list-median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[IterativeImputer]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[nan]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X1-nan-X_trans_exp1]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator2]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[100-0-min_value >= max_value.]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_shape[constant]",
"sklearn/impute/tests/test_impute.py::test_imputation_median_special_cases",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[None]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[NaN-nan-Input contains NaN-IterativeImputer]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_sparse_0[most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[most_frequent]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[str-constant]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit1-X_trans1-params1-'features' has to be either 'missing-only' or 'all']",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[0-array-False]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[None-mean]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_pandas[category]",
"sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[NaN-nan-Input contains NaN-SimpleImputer]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-lil_matrix-True]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_zero_iters",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[mean]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[5]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1--1-int32-csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_error_invalid_type[1-0]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-lil_matrix-auto]",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X2-nan-X_trans_exp2]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[None]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csc_matrix-False]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csc_matrix-auto]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0--1-int32-bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-coo_matrix-False]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[nan-csr_matrix-True]",
"sklearn/impute/tests/test_impute.py::test_imputation_deletion_warning[median]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit0-X_trans0-params0-have missing values in transform but have no missing values in fit]",
"sklearn/impute/tests/test_impute.py::test_imputation_const_mostf_error_invalid_types[dtype1-constant]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[dataframe-mean]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists-with-inf]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_no_missing",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[coo_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_error_invalid_strategy[None]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[lil_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_pandas[category]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_error_invalid_type[1.0-nan]",
"sklearn/impute/tests/test_impute.py::test_imputation_pipeline_grid_search",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_integer",
"sklearn/impute/tests/test_impute.py::test_imputation_most_frequent_objects[]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-nan-float64-csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type[str-mean]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit2-X_trans2-params2-'sparse' has to be a boolean or 'auto']",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-nan-float64-bsr_matrix]",
"sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csc_matrix]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_float[csr_matrix]",
"sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_stochasticity",
"sklearn/impute/tests/test_impute.py::test_imputation_error_invalid_strategy[const]",
"sklearn/impute/tests/test_impute.py::test_imputation_constant_object[]",
"sklearn/impute/tests/test_impute.py::test_imputation_mean_median_error_invalid_type_list_pandas[list-mean]"
] |
[
"sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[constant-missing_value]",
"sklearn/impute/tests/test_impute.py::test_simple_imputation_string_list[most_frequent-b]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 848b415890452..9cd8902f0643f 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -61,6 +61,10 @@ Changelog\n change since `None` was defaulting to these values already.\n :pr:`<PRID>` by :user:`<NAME>`.\n \n+- |Feature| :class:`impute.SimpleImputer` now supports a list of strings\n+ when ``strategy='most_frequent'`` or ``strategy='constant'``.\n+ :pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.\n+\n :mod:`sklearn.metrics`\n ......................\n \n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 848b415890452..9cd8902f0643f 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -61,6 +61,10 @@ Changelog
change since `None` was defaulting to these values already.
:pr:`<PRID>` by :user:`<NAME>`.
+- |Feature| :class:`impute.SimpleImputer` now supports a list of strings
+ when ``strategy='most_frequent'`` or ``strategy='constant'``.
+ :pr:`<PRID>` by :user:`<NAME>` and :user:`<NAME>`.
+
:mod:`sklearn.metrics`
......................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-17225
|
https://github.com/scikit-learn/scikit-learn/pull/17225
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index db6959fcc164f..76ec91d93e264 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -76,7 +76,13 @@ Changelog
attribute name/path or a `callable` for extracting feature importance from
the estimator. :pr:`15361` by :user:`Venkatachalam N <venkyyuvy>`
-
+:mod:`sklearn.metrics`
+......................
+
+- |Enhancement| Add `sample_weight` parameter to
+ :class:`metrics.median_absolute_error`.
+ :pr:`17225` by :user:`Lucy Liu <lucyleeow>`.
+
:mod:`sklearn.tree`
...................
diff --git a/sklearn/metrics/_regression.py b/sklearn/metrics/_regression.py
index fd89d32a07c29..bf728b1d2dd31 100644
--- a/sklearn/metrics/_regression.py
+++ b/sklearn/metrics/_regression.py
@@ -30,6 +30,8 @@
_num_samples)
from ..utils.validation import column_or_1d
from ..utils.validation import _deprecate_positional_args
+from ..utils.validation import _check_sample_weight
+from ..utils.stats import _weighted_percentile
from ..exceptions import UndefinedMetricWarning
@@ -335,7 +337,8 @@ def mean_squared_log_error(y_true, y_pred, *,
@_deprecate_positional_args
-def median_absolute_error(y_true, y_pred, *, multioutput='uniform_average'):
+def median_absolute_error(y_true, y_pred, *, multioutput='uniform_average',
+ sample_weight=None):
"""Median absolute error regression loss
Median absolute error output is non-negative floating point. The best value
@@ -360,6 +363,11 @@ def median_absolute_error(y_true, y_pred, *, multioutput='uniform_average'):
'uniform_average' :
Errors of all outputs are averaged with uniform weight.
+ sample_weight : array-like of shape (n_samples,), default=None
+ Sample weights.
+
+ .. versionadded:: 0.24
+
Returns
-------
loss : float or ndarray of floats
@@ -387,7 +395,12 @@ def median_absolute_error(y_true, y_pred, *, multioutput='uniform_average'):
"""
y_type, y_true, y_pred, multioutput = _check_reg_targets(
y_true, y_pred, multioutput)
- output_errors = np.median(np.abs(y_pred - y_true), axis=0)
+ if sample_weight is None:
+ output_errors = np.median(np.abs(y_pred - y_true), axis=0)
+ else:
+ sample_weight = _check_sample_weight(sample_weight, y_pred)
+ output_errors = _weighted_percentile(np.abs(y_pred - y_true),
+ sample_weight=sample_weight)
if isinstance(multioutput, str):
if multioutput == 'raw_values':
return output_errors
diff --git a/sklearn/utils/fixes.py b/sklearn/utils/fixes.py
index f912df19c323b..adc1b6d0091bc 100644
--- a/sklearn/utils/fixes.py
+++ b/sklearn/utils/fixes.py
@@ -165,3 +165,39 @@ class loguniform(scipy.stats.reciprocal):
)
class MaskedArray(_MaskedArray):
pass # TODO: remove in 0.25
+
+
+def _take_along_axis(arr, indices, axis):
+ """Implements a simplified version of np.take_along_axis if numpy
+ version < 1.15"""
+ if np_version > (1, 14):
+ return np.take_along_axis(arr=arr, indices=indices, axis=axis)
+ else:
+ if axis is None:
+ arr = arr.flatten()
+
+ if not np.issubdtype(indices.dtype, np.intp):
+ raise IndexError('`indices` must be an integer array')
+ if arr.ndim != indices.ndim:
+ raise ValueError(
+ "`indices` and `arr` must have the same number of dimensions")
+
+ shape_ones = (1,) * indices.ndim
+ dest_dims = (
+ list(range(axis)) +
+ [None] +
+ list(range(axis+1, indices.ndim))
+ )
+
+ # build a fancy index, consisting of orthogonal aranges, with the
+ # requested index inserted at the right location
+ fancy_index = []
+ for dim, n in zip(dest_dims, arr.shape):
+ if dim is None:
+ fancy_index.append(indices)
+ else:
+ ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
+ fancy_index.append(np.arange(n).reshape(ind_shape))
+
+ fancy_index = tuple(fancy_index)
+ return arr[fancy_index]
diff --git a/sklearn/utils/stats.py b/sklearn/utils/stats.py
index 5a8a136305179..7b44575e97b33 100644
--- a/sklearn/utils/stats.py
+++ b/sklearn/utils/stats.py
@@ -1,18 +1,61 @@
import numpy as np
from .extmath import stable_cumsum
+from .fixes import _take_along_axis
def _weighted_percentile(array, sample_weight, percentile=50):
+ """Compute weighted percentile
+
+ Computes lower weighted percentile. If `array` is a 2D array, the
+ `percentile` is computed along the axis 0.
+
+ .. versionchanged:: 0.24
+ Accepts 2D `array`.
+
+ Parameters
+ ----------
+ array : 1D or 2D array
+ Values to take the weighted percentile of.
+
+ sample_weight: 1D or 2D array
+ Weights for each value in `array`. Must be same shape as `array` or
+ of shape `(array.shape[0],)`.
+
+ percentile: int, default=50
+ Percentile to compute. Must be value between 0 and 100.
+
+ Returns
+ -------
+ percentile : int if `array` 1D, ndarray if `array` 2D
+ Weighted percentile.
"""
- Compute the weighted ``percentile`` of ``array`` with ``sample_weight``.
- """
- sorted_idx = np.argsort(array)
+ n_dim = array.ndim
+ if n_dim == 0:
+ return array[()]
+ if array.ndim == 1:
+ array = array.reshape((-1, 1))
+ # When sample_weight 1D, repeat for each array.shape[1]
+ if (array.shape != sample_weight.shape and
+ array.shape[0] == sample_weight.shape[0]):
+ sample_weight = np.tile(sample_weight, (array.shape[1], 1)).T
+ sorted_idx = np.argsort(array, axis=0)
+ sorted_weights = _take_along_axis(sample_weight, sorted_idx, axis=0)
# Find index of median prediction for each sample
- weight_cdf = stable_cumsum(sample_weight[sorted_idx])
- percentile_idx = np.searchsorted(
- weight_cdf, (percentile / 100.) * weight_cdf[-1])
- # in rare cases, percentile_idx equals to len(sorted_idx)
- percentile_idx = np.clip(percentile_idx, 0, len(sorted_idx)-1)
- return array[sorted_idx[percentile_idx]]
+ weight_cdf = stable_cumsum(sorted_weights, axis=0)
+ adjusted_percentile = percentile / 100 * weight_cdf[-1]
+ percentile_idx = np.array([
+ np.searchsorted(weight_cdf[:, i], adjusted_percentile[i])
+ for i in range(weight_cdf.shape[1])
+ ])
+ percentile_idx = np.array(percentile_idx)
+ # In rare cases, percentile_idx equals to sorted_idx.shape[0]
+ max_idx = sorted_idx.shape[0] - 1
+ percentile_idx = np.apply_along_axis(lambda x: np.clip(x, 0, max_idx),
+ axis=0, arr=percentile_idx)
+
+ col_index = np.arange(array.shape[1])
+ percentile_in_sorted = sorted_idx[percentile_idx, col_index]
+ percentile = array[percentile_in_sorted, col_index]
+ return percentile[0] if n_dim == 1 else percentile
|
diff --git a/sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py b/sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
index 6b24f90d0239d..b5bc17eeeb14c 100644
--- a/sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
+++ b/sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
@@ -8,7 +8,6 @@
import pytest
from sklearn.utils import check_random_state
-from sklearn.utils.stats import _weighted_percentile
from sklearn.ensemble._gb_losses import RegressionLossFunction
from sklearn.ensemble._gb_losses import LeastSquaresError
from sklearn.ensemble._gb_losses import LeastAbsoluteError
@@ -103,36 +102,6 @@ def test_sample_weight_init_estimators():
assert_allclose(out, sw_out, rtol=1e-2)
-def test_weighted_percentile():
- y = np.empty(102, dtype=np.float64)
- y[:50] = 0
- y[-51:] = 2
- y[-1] = 100000
- y[50] = 1
- sw = np.ones(102, dtype=np.float64)
- sw[-1] = 0.0
- score = _weighted_percentile(y, sw, 50)
- assert score == 1
-
-
-def test_weighted_percentile_equal():
- y = np.empty(102, dtype=np.float64)
- y.fill(0.0)
- sw = np.ones(102, dtype=np.float64)
- sw[-1] = 0.0
- score = _weighted_percentile(y, sw, 50)
- assert score == 0
-
-
-def test_weighted_percentile_zero_weight():
- y = np.empty(102, dtype=np.float64)
- y.fill(1.0)
- sw = np.ones(102, dtype=np.float64)
- sw.fill(0.0)
- score = _weighted_percentile(y, sw, 50)
- assert score == 1.0
-
-
def test_quantile_loss_function():
# Non regression test for the QuantileLossFunction object
# There was a sign problem when evaluating the function
diff --git a/sklearn/metrics/tests/test_score_objects.py b/sklearn/metrics/tests/test_score_objects.py
index f4ef238983c41..f49197a706e70 100644
--- a/sklearn/metrics/tests/test_score_objects.py
+++ b/sklearn/metrics/tests/test_score_objects.py
@@ -33,7 +33,7 @@
from sklearn.linear_model import Ridge, LogisticRegression, Perceptron
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.datasets import make_blobs
-from sklearn.datasets import make_classification
+from sklearn.datasets import make_classification, make_regression
from sklearn.datasets import make_multilabel_classification
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split, cross_val_score
@@ -89,7 +89,7 @@ def _make_estimators(X_train, y_train, y_ml_train):
# Make estimators that make sense to test various scoring methods
sensible_regr = DecisionTreeRegressor(random_state=0)
# some of the regressions scorers require strictly positive input.
- sensible_regr.fit(X_train, y_train + 1)
+ sensible_regr.fit(X_train, _require_positive_y(y_train))
sensible_clf = DecisionTreeClassifier(random_state=0)
sensible_clf.fit(X_train, y_train)
sensible_ml_clf = DecisionTreeClassifier(random_state=0)
@@ -474,8 +474,9 @@ def test_raises_on_score_list():
@ignore_warnings
-def test_scorer_sample_weight():
- # Test that scorers support sample_weight or raise sensible errors
+def test_classification_scorer_sample_weight():
+ # Test that classification scorers support sample_weight or raise sensible
+ # errors
# Unlike the metrics invariance test, in the scorer case it's harder
# to ensure that, on the classifier output, weighted and unweighted
@@ -493,31 +494,70 @@ def test_scorer_sample_weight():
estimator = _make_estimators(X_train, y_train, y_ml_train)
for name, scorer in SCORERS.items():
+ if name in REGRESSION_SCORERS:
+ # skip the regression scores
+ continue
if name in MULTILABEL_ONLY_SCORERS:
target = y_ml_test
else:
target = y_test
- if name in REQUIRE_POSITIVE_Y_SCORERS:
- target = _require_positive_y(target)
try:
weighted = scorer(estimator[name], X_test, target,
sample_weight=sample_weight)
ignored = scorer(estimator[name], X_test[10:], target[10:])
unweighted = scorer(estimator[name], X_test, target)
assert weighted != unweighted, (
- "scorer {0} behaves identically when "
- "called with sample weights: {1} vs "
- "{2}".format(name, weighted, unweighted))
+ f"scorer {name} behaves identically when called with "
+ f"sample weights: {weighted} vs {unweighted}")
assert_almost_equal(weighted, ignored,
- err_msg="scorer {0} behaves differently when "
- "ignoring samples and setting sample_weight to"
- " 0: {1} vs {2}".format(name, weighted,
- ignored))
+ err_msg=f"scorer {name} behaves differently "
+ f"when ignoring samples and setting "
+ f"sample_weight to 0: {weighted} vs {ignored}")
except TypeError as e:
assert "sample_weight" in str(e), (
- "scorer {0} raises unhelpful exception when called "
- "with sample weights: {1}".format(name, str(e)))
+ f"scorer {name} raises unhelpful exception when called "
+ f"with sample weights: {str(e)}")
+
+
+@ignore_warnings
+def test_regression_scorer_sample_weight():
+ # Test that regression scorers support sample_weight or raise sensible
+ # errors
+
+ # Odd number of test samples req for neg_median_absolute_error
+ X, y = make_regression(n_samples=101, n_features=20, random_state=0)
+ y = _require_positive_y(y)
+ X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
+
+ sample_weight = np.ones_like(y_test)
+ # Odd number req for neg_median_absolute_error
+ sample_weight[:11] = 0
+
+ reg = DecisionTreeRegressor(random_state=0)
+ reg.fit(X_train, y_train)
+
+ for name, scorer in SCORERS.items():
+ if name not in REGRESSION_SCORERS:
+ # skip classification scorers
+ continue
+ try:
+ weighted = scorer(reg, X_test, y_test,
+ sample_weight=sample_weight)
+ ignored = scorer(reg, X_test[11:], y_test[11:])
+ unweighted = scorer(reg, X_test, y_test)
+ assert weighted != unweighted, (
+ f"scorer {name} behaves identically when called with "
+ f"sample weights: {weighted} vs {unweighted}")
+ assert_almost_equal(weighted, ignored,
+ err_msg=f"scorer {name} behaves differently "
+ f"when ignoring samples and setting "
+ f"sample_weight to 0: {weighted} vs {ignored}")
+
+ except TypeError as e:
+ assert "sample_weight" in str(e), (
+ f"scorer {name} raises unhelpful exception when called "
+ f"with sample weights: {str(e)}")
@pytest.mark.parametrize('name', SCORERS)
diff --git a/sklearn/utils/tests/test_stats.py b/sklearn/utils/tests/test_stats.py
new file mode 100644
index 0000000000000..fe0d267393db0
--- /dev/null
+++ b/sklearn/utils/tests/test_stats.py
@@ -0,0 +1,89 @@
+import numpy as np
+from numpy.testing import assert_allclose
+from pytest import approx
+
+from sklearn.utils.stats import _weighted_percentile
+
+
+def test_weighted_percentile():
+ y = np.empty(102, dtype=np.float64)
+ y[:50] = 0
+ y[-51:] = 2
+ y[-1] = 100000
+ y[50] = 1
+ sw = np.ones(102, dtype=np.float64)
+ sw[-1] = 0.0
+ score = _weighted_percentile(y, sw, 50)
+ assert approx(score) == 1
+
+
+def test_weighted_percentile_equal():
+ y = np.empty(102, dtype=np.float64)
+ y.fill(0.0)
+ sw = np.ones(102, dtype=np.float64)
+ sw[-1] = 0.0
+ score = _weighted_percentile(y, sw, 50)
+ assert score == 0
+
+
+def test_weighted_percentile_zero_weight():
+ y = np.empty(102, dtype=np.float64)
+ y.fill(1.0)
+ sw = np.ones(102, dtype=np.float64)
+ sw.fill(0.0)
+ score = _weighted_percentile(y, sw, 50)
+ assert approx(score) == 1.0
+
+
+def test_weighted_median_equal_weights():
+ # Checks weighted percentile=0.5 is same as median when weights equal
+ rng = np.random.RandomState(0)
+ # Odd size as _weighted_percentile takes lower weighted percentile
+ x = rng.randint(10, size=11)
+ weights = np.ones(x.shape)
+
+ median = np.median(x)
+ w_median = _weighted_percentile(x, weights)
+ assert median == approx(w_median)
+
+
+def test_weighted_median_integer_weights():
+ # Checks weighted percentile=0.5 is same as median when manually weight
+ # data
+ rng = np.random.RandomState(0)
+ x = rng.randint(20, size=10)
+ weights = rng.choice(5, size=10)
+ x_manual = np.repeat(x, weights)
+
+ median = np.median(x_manual)
+ w_median = _weighted_percentile(x, weights)
+
+ assert median == approx(w_median)
+
+
+def test_weighted_percentile_2d():
+ # Check for when array 2D and sample_weight 1D
+ rng = np.random.RandomState(0)
+ x1 = rng.randint(10, size=10)
+ w1 = rng.choice(5, size=10)
+
+ x2 = rng.randint(20, size=10)
+ x_2d = np.vstack((x1, x2)).T
+
+ w_median = _weighted_percentile(x_2d, w1)
+ p_axis_0 = [
+ _weighted_percentile(x_2d[:, i], w1)
+ for i in range(x_2d.shape[1])
+ ]
+ assert_allclose(w_median, p_axis_0)
+
+ # Check when array and sample_weight boht 2D
+ w2 = rng.choice(5, size=10)
+ w_2d = np.vstack((w1, w2)).T
+
+ w_median = _weighted_percentile(x_2d, w_2d)
+ p_axis_0 = [
+ _weighted_percentile(x_2d[:, i], w_2d[:, i])
+ for i in range(x_2d.shape[1])
+ ]
+ assert_allclose(w_median, p_axis_0)
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex db6959fcc164f..76ec91d93e264 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -76,7 +76,13 @@ Changelog\n attribute name/path or a `callable` for extracting feature importance from\n the estimator. :pr:`15361` by :user:`Venkatachalam N <venkyyuvy>`\n \n- \n+:mod:`sklearn.metrics`\n+......................\n+\n+- |Enhancement| Add `sample_weight` parameter to\n+ :class:`metrics.median_absolute_error`.\n+ :pr:`17225` by :user:`Lucy Liu <lucyleeow>`.\n+\n :mod:`sklearn.tree`\n ...................\n \n"
}
] |
0.24
|
2f26540ee99cb4519d7471933359913c7be36ac9
|
[
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantile_50[0]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers2-1-1-0]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_root_mean_squared_error]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo-metric1]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[balanced_accuracy]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_sample_weight_init_estimators",
"sklearn/metrics/tests/test_score_objects.py::test_supervised_cluster_scorers",
"sklearn/metrics/tests/test_score_objects.py::test_make_scorer",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[accuracy]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[normalized_mutual_info_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1]",
"sklearn/utils/tests/test_stats.py::test_weighted_percentile_equal",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_sample_weight_deviance",
"sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_samples]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantile_50[1]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo]",
"sklearn/utils/tests/test_stats.py::test_weighted_percentile",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_brier_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_error]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_macro]",
"sklearn/utils/tests/test_stats.py::test_weighted_median_equal_weights",
"sklearn/metrics/tests/test_score_objects.py::test_regression_scorers",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[average_precision]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovr]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers1-1-0-1]",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_gridsearchcv",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_macro]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_log_loss]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_micro]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr_weighted-metric2]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_error]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo_weighted-metric3]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr-metric0]",
"sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_regressor_threshold",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_mutual_info_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[v_measure_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[mutual_info_score]",
"sklearn/metrics/tests/test_score_objects.py::test_regression_scorer_sample_weight",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[homogeneity_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_log_error]",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer_label",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_init_raw_predictions_values",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_gamma_deviance]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantile_50[4]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[fowlkes_mallows_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_poisson_deviance]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_rand_score]",
"sklearn/utils/tests/test_stats.py::test_weighted_median_integer_weights",
"sklearn/metrics/tests/test_score_objects.py::test_classification_scores",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[max_error]",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_quantile_loss_function",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_sample_weight_smoke",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[completeness_score]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_macro]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantile_50[2]",
"sklearn/metrics/tests/test_score_objects.py::test_all_scorers_repr",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_lad_equals_quantile_50[3]",
"sklearn/metrics/tests/test_score_objects.py::test_raises_on_score_list",
"sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_median_absolute_error]",
"sklearn/metrics/tests/test_score_objects.py::test_scoring_is_not_metric",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_init_raw_predictions_shapes",
"sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers0-1-1-1]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_samples]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_weighted]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[explained_variance]",
"sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py::test_binomial_deviance",
"sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_no_proba_scorer_errors[roc_auc_ovo_weighted]",
"sklearn/utils/tests/test_stats.py::test_weighted_percentile_zero_weight",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[r2]",
"sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_samples]"
] |
[
"sklearn/utils/tests/test_stats.py::test_weighted_percentile_2d"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex db6959fcc164f..76ec91d93e264 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -76,7 +76,13 @@ Changelog\n attribute name/path or a `callable` for extracting feature importance from\n the estimator. :pr:`<PRID>` by :user:`<NAME>`\n \n- \n+:mod:`sklearn.metrics`\n+......................\n+\n+- |Enhancement| Add `sample_weight` parameter to\n+ :class:`metrics.median_absolute_error`.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n :mod:`sklearn.tree`\n ...................\n \n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index db6959fcc164f..76ec91d93e264 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -76,7 +76,13 @@ Changelog
attribute name/path or a `callable` for extracting feature importance from
the estimator. :pr:`<PRID>` by :user:`<NAME>`
-
+:mod:`sklearn.metrics`
+......................
+
+- |Enhancement| Add `sample_weight` parameter to
+ :class:`metrics.median_absolute_error`.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
:mod:`sklearn.tree`
...................
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-13900
|
https://github.com/scikit-learn/scikit-learn/pull/13900
|
diff --git a/doc/conf.py b/doc/conf.py
index ccf5dcd068131..b09c5a15b133d 100644
--- a/doc/conf.py
+++ b/doc/conf.py
@@ -356,6 +356,7 @@ def __call__(self, directory):
# discovered properly by sphinx
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.experimental import enable_iterative_imputer # noqa
+from sklearn.experimental import enable_successive_halving # noqa
def make_carousel_thumbs(app, exception):
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index a0ee97aed260a..07fbaf384efd9 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1194,9 +1194,11 @@ Hyper-parameter optimizers
:template: class.rst
model_selection.GridSearchCV
+ model_selection.HalvingGridSearchCV
model_selection.ParameterGrid
model_selection.ParameterSampler
model_selection.RandomizedSearchCV
+ model_selection.HalvingRandomSearchCV
Model validation
diff --git a/doc/modules/grid_search.rst b/doc/modules/grid_search.rst
index 9d6c1c7e58170..c88a6eb986b5a 100644
--- a/doc/modules/grid_search.rst
+++ b/doc/modules/grid_search.rst
@@ -30,14 +30,18 @@ A search consists of:
- a cross-validation scheme; and
- a :ref:`score function <gridsearch_scoring>`.
-Some models allow for specialized, efficient parameter search strategies,
-:ref:`outlined below <alternative_cv>`.
-Two generic approaches to sampling search candidates are provided in
+Two generic approaches to parameter search are provided in
scikit-learn: for given values, :class:`GridSearchCV` exhaustively considers
all parameter combinations, while :class:`RandomizedSearchCV` can sample a
given number of candidates from a parameter space with a specified
-distribution. After describing these tools we detail
-:ref:`best practice <grid_search_tips>` applicable to both approaches.
+distribution. Both these tools have successive halving counterparts
+:class:`HalvingGridSearchCV` and :class:`HalvingRandomSearchCV`, which can be
+much faster at finding a good parameter combination.
+
+After describing these tools we detail :ref:`best practices
+<grid_search_tips>` applicable to these approaches. Some models allow for
+specialized, efficient parameter search strategies, outlined in
+:ref:`alternative_cv`.
Note that it is common that a small subset of those parameters can have a large
impact on the predictive or computation performance of the model while others
@@ -167,6 +171,373 @@ variable that is log-uniformly distributed between ``1e0`` and ``1e3``::
Random search for hyper-parameter optimization,
The Journal of Machine Learning Research (2012)
+.. _successive_halving_user_guide:
+
+Searching for optimal parameters with successive halving
+========================================================
+
+Scikit-learn also provides the :class:`HalvingGridSearchCV` and
+:class:`HalvingRandomSearchCV` estimators that can be used to
+search a parameter space using successive halving [1]_ [2]_. Successive
+halving (SH) is like a tournament among candidate parameter combinations.
+SH is an iterative selection process where all candidates (the
+parameter combinations) are evaluated with a small amount of resources at
+the first iteration. Only some of these candidates are selected for the next
+iteration, which will be allocated more resources. For parameter tuning, the
+resource is typically the number of training samples, but it can also be an
+arbitrary numeric parameter such as `n_estimators` in a random forest.
+
+As illustrated in the figure below, only a subset of candidates
+'survive' until the last iteration. These are the candidates that have
+consistently ranked among the top-scoring candidates across all iterations.
+Each iteration is allocated an increasing amount of resources per candidate,
+here the number of samples.
+
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_successive_halving_iterations_001.png
+ :target: ../auto_examples/model_selection/plot_successive_halving_iterations.html
+ :align: center
+
+We here briefly describe the main parameters, but each parameter and their
+interactions are described in more details in the sections below. The
+``factor`` (> 1) parameter controls the rate at which the resources grow, and
+the rate at which the number of candidates decreases. In each iteration, the
+number of resources per candidate is multiplied by ``factor`` and the number
+of candidates is divided by the same factor. Along with ``resource`` and
+``min_resources``, ``factor`` is the most important parameter to control the
+search in our implementation, though a value of 3 usually works well.
+``factor`` effectively controls the number of iterations in
+:class:`HalvingGridSearchCV` and the number of candidates (by default) and
+iterations in :class:`HalvingRandomSearchCV`. ``aggressive_elimination=True``
+can also be used if the number of available resources is small. More control
+is available through tuning the ``min_resources`` parameter.
+
+These estimators are still **experimental**: their predictions
+and their API might change without any deprecation cycle. To use them, you
+need to explicitly import ``enable_successive_halving``::
+
+ >>> # explicitly require this experimental feature
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> # now you can import normally from model_selection
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+ >>> from sklearn.model_selection import HalvingRandomSearchCV
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_heatmap.py`
+ * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_iterations.py`
+
+Choosing ``min_resources`` and the number of candidates
+-------------------------------------------------------
+
+Beside ``factor``, the two main parameters that influence the behaviour of a
+successive halving search are the ``min_resources`` parameter, and the
+number of candidates (or parameter combinations) that are evaluated.
+``min_resources`` is the amount of resources allocated at the first
+iteration for each candidate. The number of candidates is specified directly
+in :class:`HalvingRandomSearchCV`, and is determined from the ``param_grid``
+parameter of :class:`HalvingGridSearchCV`.
+
+Consider a case where the resource is the number of samples, and where we
+have 1000 samples. In theory, with ``min_resources=10`` and ``factor=2``, we
+are able to run **at most** 7 iterations with the following number of
+samples: ``[10, 20, 40, 80, 160, 320, 640]``.
+
+But depending on the number of candidates, we might run less than 7
+iterations: if we start with a **small** number of candidates, the last
+iteration might use less than 640 samples, which means not using all the
+available resources (samples). For example if we start with 5 candidates, we
+only need 2 iterations: 5 candidates for the first iteration, then
+`5 // 2 = 2` candidates at the second iteration, after which we know which
+candidate performs the best (so we don't need a third one). We would only be
+using at most 20 samples which is a waste since we have 1000 samples at our
+disposal. On the other hand, if we start with a **high** number of
+candidates, we might end up with a lot of candidates at the last iteration,
+which may not always be ideal: it means that many candidates will run with
+the full resources, basically reducing the procedure to standard search.
+
+In the case of :class:`HalvingRandomSearchCV`, the number of candidates is set
+by default such that the last iteration uses as much of the available
+resources as possible. For :class:`HalvingGridSearchCV`, the number of
+candidates is determined by the `param_grid` parameter. Changing the value of
+``min_resources`` will impact the number of possible iterations, and as a
+result will also have an effect on the ideal number of candidates.
+
+Another consideration when choosing ``min_resources`` is whether or not it
+is easy to discriminate between good and bad candidates with a small amount
+of resources. For example, if you need a lot of samples to distinguish
+between good and bad parameters, a high ``min_resources`` is recommended. On
+the other hand if the distinction is clear even with a small amount of
+samples, then a small ``min_resources`` may be preferable since it would
+speed up the computation.
+
+Notice in the example above that the last iteration does not use the maximum
+amount of resources available: 1000 samples are available, yet only 640 are
+used, at most. By default, both :class:`HalvingRandomSearchCV` and
+:class:`HalvingGridSearchCV` try to use as many resources as possible in the
+last iteration, with the constraint that this amount of resources must be a
+multiple of both `min_resources` and `factor` (this constraint will be clear
+in the next section). :class:`HalvingRandomSearchCV` achieves this by
+sampling the right amount of candidates, while :class:`HalvingGridSearchCV`
+achieves this by properly setting `min_resources`. Please see
+:ref:`exhausting_the_resources` for details.
+
+.. _amount_of_resource_and_number_of_candidates:
+
+Amount of resource and number of candidates at each iteration
+-------------------------------------------------------------
+
+At any iteration `i`, each candidate is allocated a given amount of resources
+which we denote `n_resources_i`. This quantity is controlled by the
+parameters ``factor`` and ``min_resources`` as follows (`factor` is strictly
+greater than 1)::
+
+ n_resources_i = factor**i * min_resources,
+
+or equivalently::
+
+ n_resources_{i+1} = n_resources_i * factor
+
+where ``min_resources == n_resources_0`` is the amount of resources used at
+the first iteration. ``factor`` also defines the proportions of candidates
+that will be selected for the next iteration::
+
+ n_candidates_i = n_candidates // (factor ** i)
+
+or equivalently::
+
+ n_candidates_0 = n_candidates
+ n_candidates_{i+1} = n_candidates_i // factor
+
+So in the first iteration, we use ``min_resources`` resources
+``n_candidates`` times. In the second iteration, we use ``min_resources *
+factor`` resources ``n_candidates // factor`` times. The third again
+multiplies the resources per candidate and divides the number of candidates.
+This process stops when the maximum amount of resource per candidate is
+reached, or when we have identified the best candidate. The best candidate
+is identified at the iteration that is evaluating `factor` or less candidates
+(see just below for an explanation).
+
+Here is an example with ``min_resources=3`` and ``factor=2``, starting with
+70 candidates:
+
++-----------------------+-----------------------+
+| ``n_resources_i`` | ``n_candidates_i`` |
++=======================+=======================+
+| 3 (=min_resources) | 70 (=n_candidates) |
++-----------------------+-----------------------+
+| 3 * 2 = 6 | 70 // 2 = 35 |
++-----------------------+-----------------------+
+| 6 * 2 = 12 | 35 // 2 = 17 |
++-----------------------+-----------------------+
+| 12 * 2 = 24 | 17 // 2 = 8 |
++-----------------------+-----------------------+
+| 24 * 2 = 48 | 8 // 2 = 4 |
++-----------------------+-----------------------+
+| 48 * 2 = 96 | 4 // 2 = 2 |
++-----------------------+-----------------------+
+
+We can note that:
+
+- the process stops at the first iteration which evaluates `factor=2`
+ candidates: the best candidate is the best out of these 2 candidates. It
+ is not necessary to run an additional iteration, since it would only
+ evaluate one candidate (namely the best one, which we have already
+ identified). For this reason, in general, we want the last iteration to
+ run at most ``factor`` candidates. If the last iteration evaluates more
+ than `factor` candidates, then this last iteration reduces to a regular
+ search (as in :class:`RandomizedSearchCV` or :class:`GridSearchCV`).
+- each ``n_resources_i`` is a multiple of both ``factor`` and
+ ``min_resources`` (which is confirmed by its definition above).
+
+The amount of resources that is used at each iteration can be found in the
+`n_resources_` attribute.
+
+Choosing a resource
+-------------------
+
+By default, the resource is defined in terms of number of samples. That is,
+each iteration will use an increasing amount of samples to train on. You can
+however manually specify a parameter to use as the resource with the
+``resource`` parameter. Here is an example where the resource is defined in
+terms of the number of estimators of a random forest::
+
+ >>> from sklearn.datasets import make_classification
+ >>> from sklearn.ensemble import RandomForestClassifier
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+ >>> import pandas as pd
+ >>>
+ >>> param_grid = {'max_depth': [3, 5, 10],
+ ... 'min_samples_split': [2, 5, 10]}
+ >>> base_estimator = RandomForestClassifier(random_state=0)
+ >>> X, y = make_classification(n_samples=1000, random_state=0)
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2, resource='n_estimators',
+ ... max_resources=30).fit(X, y)
+ >>> sh.best_estimator_
+ RandomForestClassifier(max_depth=5, n_estimators=24, random_state=0)
+
+Note that it is not possible to budget on a parameter that is part of the
+parameter grid.
+
+.. _exhausting_the_resources:
+
+Exhausting the available resources
+----------------------------------
+
+As mentioned above, the number of resources that is used at each iteration
+depends on the `min_resources` parameter.
+If you have a lot of resources available but start with a low number of
+resources, some of them might be wasted (i.e. not used)::
+
+ >>> from sklearn.datasets import make_classification
+ >>> from sklearn.svm import SVC
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+ >>> import pandas as pd
+ >>> param_grid= {'kernel': ('linear', 'rbf'),
+ ... 'C': [1, 10, 100]}
+ >>> base_estimator = SVC(gamma='scale')
+ >>> X, y = make_classification(n_samples=1000)
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2, min_resources=20).fit(X, y)
+ >>> sh.n_resources_
+ [20, 40, 80]
+
+The search process will only use 80 resources at most, while our maximum
+amount of available resources is ``n_samples=1000``. Here, we have
+``min_resources = r_0 = 20``.
+
+For :class:`HalvingGridSearchCV`, by default, the `min_resources` parameter
+is set to 'exhaust'. This means that `min_resources` is automatically set
+such that the last iteration can use as many resources as possible, within
+the `max_resources` limit::
+
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2, min_resources='exhaust').fit(X, y)
+ >>> sh.n_resources_
+ [250, 500, 1000]
+
+`min_resources` was here automatically set to 250, which results in the last
+iteration using all the resources. The exact value that is used depends on
+the number of candidate parameter, on `max_resources` and on `factor`.
+
+For :class:`HalvingRandomSearchCV`, exhausting the resources can be done in 2
+ways:
+
+- by setting `min_resources='exhaust'`, just like for
+ :class:`HalvingGridSearchCV`;
+- by setting `n_candidates='exhaust'`.
+
+Both options are mutally exclusive: using `min_resources='exhaust'` requires
+knowing the number of candidates, and symmetrically `n_candidates='exhaust'`
+requires knowing `min_resources`.
+
+In general, exhausting the total number of resources leads to a better final
+candidate parameter, and is slightly more time-intensive.
+
+.. _aggressive_elimination:
+
+Aggressive elimination of candidates
+------------------------------------
+
+Ideally, we want the last iteration to evaluate ``factor`` candidates (see
+:ref:`amount_of_resource_and_number_of_candidates`). We then just have to
+pick the best one. When the number of available resources is small with
+respect to the number of candidates, the last iteration may have to evaluate
+more than ``factor`` candidates::
+
+ >>> from sklearn.datasets import make_classification
+ >>> from sklearn.svm import SVC
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+ >>> import pandas as pd
+ >>>
+ >>>
+ >>> param_grid = {'kernel': ('linear', 'rbf'),
+ ... 'C': [1, 10, 100]}
+ >>> base_estimator = SVC(gamma='scale')
+ >>> X, y = make_classification(n_samples=1000)
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2, max_resources=40,
+ ... aggressive_elimination=False).fit(X, y)
+ >>> sh.n_resources_
+ [20, 40]
+ >>> sh.n_candidates_
+ [6, 3]
+
+Since we cannot use more than ``max_resources=40`` resources, the process
+has to stop at the second iteration which evaluates more than ``factor=2``
+candidates.
+
+Using the ``aggressive_elimination`` parameter, you can force the search
+process to end up with less than ``factor`` candidates at the last
+iteration. To do this, the process will eliminate as many candidates as
+necessary using ``min_resources`` resources::
+
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2,
+ ... max_resources=40,
+ ... aggressive_elimination=True,
+ ... ).fit(X, y)
+ >>> sh.n_resources_
+ [20, 20, 40]
+ >>> sh.n_candidates_
+ [6, 3, 2]
+
+Notice that we end with 2 candidates at the last iteration since we have
+eliminated enough candidates during the first iterations, using ``n_resources =
+min_resources = 20``.
+
+.. _successive_halving_cv_results:
+
+Analysing results with the `cv_results_` attribute
+--------------------------------------------------
+
+The ``cv_results_`` attribute contains useful information for analysing the
+results of a search. It can be converted to a pandas dataframe with ``df =
+pd.DataFrame(est.cv_results_)``. The ``cv_results_`` attribute of
+:class:`HalvingGridSearchCV` and :class:`HalvingRandomSearchCV` is similar
+to that of :class:`GridSearchCV` and :class:`RandomizedSearchCV`, with
+additional information related to the successive halving process.
+
+Here is an example with some of the columns of a (truncated) dataframe:
+
+==== ====== =============== ================= =======================================================================================
+ .. iter n_resources mean_test_score params
+==== ====== =============== ================= =======================================================================================
+ 0 0 125 0.983667 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 5}
+ 1 0 125 0.983667 {'criterion': 'gini', 'max_depth': None, 'max_features': 8, 'min_samples_split': 7}
+ 2 0 125 0.983667 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 10}
+ 3 0 125 0.983667 {'criterion': 'entropy', 'max_depth': None, 'max_features': 6, 'min_samples_split': 6}
+ ... ... ... ... ...
+ 15 2 500 0.951958 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}
+ 16 2 500 0.947958 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 10}
+ 17 2 500 0.951958 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 4}
+ 18 3 1000 0.961009 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}
+ 19 3 1000 0.955989 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 4}
+==== ====== =============== ================= =======================================================================================
+
+Each row corresponds to a given parameter combination (a candidate) and a given
+iteration. The iteration is given by the ``iter`` column. The ``n_resources``
+column tells you how many resources were used.
+
+In the example above, the best parameter combination is ``{'criterion':
+'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}``
+since it has reached the last iteration (3) with the highest score:
+0.96.
+
+.. topic:: References:
+
+ .. [1] K. Jamieson, A. Talwalkar,
+ `Non-stochastic Best Arm Identification and Hyperparameter
+ Optimization <http://proceedings.mlr.press/v51/jamieson16.html>`_, in
+ proc. of Machine Learning Research, 2016.
+ .. [2] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar,
+ `Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
+ <https://arxiv.org/abs/1603.06560>`_, in Machine Learning Research
+ 18, 2018.
+
.. _grid_search_tips:
Tips for parameter search
@@ -183,18 +554,16 @@ to evaluate a parameter setting. These are the
:func:`sklearn.metrics.r2_score` for regression. For some applications,
other scoring functions are better suited (for example in unbalanced
classification, the accuracy score is often uninformative). An alternative
-scoring function can be specified via the ``scoring`` parameter to
-:class:`GridSearchCV`, :class:`RandomizedSearchCV` and many of the
-specialized cross-validation tools described below.
-See :ref:`scoring_parameter` for more details.
+scoring function can be specified via the ``scoring`` parameter of most
+parameter search tools. See :ref:`scoring_parameter` for more details.
.. _multimetric_grid_search:
Specifying multiple metrics for evaluation
------------------------------------------
-``GridSearchCV`` and ``RandomizedSearchCV`` allow specifying multiple metrics
-for the ``scoring`` parameter.
+:class:`GridSearchCV` and :class:`RandomizedSearchCV` allow specifying
+multiple metrics for the ``scoring`` parameter.
Multimetric scoring can either be specified as a list of strings of predefined
scores names or a dict mapping the scorer name to the scorer function and/or
@@ -209,6 +578,9 @@ result in an error when using multiple metrics.
See :ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py`
for an example usage.
+:class:`HalvingRandomSearchCV` and :class:`HalvingGridSearchCV` do not support
+multimetric scoring.
+
.. _composite_grid_search:
Composite estimators and parameter spaces
@@ -253,6 +625,8 @@ levels of nesting::
... 'model__base_estimator__max_depth': [2, 4, 6, 8]}
>>> search = GridSearchCV(pipe, param_grid, cv=5).fit(X, y)
+Please refer to :ref:`pipeline` for performing parameter searches over
+pipelines.
Model selection: development and evaluation
-------------------------------------------
@@ -263,7 +637,7 @@ to use the labeled data to "train" the parameters of the grid.
When evaluating the resulting model it is important to do it on
held-out samples that were not seen during the grid search process:
it is recommended to split the data into a **development set** (to
-be fed to the ``GridSearchCV`` instance) and an **evaluation set**
+be fed to the :class:`GridSearchCV` instance) and an **evaluation set**
to compute performance metrics.
This can be done by using the :func:`train_test_split`
@@ -272,10 +646,10 @@ utility function.
Parallelism
-----------
-:class:`GridSearchCV` and :class:`RandomizedSearchCV` evaluate each parameter
-setting independently. Computations can be run in parallel if your OS
-supports it, by using the keyword ``n_jobs=-1``. See function signature for
-more details.
+The parameter search tools evaluate each parameter combination on each data
+fold independently. Computations can be run in parallel by using the keyword
+``n_jobs=-1``. See function signature for more details, and also the Glossary
+entry for :term:`n_jobs`.
Robustness to failure
---------------------
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index c57f097ec3218..e757fee299af7 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -412,6 +412,14 @@ Changelog
:pr:`17478` by :user:`Teon Brooks <teonbrooks>` and
:user:`Mohamed Maskani <maskani-moh>`.
+- |Feature| Added (experimental) parameter search estimators
+ :class:`model_selection.HalvingRandomSearchCV` and
+ :class:`model_selection.HalvingGridSearchCV` which implement Successive
+ Halving, and can be used as a drop-in replacements for
+ :class:`model_selection.RandomizedSearchCV` and
+ :class:`model_selection.GridSearchCV`. :pr:`13900` by `Nicolas Hug`_, `Joel
+ Nothman`_ and `Andreas Müller`_.
+
- |Fix| Fixed the `len` of :class:`model_selection.ParameterSampler` when
all distributions are lists and `n_iter` is more than the number of unique
parameter combinations. :pr:`18222` by `Nicolas Hug`_.
diff --git a/examples/model_selection/plot_successive_halving_heatmap.py b/examples/model_selection/plot_successive_halving_heatmap.py
new file mode 100644
index 0000000000000..6964fafd77811
--- /dev/null
+++ b/examples/model_selection/plot_successive_halving_heatmap.py
@@ -0,0 +1,122 @@
+"""
+Comparison between grid search and successive halving
+=====================================================
+
+This example compares the parameter search performed by
+:class:`~sklearn.model_selection.HalvingGridSearchCV` and
+:class:`~sklearn.model_selection.GridSearchCV`.
+
+"""
+from time import time
+
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+
+from sklearn.svm import SVC
+from sklearn import datasets
+from sklearn.model_selection import GridSearchCV
+from sklearn.experimental import enable_successive_halving # noqa
+from sklearn.model_selection import HalvingGridSearchCV
+
+
+print(__doc__)
+
+# %%
+# We first define the parameter space for an :class:`~sklearn.svm.SVC`
+# estimator, and compute the time required to train a
+# :class:`~sklearn.model_selection.HalvingGridSearchCV` instance, as well as a
+# :class:`~sklearn.model_selection.GridSearchCV` instance.
+
+rng = np.random.RandomState(0)
+X, y = datasets.make_classification(n_samples=1000, random_state=rng)
+
+gammas = [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7]
+Cs = [1, 10, 100, 1e3, 1e4, 1e5]
+param_grid = {'gamma': gammas, 'C': Cs}
+
+clf = SVC(random_state=rng)
+
+tic = time()
+gsh = HalvingGridSearchCV(estimator=clf, param_grid=param_grid, factor=2,
+ random_state=rng)
+gsh.fit(X, y)
+gsh_time = time() - tic
+
+tic = time()
+gs = GridSearchCV(estimator=clf, param_grid=param_grid)
+gs.fit(X, y)
+gs_time = time() - tic
+
+# %%
+# We now plot heatmaps for both search estimators.
+
+
+def make_heatmap(ax, gs, is_sh=False, make_cbar=False):
+ """Helper to make a heatmap."""
+ results = pd.DataFrame.from_dict(gs.cv_results_)
+ results['params_str'] = results.params.apply(str)
+ if is_sh:
+ # SH dataframe: get mean_test_score values for the highest iter
+ scores_matrix = results.sort_values('iter').pivot_table(
+ index='param_gamma', columns='param_C',
+ values='mean_test_score', aggfunc='last'
+ )
+ else:
+ scores_matrix = results.pivot(index='param_gamma', columns='param_C',
+ values='mean_test_score')
+
+ im = ax.imshow(scores_matrix)
+
+ ax.set_xticks(np.arange(len(Cs)))
+ ax.set_xticklabels(['{:.0E}'.format(x) for x in Cs])
+ ax.set_xlabel('C', fontsize=15)
+
+ ax.set_yticks(np.arange(len(gammas)))
+ ax.set_yticklabels(['{:.0E}'.format(x) for x in gammas])
+ ax.set_ylabel('gamma', fontsize=15)
+
+ # Rotate the tick labels and set their alignment.
+ plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
+ rotation_mode="anchor")
+
+ if is_sh:
+ iterations = results.pivot_table(index='param_gamma',
+ columns='param_C', values='iter',
+ aggfunc='max').values
+ for i in range(len(gammas)):
+ for j in range(len(Cs)):
+ ax.text(j, i, iterations[i, j],
+ ha="center", va="center", color="w", fontsize=20)
+
+ if make_cbar:
+ fig.subplots_adjust(right=0.8)
+ cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
+ fig.colorbar(im, cax=cbar_ax)
+ cbar_ax.set_ylabel('mean_test_score', rotation=-90, va="bottom",
+ fontsize=15)
+
+
+fig, axes = plt.subplots(ncols=2, sharey=True)
+ax1, ax2 = axes
+
+make_heatmap(ax1, gsh, is_sh=True)
+make_heatmap(ax2, gs, make_cbar=True)
+
+ax1.set_title('Successive Halving\ntime = {:.3f}s'.format(gsh_time),
+ fontsize=15)
+ax2.set_title('GridSearch\ntime = {:.3f}s'.format(gs_time), fontsize=15)
+
+plt.show()
+
+# %%
+# The heatmaps show the mean test score of the parameter combinations for an
+# :class:`~sklearn.svm.SVC` instance. The
+# :class:`~sklearn.model_selection.HalvingGridSearchCV` also shows the
+# iteration at which the combinations where last used. The combinations marked
+# as ``0`` were only evaluated at the first iteration, while the ones with
+# ``5`` are the parameter combinations that are considered the best ones.
+#
+# We can see that the :class:`~sklearn.model_selection.HalvingGridSearchCV`
+# class is able to find parameter combinations that are just as accurate as
+# :class:`~sklearn.model_selection.GridSearchCV`, in much less time.
diff --git a/examples/model_selection/plot_successive_halving_iterations.py b/examples/model_selection/plot_successive_halving_iterations.py
new file mode 100644
index 0000000000000..17723710be7d6
--- /dev/null
+++ b/examples/model_selection/plot_successive_halving_iterations.py
@@ -0,0 +1,84 @@
+"""
+Successive Halving Iterations
+=============================
+
+This example illustrates how a successive halving search (
+:class:`~sklearn.model_selection.HalvingGridSearchCV` and
+:class:`~sklearn.model_selection.HalvingRandomSearchCV`) iteratively chooses
+the best parameter combination out of multiple candidates.
+
+"""
+import pandas as pd
+from sklearn import datasets
+import matplotlib.pyplot as plt
+from scipy.stats import randint
+import numpy as np
+
+from sklearn.experimental import enable_successive_halving # noqa
+from sklearn.model_selection import HalvingRandomSearchCV
+from sklearn.ensemble import RandomForestClassifier
+
+
+print(__doc__)
+
+# %%
+# We first define the parameter space and train a
+# :class:`~sklearn.model_selection.HalvingRandomSearchCV` instance.
+
+rng = np.random.RandomState(0)
+
+X, y = datasets.make_classification(n_samples=700, random_state=rng)
+
+clf = RandomForestClassifier(n_estimators=20, random_state=rng)
+
+param_dist = {"max_depth": [3, None],
+ "max_features": randint(1, 11),
+ "min_samples_split": randint(2, 11),
+ "bootstrap": [True, False],
+ "criterion": ["gini", "entropy"]}
+
+rsh = HalvingRandomSearchCV(
+ estimator=clf,
+ param_distributions=param_dist,
+ factor=2,
+ random_state=rng)
+rsh.fit(X, y)
+
+# %%
+# We can now use the `cv_results_` attribute of the search estimator to inspect
+# and plot the evolution of the search.
+
+results = pd.DataFrame(rsh.cv_results_)
+results['params_str'] = results.params.apply(str)
+results.drop_duplicates(subset=('params_str', 'iter'), inplace=True)
+mean_scores = results.pivot(index='iter', columns='params_str',
+ values='mean_test_score')
+ax = mean_scores.plot(legend=False, alpha=.6)
+
+labels = [
+ f'iter={i}\nn_samples={rsh.n_resources_[i]}\n'
+ f'n_candidates={rsh.n_candidates_[i]}'
+ for i in range(rsh.n_iterations_)
+]
+ax.set_xticklabels(labels, rotation=45, multialignment='left')
+ax.set_title('Scores of candidates over iterations')
+ax.set_ylabel('mean test score', fontsize=15)
+ax.set_xlabel('iterations', fontsize=15)
+plt.tight_layout()
+plt.show()
+
+# %%
+# Number of candidates and amount of resource at each iteration
+# -------------------------------------------------------------
+#
+# At the first iteration, a small amount of resources is used. The resource
+# here is the number of samples that the estimators are trained on. All
+# candidates are evaluated.
+#
+# At the second iteration, only the best half of the candidates is evaluated.
+# The number of allocated resources is doubled: candidates are evaluated on
+# twice as many samples.
+#
+# This process is repeated until the last iteration, where only 2 candidates
+# are left. The best candidate is the candidate that has the best score at the
+# last iteration.
diff --git a/sklearn/experimental/enable_successive_halving.py b/sklearn/experimental/enable_successive_halving.py
new file mode 100644
index 0000000000000..147a622d4fdae
--- /dev/null
+++ b/sklearn/experimental/enable_successive_halving.py
@@ -0,0 +1,35 @@
+"""Enables Successive Halving search-estimators
+
+The API and results of these estimators might change without any deprecation
+cycle.
+
+Importing this file dynamically sets the
+:class:`~sklearn.model_selection.HalvingRandomSearchCV` and
+:class:`~sklearn.model_selection.HalvingGridSearchCV` as attributes of the
+`model_selection` module::
+
+ >>> # explicitly require this experimental feature
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> # now you can import normally from model_selection
+ >>> from sklearn.model_selection import HalvingRandomSearchCV
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+
+
+The ``# noqa`` comment comment can be removed: it just tells linters like
+flake8 to ignore the import, which appears as unused.
+"""
+
+from ..model_selection._search_successive_halving import (
+ HalvingRandomSearchCV,
+ HalvingGridSearchCV
+)
+
+from .. import model_selection
+
+# use settattr to avoid mypy errors when monkeypatching
+setattr(model_selection, "HalvingRandomSearchCV",
+ HalvingRandomSearchCV)
+setattr(model_selection, "HalvingGridSearchCV",
+ HalvingGridSearchCV)
+
+model_selection.__all__ += ['HalvingRandomSearchCV', 'HalvingGridSearchCV']
diff --git a/sklearn/model_selection/__init__.py b/sklearn/model_selection/__init__.py
index 82a9b9371710d..897183414b5a6 100644
--- a/sklearn/model_selection/__init__.py
+++ b/sklearn/model_selection/__init__.py
@@ -1,3 +1,5 @@
+import typing
+
from ._split import BaseCrossValidator
from ._split import KFold
from ._split import GroupKFold
@@ -29,7 +31,15 @@
from ._search import ParameterSampler
from ._search import fit_grid_point
-__all__ = ('BaseCrossValidator',
+if typing.TYPE_CHECKING:
+ # Avoid errors in type checkers (e.g. mypy) for experimental estimators.
+ # TODO: remove this check once the estimator is no longer experimental.
+ from ._search_successive_halving import ( # noqa
+ HalvingGridSearchCV, HalvingRandomSearchCV
+ )
+
+
+__all__ = ['BaseCrossValidator',
'GridSearchCV',
'TimeSeriesSplit',
'KFold',
@@ -56,4 +66,4 @@
'learning_curve',
'permutation_test_score',
'train_test_split',
- 'validation_curve')
+ 'validation_curve']
diff --git a/sklearn/model_selection/_search.py b/sklearn/model_selection/_search.py
index 37296686b9369..cade49345d539 100644
--- a/sklearn/model_selection/_search.py
+++ b/sklearn/model_selection/_search.py
@@ -641,13 +641,39 @@ def _run_search(self, evaluate_candidates):
collected evaluation results. This makes it possible to implement
Bayesian optimization or more generally sequential model-based
optimization by deriving from the BaseSearchCV abstract base class.
+ For example, Successive Halving is implemented by calling
+ `evaluate_candidates` multiples times (once per iteration of the SH
+ process), each time passing a different set of candidates with `X`
+ and `y` of increasing sizes.
Parameters
----------
evaluate_candidates : callable
- This callback accepts a list of candidates, where each candidate is
- a dict of parameter settings. It returns a dict of all results so
- far, formatted like ``cv_results_``.
+ This callback accepts:
+ - a list of candidates, where each candidate is a dict of
+ parameter settings.
+ - an optional `cv` parameter which can be used to e.g.
+ evaluate candidates on different dataset splits, or
+ evaluate candidates on subsampled data (as done in the
+ SucessiveHaling estimators). By default, the original `cv`
+ parameter is used, and it is available as a private
+ `_checked_cv_orig` attribute.
+ - an optional `more_results` dict. Each key will be added to
+ the `cv_results_` attribute. Values should be lists of
+ length `n_candidates`
+
+ It returns a dict of all results so far, formatted like
+ ``cv_results_``.
+
+ Important note (relevant whether the default cv is used or not):
+ in randomized splitters, and unless the random_state parameter of
+ cv was set to an int, calling cv.split() multiple times will
+ yield different splits. Since cv.split() is called in
+ evaluate_candidates, this means that candidates will be evaluated
+ on different splits each time evaluate_candidates is called. This
+ might be a methodological issue depending on the search strategy
+ that you're implementing. To prevent randomized splitters from
+ being used, you may use _split._yields_constant_splits()
Examples
--------
@@ -705,8 +731,6 @@ def fit(self, X, y=None, *, groups=None, **fit_params):
Parameters passed to the ``fit`` method of the estimator
"""
estimator = self.estimator
- cv = check_cv(self.cv, y, classifier=is_classifier(estimator))
-
refit_metric = "score"
if callable(self.scoring):
@@ -721,7 +745,8 @@ def fit(self, X, y=None, *, groups=None, **fit_params):
X, y, groups = indexable(X, y, groups)
fit_params = _check_fit_params(X, fit_params)
- n_splits = cv.get_n_splits(X, y, groups)
+ cv_orig = check_cv(self.cv, y, classifier=is_classifier(estimator))
+ n_splits = cv_orig.get_n_splits(X, y, groups)
base_estimator = clone(self.estimator)
@@ -740,8 +765,11 @@ def fit(self, X, y=None, *, groups=None, **fit_params):
with parallel:
all_candidate_params = []
all_out = []
+ all_more_results = defaultdict(list)
- def evaluate_candidates(candidate_params):
+ def evaluate_candidates(candidate_params, cv=None,
+ more_results=None):
+ cv = cv or cv_orig
candidate_params = list(candidate_params)
n_candidates = len(candidate_params)
@@ -785,10 +813,15 @@ def evaluate_candidates(candidate_params):
_insert_error_scores(out, self.error_score)
all_candidate_params.extend(candidate_params)
all_out.extend(out)
+ if more_results is not None:
+ for key, value in more_results.items():
+ all_more_results[key].extend(value)
nonlocal results
results = self._format_results(
- all_candidate_params, n_splits, all_out)
+ all_candidate_params, n_splits, all_out,
+ all_more_results)
+
return results
self._run_search(evaluate_candidates)
@@ -844,11 +877,12 @@ def evaluate_candidates(candidate_params):
return self
- def _format_results(self, candidate_params, n_splits, out):
+ def _format_results(self, candidate_params, n_splits, out,
+ more_results=None):
n_candidates = len(candidate_params)
out = _aggregate_score_dicts(out)
- results = {}
+ results = dict(more_results or {})
def _store(key_name, array, weights=None, splits=False, rank=False):
"""A small helper to store the scores/times to the cv_results_"""
diff --git a/sklearn/model_selection/_search_successive_halving.py b/sklearn/model_selection/_search_successive_halving.py
new file mode 100644
index 0000000000000..064948a30f006
--- /dev/null
+++ b/sklearn/model_selection/_search_successive_halving.py
@@ -0,0 +1,910 @@
+from math import ceil, floor, log
+from abc import abstractmethod
+from numbers import Integral
+
+import numpy as np
+from ._search import _check_param_grid
+from ._search import BaseSearchCV
+from . import ParameterGrid, ParameterSampler
+from ..utils.validation import _num_samples
+from ..base import is_classifier
+from ._split import check_cv, _yields_constant_splits
+from ..utils import resample
+
+
+__all__ = ['HalvingGridSearchCV', 'HalvingRandomSearchCV']
+
+
+class _SubsampleMetaSplitter:
+ """Splitter that subsamples a given fraction of the dataset"""
+ def __init__(self, *, base_cv, fraction, subsample_test, random_state):
+ self.base_cv = base_cv
+ self.fraction = fraction
+ self.subsample_test = subsample_test
+ self.random_state = random_state
+
+ def split(self, X, y, groups=None):
+ for train_idx, test_idx in self.base_cv.split(X, y, groups):
+ train_idx = resample(
+ train_idx, replace=False, random_state=self.random_state,
+ n_samples=int(self.fraction * train_idx.shape[0])
+ )
+ if self.subsample_test:
+ test_idx = resample(
+ test_idx, replace=False, random_state=self.random_state,
+ n_samples=int(self.fraction * test_idx.shape[0])
+ )
+ yield train_idx, test_idx
+
+
+def _refit_callable(results):
+ # Custom refit callable to return the index of the best candidate. We want
+ # the best candidate out of the last iteration. By default BaseSearchCV
+ # would return the best candidate out of all iterations.
+
+ last_iter = np.max(results['iter'])
+ last_iter_indices = np.flatnonzero(results['iter'] == last_iter)
+ best_idx = np.argmax(results['mean_test_score'][last_iter_indices])
+ return last_iter_indices[best_idx]
+
+
+def _top_k(results, k, itr):
+ # Return the best candidates of a given iteration
+ iteration, mean_test_score, params = (
+ np.asarray(a) for a in (results['iter'],
+ results['mean_test_score'],
+ results['params'])
+ )
+ iter_indices = np.flatnonzero(iteration == itr)
+ sorted_indices = np.argsort(mean_test_score[iter_indices])
+ return np.array(params[iter_indices][sorted_indices[-k:]])
+
+
+class BaseSuccessiveHalving(BaseSearchCV):
+ """Implements successive halving.
+
+ Ref:
+ Almost optimal exploration in multi-armed bandits, ICML 13
+ Zohar Karnin, Tomer Koren, Oren Somekh
+ """
+ def __init__(self, estimator, *, scoring=None,
+ n_jobs=None, refit=True, cv=5, verbose=0, random_state=None,
+ error_score=np.nan, return_train_score=True,
+ max_resources='auto', min_resources='exhaust',
+ resource='n_samples', factor=3, aggressive_elimination=False):
+
+ refit = _refit_callable if refit else False
+ super().__init__(estimator, scoring=scoring,
+ n_jobs=n_jobs, refit=refit, cv=cv,
+ verbose=verbose,
+ error_score=error_score,
+ return_train_score=return_train_score)
+
+ self.random_state = random_state
+ self.max_resources = max_resources
+ self.resource = resource
+ self.factor = factor
+ self.min_resources = min_resources
+ self.aggressive_elimination = aggressive_elimination
+
+ def _check_input_parameters(self, X, y, groups):
+
+ if self.scoring is not None and not (isinstance(self.scoring, str)
+ or callable(self.scoring)):
+ raise ValueError('scoring parameter must be a string, '
+ 'a callable or None. Multimetric scoring is not '
+ 'supported.')
+
+ # We need to enforce that successive calls to cv.split() yield the same
+ # splits: see https://github.com/scikit-learn/scikit-learn/issues/15149
+ if not _yields_constant_splits(self._checked_cv_orig):
+ raise ValueError(
+ "The cv parameter must yield consistent folds across "
+ "calls to split(). Set its random_state to an int, or set "
+ "shuffle=False."
+ )
+
+ if (self.resource != 'n_samples'
+ and self.resource not in self.estimator.get_params()):
+ raise ValueError(
+ f'Cannot use resource={self.resource} which is not supported '
+ f'by estimator {self.estimator.__class__.__name__}'
+ )
+
+ if (isinstance(self.max_resources, str) and
+ self.max_resources != 'auto'):
+ raise ValueError(
+ "max_resources must be either 'auto' or a positive integer"
+ )
+ if self.max_resources != 'auto' and (
+ not isinstance(self.max_resources, Integral) or
+ self.max_resources <= 0):
+ raise ValueError(
+ "max_resources must be either 'auto' or a positive integer"
+ )
+
+ if self.min_resources not in ('smallest', 'exhaust') and (
+ not isinstance(self.min_resources, Integral) or
+ self.min_resources <= 0):
+ raise ValueError(
+ "min_resources must be either 'smallest', 'exhaust', "
+ "or a positive integer "
+ "no greater than max_resources."
+ )
+
+ if isinstance(self, HalvingRandomSearchCV):
+ if self.min_resources == self.n_candidates == 'exhaust':
+ # for n_candidates=exhaust to work, we need to know what
+ # min_resources is. Similarly min_resources=exhaust needs to
+ # know the actual number of candidates.
+ raise ValueError(
+ "n_candidates and min_resources cannot be both set to "
+ "'exhaust'."
+ )
+ if self.n_candidates != 'exhaust' and (
+ not isinstance(self.n_candidates, Integral) or
+ self.n_candidates <= 0):
+ raise ValueError(
+ "n_candidates must be either 'exhaust' "
+ "or a positive integer"
+ )
+
+ self.min_resources_ = self.min_resources
+ if self.min_resources_ in ('smallest', 'exhaust'):
+ if self.resource == 'n_samples':
+ n_splits = self._checked_cv_orig.get_n_splits(X, y, groups)
+ # please see https://gph.is/1KjihQe for a justification
+ magic_factor = 2
+ self.min_resources_ = n_splits * magic_factor
+ if is_classifier(self.estimator):
+ n_classes = np.unique(y).shape[0]
+ self.min_resources_ *= n_classes
+ else:
+ self.min_resources_ = 1
+ # if 'exhaust', min_resources_ might be set to a higher value later
+ # in _run_search
+
+ self.max_resources_ = self.max_resources
+ if self.max_resources_ == 'auto':
+ if not self.resource == 'n_samples':
+ raise ValueError(
+ "max_resources can only be 'auto' if resource='n_samples'")
+ self.max_resources_ = _num_samples(X)
+
+ if self.min_resources_ > self.max_resources_:
+ raise ValueError(
+ f'min_resources_={self.min_resources_} is greater '
+ f'than max_resources_={self.max_resources_}.'
+ )
+
+ def fit(self, X, y=None, groups=None, **fit_params):
+ """Run fit with all sets of parameters.
+
+ Parameters
+ ----------
+
+ X : array-like, shape (n_samples, n_features)
+ Training vector, where n_samples is the number of samples and
+ n_features is the number of features.
+
+ y : array-like, shape (n_samples,) or (n_samples, n_output), optional
+ Target relative to X for classification or regression;
+ None for unsupervised learning.
+
+ groups : array-like of shape (n_samples,), default=None
+ Group labels for the samples used while splitting the dataset into
+ train/test set. Only used in conjunction with a "Group" :term:`cv`
+ instance (e.g., :class:`~sklearn.model_selection.GroupKFold`).
+
+ **fit_params : dict of string -> object
+ Parameters passed to the ``fit`` method of the estimator
+ """
+ self._checked_cv_orig = check_cv(
+ self.cv, y, classifier=is_classifier(self.estimator))
+
+ self._check_input_parameters(
+ X=X,
+ y=y,
+ groups=groups,
+ )
+
+ self._n_samples_orig = _num_samples(X)
+
+ super().fit(X, y=y, groups=None, **fit_params)
+
+ # Set best_score_: BaseSearchCV does not set it, as refit is a callable
+ self.best_score_ = (
+ self.cv_results_['mean_test_score'][self.best_index_])
+
+ return self
+
+ def _run_search(self, evaluate_candidates):
+ candidate_params = self._generate_candidate_params()
+
+ if self.resource != 'n_samples' and any(
+ self.resource in candidate for candidate in candidate_params):
+ # Can only check this now since we need the candidates list
+ raise ValueError(
+ f"Cannot use parameter {self.resource} as the resource since "
+ "it is part of the searched parameters."
+ )
+
+ # n_required_iterations is the number of iterations needed so that the
+ # last iterations evaluates less than `factor` candidates.
+ n_required_iterations = 1 + floor(log(len(candidate_params),
+ self.factor))
+
+ if self.min_resources == 'exhaust':
+ # To exhaust the resources, we want to start with the biggest
+ # min_resources possible so that the last (required) iteration
+ # uses as many resources as possible
+ last_iteration = n_required_iterations - 1
+ self.min_resources_ = max(
+ self.min_resources_,
+ self.max_resources_ // self.factor**last_iteration
+ )
+
+ # n_possible_iterations is the number of iterations that we can
+ # actually do starting from min_resources and without exceeding
+ # max_resources. Depending on max_resources and the number of
+ # candidates, this may be higher or smaller than
+ # n_required_iterations.
+ n_possible_iterations = 1 + floor(log(
+ self.max_resources_ // self.min_resources_, self.factor))
+
+ if self.aggressive_elimination:
+ n_iterations = n_required_iterations
+ else:
+ n_iterations = min(n_possible_iterations, n_required_iterations)
+
+ if self.verbose:
+ print(f'n_iterations: {n_iterations}')
+ print(f'n_required_iterations: {n_required_iterations}')
+ print(f'n_possible_iterations: {n_possible_iterations}')
+ print(f'min_resources_: {self.min_resources_}')
+ print(f'max_resources_: {self.max_resources_}')
+ print(f'aggressive_elimination: {self.aggressive_elimination}')
+ print(f'factor: {self.factor}')
+
+ self.n_resources_ = []
+ self.n_candidates_ = []
+
+ for itr in range(n_iterations):
+
+ power = itr # default
+ if self.aggressive_elimination:
+ # this will set n_resources to the initial value (i.e. the
+ # value of n_resources at the first iteration) for as many
+ # iterations as needed (while candidates are being
+ # eliminated), and then go on as usual.
+ power = max(
+ 0,
+ itr - n_required_iterations + n_possible_iterations
+ )
+
+ n_resources = int(self.factor**power * self.min_resources_)
+ # guard, probably not needed
+ n_resources = min(n_resources, self.max_resources_)
+ self.n_resources_.append(n_resources)
+
+ n_candidates = len(candidate_params)
+ self.n_candidates_.append(n_candidates)
+
+ if self.verbose:
+ print('-' * 10)
+ print(f'iter: {itr}')
+ print(f'n_candidates: {n_candidates}')
+ print(f'n_resources: {n_resources}')
+
+ if self.resource == 'n_samples':
+ # subsampling will be done in cv.split()
+ cv = _SubsampleMetaSplitter(
+ base_cv=self._checked_cv_orig,
+ fraction=n_resources / self._n_samples_orig,
+ subsample_test=True,
+ random_state=self.random_state
+ )
+
+ else:
+ # Need copy so that the n_resources of next iteration does
+ # not overwrite
+ candidate_params = [c.copy() for c in candidate_params]
+ for candidate in candidate_params:
+ candidate[self.resource] = n_resources
+ cv = self._checked_cv_orig
+
+ more_results = {'iter': [itr] * n_candidates,
+ 'n_resources': [n_resources] * n_candidates}
+
+ results = evaluate_candidates(candidate_params, cv,
+ more_results=more_results)
+
+ n_candidates_to_keep = ceil(n_candidates / self.factor)
+ candidate_params = _top_k(results, n_candidates_to_keep, itr)
+
+ self.n_remaining_candidates_ = len(candidate_params)
+ self.n_required_iterations_ = n_required_iterations
+ self.n_possible_iterations_ = n_possible_iterations
+ self.n_iterations_ = n_iterations
+
+ @abstractmethod
+ def _generate_candidate_params(self):
+ pass
+
+
+class HalvingGridSearchCV(BaseSuccessiveHalving):
+ """Search over specified parameter values with successive halving.
+
+ The search strategy starts evaluating all the candidates with a small
+ amount of resources and iteratively selects the best candidates, using
+ more and more resources.
+
+ Read more in the :ref:`User guide <successive_halving_user_guide>`.
+
+ .. note::
+
+ This estimator is still **experimental** for now: the predictions
+ and the API might change without any deprecation cycle. To use it,
+ you need to explicitly import ``enable_successive_halving``::
+
+ >>> # explicitly require this experimental feature
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> # now you can import normally from model_selection
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+
+ Parameters
+ ----------
+ estimator : estimator object.
+ This is assumed to implement the scikit-learn estimator interface.
+ Either estimator needs to provide a ``score`` function,
+ or ``scoring`` must be passed.
+
+ param_grid : dict or list of dictionaries
+ Dictionary with parameters names (string) as keys and lists of
+ parameter settings to try as values, or a list of such
+ dictionaries, in which case the grids spanned by each dictionary
+ in the list are explored. This enables searching over any sequence
+ of parameter settings.
+
+ factor : int or float, default=3
+ The 'halving' parameter, which determines the proportion of candidates
+ that are selected for each subsequent iteration. For example,
+ ``factor=3`` means that only one third of the candidates are selected.
+
+ resource : ``'n_samples'`` or str, default='n_samples'
+ Defines the resource that increases with each iteration. By default,
+ the resource is the number of samples. It can also be set to any
+ parameter of the base estimator that accepts positive integer
+ values, e.g. 'n_iterations' or 'n_estimators' for a gradient
+ boosting estimator. In this case ``max_resources`` cannot be 'auto'
+ and must be set explicitly.
+
+ max_resources : int, default='auto'
+ The maximum amount of resource that any candidate is allowed to use
+ for a given iteration. By default, this is set to ``n_samples`` when
+ ``resource='n_samples'`` (default), else an error is raised.
+
+ min_resources : {'exhaust', 'smallest'} or int, default='exhaust'
+ The minimum amount of resource that any candidate is allowed to use
+ for a given iteration. Equivalently, this defines the amount of
+ resources `r0` that are allocated for each candidate at the first
+ iteration.
+
+ - 'smallest' is a heuristic that sets `r0` to a small value:
+ - ``n_splits * 2`` when ``resource='n_samples'`` for a regression
+ problem
+ - ``n_classes * n_splits * 2`` when ``resource='n_samples'`` for a
+ regression problem
+ - ``1`` when ``resource != 'n_samples'``
+ - 'exhaust' will set `r0` such that the **last** iteration uses as
+ much resources as possible. Namely, the last iteration will use the
+ highest value smaller than ``max_resources`` that is a multiple of
+ both ``min_resources`` and ``factor``. In general, using 'exhaust'
+ leads to a more accurate estimator, but is slightly more time
+ consuming.
+
+ Note that the amount of resources used at each iteration is always a
+ multiple of ``min_resources``.
+
+ aggressive_elimination : bool, default=False
+ This is only relevant in cases where there isn't enough resources to
+ reduce the remaining candidates to at most `factor` after the last
+ iteration. If ``True``, then the search process will 'replay' the
+ first iteration for as long as needed until the number of candidates
+ is small enough. This is ``False`` by default, which means that the
+ last iteration may evaluate more than ``factor`` candidates. See
+ :ref:`aggressive_elimination` for more details.
+
+ cv : int, cross-validation generator or iterable, default=5
+ Determines the cross-validation splitting strategy.
+ Possible inputs for cv are:
+
+ - integer, to specify the number of folds in a `(Stratified)KFold`,
+ - :term:`CV splitter`,
+ - An iterable yielding (train, test) splits as arrays of indices.
+
+ For integer/None inputs, if the estimator is a classifier and ``y`` is
+ either binary or multiclass, :class:`StratifiedKFold` is used. In all
+ other cases, :class:`KFold` is used.
+
+ Refer :ref:`User Guide <cross_validation>` for the various
+ cross-validation strategies that can be used here.
+
+ .. note::
+ Due to implementation details, the folds produced by `cv` must be
+ the same across multiple calls to `cv.split()`. For
+ built-in `scikit-learn` iterators, this can be achieved by
+ deactivating shuffling (`shuffle=False`), or by setting the
+ `cv`'s `random_state` parameter to an integer.
+
+ scoring : string, callable, or None, default=None
+ A single string (see :ref:`scoring_parameter`) or a callable
+ (see :ref:`scoring`) to evaluate the predictions on the test set.
+ If None, the estimator's score method is used.
+
+ refit : bool, default=True
+ If True, refit an estimator using the best found parameters on the
+ whole dataset.
+
+ The refitted estimator is made available at the ``best_estimator_``
+ attribute and permits using ``predict`` directly on this
+ ``GridSearchCV`` instance.
+
+ error_score : 'raise' or numeric
+ Value to assign to the score if an error occurs in estimator fitting.
+ If set to 'raise', the error is raised. If a numeric value is given,
+ FitFailedWarning is raised. This parameter does not affect the refit
+ step, which will always raise the error. Default is ``np.nan``
+
+ return_train_score : bool, default=False
+ If ``False``, the ``cv_results_`` attribute will not include training
+ scores.
+ Computing training scores is used to get insights on how different
+ parameter settings impact the overfitting/underfitting trade-off.
+ However computing the scores on the training set can be computationally
+ expensive and is not strictly required to select the parameters that
+ yield the best generalization performance.
+
+ random_state : int, RandomState instance or None, default=None
+ Pseudo random number generator state used for subsampling the dataset
+ when `resources != 'n_samples'`. Ignored otherwise.
+ Pass an int for reproducible output across multiple function calls.
+ See :term:`Glossary <random_state>`.
+
+ n_jobs : int or None, default=None
+ Number of jobs to run in parallel.
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
+ for more details.
+
+ verbose : int
+ Controls the verbosity: the higher, the more messages.
+
+ Attributes
+ ----------
+ n_resources_ : list of int
+ The amount of resources used at each iteration.
+
+ n_candidates_ : list of int
+ The number of candidate parameters that were evaluated at each
+ iteration.
+
+ n_remaining_candidates_ : int
+ The number of candidate parameters that are left after the last
+ iteration. It corresponds to `ceil(n_candidates[-1] / factor)`
+
+ max_resources_ : int
+ The maximum number of resources that any candidate is allowed to use
+ for a given iteration. Note that since the number of resources used
+ at each iteration must be a multiple of ``min_resources_``, the
+ actual number of resources used at the last iteration may be smaller
+ than ``max_resources_``.
+
+ min_resources_ : int
+ The amount of resources that are allocated for each candidate at the
+ first iteration.
+
+ n_iterations_ : int
+ The actual number of iterations that were run. This is equal to
+ ``n_required_iterations_`` if ``aggressive_elimination`` is ``True``.
+ Else, this is equal to ``min(n_possible_iterations_,
+ n_required_iterations_)``.
+
+ n_possible_iterations_ : int
+ The number of iterations that are possible starting with
+ ``min_resources_`` resources and without exceeding
+ ``max_resources_``.
+
+ n_required_iterations_ : int
+ The number of iterations that are required to end up with less than
+ ``factor`` candidates at the last iteration, starting with
+ ``min_resources_`` resources. This will be smaller than
+ ``n_possible_iterations_`` when there isn't enough resources.
+
+ cv_results_ : dict of numpy (masked) ndarrays
+ A dict with keys as column headers and values as columns, that can be
+ imported into a pandas ``DataFrame``. It contains many informations for
+ analysing the results of a search.
+ Please refer to the :ref:`User guide<successive_halving_cv_results>`
+ for details.
+
+ best_estimator_ : estimator or dict
+ Estimator that was chosen by the search, i.e. estimator
+ which gave highest score (or smallest loss if specified)
+ on the left out data. Not available if ``refit=False``.
+
+ best_score_ : float
+ Mean cross-validated score of the best_estimator.
+
+ best_params_ : dict
+ Parameter setting that gave the best results on the hold out data.
+
+ best_index_ : int
+ The index (of the ``cv_results_`` arrays) which corresponds to the best
+ candidate parameter setting.
+
+ The dict at ``search.cv_results_['params'][search.best_index_]`` gives
+ the parameter setting for the best model, that gives the highest
+ mean score (``search.best_score_``).
+
+ scorer_ : function or a dict
+ Scorer function used on the held out data to choose the best
+ parameters for the model.
+
+ n_splits_ : int
+ The number of cross-validation splits (folds/iterations).
+
+ refit_time_ : float
+ Seconds used for refitting the best model on the whole dataset.
+
+ This is present only if ``refit`` is not False.
+
+ See Also
+ --------
+ :class:`HalvingRandomSearchCV`:
+ Random search over a set of parameters using successive halving.
+
+ Notes
+ -----
+ The parameters selected are those that maximize the score of the held-out
+ data, according to the scoring parameter.
+
+ Examples
+ --------
+
+ >>> from sklearn.datasets import load_iris
+ >>> from sklearn.ensemble import RandomForestClassifier
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+ ...
+ >>> X, y = load_iris(return_X_y=True)
+ >>> clf = RandomForestClassifier(random_state=0)
+ ...
+ >>> param_grid = {"max_depth": [3, None],
+ ... "min_samples_split": [5, 10]}
+ >>> search = HalvingGridSearchCV(clf, param_grid, resource='n_estimators',
+ ... max_resources=10,
+ ... random_state=0).fit(X, y)
+ >>> search.best_params_ # doctest: +SKIP
+ {'max_depth': None, 'min_samples_split': 10, 'n_estimators': 9}
+ """
+ _required_parameters = ["estimator", "param_grid"]
+
+ def __init__(self, estimator, param_grid, *,
+ factor=3, resource='n_samples', max_resources='auto',
+ min_resources='exhaust', aggressive_elimination=False,
+ cv=5, scoring=None, refit=True, error_score=np.nan,
+ return_train_score=True, random_state=None, n_jobs=None,
+ verbose=0):
+ super().__init__(estimator, scoring=scoring,
+ n_jobs=n_jobs, refit=refit, verbose=verbose, cv=cv,
+ random_state=random_state, error_score=error_score,
+ return_train_score=return_train_score,
+ max_resources=max_resources, resource=resource,
+ factor=factor, min_resources=min_resources,
+ aggressive_elimination=aggressive_elimination)
+ self.param_grid = param_grid
+ _check_param_grid(self.param_grid)
+
+ def _generate_candidate_params(self):
+ return ParameterGrid(self.param_grid)
+
+
+class HalvingRandomSearchCV(BaseSuccessiveHalving):
+ """Randomized search on hyper parameters.
+
+ The search strategy starts evaluating all the candidates with a small
+ amount of resources and iteratively selects the best candidates, using more
+ and more resources.
+
+ The candidates are sampled at random from the parameter space and the
+ number of sampled candidates is determined by ``n_candidates``.
+
+ Read more in the :ref:`User guide<successive_halving_user_guide>`.
+
+ .. note::
+
+ This estimator is still **experimental** for now: the predictions
+ and the API might change without any deprecation cycle. To use it,
+ you need to explicitly import ``enable_successive_halving``::
+
+ >>> # explicitly require this experimental feature
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> # now you can import normally from model_selection
+ >>> from sklearn.model_selection import HalvingRandomSearchCV
+
+ Parameters
+ ----------
+ estimator : estimator object.
+ This is assumed to implement the scikit-learn estimator interface.
+ Either estimator needs to provide a ``score`` function,
+ or ``scoring`` must be passed.
+
+ param_distributions : dict
+ Dictionary with parameters names (string) as keys and distributions
+ or lists of parameters to try. Distributions must provide a ``rvs``
+ method for sampling (such as those from scipy.stats.distributions).
+ If a list is given, it is sampled uniformly.
+
+ n_candidates : int, default='exhaust'
+ The number of candidate parameters to sample, at the first
+ iteration. Using 'exhaust' will sample enough candidates so that the
+ last iteration uses as many resources as possible, based on
+ `min_resources`, `max_resources` and `factor`. In this case,
+ `min_resources` cannot be 'exhaust'.
+
+ factor : int or float, default=3
+ The 'halving' parameter, which determines the proportion of candidates
+ that are selected for each subsequent iteration. For example,
+ ``factor=3`` means that only one third of the candidates are selected.
+
+ resource : ``'n_samples'`` or str, default='n_samples'
+ Defines the resource that increases with each iteration. By default,
+ the resource is the number of samples. It can also be set to any
+ parameter of the base estimator that accepts positive integer
+ values, e.g. 'n_iterations' or 'n_estimators' for a gradient
+ boosting estimator. In this case ``max_resources`` cannot be 'auto'
+ and must be set explicitly.
+
+ max_resources : int, default='auto'
+ The maximum number of resources that any candidate is allowed to use
+ for a given iteration. By default, this is set ``n_samples`` when
+ ``resource='n_samples'`` (default), else an error is raised.
+
+ min_resources : {'exhaust', 'smallest'} or int, default='smallest'
+ The minimum amount of resource that any candidate is allowed to use
+ for a given iteration. Equivalently, this defines the amount of
+ resources `r0` that are allocated for each candidate at the first
+ iteration.
+
+ - 'smallest' is a heuristic that sets `r0` to a small value:
+ - ``n_splits * 2`` when ``resource='n_samples'`` for a regression
+ problem
+ - ``n_classes * n_splits * 2`` when ``resource='n_samples'`` for a
+ regression problem
+ - ``1`` when ``resource != 'n_samples'``
+ - 'exhaust' will set `r0` such that the **last** iteration uses as
+ much resources as possible. Namely, the last iteration will use the
+ highest value smaller than ``max_resources`` that is a multiple of
+ both ``min_resources`` and ``factor``. In general, using 'exhaust'
+ leads to a more accurate estimator, but is slightly more time
+ consuming. 'exhaust' isn't available when `n_candidates='exhaust'`.
+
+ Note that the amount of resources used at each iteration is always a
+ multiple of ``min_resources``.
+
+ aggressive_elimination : bool, default=False
+ This is only relevant in cases where there isn't enough resources to
+ reduce the remaining candidates to at most `factor` after the last
+ iteration. If ``True``, then the search process will 'replay' the
+ first iteration for as long as needed until the number of candidates
+ is small enough. This is ``False`` by default, which means that the
+ last iteration may evaluate more than ``factor`` candidates. See
+ :ref:`aggressive_elimination` for more details.
+
+ cv : int, cross-validation generator or an iterable, default=5
+ Determines the cross-validation splitting strategy.
+ Possible inputs for cv are:
+
+ - integer, to specify the number of folds in a `(Stratified)KFold`,
+ - :term:`CV splitter`,
+ - An iterable yielding (train, test) splits as arrays of indices.
+
+ For integer/None inputs, if the estimator is a classifier and ``y`` is
+ either binary or multiclass, :class:`StratifiedKFold` is used. In all
+ other cases, :class:`KFold` is used.
+
+ Refer :ref:`User Guide <cross_validation>` for the various
+ cross-validation strategies that can be used here.
+
+ .. note::
+ Due to implementation details, the folds produced by `cv` must be
+ the same across multiple calls to `cv.split()`. For
+ built-in `scikit-learn` iterators, this can be achieved by
+ deactivating shuffling (`shuffle=False`), or by setting the
+ `cv`'s `random_state` parameter to an integer.
+
+ scoring : string, callable, or None, default=None
+ A single string (see :ref:`scoring_parameter`) or a callable
+ (see :ref:`scoring`) to evaluate the predictions on the test set.
+ If None, the estimator's score method is used.
+
+ refit : bool, default=True
+ If True, refit an estimator using the best found parameters on the
+ whole dataset.
+
+ The refitted estimator is made available at the ``best_estimator_``
+ attribute and permits using ``predict`` directly on this
+ ``GridSearchCV`` instance.
+
+ error_score : 'raise' or numeric
+ Value to assign to the score if an error occurs in estimator fitting.
+ If set to 'raise', the error is raised. If a numeric value is given,
+ FitFailedWarning is raised. This parameter does not affect the refit
+ step, which will always raise the error. Default is ``np.nan``
+
+ return_train_score : bool, default=False
+ If ``False``, the ``cv_results_`` attribute will not include training
+ scores.
+ Computing training scores is used to get insights on how different
+ parameter settings impact the overfitting/underfitting trade-off.
+ However computing the scores on the training set can be computationally
+ expensive and is not strictly required to select the parameters that
+ yield the best generalization performance.
+
+ random_state : int, RandomState instance or None, default=None
+ Pseudo random number generator state used for subsampling the dataset
+ when `resources != 'n_samples'`. Also used for random uniform
+ sampling from lists of possible values instead of scipy.stats
+ distributions.
+ Pass an int for reproducible output across multiple function calls.
+ See :term:`Glossary <random_state>`.
+
+ n_jobs : int or None, default=None
+ Number of jobs to run in parallel.
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
+ for more details.
+
+ verbose : int
+ Controls the verbosity: the higher, the more messages.
+
+ Attributes
+ ----------
+ n_resources_ : list of int
+ The amount of resources used at each iteration.
+
+ n_candidates_ : list of int
+ The number of candidate parameters that were evaluated at each
+ iteration.
+
+ n_remaining_candidates_ : int
+ The number of candidate parameters that are left after the last
+ iteration. It corresponds to `ceil(n_candidates[-1] / factor)`
+
+ max_resources_ : int
+ The maximum number of resources that any candidate is allowed to use
+ for a given iteration. Note that since the number of resources used at
+ each iteration must be a multiple of ``min_resources_``, the actual
+ number of resources used at the last iteration may be smaller than
+ ``max_resources_``.
+
+ min_resources_ : int
+ The amount of resources that are allocated for each candidate at the
+ first iteration.
+
+ n_iterations_ : int
+ The actual number of iterations that were run. This is equal to
+ ``n_required_iterations_`` if ``aggressive_elimination`` is ``True``.
+ Else, this is equal to ``min(n_possible_iterations_,
+ n_required_iterations_)``.
+
+ n_possible_iterations_ : int
+ The number of iterations that are possible starting with
+ ``min_resources_`` resources and without exceeding
+ ``max_resources_``.
+
+ n_required_iterations_ : int
+ The number of iterations that are required to end up with less than
+ ``factor`` candidates at the last iteration, starting with
+ ``min_resources_`` resources. This will be smaller than
+ ``n_possible_iterations_`` when there isn't enough resources.
+
+ cv_results_ : dict of numpy (masked) ndarrays
+ A dict with keys as column headers and values as columns, that can be
+ imported into a pandas ``DataFrame``. It contains many informations for
+ analysing the results of a search.
+ Please refer to the :ref:`User guide<successive_halving_cv_results>`
+ for details.
+
+ best_estimator_ : estimator or dict
+ Estimator that was chosen by the search, i.e. estimator
+ which gave highest score (or smallest loss if specified)
+ on the left out data. Not available if ``refit=False``.
+
+ best_score_ : float
+ Mean cross-validated score of the best_estimator.
+
+ best_params_ : dict
+ Parameter setting that gave the best results on the hold out data.
+
+ best_index_ : int
+ The index (of the ``cv_results_`` arrays) which corresponds to the best
+ candidate parameter setting.
+
+ The dict at ``search.cv_results_['params'][search.best_index_]`` gives
+ the parameter setting for the best model, that gives the highest
+ mean score (``search.best_score_``).
+
+ scorer_ : function or a dict
+ Scorer function used on the held out data to choose the best
+ parameters for the model.
+
+ n_splits_ : int
+ The number of cross-validation splits (folds/iterations).
+
+ refit_time_ : float
+ Seconds used for refitting the best model on the whole dataset.
+
+ This is present only if ``refit`` is not False.
+
+ See Also
+ --------
+ :class:`HalvingGridSearchCV`:
+ Search over a grid of parameters using successive halving.
+
+ Notes
+ -----
+ The parameters selected are those that maximize the score of the held-out
+ data, according to the scoring parameter.
+
+ Examples
+ --------
+
+ >>> from sklearn.datasets import load_iris
+ >>> from sklearn.ensemble import RandomForestClassifier
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> from sklearn.model_selection import HalvingRandomSearchCV
+ >>> from scipy.stats import randint
+ ...
+ >>> X, y = load_iris(return_X_y=True)
+ >>> clf = RandomForestClassifier(random_state=0)
+ >>> np.random.seed(0)
+ ...
+ >>> param_distributions = {"max_depth": [3, None],
+ ... "min_samples_split": randint(2, 11)}
+ >>> search = HalvingRandomSearchCV(clf, param_distributions,
+ ... resource='n_estimators',
+ ... max_resources=10,
+ ... random_state=0).fit(X, y)
+ >>> search.best_params_ # doctest: +SKIP
+ {'max_depth': None, 'min_samples_split': 10, 'n_estimators': 9}
+ """
+ _required_parameters = ["estimator", "param_distributions"]
+
+ def __init__(self, estimator, param_distributions, *,
+ n_candidates='exhaust', factor=3, resource='n_samples',
+ max_resources='auto', min_resources='smallest',
+ aggressive_elimination=False, cv=5, scoring=None,
+ refit=True, error_score=np.nan, return_train_score=True,
+ random_state=None, n_jobs=None, verbose=0):
+ super().__init__(estimator, scoring=scoring,
+ n_jobs=n_jobs, refit=refit, verbose=verbose, cv=cv,
+ random_state=random_state, error_score=error_score,
+ return_train_score=return_train_score,
+ max_resources=max_resources, resource=resource,
+ factor=factor, min_resources=min_resources,
+ aggressive_elimination=aggressive_elimination)
+ self.param_distributions = param_distributions
+ self.n_candidates = n_candidates
+
+ def _generate_candidate_params(self):
+ n_candidates_first_iter = self.n_candidates
+ if n_candidates_first_iter == 'exhaust':
+ # This will generate enough candidate so that the last iteration
+ # uses as much resources as possible
+ n_candidates_first_iter = (
+ self.max_resources_ // self.min_resources_)
+ return ParameterSampler(self.param_distributions,
+ n_candidates_first_iter,
+ random_state=self.random_state)
diff --git a/sklearn/model_selection/_split.py b/sklearn/model_selection/_split.py
index 9922290d544d5..b4a9567f35291 100644
--- a/sklearn/model_selection/_split.py
+++ b/sklearn/model_selection/_split.py
@@ -2235,3 +2235,14 @@ def _build_repr(self):
params[key] = value
return '%s(%s)' % (class_name, _pprint(params, offset=len(class_name)))
+
+
+def _yields_constant_splits(cv):
+ # Return True if calling cv.split() always returns the same splits
+ # We assume that if a cv doesn't have a shuffle parameter, it shuffles by
+ # default (e.g. ShuffleSplit). If it actually doesn't shuffle (e.g.
+ # LeaveOneOut), then it won't have a random_state parameter anyway, in
+ # which case it will default to 0, leading to output=True
+ shuffle = getattr(cv, 'shuffle', True)
+ random_state = getattr(cv, 'random_state', 0)
+ return isinstance(random_state, numbers.Integral) or not shuffle
|
diff --git a/doc/conftest.py b/doc/conftest.py
index eacd469f2e52f..96d42fd96066d 100644
--- a/doc/conftest.py
+++ b/doc/conftest.py
@@ -57,6 +57,13 @@ def setup_impute():
raise SkipTest("Skipping impute.rst, pandas not installed")
+def setup_grid_search():
+ try:
+ import pandas # noqa
+ except ImportError:
+ raise SkipTest("Skipping grid_search.rst, pandas not installed")
+
+
def setup_unsupervised_learning():
try:
import skimage # noqa
@@ -86,5 +93,7 @@ def pytest_runtest_setup(item):
raise SkipTest('FeatureHasher is not compatible with PyPy')
elif fname.endswith('modules/impute.rst'):
setup_impute()
+ elif fname.endswith('modules/grid_search.rst'):
+ setup_grid_search()
elif fname.endswith('statistical_inference/unsupervised_learning.rst'):
setup_unsupervised_learning()
diff --git a/sklearn/experimental/tests/test_enable_successive_halving.py b/sklearn/experimental/tests/test_enable_successive_halving.py
new file mode 100644
index 0000000000000..bfd05bc302c79
--- /dev/null
+++ b/sklearn/experimental/tests/test_enable_successive_halving.py
@@ -0,0 +1,43 @@
+"""Tests for making sure experimental imports work as expected."""
+
+import textwrap
+
+from sklearn.utils._testing import assert_run_python_script
+
+
+def test_imports_strategies():
+ # Make sure different import strategies work or fail as expected.
+
+ # Since Python caches the imported modules, we need to run a child process
+ # for every test case. Else, the tests would not be independent
+ # (manually removing the imports from the cache (sys.modules) is not
+ # recommended and can lead to many complications).
+
+ good_import = """
+ from sklearn.experimental import enable_successive_halving
+ from sklearn.model_selection import HalvingGridSearchCV
+ from sklearn.model_selection import HalvingRandomSearchCV
+ """
+ assert_run_python_script(textwrap.dedent(good_import))
+
+ good_import_with_model_selection_first = """
+ import sklearn.model_selection
+ from sklearn.experimental import enable_successive_halving
+ from sklearn.model_selection import HalvingGridSearchCV
+ from sklearn.model_selection import HalvingRandomSearchCV
+ """
+ assert_run_python_script(
+ textwrap.dedent(good_import_with_model_selection_first)
+ )
+
+ bad_imports = """
+ import pytest
+
+ with pytest.raises(ImportError):
+ from sklearn.model_selection import HalvingGridSearchCV
+
+ import sklearn.experimental
+ with pytest.raises(ImportError):
+ from sklearn.model_selection import HalvingGridSearchCV
+ """
+ assert_run_python_script(textwrap.dedent(bad_imports))
diff --git a/sklearn/model_selection/tests/test_split.py b/sklearn/model_selection/tests/test_split.py
index 4250eb8af8748..5d91a505238ef 100644
--- a/sklearn/model_selection/tests/test_split.py
+++ b/sklearn/model_selection/tests/test_split.py
@@ -43,6 +43,7 @@
from sklearn.model_selection._split import _validate_shuffle_split
from sklearn.model_selection._split import _build_repr
+from sklearn.model_selection._split import _yields_constant_splits
from sklearn.datasets import load_digits
from sklearn.datasets import make_classification
@@ -1619,3 +1620,41 @@ def test_random_state_shuffle_false(Klass):
with pytest.raises(ValueError,
match='has no effect since shuffle is False'):
Klass(3, shuffle=False, random_state=0)
+
+
[email protected]('cv, expected', [
+ (KFold(), True),
+ (KFold(shuffle=True, random_state=123), True),
+ (StratifiedKFold(), True),
+ (StratifiedKFold(shuffle=True, random_state=123), True),
+ (RepeatedKFold(random_state=123), True),
+ (RepeatedStratifiedKFold(random_state=123), True),
+ (ShuffleSplit(random_state=123), True),
+ (GroupShuffleSplit(random_state=123), True),
+ (StratifiedShuffleSplit(random_state=123), True),
+ (GroupKFold(), True),
+ (TimeSeriesSplit(), True),
+ (LeaveOneOut(), True),
+ (LeaveOneGroupOut(), True),
+ (LeavePGroupsOut(n_groups=2), True),
+ (LeavePOut(p=2), True),
+
+ (KFold(shuffle=True, random_state=None), False),
+ (KFold(shuffle=True, random_state=None), False),
+ (StratifiedKFold(shuffle=True, random_state=np.random.RandomState(0)),
+ False),
+ (StratifiedKFold(shuffle=True, random_state=np.random.RandomState(0)),
+ False),
+ (RepeatedKFold(random_state=None), False),
+ (RepeatedKFold(random_state=np.random.RandomState(0)), False),
+ (RepeatedStratifiedKFold(random_state=None), False),
+ (RepeatedStratifiedKFold(random_state=np.random.RandomState(0)), False),
+ (ShuffleSplit(random_state=None), False),
+ (ShuffleSplit(random_state=np.random.RandomState(0)), False),
+ (GroupShuffleSplit(random_state=None), False),
+ (GroupShuffleSplit(random_state=np.random.RandomState(0)), False),
+ (StratifiedShuffleSplit(random_state=None), False),
+ (StratifiedShuffleSplit(random_state=np.random.RandomState(0)), False),
+])
+def test_yields_constant_splits(cv, expected):
+ assert _yields_constant_splits(cv) == expected
diff --git a/sklearn/model_selection/tests/test_successive_halving.py b/sklearn/model_selection/tests/test_successive_halving.py
new file mode 100644
index 0000000000000..eeb941bd25a06
--- /dev/null
+++ b/sklearn/model_selection/tests/test_successive_halving.py
@@ -0,0 +1,564 @@
+from math import ceil
+
+import pytest
+from scipy.stats import norm, randint
+import numpy as np
+
+from sklearn.datasets import make_classification
+from sklearn.dummy import DummyClassifier
+from sklearn.experimental import enable_successive_halving # noqa
+from sklearn.model_selection import HalvingGridSearchCV
+from sklearn.model_selection import HalvingRandomSearchCV
+from sklearn.model_selection import KFold, ShuffleSplit
+from sklearn.model_selection._search_successive_halving import (
+ _SubsampleMetaSplitter, _top_k, _refit_callable)
+
+
+class FastClassifier(DummyClassifier):
+ """Dummy classifier that accepts parameters a, b, ... z.
+
+ These parameter don't affect the predictions and are useful for fast
+ grid searching."""
+
+ def __init__(self, strategy='stratified', random_state=None,
+ constant=None, **kwargs):
+ super().__init__(strategy=strategy, random_state=random_state,
+ constant=constant)
+
+ def get_params(self, deep=False):
+ params = super().get_params(deep=deep)
+ for char in range(ord('a'), ord('z') + 1):
+ params[chr(char)] = 'whatever'
+ return params
+
+
[email protected]('Est', (HalvingGridSearchCV, HalvingRandomSearchCV))
[email protected](
+ ('aggressive_elimination,'
+ 'max_resources,'
+ 'expected_n_iterations,'
+ 'expected_n_required_iterations,'
+ 'expected_n_possible_iterations,'
+ 'expected_n_remaining_candidates,'
+ 'expected_n_candidates,'
+ 'expected_n_resources,'), [
+ # notice how it loops at the beginning
+ # also, the number of candidates evaluated at the last iteration is
+ # <= factor
+ (True, 'limited', 4, 4, 3, 1, [60, 20, 7, 3], [20, 20, 60, 180]),
+ # no aggressive elimination: we end up with less iterations, and
+ # the number of candidates at the last iter is > factor, which isn't
+ # ideal
+ (False, 'limited', 3, 4, 3, 3, [60, 20, 7], [20, 60, 180]),
+ # # When the amount of resource isn't limited, aggressive_elimination
+ # # has no effect. Here the default min_resources='exhaust' will take
+ # # over.
+ (True, 'unlimited', 4, 4, 4, 1, [60, 20, 7, 3], [37, 111, 333, 999]),
+ (False, 'unlimited', 4, 4, 4, 1, [60, 20, 7, 3], [37, 111, 333, 999]),
+ ]
+)
+def test_aggressive_elimination(
+ Est, aggressive_elimination, max_resources, expected_n_iterations,
+ expected_n_required_iterations, expected_n_possible_iterations,
+ expected_n_remaining_candidates, expected_n_candidates,
+ expected_n_resources):
+ # Test the aggressive_elimination parameter.
+
+ n_samples = 1000
+ X, y = make_classification(n_samples=n_samples, random_state=0)
+ param_grid = {'a': ('l1', 'l2'), 'b': list(range(30))}
+ base_estimator = FastClassifier()
+
+ if max_resources == 'limited':
+ max_resources = 180
+ else:
+ max_resources = n_samples
+
+ sh = Est(base_estimator, param_grid,
+ aggressive_elimination=aggressive_elimination,
+ max_resources=max_resources, factor=3)
+ sh.set_params(verbose=True) # just for test coverage
+
+ if Est is HalvingRandomSearchCV:
+ # same number of candidates as with the grid
+ sh.set_params(n_candidates=2 * 30, min_resources='exhaust')
+
+ sh.fit(X, y)
+
+ assert sh.n_iterations_ == expected_n_iterations
+ assert sh.n_required_iterations_ == expected_n_required_iterations
+ assert sh.n_possible_iterations_ == expected_n_possible_iterations
+ assert sh.n_resources_ == expected_n_resources
+ assert sh.n_candidates_ == expected_n_candidates
+ assert sh.n_remaining_candidates_ == expected_n_remaining_candidates
+ assert ceil(sh.n_candidates_[-1] / sh.factor) == sh.n_remaining_candidates_
+
+
[email protected]('Est', (HalvingGridSearchCV, HalvingRandomSearchCV))
[email protected](
+ ('min_resources,'
+ 'max_resources,'
+ 'expected_n_iterations,'
+ 'expected_n_possible_iterations,'
+ 'expected_n_resources,'), [
+ # with enough resources
+ ('smallest', 'auto', 2, 4, [20, 60]),
+ # with enough resources but min_resources set manually
+ (50, 'auto', 2, 3, [50, 150]),
+ # without enough resources, only one iteration can be done
+ ('smallest', 30, 1, 1, [20]),
+ # with exhaust: use as much resources as possible at the last iter
+ ('exhaust', 'auto', 2, 2, [333, 999]),
+ ('exhaust', 1000, 2, 2, [333, 999]),
+ ('exhaust', 999, 2, 2, [333, 999]),
+ ('exhaust', 600, 2, 2, [200, 600]),
+ ('exhaust', 599, 2, 2, [199, 597]),
+ ('exhaust', 300, 2, 2, [100, 300]),
+ ('exhaust', 60, 2, 2, [20, 60]),
+ ('exhaust', 50, 1, 1, [20]),
+ ('exhaust', 20, 1, 1, [20]),
+ ]
+)
+def test_min_max_resources(
+ Est, min_resources, max_resources, expected_n_iterations,
+ expected_n_possible_iterations,
+ expected_n_resources):
+ # Test the min_resources and max_resources parameters, and how they affect
+ # the number of resources used at each iteration
+ n_samples = 1000
+ X, y = make_classification(n_samples=n_samples, random_state=0)
+ param_grid = {'a': [1, 2], 'b': [1, 2, 3]}
+ base_estimator = FastClassifier()
+
+ sh = Est(base_estimator, param_grid, factor=3, min_resources=min_resources,
+ max_resources=max_resources)
+ if Est is HalvingRandomSearchCV:
+ sh.set_params(n_candidates=6) # same number as with the grid
+
+ sh.fit(X, y)
+
+ expected_n_required_iterations = 2 # given 6 combinations and factor = 3
+ assert sh.n_iterations_ == expected_n_iterations
+ assert sh.n_required_iterations_ == expected_n_required_iterations
+ assert sh.n_possible_iterations_ == expected_n_possible_iterations
+ assert sh.n_resources_ == expected_n_resources
+ if min_resources == 'exhaust':
+ assert (sh.n_possible_iterations_ == sh.n_iterations_ ==
+ len(sh.n_resources_))
+
+
[email protected]('Est', (HalvingRandomSearchCV, HalvingGridSearchCV))
[email protected](
+ 'max_resources, n_iterations, n_possible_iterations', [
+ ('auto', 5, 9), # all resources are used
+ (1024, 5, 9),
+ (700, 5, 8),
+ (512, 5, 8),
+ (511, 5, 7),
+ (32, 4, 4),
+ (31, 3, 3),
+ (16, 3, 3),
+ (4, 1, 1), # max_resources == min_resources, only one iteration is
+ # possible
+ ])
+def test_n_iterations(Est, max_resources, n_iterations, n_possible_iterations):
+ # test the number of actual iterations that were run depending on
+ # max_resources
+
+ n_samples = 1024
+ X, y = make_classification(n_samples=n_samples, random_state=1)
+ param_grid = {'a': [1, 2], 'b': list(range(10))}
+ base_estimator = FastClassifier()
+ factor = 2
+
+ sh = Est(base_estimator, param_grid, cv=2, factor=factor,
+ max_resources=max_resources, min_resources=4)
+ if Est is HalvingRandomSearchCV:
+ sh.set_params(n_candidates=20) # same as for HalvingGridSearchCV
+ sh.fit(X, y)
+ assert sh.n_required_iterations_ == 5
+ assert sh.n_iterations_ == n_iterations
+ assert sh.n_possible_iterations_ == n_possible_iterations
+
+
[email protected]('Est', (HalvingRandomSearchCV, HalvingGridSearchCV))
+def test_resource_parameter(Est):
+ # Test the resource parameter
+
+ n_samples = 1000
+ X, y = make_classification(n_samples=n_samples, random_state=0)
+ param_grid = {'a': [1, 2], 'b': list(range(10))}
+ base_estimator = FastClassifier()
+ sh = Est(base_estimator, param_grid, cv=2, resource='c',
+ max_resources=10, factor=3)
+ sh.fit(X, y)
+ assert set(sh.n_resources_) == set([1, 3, 9])
+ for r_i, params, param_c in zip(sh.cv_results_['n_resources'],
+ sh.cv_results_['params'],
+ sh.cv_results_['param_c']):
+ assert r_i == params['c'] == param_c
+
+ with pytest.raises(
+ ValueError,
+ match='Cannot use resource=1234 which is not supported '):
+ sh = HalvingGridSearchCV(base_estimator, param_grid, cv=2,
+ resource='1234', max_resources=10)
+ sh.fit(X, y)
+
+ with pytest.raises(
+ ValueError,
+ match='Cannot use parameter c as the resource since it is part '
+ 'of the searched parameters.'):
+ param_grid = {'a': [1, 2], 'b': [1, 2], 'c': [1, 3]}
+ sh = HalvingGridSearchCV(base_estimator, param_grid, cv=2,
+ resource='c', max_resources=10)
+ sh.fit(X, y)
+
+
[email protected](
+ 'max_resources, n_candidates, expected_n_candidates', [
+ (512, 'exhaust', 128), # generate exactly as much as needed
+ (32, 'exhaust', 8),
+ (32, 8, 8),
+ (32, 7, 7), # ask for less than what we could
+ (32, 9, 9), # ask for more than 'reasonable'
+ ])
+def test_random_search(max_resources, n_candidates, expected_n_candidates):
+ # Test random search and make sure the number of generated candidates is
+ # as expected
+
+ n_samples = 1024
+ X, y = make_classification(n_samples=n_samples, random_state=0)
+ param_grid = {'a': norm, 'b': norm}
+ base_estimator = FastClassifier()
+ sh = HalvingRandomSearchCV(base_estimator, param_grid,
+ n_candidates=n_candidates, cv=2,
+ max_resources=max_resources, factor=2,
+ min_resources=4)
+ sh.fit(X, y)
+ assert sh.n_candidates_[0] == expected_n_candidates
+ if n_candidates == 'exhaust':
+ # Make sure 'exhaust' makes the last iteration use as much resources as
+ # we can
+ assert sh.n_resources_[-1] == max_resources
+
+
[email protected]('param_distributions, expected_n_candidates', [
+ ({'a': [1, 2]}, 2), # all lists, sample less than n_candidates
+ ({'a': randint(1, 3)}, 10), # not all list, respect n_candidates
+])
+def test_random_search_discrete_distributions(param_distributions,
+ expected_n_candidates):
+ # Make sure random search samples the appropriate number of candidates when
+ # we ask for more than what's possible. How many parameters are sampled
+ # depends whether the distributions are 'all lists' or not (see
+ # ParameterSampler for details). This is somewhat redundant with the checks
+ # in ParameterSampler but interaction bugs were discovered during
+ # developement of SH
+
+ n_samples = 1024
+ X, y = make_classification(n_samples=n_samples, random_state=0)
+ base_estimator = FastClassifier()
+ sh = HalvingRandomSearchCV(base_estimator, param_distributions,
+ n_candidates=10)
+ sh.fit(X, y)
+ assert sh.n_candidates_[0] == expected_n_candidates
+
+
[email protected]('Est', (HalvingGridSearchCV, HalvingRandomSearchCV))
[email protected]('params, expected_error_message', [
+ ({'scoring': {'accuracy', 'accuracy'}},
+ 'Multimetric scoring is not supported'),
+ ({'resource': 'not_a_parameter'},
+ 'Cannot use resource=not_a_parameter which is not supported'),
+ ({'resource': 'a', 'max_resources': 100},
+ 'Cannot use parameter a as the resource since it is part of'),
+ ({'max_resources': 'not_auto'},
+ 'max_resources must be either'),
+ ({'max_resources': 100.5},
+ 'max_resources must be either'),
+ ({'max_resources': -10},
+ 'max_resources must be either'),
+ ({'min_resources': 'bad str'},
+ 'min_resources must be either'),
+ ({'min_resources': 0.5},
+ 'min_resources must be either'),
+ ({'min_resources': -10},
+ 'min_resources must be either'),
+ ({'max_resources': 'auto', 'resource': 'b'},
+ "max_resources can only be 'auto' if resource='n_samples'"),
+ ({'min_resources': 15, 'max_resources': 14},
+ "min_resources_=15 is greater than max_resources_=14"),
+ ({'cv': KFold(shuffle=True)}, "must yield consistent folds"),
+ ({'cv': ShuffleSplit()}, "must yield consistent folds"),
+])
+def test_input_errors(Est, params, expected_error_message):
+ base_estimator = FastClassifier()
+ param_grid = {'a': [1]}
+ X, y = make_classification(100)
+
+ sh = Est(base_estimator, param_grid, **params)
+
+ with pytest.raises(ValueError, match=expected_error_message):
+ sh.fit(X, y)
+
+
[email protected]('params, expected_error_message', [
+ ({'n_candidates': 'exhaust', 'min_resources': 'exhaust'},
+ "cannot be both set to 'exhaust'"),
+ ({'n_candidates': 'bad'}, "either 'exhaust' or a positive integer"),
+ ({'n_candidates': 0}, "either 'exhaust' or a positive integer"),
+])
+def test_input_errors_randomized(params, expected_error_message):
+ # tests specific to HalvingRandomSearchCV
+
+ base_estimator = FastClassifier()
+ param_grid = {'a': [1]}
+ X, y = make_classification(100)
+
+ sh = HalvingRandomSearchCV(base_estimator, param_grid, **params)
+
+ with pytest.raises(ValueError, match=expected_error_message):
+ sh.fit(X, y)
+
+
[email protected](
+ 'fraction, subsample_test, expected_train_size, expected_test_size', [
+ (.5, True, 40, 10),
+ (.5, False, 40, 20),
+ (.2, True, 16, 4),
+ (.2, False, 16, 20)])
+def test_subsample_splitter_shapes(fraction, subsample_test,
+ expected_train_size, expected_test_size):
+ # Make sure splits returned by SubsampleMetaSplitter are of appropriate
+ # size
+
+ n_samples = 100
+ X, y = make_classification(n_samples)
+ cv = _SubsampleMetaSplitter(base_cv=KFold(5), fraction=fraction,
+ subsample_test=subsample_test,
+ random_state=None)
+
+ for train, test in cv.split(X, y):
+ assert train.shape[0] == expected_train_size
+ assert test.shape[0] == expected_test_size
+ if subsample_test:
+ assert train.shape[0] + test.shape[0] == int(n_samples * fraction)
+ else:
+ assert test.shape[0] == n_samples // cv.base_cv.get_n_splits()
+
+
[email protected]('subsample_test', (True, False))
+def test_subsample_splitter_determinism(subsample_test):
+ # Make sure _SubsampleMetaSplitter is consistent across calls to split():
+ # - we're OK having training sets differ (they're always sampled with a
+ # different fraction anyway)
+ # - when we don't subsample the test set, we want it to be always the same.
+ # This check is the most important. This is ensured by the determinism
+ # of the base_cv.
+
+ # Note: we could force both train and test splits to be always the same if
+ # we drew an int seed in _SubsampleMetaSplitter.__init__
+
+ n_samples = 100
+ X, y = make_classification(n_samples)
+ cv = _SubsampleMetaSplitter(base_cv=KFold(5), fraction=.5,
+ subsample_test=subsample_test,
+ random_state=None)
+
+ folds_a = list(cv.split(X, y, groups=None))
+ folds_b = list(cv.split(X, y, groups=None))
+
+ for (train_a, test_a), (train_b, test_b) in zip(folds_a, folds_b):
+ assert not np.all(train_a == train_b)
+
+ if subsample_test:
+ assert not np.all(test_a == test_b)
+ else:
+ assert np.all(test_a == test_b)
+ assert np.all(X[test_a] == X[test_b])
+
+
[email protected]('k, itr, expected', [
+ (1, 0, ['c']),
+ (2, 0, ['a', 'c']),
+ (4, 0, ['d', 'b', 'a', 'c']),
+ (10, 0, ['d', 'b', 'a', 'c']),
+
+ (1, 1, ['e']),
+ (2, 1, ['f', 'e']),
+ (10, 1, ['f', 'e']),
+
+ (1, 2, ['i']),
+ (10, 2, ['g', 'h', 'i']),
+])
+def test_top_k(k, itr, expected):
+
+ results = { # this isn't a 'real world' result dict
+ 'iter': [0, 0, 0, 0, 1, 1, 2, 2, 2],
+ 'mean_test_score': [4, 3, 5, 1, 11, 10, 5, 6, 9],
+ 'params': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'],
+ }
+ got = _top_k(results, k=k, itr=itr)
+ assert np.all(got == expected)
+
+
+def test_refit_callable():
+
+ results = { # this isn't a 'real world' result dict
+ 'iter': np.array([0, 0, 0, 0, 1, 1, 2, 2, 2]),
+ 'mean_test_score': np.array([4, 3, 5, 1, 11, 10, 5, 6, 9]),
+ 'params': np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']),
+ }
+ assert _refit_callable(results) == 8 # index of 'i'
+
+
[email protected]('Est', (HalvingRandomSearchCV, HalvingGridSearchCV))
+def test_cv_results(Est):
+ # test that the cv_results_ matches correctly the logic of the
+ # tournament: in particular that the candidates continued in each
+ # successive iteration are those that were best in the previous iteration
+ pd = pytest.importorskip('pandas')
+
+ rng = np.random.RandomState(0)
+
+ n_samples = 1000
+ X, y = make_classification(n_samples=n_samples, random_state=0)
+ param_grid = {'a': ('l1', 'l2'), 'b': list(range(30))}
+ base_estimator = FastClassifier()
+
+ # generate random scores: we want to avoid ties, which would otherwise
+ # mess with the ordering and make testing harder
+ def scorer(est, X, y):
+ return rng.rand()
+
+ sh = Est(base_estimator, param_grid, factor=2, scoring=scorer)
+ if Est is HalvingRandomSearchCV:
+ # same number of candidates as with the grid
+ sh.set_params(n_candidates=2 * 30, min_resources='exhaust')
+
+ sh.fit(X, y)
+ cv_results_df = pd.DataFrame(sh.cv_results_)
+
+ # just make sure we don't have ties
+ assert len(cv_results_df['mean_test_score'].unique()) == len(cv_results_df)
+
+ cv_results_df['params_str'] = cv_results_df['params'].apply(str)
+ table = cv_results_df.pivot(index='params_str', columns='iter',
+ values='mean_test_score')
+
+ # table looks like something like this:
+ # iter 0 1 2 3 4 5
+ # params_str
+ # {'a': 'l2', 'b': 23} 0.75 NaN NaN NaN NaN NaN
+ # {'a': 'l1', 'b': 30} 0.90 0.875 NaN NaN NaN NaN
+ # {'a': 'l1', 'b': 0} 0.75 NaN NaN NaN NaN NaN
+ # {'a': 'l2', 'b': 3} 0.85 0.925 0.9125 0.90625 NaN NaN
+ # {'a': 'l1', 'b': 5} 0.80 NaN NaN NaN NaN NaN
+ # ...
+
+ # where a NaN indicates that the candidate wasn't evaluated at a given
+ # iteration, because it wasn't part of the top-K at some previous
+ # iteration. We here make sure that candidates that aren't in the top-k at
+ # any given iteration are indeed not evaluated at the subsequent
+ # iterations.
+ nan_mask = pd.isna(table)
+ n_iter = sh.n_iterations_
+ for it in range(n_iter - 1):
+ already_discarded_mask = nan_mask[it]
+
+ # make sure that if a candidate is already discarded, we don't evaluate
+ # it later
+ assert (already_discarded_mask & nan_mask[it + 1] ==
+ already_discarded_mask).all()
+
+ # make sure that the number of discarded candidate is correct
+ discarded_now_mask = ~already_discarded_mask & nan_mask[it + 1]
+ kept_mask = ~already_discarded_mask & ~discarded_now_mask
+ assert kept_mask.sum() == sh.n_candidates_[it + 1]
+
+ # make sure that all discarded candidates have a lower score than the
+ # kept candidates
+ discarded_max_score = table[it].where(discarded_now_mask).max()
+ kept_min_score = table[it].where(kept_mask).min()
+ assert discarded_max_score < kept_min_score
+
+ # We now make sure that the best candidate is chosen only from the last
+ # iteration.
+ # We also make sure this is true even if there were higher scores in
+ # earlier rounds (this isn't generally the case, but worth ensuring it's
+ # possible).
+
+ last_iter = cv_results_df['iter'].max()
+ idx_best_last_iter = (
+ cv_results_df[cv_results_df['iter'] == last_iter]
+ ['mean_test_score'].idxmax()
+ )
+ idx_best_all_iters = cv_results_df['mean_test_score'].idxmax()
+
+ assert sh.best_params_ == cv_results_df.iloc[idx_best_last_iter]['params']
+ assert (cv_results_df.iloc[idx_best_last_iter]['mean_test_score'] <
+ cv_results_df.iloc[idx_best_all_iters]['mean_test_score'])
+ assert (cv_results_df.iloc[idx_best_last_iter]['params'] !=
+ cv_results_df.iloc[idx_best_all_iters]['params'])
+
+
[email protected]('Est', (HalvingGridSearchCV, HalvingRandomSearchCV))
+def test_base_estimator_inputs(Est):
+ # make sure that the base estimators are passed the correct parameters and
+ # number of samples at each iteration.
+ pd = pytest.importorskip('pandas')
+
+ passed_n_samples_fit = []
+ passed_n_samples_predict = []
+ passed_params = []
+
+ class FastClassifierBookKeeping(FastClassifier):
+
+ def fit(self, X, y):
+ passed_n_samples_fit.append(X.shape[0])
+ return super().fit(X, y)
+
+ def predict(self, X):
+ passed_n_samples_predict.append(X.shape[0])
+ return super().predict(X)
+
+ def set_params(self, **params):
+ passed_params.append(params)
+ return super().set_params(**params)
+
+ n_samples = 1024
+ n_splits = 2
+ X, y = make_classification(n_samples=n_samples, random_state=0)
+ param_grid = {'a': ('l1', 'l2'), 'b': list(range(30))}
+ base_estimator = FastClassifierBookKeeping()
+
+ sh = Est(base_estimator, param_grid, factor=2, cv=n_splits,
+ return_train_score=False, refit=False)
+ if Est is HalvingRandomSearchCV:
+ # same number of candidates as with the grid
+ sh.set_params(n_candidates=2 * 30, min_resources='exhaust')
+
+ sh.fit(X, y)
+
+ assert len(passed_n_samples_fit) == len(passed_n_samples_predict)
+ passed_n_samples = [x + y for (x, y) in zip(passed_n_samples_fit,
+ passed_n_samples_predict)]
+
+ # Lists are of length n_splits * n_iter * n_candidates_at_i.
+ # Each chunk of size n_splits corresponds to the n_splits folds for the
+ # same candidate at the same iteration, so they contain equal values. We
+ # subsample such that the lists are of length n_iter * n_candidates_at_it
+ passed_n_samples = passed_n_samples[::n_splits]
+ passed_params = passed_params[::n_splits]
+
+ cv_results_df = pd.DataFrame(sh.cv_results_)
+
+ assert len(passed_params) == len(passed_n_samples) == len(cv_results_df)
+
+ uniques, counts = np.unique(passed_n_samples, return_counts=True)
+ assert (sh.n_resources_ == uniques).all()
+ assert (sh.n_candidates_ == counts).all()
+
+ assert (cv_results_df['params'] == passed_params).all()
+ assert (cv_results_df['n_resources'] == passed_n_samples).all()
diff --git a/sklearn/tests/test_docstring_parameters.py b/sklearn/tests/test_docstring_parameters.py
index 966cce49eaf42..c723d61693007 100644
--- a/sklearn/tests/test_docstring_parameters.py
+++ b/sklearn/tests/test_docstring_parameters.py
@@ -189,7 +189,8 @@ def test_fit_docstring_attributes(name, Estimator):
'SparseCoder', 'SparseRandomProjection',
'SpectralBiclustering', 'StackingClassifier',
'StackingRegressor', 'TfidfVectorizer', 'VotingClassifier',
- 'VotingRegressor', 'SequentialFeatureSelector'}
+ 'VotingRegressor', 'SequentialFeatureSelector',
+ 'HalvingGridSearchCV', 'HalvingRandomSearchCV'}
if Estimator.__name__ in IGNORED or Estimator.__name__.startswith('_'):
pytest.skip("Estimator cannot be fit easily to test fit attributes")
|
[
{
"path": "doc/conf.py",
"old_path": "a/doc/conf.py",
"new_path": "b/doc/conf.py",
"metadata": "diff --git a/doc/conf.py b/doc/conf.py\nindex ccf5dcd068131..b09c5a15b133d 100644\n--- a/doc/conf.py\n+++ b/doc/conf.py\n@@ -356,6 +356,7 @@ def __call__(self, directory):\n # discovered properly by sphinx\n from sklearn.experimental import enable_hist_gradient_boosting # noqa\n from sklearn.experimental import enable_iterative_imputer # noqa\n+from sklearn.experimental import enable_successive_halving # noqa\n \n \n def make_carousel_thumbs(app, exception):\n"
},
{
"path": "doc/conftest.py",
"old_path": "a/doc/conftest.py",
"new_path": "b/doc/conftest.py",
"metadata": "diff --git a/doc/conftest.py b/doc/conftest.py\nindex eacd469f2e52f..96d42fd96066d 100644\n--- a/doc/conftest.py\n+++ b/doc/conftest.py\n@@ -57,6 +57,13 @@ def setup_impute():\n raise SkipTest(\"Skipping impute.rst, pandas not installed\")\n \n \n+def setup_grid_search():\n+ try:\n+ import pandas # noqa\n+ except ImportError:\n+ raise SkipTest(\"Skipping grid_search.rst, pandas not installed\")\n+\n+\n def setup_unsupervised_learning():\n try:\n import skimage # noqa\n@@ -86,5 +93,7 @@ def pytest_runtest_setup(item):\n raise SkipTest('FeatureHasher is not compatible with PyPy')\n elif fname.endswith('modules/impute.rst'):\n setup_impute()\n+ elif fname.endswith('modules/grid_search.rst'):\n+ setup_grid_search()\n elif fname.endswith('statistical_inference/unsupervised_learning.rst'):\n setup_unsupervised_learning()\n"
},
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex a0ee97aed260a..07fbaf384efd9 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1194,9 +1194,11 @@ Hyper-parameter optimizers\n :template: class.rst\n \n model_selection.GridSearchCV\n+ model_selection.HalvingGridSearchCV\n model_selection.ParameterGrid\n model_selection.ParameterSampler\n model_selection.RandomizedSearchCV\n+ model_selection.HalvingRandomSearchCV\n \n \n Model validation\n"
},
{
"path": "doc/modules/grid_search.rst",
"old_path": "a/doc/modules/grid_search.rst",
"new_path": "b/doc/modules/grid_search.rst",
"metadata": "diff --git a/doc/modules/grid_search.rst b/doc/modules/grid_search.rst\nindex 9d6c1c7e58170..c88a6eb986b5a 100644\n--- a/doc/modules/grid_search.rst\n+++ b/doc/modules/grid_search.rst\n@@ -30,14 +30,18 @@ A search consists of:\n - a cross-validation scheme; and\n - a :ref:`score function <gridsearch_scoring>`.\n \n-Some models allow for specialized, efficient parameter search strategies,\n-:ref:`outlined below <alternative_cv>`.\n-Two generic approaches to sampling search candidates are provided in\n+Two generic approaches to parameter search are provided in\n scikit-learn: for given values, :class:`GridSearchCV` exhaustively considers\n all parameter combinations, while :class:`RandomizedSearchCV` can sample a\n given number of candidates from a parameter space with a specified\n-distribution. After describing these tools we detail\n-:ref:`best practice <grid_search_tips>` applicable to both approaches.\n+distribution. Both these tools have successive halving counterparts\n+:class:`HalvingGridSearchCV` and :class:`HalvingRandomSearchCV`, which can be\n+much faster at finding a good parameter combination.\n+\n+After describing these tools we detail :ref:`best practices\n+<grid_search_tips>` applicable to these approaches. Some models allow for\n+specialized, efficient parameter search strategies, outlined in\n+:ref:`alternative_cv`.\n \n Note that it is common that a small subset of those parameters can have a large\n impact on the predictive or computation performance of the model while others\n@@ -167,6 +171,373 @@ variable that is log-uniformly distributed between ``1e0`` and ``1e3``::\n Random search for hyper-parameter optimization,\n The Journal of Machine Learning Research (2012)\n \n+.. _successive_halving_user_guide:\n+\n+Searching for optimal parameters with successive halving\n+========================================================\n+\n+Scikit-learn also provides the :class:`HalvingGridSearchCV` and\n+:class:`HalvingRandomSearchCV` estimators that can be used to\n+search a parameter space using successive halving [1]_ [2]_. Successive\n+halving (SH) is like a tournament among candidate parameter combinations.\n+SH is an iterative selection process where all candidates (the\n+parameter combinations) are evaluated with a small amount of resources at\n+the first iteration. Only some of these candidates are selected for the next\n+iteration, which will be allocated more resources. For parameter tuning, the\n+resource is typically the number of training samples, but it can also be an\n+arbitrary numeric parameter such as `n_estimators` in a random forest.\n+\n+As illustrated in the figure below, only a subset of candidates\n+'survive' until the last iteration. These are the candidates that have\n+consistently ranked among the top-scoring candidates across all iterations.\n+Each iteration is allocated an increasing amount of resources per candidate,\n+here the number of samples.\n+\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_successive_halving_iterations_001.png\n+ :target: ../auto_examples/model_selection/plot_successive_halving_iterations.html\n+ :align: center\n+\n+We here briefly describe the main parameters, but each parameter and their\n+interactions are described in more details in the sections below. The\n+``factor`` (> 1) parameter controls the rate at which the resources grow, and\n+the rate at which the number of candidates decreases. In each iteration, the\n+number of resources per candidate is multiplied by ``factor`` and the number\n+of candidates is divided by the same factor. Along with ``resource`` and\n+``min_resources``, ``factor`` is the most important parameter to control the\n+search in our implementation, though a value of 3 usually works well.\n+``factor`` effectively controls the number of iterations in\n+:class:`HalvingGridSearchCV` and the number of candidates (by default) and\n+iterations in :class:`HalvingRandomSearchCV`. ``aggressive_elimination=True``\n+can also be used if the number of available resources is small. More control\n+is available through tuning the ``min_resources`` parameter.\n+\n+These estimators are still **experimental**: their predictions\n+and their API might change without any deprecation cycle. To use them, you\n+need to explicitly import ``enable_successive_halving``::\n+\n+ >>> # explicitly require this experimental feature\n+ >>> from sklearn.experimental import enable_successive_halving # noqa\n+ >>> # now you can import normally from model_selection\n+ >>> from sklearn.model_selection import HalvingGridSearchCV\n+ >>> from sklearn.model_selection import HalvingRandomSearchCV\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_heatmap.py`\n+ * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_iterations.py`\n+\n+Choosing ``min_resources`` and the number of candidates\n+-------------------------------------------------------\n+\n+Beside ``factor``, the two main parameters that influence the behaviour of a\n+successive halving search are the ``min_resources`` parameter, and the\n+number of candidates (or parameter combinations) that are evaluated.\n+``min_resources`` is the amount of resources allocated at the first\n+iteration for each candidate. The number of candidates is specified directly\n+in :class:`HalvingRandomSearchCV`, and is determined from the ``param_grid``\n+parameter of :class:`HalvingGridSearchCV`.\n+\n+Consider a case where the resource is the number of samples, and where we\n+have 1000 samples. In theory, with ``min_resources=10`` and ``factor=2``, we\n+are able to run **at most** 7 iterations with the following number of\n+samples: ``[10, 20, 40, 80, 160, 320, 640]``.\n+\n+But depending on the number of candidates, we might run less than 7\n+iterations: if we start with a **small** number of candidates, the last\n+iteration might use less than 640 samples, which means not using all the\n+available resources (samples). For example if we start with 5 candidates, we\n+only need 2 iterations: 5 candidates for the first iteration, then\n+`5 // 2 = 2` candidates at the second iteration, after which we know which\n+candidate performs the best (so we don't need a third one). We would only be\n+using at most 20 samples which is a waste since we have 1000 samples at our\n+disposal. On the other hand, if we start with a **high** number of\n+candidates, we might end up with a lot of candidates at the last iteration,\n+which may not always be ideal: it means that many candidates will run with\n+the full resources, basically reducing the procedure to standard search.\n+\n+In the case of :class:`HalvingRandomSearchCV`, the number of candidates is set\n+by default such that the last iteration uses as much of the available\n+resources as possible. For :class:`HalvingGridSearchCV`, the number of\n+candidates is determined by the `param_grid` parameter. Changing the value of\n+``min_resources`` will impact the number of possible iterations, and as a\n+result will also have an effect on the ideal number of candidates.\n+\n+Another consideration when choosing ``min_resources`` is whether or not it\n+is easy to discriminate between good and bad candidates with a small amount\n+of resources. For example, if you need a lot of samples to distinguish\n+between good and bad parameters, a high ``min_resources`` is recommended. On\n+the other hand if the distinction is clear even with a small amount of\n+samples, then a small ``min_resources`` may be preferable since it would\n+speed up the computation.\n+\n+Notice in the example above that the last iteration does not use the maximum\n+amount of resources available: 1000 samples are available, yet only 640 are\n+used, at most. By default, both :class:`HalvingRandomSearchCV` and\n+:class:`HalvingGridSearchCV` try to use as many resources as possible in the\n+last iteration, with the constraint that this amount of resources must be a\n+multiple of both `min_resources` and `factor` (this constraint will be clear\n+in the next section). :class:`HalvingRandomSearchCV` achieves this by\n+sampling the right amount of candidates, while :class:`HalvingGridSearchCV`\n+achieves this by properly setting `min_resources`. Please see\n+:ref:`exhausting_the_resources` for details.\n+\n+.. _amount_of_resource_and_number_of_candidates:\n+\n+Amount of resource and number of candidates at each iteration\n+-------------------------------------------------------------\n+\n+At any iteration `i`, each candidate is allocated a given amount of resources\n+which we denote `n_resources_i`. This quantity is controlled by the\n+parameters ``factor`` and ``min_resources`` as follows (`factor` is strictly\n+greater than 1)::\n+\n+ n_resources_i = factor**i * min_resources,\n+\n+or equivalently::\n+\n+ n_resources_{i+1} = n_resources_i * factor\n+\n+where ``min_resources == n_resources_0`` is the amount of resources used at\n+the first iteration. ``factor`` also defines the proportions of candidates\n+that will be selected for the next iteration::\n+\n+ n_candidates_i = n_candidates // (factor ** i)\n+\n+or equivalently::\n+\n+ n_candidates_0 = n_candidates\n+ n_candidates_{i+1} = n_candidates_i // factor\n+\n+So in the first iteration, we use ``min_resources`` resources\n+``n_candidates`` times. In the second iteration, we use ``min_resources *\n+factor`` resources ``n_candidates // factor`` times. The third again\n+multiplies the resources per candidate and divides the number of candidates.\n+This process stops when the maximum amount of resource per candidate is\n+reached, or when we have identified the best candidate. The best candidate\n+is identified at the iteration that is evaluating `factor` or less candidates\n+(see just below for an explanation).\n+\n+Here is an example with ``min_resources=3`` and ``factor=2``, starting with\n+70 candidates:\n+\n++-----------------------+-----------------------+\n+| ``n_resources_i`` | ``n_candidates_i`` |\n++=======================+=======================+\n+| 3 (=min_resources) | 70 (=n_candidates) |\n++-----------------------+-----------------------+\n+| 3 * 2 = 6 | 70 // 2 = 35 |\n++-----------------------+-----------------------+\n+| 6 * 2 = 12 | 35 // 2 = 17 |\n++-----------------------+-----------------------+\n+| 12 * 2 = 24 | 17 // 2 = 8 |\n++-----------------------+-----------------------+\n+| 24 * 2 = 48 | 8 // 2 = 4 |\n++-----------------------+-----------------------+\n+| 48 * 2 = 96 | 4 // 2 = 2 |\n++-----------------------+-----------------------+\n+\n+We can note that:\n+\n+- the process stops at the first iteration which evaluates `factor=2`\n+ candidates: the best candidate is the best out of these 2 candidates. It\n+ is not necessary to run an additional iteration, since it would only\n+ evaluate one candidate (namely the best one, which we have already\n+ identified). For this reason, in general, we want the last iteration to\n+ run at most ``factor`` candidates. If the last iteration evaluates more\n+ than `factor` candidates, then this last iteration reduces to a regular\n+ search (as in :class:`RandomizedSearchCV` or :class:`GridSearchCV`).\n+- each ``n_resources_i`` is a multiple of both ``factor`` and\n+ ``min_resources`` (which is confirmed by its definition above).\n+\n+The amount of resources that is used at each iteration can be found in the\n+`n_resources_` attribute.\n+\n+Choosing a resource\n+-------------------\n+\n+By default, the resource is defined in terms of number of samples. That is,\n+each iteration will use an increasing amount of samples to train on. You can\n+however manually specify a parameter to use as the resource with the\n+``resource`` parameter. Here is an example where the resource is defined in\n+terms of the number of estimators of a random forest::\n+\n+ >>> from sklearn.datasets import make_classification\n+ >>> from sklearn.ensemble import RandomForestClassifier\n+ >>> from sklearn.experimental import enable_successive_halving # noqa\n+ >>> from sklearn.model_selection import HalvingGridSearchCV\n+ >>> import pandas as pd\n+ >>>\n+ >>> param_grid = {'max_depth': [3, 5, 10],\n+ ... 'min_samples_split': [2, 5, 10]}\n+ >>> base_estimator = RandomForestClassifier(random_state=0)\n+ >>> X, y = make_classification(n_samples=1000, random_state=0)\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2, resource='n_estimators',\n+ ... max_resources=30).fit(X, y)\n+ >>> sh.best_estimator_\n+ RandomForestClassifier(max_depth=5, n_estimators=24, random_state=0)\n+\n+Note that it is not possible to budget on a parameter that is part of the\n+parameter grid.\n+\n+.. _exhausting_the_resources:\n+\n+Exhausting the available resources\n+----------------------------------\n+\n+As mentioned above, the number of resources that is used at each iteration\n+depends on the `min_resources` parameter.\n+If you have a lot of resources available but start with a low number of\n+resources, some of them might be wasted (i.e. not used)::\n+\n+ >>> from sklearn.datasets import make_classification\n+ >>> from sklearn.svm import SVC\n+ >>> from sklearn.experimental import enable_successive_halving # noqa\n+ >>> from sklearn.model_selection import HalvingGridSearchCV\n+ >>> import pandas as pd\n+ >>> param_grid= {'kernel': ('linear', 'rbf'),\n+ ... 'C': [1, 10, 100]}\n+ >>> base_estimator = SVC(gamma='scale')\n+ >>> X, y = make_classification(n_samples=1000)\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2, min_resources=20).fit(X, y)\n+ >>> sh.n_resources_\n+ [20, 40, 80]\n+\n+The search process will only use 80 resources at most, while our maximum\n+amount of available resources is ``n_samples=1000``. Here, we have\n+``min_resources = r_0 = 20``.\n+\n+For :class:`HalvingGridSearchCV`, by default, the `min_resources` parameter\n+is set to 'exhaust'. This means that `min_resources` is automatically set\n+such that the last iteration can use as many resources as possible, within\n+the `max_resources` limit::\n+\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2, min_resources='exhaust').fit(X, y)\n+ >>> sh.n_resources_\n+ [250, 500, 1000]\n+\n+`min_resources` was here automatically set to 250, which results in the last\n+iteration using all the resources. The exact value that is used depends on\n+the number of candidate parameter, on `max_resources` and on `factor`.\n+\n+For :class:`HalvingRandomSearchCV`, exhausting the resources can be done in 2\n+ways:\n+\n+- by setting `min_resources='exhaust'`, just like for\n+ :class:`HalvingGridSearchCV`;\n+- by setting `n_candidates='exhaust'`.\n+\n+Both options are mutally exclusive: using `min_resources='exhaust'` requires\n+knowing the number of candidates, and symmetrically `n_candidates='exhaust'`\n+requires knowing `min_resources`.\n+\n+In general, exhausting the total number of resources leads to a better final\n+candidate parameter, and is slightly more time-intensive.\n+\n+.. _aggressive_elimination:\n+\n+Aggressive elimination of candidates\n+------------------------------------\n+\n+Ideally, we want the last iteration to evaluate ``factor`` candidates (see\n+:ref:`amount_of_resource_and_number_of_candidates`). We then just have to\n+pick the best one. When the number of available resources is small with\n+respect to the number of candidates, the last iteration may have to evaluate\n+more than ``factor`` candidates::\n+\n+ >>> from sklearn.datasets import make_classification\n+ >>> from sklearn.svm import SVC\n+ >>> from sklearn.experimental import enable_successive_halving # noqa\n+ >>> from sklearn.model_selection import HalvingGridSearchCV\n+ >>> import pandas as pd\n+ >>>\n+ >>>\n+ >>> param_grid = {'kernel': ('linear', 'rbf'),\n+ ... 'C': [1, 10, 100]}\n+ >>> base_estimator = SVC(gamma='scale')\n+ >>> X, y = make_classification(n_samples=1000)\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2, max_resources=40,\n+ ... aggressive_elimination=False).fit(X, y)\n+ >>> sh.n_resources_\n+ [20, 40]\n+ >>> sh.n_candidates_\n+ [6, 3]\n+\n+Since we cannot use more than ``max_resources=40`` resources, the process\n+has to stop at the second iteration which evaluates more than ``factor=2``\n+candidates.\n+\n+Using the ``aggressive_elimination`` parameter, you can force the search\n+process to end up with less than ``factor`` candidates at the last\n+iteration. To do this, the process will eliminate as many candidates as\n+necessary using ``min_resources`` resources::\n+\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2,\n+ ... max_resources=40,\n+ ... aggressive_elimination=True,\n+ ... ).fit(X, y)\n+ >>> sh.n_resources_\n+ [20, 20, 40]\n+ >>> sh.n_candidates_\n+ [6, 3, 2]\n+\n+Notice that we end with 2 candidates at the last iteration since we have\n+eliminated enough candidates during the first iterations, using ``n_resources =\n+min_resources = 20``.\n+\n+.. _successive_halving_cv_results:\n+\n+Analysing results with the `cv_results_` attribute\n+--------------------------------------------------\n+\n+The ``cv_results_`` attribute contains useful information for analysing the\n+results of a search. It can be converted to a pandas dataframe with ``df =\n+pd.DataFrame(est.cv_results_)``. The ``cv_results_`` attribute of\n+:class:`HalvingGridSearchCV` and :class:`HalvingRandomSearchCV` is similar\n+to that of :class:`GridSearchCV` and :class:`RandomizedSearchCV`, with\n+additional information related to the successive halving process.\n+\n+Here is an example with some of the columns of a (truncated) dataframe:\n+\n+==== ====== =============== ================= =======================================================================================\n+ .. iter n_resources mean_test_score params\n+==== ====== =============== ================= =======================================================================================\n+ 0 0 125 0.983667 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 5}\n+ 1 0 125 0.983667 {'criterion': 'gini', 'max_depth': None, 'max_features': 8, 'min_samples_split': 7}\n+ 2 0 125 0.983667 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 10}\n+ 3 0 125 0.983667 {'criterion': 'entropy', 'max_depth': None, 'max_features': 6, 'min_samples_split': 6}\n+ ... ... ... ... ...\n+ 15 2 500 0.951958 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}\n+ 16 2 500 0.947958 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 10}\n+ 17 2 500 0.951958 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 4}\n+ 18 3 1000 0.961009 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}\n+ 19 3 1000 0.955989 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 4}\n+==== ====== =============== ================= =======================================================================================\n+\n+Each row corresponds to a given parameter combination (a candidate) and a given\n+iteration. The iteration is given by the ``iter`` column. The ``n_resources``\n+column tells you how many resources were used.\n+\n+In the example above, the best parameter combination is ``{'criterion':\n+'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}``\n+since it has reached the last iteration (3) with the highest score:\n+0.96.\n+\n+.. topic:: References:\n+\n+ .. [1] K. Jamieson, A. Talwalkar,\n+ `Non-stochastic Best Arm Identification and Hyperparameter\n+ Optimization <http://proceedings.mlr.press/v51/jamieson16.html>`_, in\n+ proc. of Machine Learning Research, 2016.\n+ .. [2] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar,\n+ `Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization\n+ <https://arxiv.org/abs/1603.06560>`_, in Machine Learning Research\n+ 18, 2018.\n+\n .. _grid_search_tips:\n \n Tips for parameter search\n@@ -183,18 +554,16 @@ to evaluate a parameter setting. These are the\n :func:`sklearn.metrics.r2_score` for regression. For some applications,\n other scoring functions are better suited (for example in unbalanced\n classification, the accuracy score is often uninformative). An alternative\n-scoring function can be specified via the ``scoring`` parameter to\n-:class:`GridSearchCV`, :class:`RandomizedSearchCV` and many of the\n-specialized cross-validation tools described below.\n-See :ref:`scoring_parameter` for more details.\n+scoring function can be specified via the ``scoring`` parameter of most\n+parameter search tools. See :ref:`scoring_parameter` for more details.\n \n .. _multimetric_grid_search:\n \n Specifying multiple metrics for evaluation\n ------------------------------------------\n \n-``GridSearchCV`` and ``RandomizedSearchCV`` allow specifying multiple metrics\n-for the ``scoring`` parameter.\n+:class:`GridSearchCV` and :class:`RandomizedSearchCV` allow specifying\n+multiple metrics for the ``scoring`` parameter.\n \n Multimetric scoring can either be specified as a list of strings of predefined\n scores names or a dict mapping the scorer name to the scorer function and/or\n@@ -209,6 +578,9 @@ result in an error when using multiple metrics.\n See :ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py`\n for an example usage.\n \n+:class:`HalvingRandomSearchCV` and :class:`HalvingGridSearchCV` do not support\n+multimetric scoring.\n+\n .. _composite_grid_search:\n \n Composite estimators and parameter spaces\n@@ -253,6 +625,8 @@ levels of nesting::\n ... 'model__base_estimator__max_depth': [2, 4, 6, 8]}\n >>> search = GridSearchCV(pipe, param_grid, cv=5).fit(X, y)\n \n+Please refer to :ref:`pipeline` for performing parameter searches over\n+pipelines.\n \n Model selection: development and evaluation\n -------------------------------------------\n@@ -263,7 +637,7 @@ to use the labeled data to \"train\" the parameters of the grid.\n When evaluating the resulting model it is important to do it on\n held-out samples that were not seen during the grid search process:\n it is recommended to split the data into a **development set** (to\n-be fed to the ``GridSearchCV`` instance) and an **evaluation set**\n+be fed to the :class:`GridSearchCV` instance) and an **evaluation set**\n to compute performance metrics.\n \n This can be done by using the :func:`train_test_split`\n@@ -272,10 +646,10 @@ utility function.\n Parallelism\n -----------\n \n-:class:`GridSearchCV` and :class:`RandomizedSearchCV` evaluate each parameter\n-setting independently. Computations can be run in parallel if your OS\n-supports it, by using the keyword ``n_jobs=-1``. See function signature for\n-more details.\n+The parameter search tools evaluate each parameter combination on each data\n+fold independently. Computations can be run in parallel by using the keyword\n+``n_jobs=-1``. See function signature for more details, and also the Glossary\n+entry for :term:`n_jobs`.\n \n Robustness to failure\n ---------------------\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex c57f097ec3218..e757fee299af7 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -412,6 +412,14 @@ Changelog\n :pr:`17478` by :user:`Teon Brooks <teonbrooks>` and\n :user:`Mohamed Maskani <maskani-moh>`.\n \n+- |Feature| Added (experimental) parameter search estimators\n+ :class:`model_selection.HalvingRandomSearchCV` and\n+ :class:`model_selection.HalvingGridSearchCV` which implement Successive\n+ Halving, and can be used as a drop-in replacements for\n+ :class:`model_selection.RandomizedSearchCV` and\n+ :class:`model_selection.GridSearchCV`. :pr:`13900` by `Nicolas Hug`_, `Joel\n+ Nothman`_ and `Andreas Müller`_.\n+\n - |Fix| Fixed the `len` of :class:`model_selection.ParameterSampler` when\n all distributions are lists and `n_iter` is more than the number of unique\n parameter combinations. :pr:`18222` by `Nicolas Hug`_.\n"
}
] |
0.24
|
5b29166fe975dd7f21eec137d8e54c0e926d6b8f
|
[] |
[
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[KFold]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-auto-2-2-expected_n_resources3-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params3-max_resources must be either-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_list_input",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[None-7-3]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[8-8-2-ShuffleSplit]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-auto-2-2-expected_n_resources3-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-limited-4-4-3-1-expected_n_candidates0-expected_n_resources0-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_repr[RepeatedKFold]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-30-1-1-expected_n_resources2-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv11-True]",
"sklearn/model_selection/tests/test_split.py::test_get_n_splits_for_repeated_kfold",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-600-2-2-expected_n_resources6-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-999-2-2-expected_n_resources5-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-limited-3-4-3-3-expected_n_candidates1-expected_n_resources1-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[50-auto-2-3-expected_n_resources1-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params0-Multimetric scoring is not supported-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[6-False]",
"sklearn/model_selection/tests/test_split.py::test_build_repr",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[8-True]",
"sklearn/model_selection/tests/test_successive_halving.py::test_resource_parameter[HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params6-min_resources must be either-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params12-must yield consistent folds-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_subsample_splitter_shapes[0.2-True-16-4]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_respects_test_size",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-1000-2-2-expected_n_resources4-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-limited-4-4-3-1-expected_n_candidates0-expected_n_resources0-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[0.8-8-2]",
"sklearn/model_selection/tests/test_successive_halving.py::test_subsample_splitter_shapes[0.5-False-40-20]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[2.0-None]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv3-True]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-30-1-1-expected_n_resources2-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv16-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params0-Multimetric scoring is not supported-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_kfold_indices",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv21-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-unlimited-4-4-4-1-expected_n_candidates3-expected_n_resources3-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_subsample_splitter_determinism[False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[7-False]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[7-True]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[7-7-3]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[6-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params9-max_resources can only be 'auto' if resource='n_samples'-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv26-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params4-max_resources must be either-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors_randomized[params0-cannot be both set to 'exhaust']",
"sklearn/model_selection/tests/test_successive_halving.py::test_base_estimator_inputs[HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_random_search[512-exhaust-128]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-1.2]",
"sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-unlimited-4-4-4-1-expected_n_candidates3-expected_n_resources3-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_top_k[1-2-expected7]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-999-2-2-expected_n_resources5-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[None-9-1-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[6-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0-0.8]",
"sklearn/model_selection/tests/test_split.py::test_kfold_no_shuffle",
"sklearn/model_selection/tests/test_split.py::test_leave_one_p_group_out_error_on_fewer_number_of_groups",
"sklearn/model_selection/tests/test_split.py::test_kfold_can_detect_dependent_samples_on_digits",
"sklearn/model_selection/tests/test_split.py::test_check_cv",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_repr[RepeatedStratifiedKFold]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[32-4-4-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-8-8]",
"sklearn/model_selection/tests/test_split.py::test_leave_one_out_empty_trainset",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params2-Cannot use parameter a as the resource since it is part of-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_repeated_kfold_determinstic_split",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params1-Cannot use resource=not_a_parameter which is not supported-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_predefinedsplit_with_kfold_split",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[512-5-8-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8-0]",
"sklearn/model_selection/tests/test_split.py::test_stratifiedkfold_balance",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[0.7-7-3]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_stratifiedkfold",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_iter",
"sklearn/model_selection/tests/test_split.py::test_leave_one_p_group_out",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[1.0-None]",
"sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-exhaust-8]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv28-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params11-must yield consistent folds-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_mock_pandas",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params8-min_resources must be either-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_no_shuffle",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_even",
"sklearn/model_selection/tests/test_split.py::test_2d_y",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[None-8-2]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[16-3-3-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[31-3-3-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_init",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[4-False]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[None-9-1-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-300-2-2-expected_n_resources8-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-0.0]",
"sklearn/model_selection/tests/test_successive_halving.py::test_random_search_discrete_distributions[param_distributions1-10]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv8-True]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-60-2-2-expected_n_resources9-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[1024-5-9-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_cv_results[HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv15-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_top_k[1-0-expected0]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv27-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params5-max_resources must be either-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_top_k[4-0-expected2]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params8-min_resources must be either-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv0-True]",
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[StratifiedKFold]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_pandas",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv17-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_random_search_discrete_distributions[param_distributions0-2]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[511-5-7-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_top_k[10-1-expected6]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params4-max_resources must be either-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel_many_labels",
"sklearn/model_selection/tests/test_split.py::test_get_n_splits_for_repeated_stratified_kfold",
"sklearn/model_selection/tests/test_split.py::test_group_kfold",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[31-3-3-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv5-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[4-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[-0.2-0.8]",
"sklearn/tests/test_docstring_parameters.py::test_tabs",
"sklearn/model_selection/tests/test_successive_halving.py::test_cv_results[HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[7-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[10-False]",
"sklearn/model_selection/tests/test_split.py::test_kfold_balance",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params1-Cannot use resource=not_a_parameter which is not supported-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_base_estimator_inputs[HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[10-None]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.0-0.8]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[8-8-2]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params5-max_resources must be either-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params6-min_resources must be either-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[auto-5-9-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_leave_group_out_changing_groups",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[0.1-0.95]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv12-True]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv13-True]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[512-5-8-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-600-2-2-expected_n_resources6-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_top_k[1-1-expected4]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv25-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_top_k[10-2-expected8]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[6-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[4-False]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[0.8-8-2-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv20-False]",
"sklearn/model_selection/tests/test_split.py::test_time_series_test_size",
"sklearn/model_selection/tests/test_split.py::test_time_series_cv",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv24-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-unlimited-4-4-4-1-expected_n_candidates2-expected_n_resources2-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[50-auto-2-3-expected_n_resources1-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[16-3-3-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_top_k[2-0-expected1]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv4-True]",
"sklearn/model_selection/tests/test_successive_halving.py::test_top_k[10-0-expected3]",
"sklearn/model_selection/tests/test_split.py::test_leave_p_out_empty_trainset",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-50-1-1-expected_n_resources10-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[1.0-0.8]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params2-Cannot use parameter a as the resource since it is part of-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-1000-2-2-expected_n_resources4-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-unlimited-4-4-4-1-expected_n_candidates2-expected_n_resources2-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv1-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[10-True]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-599-2-2-expected_n_resources7-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-20-1-1-expected_n_resources11-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-20-1-1-expected_n_resources11-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratifiedshufflesplit_list_input",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[8-8-2-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv7-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8--0.2]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold_stratifiedkfold_reproducibility",
"sklearn/model_selection/tests/test_split.py::test_cv_iterable_wrapper",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold",
"sklearn/model_selection/tests/test_split.py::test_time_series_max_train_size",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[1024-5-9-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[4-1-1-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[511-5-7-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_subsample_splitter_shapes[0.5-True-40-10]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params3-max_resources must be either-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_value_errors",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[8-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[1.2-0.8]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv9-True]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[GroupShuffleSplit]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors_randomized[params1-either 'exhaust' or a positive integer]",
"sklearn/model_selection/tests/test_successive_halving.py::test_subsample_splitter_shapes[0.2-False-16-20]",
"sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-7-7]",
"sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-9-9]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params7-min_resources must be either-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[9-True]",
"sklearn/model_selection/tests/test_split.py::test_kfold_valueerrors",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[9-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv14-True]",
"sklearn/model_selection/tests/test_successive_halving.py::test_refit_callable",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-50-1-1-expected_n_resources10-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[11-0.8]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[32-4-4-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[0.8-8-2-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-auto-2-4-expected_n_resources0-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[4-True]",
"sklearn/model_selection/tests/test_split.py::test_repeated_stratified_kfold_determinstic_split",
"sklearn/model_selection/tests/test_successive_halving.py::test_resource_parameter[HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-limited-3-4-3-3-expected_n_candidates1-expected_n_resources1-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[700-5-8-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[7-False]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_errors",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_overlap_train_test_bug",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv6-True]",
"sklearn/model_selection/tests/test_successive_halving.py::test_subsample_splitter_determinism[True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_allow_nans",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[auto-5-9-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_sparse",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv19-False]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv18-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-auto-2-4-expected_n_resources0-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params7-min_resources must be either-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv22-False]",
"sklearn/experimental/tests/test_enable_successive_halving.py::test_imports_strategies",
"sklearn/model_selection/tests/test_split.py::test_nested_cv",
"sklearn/model_selection/tests/test_split.py::test_time_series_gap",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[700-5-8-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_top_k[2-1-expected5]",
"sklearn/model_selection/tests/test_split.py::test_cross_validator_with_default_params",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[-10-0.8]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_reproducible",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[8-3]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[5-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_empty_trainset",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[5-True]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[None-1j]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv2-True]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params10-min_resources_=15 is greater than max_resources_=14-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params10-min_resources_=15 is greater than max_resources_=14-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params12-must yield consistent folds-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv10-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8--10]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel",
"sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[4-1-1-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors_randomized[params2-either 'exhaust' or a positive integer]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-60-2-2-expected_n_resources9-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-1.0]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params9-max_resources can only be 'auto' if resource='n_samples'-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8-11]",
"sklearn/model_selection/tests/test_split.py::test_yields_constant_splits[cv23-False]",
"sklearn/model_selection/tests/test_successive_halving.py::test_input_errors[params11-must yield consistent folds-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-300-2-2-expected_n_resources8-HalvingGridSearchCV]",
"sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-599-2-2-expected_n_resources7-HalvingRandomSearchCV]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[11-None]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": [
{
"type": "file",
"name": "examples/model_selection/plot_successive_halving_iterations.py"
},
{
"type": "file",
"name": "sklearn/experimental/enable_successive_halving.py"
},
{
"type": "file",
"name": "examples/model_selection/plot_successive_halving_heatmap.py"
},
{
"type": "file",
"name": "sklearn/model_selection/_search_successive_halving.py"
}
]
}
|
[
{
"path": "doc/conf.py",
"old_path": "a/doc/conf.py",
"new_path": "b/doc/conf.py",
"metadata": "diff --git a/doc/conf.py b/doc/conf.py\nindex ccf5dcd068131..b09c5a15b133d 100644\n--- a/doc/conf.py\n+++ b/doc/conf.py\n@@ -356,6 +356,7 @@ def __call__(self, directory):\n # discovered properly by sphinx\n from sklearn.experimental import enable_hist_gradient_boosting # noqa\n from sklearn.experimental import enable_iterative_imputer # noqa\n+from sklearn.experimental import enable_successive_halving # noqa\n \n \n def make_carousel_thumbs(app, exception):\n"
},
{
"path": "doc/conftest.py",
"old_path": "a/doc/conftest.py",
"new_path": "b/doc/conftest.py",
"metadata": "diff --git a/doc/conftest.py b/doc/conftest.py\nindex eacd469f2e52f..96d42fd96066d 100644\n--- a/doc/conftest.py\n+++ b/doc/conftest.py\n@@ -57,6 +57,13 @@ def setup_impute():\n raise SkipTest(\"Skipping impute.rst, pandas not installed\")\n \n \n+def setup_grid_search():\n+ try:\n+ import pandas # noqa\n+ except ImportError:\n+ raise SkipTest(\"Skipping grid_search.rst, pandas not installed\")\n+\n+\n def setup_unsupervised_learning():\n try:\n import skimage # noqa\n@@ -86,5 +93,7 @@ def pytest_runtest_setup(item):\n raise SkipTest('FeatureHasher is not compatible with PyPy')\n elif fname.endswith('modules/impute.rst'):\n setup_impute()\n+ elif fname.endswith('modules/grid_search.rst'):\n+ setup_grid_search()\n elif fname.endswith('statistical_inference/unsupervised_learning.rst'):\n setup_unsupervised_learning()\n"
},
{
"path": "doc/modules/classes.rst",
"old_path": "a/doc/modules/classes.rst",
"new_path": "b/doc/modules/classes.rst",
"metadata": "diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst\nindex a0ee97aed260a..07fbaf384efd9 100644\n--- a/doc/modules/classes.rst\n+++ b/doc/modules/classes.rst\n@@ -1194,9 +1194,11 @@ Hyper-parameter optimizers\n :template: class.rst\n \n model_selection.GridSearchCV\n+ model_selection.HalvingGridSearchCV\n model_selection.ParameterGrid\n model_selection.ParameterSampler\n model_selection.RandomizedSearchCV\n+ model_selection.HalvingRandomSearchCV\n \n \n Model validation\n"
},
{
"path": "doc/modules/grid_search.rst",
"old_path": "a/doc/modules/grid_search.rst",
"new_path": "b/doc/modules/grid_search.rst",
"metadata": "diff --git a/doc/modules/grid_search.rst b/doc/modules/grid_search.rst\nindex 9d6c1c7e58170..c88a6eb986b5a 100644\n--- a/doc/modules/grid_search.rst\n+++ b/doc/modules/grid_search.rst\n@@ -30,14 +30,18 @@ A search consists of:\n - a cross-validation scheme; and\n - a :ref:`score function <gridsearch_scoring>`.\n \n-Some models allow for specialized, efficient parameter search strategies,\n-:ref:`outlined below <alternative_cv>`.\n-Two generic approaches to sampling search candidates are provided in\n+Two generic approaches to parameter search are provided in\n scikit-learn: for given values, :class:`GridSearchCV` exhaustively considers\n all parameter combinations, while :class:`RandomizedSearchCV` can sample a\n given number of candidates from a parameter space with a specified\n-distribution. After describing these tools we detail\n-:ref:`best practice <grid_search_tips>` applicable to both approaches.\n+distribution. Both these tools have successive halving counterparts\n+:class:`HalvingGridSearchCV` and :class:`HalvingRandomSearchCV`, which can be\n+much faster at finding a good parameter combination.\n+\n+After describing these tools we detail :ref:`best practices\n+<grid_search_tips>` applicable to these approaches. Some models allow for\n+specialized, efficient parameter search strategies, outlined in\n+:ref:`alternative_cv`.\n \n Note that it is common that a small subset of those parameters can have a large\n impact on the predictive or computation performance of the model while others\n@@ -167,6 +171,373 @@ variable that is log-uniformly distributed between ``1e0`` and ``1e3``::\n Random search for hyper-parameter optimization,\n The Journal of Machine Learning Research (2012)\n \n+.. _successive_halving_user_guide:\n+\n+Searching for optimal parameters with successive halving\n+========================================================\n+\n+Scikit-learn also provides the :class:`HalvingGridSearchCV` and\n+:class:`HalvingRandomSearchCV` estimators that can be used to\n+search a parameter space using successive halving [1]_ [2]_. Successive\n+halving (SH) is like a tournament among candidate parameter combinations.\n+SH is an iterative selection process where all candidates (the\n+parameter combinations) are evaluated with a small amount of resources at\n+the first iteration. Only some of these candidates are selected for the next\n+iteration, which will be allocated more resources. For parameter tuning, the\n+resource is typically the number of training samples, but it can also be an\n+arbitrary numeric parameter such as `n_estimators` in a random forest.\n+\n+As illustrated in the figure below, only a subset of candidates\n+'survive' until the last iteration. These are the candidates that have\n+consistently ranked among the top-scoring candidates across all iterations.\n+Each iteration is allocated an increasing amount of resources per candidate,\n+here the number of samples.\n+\n+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_successive_halving_iterations_001.png\n+ :target: ../auto_examples/model_selection/plot_successive_halving_iterations.html\n+ :align: center\n+\n+We here briefly describe the main parameters, but each parameter and their\n+interactions are described in more details in the sections below. The\n+``factor`` (> 1) parameter controls the rate at which the resources grow, and\n+the rate at which the number of candidates decreases. In each iteration, the\n+number of resources per candidate is multiplied by ``factor`` and the number\n+of candidates is divided by the same factor. Along with ``resource`` and\n+``min_resources``, ``factor`` is the most important parameter to control the\n+search in our implementation, though a value of 3 usually works well.\n+``factor`` effectively controls the number of iterations in\n+:class:`HalvingGridSearchCV` and the number of candidates (by default) and\n+iterations in :class:`HalvingRandomSearchCV`. ``aggressive_elimination=True``\n+can also be used if the number of available resources is small. More control\n+is available through tuning the ``min_resources`` parameter.\n+\n+These estimators are still **experimental**: their predictions\n+and their API might change without any deprecation cycle. To use them, you\n+need to explicitly import ``enable_successive_halving``::\n+\n+ >>> # explicitly require this experimental feature\n+ >>> from sklearn.experimental import enable_successive_halving # noqa\n+ >>> # now you can import normally from model_selection\n+ >>> from sklearn.model_selection import HalvingGridSearchCV\n+ >>> from sklearn.model_selection import HalvingRandomSearchCV\n+\n+.. topic:: Examples:\n+\n+ * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_heatmap.py`\n+ * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_iterations.py`\n+\n+Choosing ``min_resources`` and the number of candidates\n+-------------------------------------------------------\n+\n+Beside ``factor``, the two main parameters that influence the behaviour of a\n+successive halving search are the ``min_resources`` parameter, and the\n+number of candidates (or parameter combinations) that are evaluated.\n+``min_resources`` is the amount of resources allocated at the first\n+iteration for each candidate. The number of candidates is specified directly\n+in :class:`HalvingRandomSearchCV`, and is determined from the ``param_grid``\n+parameter of :class:`HalvingGridSearchCV`.\n+\n+Consider a case where the resource is the number of samples, and where we\n+have 1000 samples. In theory, with ``min_resources=10`` and ``factor=2``, we\n+are able to run **at most** 7 iterations with the following number of\n+samples: ``[10, 20, 40, 80, 160, 320, 640]``.\n+\n+But depending on the number of candidates, we might run less than 7\n+iterations: if we start with a **small** number of candidates, the last\n+iteration might use less than 640 samples, which means not using all the\n+available resources (samples). For example if we start with 5 candidates, we\n+only need 2 iterations: 5 candidates for the first iteration, then\n+`5 // 2 = 2` candidates at the second iteration, after which we know which\n+candidate performs the best (so we don't need a third one). We would only be\n+using at most 20 samples which is a waste since we have 1000 samples at our\n+disposal. On the other hand, if we start with a **high** number of\n+candidates, we might end up with a lot of candidates at the last iteration,\n+which may not always be ideal: it means that many candidates will run with\n+the full resources, basically reducing the procedure to standard search.\n+\n+In the case of :class:`HalvingRandomSearchCV`, the number of candidates is set\n+by default such that the last iteration uses as much of the available\n+resources as possible. For :class:`HalvingGridSearchCV`, the number of\n+candidates is determined by the `param_grid` parameter. Changing the value of\n+``min_resources`` will impact the number of possible iterations, and as a\n+result will also have an effect on the ideal number of candidates.\n+\n+Another consideration when choosing ``min_resources`` is whether or not it\n+is easy to discriminate between good and bad candidates with a small amount\n+of resources. For example, if you need a lot of samples to distinguish\n+between good and bad parameters, a high ``min_resources`` is recommended. On\n+the other hand if the distinction is clear even with a small amount of\n+samples, then a small ``min_resources`` may be preferable since it would\n+speed up the computation.\n+\n+Notice in the example above that the last iteration does not use the maximum\n+amount of resources available: 1000 samples are available, yet only 640 are\n+used, at most. By default, both :class:`HalvingRandomSearchCV` and\n+:class:`HalvingGridSearchCV` try to use as many resources as possible in the\n+last iteration, with the constraint that this amount of resources must be a\n+multiple of both `min_resources` and `factor` (this constraint will be clear\n+in the next section). :class:`HalvingRandomSearchCV` achieves this by\n+sampling the right amount of candidates, while :class:`HalvingGridSearchCV`\n+achieves this by properly setting `min_resources`. Please see\n+:ref:`exhausting_the_resources` for details.\n+\n+.. _amount_of_resource_and_number_of_candidates:\n+\n+Amount of resource and number of candidates at each iteration\n+-------------------------------------------------------------\n+\n+At any iteration `i`, each candidate is allocated a given amount of resources\n+which we denote `n_resources_i`. This quantity is controlled by the\n+parameters ``factor`` and ``min_resources`` as follows (`factor` is strictly\n+greater than 1)::\n+\n+ n_resources_i = factor**i * min_resources,\n+\n+or equivalently::\n+\n+ n_resources_{i+1} = n_resources_i * factor\n+\n+where ``min_resources == n_resources_0`` is the amount of resources used at\n+the first iteration. ``factor`` also defines the proportions of candidates\n+that will be selected for the next iteration::\n+\n+ n_candidates_i = n_candidates // (factor ** i)\n+\n+or equivalently::\n+\n+ n_candidates_0 = n_candidates\n+ n_candidates_{i+1} = n_candidates_i // factor\n+\n+So in the first iteration, we use ``min_resources`` resources\n+``n_candidates`` times. In the second iteration, we use ``min_resources *\n+factor`` resources ``n_candidates // factor`` times. The third again\n+multiplies the resources per candidate and divides the number of candidates.\n+This process stops when the maximum amount of resource per candidate is\n+reached, or when we have identified the best candidate. The best candidate\n+is identified at the iteration that is evaluating `factor` or less candidates\n+(see just below for an explanation).\n+\n+Here is an example with ``min_resources=3`` and ``factor=2``, starting with\n+70 candidates:\n+\n++-----------------------+-----------------------+\n+| ``n_resources_i`` | ``n_candidates_i`` |\n++=======================+=======================+\n+| 3 (=min_resources) | 70 (=n_candidates) |\n++-----------------------+-----------------------+\n+| 3 * 2 = 6 | 70 // 2 = 35 |\n++-----------------------+-----------------------+\n+| 6 * 2 = 12 | 35 // 2 = 17 |\n++-----------------------+-----------------------+\n+| 12 * 2 = 24 | 17 // 2 = 8 |\n++-----------------------+-----------------------+\n+| 24 * 2 = 48 | 8 // 2 = 4 |\n++-----------------------+-----------------------+\n+| 48 * 2 = 96 | 4 // 2 = 2 |\n++-----------------------+-----------------------+\n+\n+We can note that:\n+\n+- the process stops at the first iteration which evaluates `factor=2`\n+ candidates: the best candidate is the best out of these 2 candidates. It\n+ is not necessary to run an additional iteration, since it would only\n+ evaluate one candidate (namely the best one, which we have already\n+ identified). For this reason, in general, we want the last iteration to\n+ run at most ``factor`` candidates. If the last iteration evaluates more\n+ than `factor` candidates, then this last iteration reduces to a regular\n+ search (as in :class:`RandomizedSearchCV` or :class:`GridSearchCV`).\n+- each ``n_resources_i`` is a multiple of both ``factor`` and\n+ ``min_resources`` (which is confirmed by its definition above).\n+\n+The amount of resources that is used at each iteration can be found in the\n+`n_resources_` attribute.\n+\n+Choosing a resource\n+-------------------\n+\n+By default, the resource is defined in terms of number of samples. That is,\n+each iteration will use an increasing amount of samples to train on. You can\n+however manually specify a parameter to use as the resource with the\n+``resource`` parameter. Here is an example where the resource is defined in\n+terms of the number of estimators of a random forest::\n+\n+ >>> from sklearn.datasets import make_classification\n+ >>> from sklearn.ensemble import RandomForestClassifier\n+ >>> from sklearn.experimental import enable_successive_halving # noqa\n+ >>> from sklearn.model_selection import HalvingGridSearchCV\n+ >>> import pandas as pd\n+ >>>\n+ >>> param_grid = {'max_depth': [3, 5, 10],\n+ ... 'min_samples_split': [2, 5, 10]}\n+ >>> base_estimator = RandomForestClassifier(random_state=0)\n+ >>> X, y = make_classification(n_samples=1000, random_state=0)\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2, resource='n_estimators',\n+ ... max_resources=30).fit(X, y)\n+ >>> sh.best_estimator_\n+ RandomForestClassifier(max_depth=5, n_estimators=24, random_state=0)\n+\n+Note that it is not possible to budget on a parameter that is part of the\n+parameter grid.\n+\n+.. _exhausting_the_resources:\n+\n+Exhausting the available resources\n+----------------------------------\n+\n+As mentioned above, the number of resources that is used at each iteration\n+depends on the `min_resources` parameter.\n+If you have a lot of resources available but start with a low number of\n+resources, some of them might be wasted (i.e. not used)::\n+\n+ >>> from sklearn.datasets import make_classification\n+ >>> from sklearn.svm import SVC\n+ >>> from sklearn.experimental import enable_successive_halving # noqa\n+ >>> from sklearn.model_selection import HalvingGridSearchCV\n+ >>> import pandas as pd\n+ >>> param_grid= {'kernel': ('linear', 'rbf'),\n+ ... 'C': [1, 10, 100]}\n+ >>> base_estimator = SVC(gamma='scale')\n+ >>> X, y = make_classification(n_samples=1000)\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2, min_resources=20).fit(X, y)\n+ >>> sh.n_resources_\n+ [20, 40, 80]\n+\n+The search process will only use 80 resources at most, while our maximum\n+amount of available resources is ``n_samples=1000``. Here, we have\n+``min_resources = r_0 = 20``.\n+\n+For :class:`HalvingGridSearchCV`, by default, the `min_resources` parameter\n+is set to 'exhaust'. This means that `min_resources` is automatically set\n+such that the last iteration can use as many resources as possible, within\n+the `max_resources` limit::\n+\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2, min_resources='exhaust').fit(X, y)\n+ >>> sh.n_resources_\n+ [250, 500, 1000]\n+\n+`min_resources` was here automatically set to 250, which results in the last\n+iteration using all the resources. The exact value that is used depends on\n+the number of candidate parameter, on `max_resources` and on `factor`.\n+\n+For :class:`HalvingRandomSearchCV`, exhausting the resources can be done in 2\n+ways:\n+\n+- by setting `min_resources='exhaust'`, just like for\n+ :class:`HalvingGridSearchCV`;\n+- by setting `n_candidates='exhaust'`.\n+\n+Both options are mutally exclusive: using `min_resources='exhaust'` requires\n+knowing the number of candidates, and symmetrically `n_candidates='exhaust'`\n+requires knowing `min_resources`.\n+\n+In general, exhausting the total number of resources leads to a better final\n+candidate parameter, and is slightly more time-intensive.\n+\n+.. _aggressive_elimination:\n+\n+Aggressive elimination of candidates\n+------------------------------------\n+\n+Ideally, we want the last iteration to evaluate ``factor`` candidates (see\n+:ref:`amount_of_resource_and_number_of_candidates`). We then just have to\n+pick the best one. When the number of available resources is small with\n+respect to the number of candidates, the last iteration may have to evaluate\n+more than ``factor`` candidates::\n+\n+ >>> from sklearn.datasets import make_classification\n+ >>> from sklearn.svm import SVC\n+ >>> from sklearn.experimental import enable_successive_halving # noqa\n+ >>> from sklearn.model_selection import HalvingGridSearchCV\n+ >>> import pandas as pd\n+ >>>\n+ >>>\n+ >>> param_grid = {'kernel': ('linear', 'rbf'),\n+ ... 'C': [1, 10, 100]}\n+ >>> base_estimator = SVC(gamma='scale')\n+ >>> X, y = make_classification(n_samples=1000)\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2, max_resources=40,\n+ ... aggressive_elimination=False).fit(X, y)\n+ >>> sh.n_resources_\n+ [20, 40]\n+ >>> sh.n_candidates_\n+ [6, 3]\n+\n+Since we cannot use more than ``max_resources=40`` resources, the process\n+has to stop at the second iteration which evaluates more than ``factor=2``\n+candidates.\n+\n+Using the ``aggressive_elimination`` parameter, you can force the search\n+process to end up with less than ``factor`` candidates at the last\n+iteration. To do this, the process will eliminate as many candidates as\n+necessary using ``min_resources`` resources::\n+\n+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,\n+ ... factor=2,\n+ ... max_resources=40,\n+ ... aggressive_elimination=True,\n+ ... ).fit(X, y)\n+ >>> sh.n_resources_\n+ [20, 20, 40]\n+ >>> sh.n_candidates_\n+ [6, 3, 2]\n+\n+Notice that we end with 2 candidates at the last iteration since we have\n+eliminated enough candidates during the first iterations, using ``n_resources =\n+min_resources = 20``.\n+\n+.. _successive_halving_cv_results:\n+\n+Analysing results with the `cv_results_` attribute\n+--------------------------------------------------\n+\n+The ``cv_results_`` attribute contains useful information for analysing the\n+results of a search. It can be converted to a pandas dataframe with ``df =\n+pd.DataFrame(est.cv_results_)``. The ``cv_results_`` attribute of\n+:class:`HalvingGridSearchCV` and :class:`HalvingRandomSearchCV` is similar\n+to that of :class:`GridSearchCV` and :class:`RandomizedSearchCV`, with\n+additional information related to the successive halving process.\n+\n+Here is an example with some of the columns of a (truncated) dataframe:\n+\n+==== ====== =============== ================= =======================================================================================\n+ .. iter n_resources mean_test_score params\n+==== ====== =============== ================= =======================================================================================\n+ 0 0 125 0.983667 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 5}\n+ 1 0 125 0.983667 {'criterion': 'gini', 'max_depth': None, 'max_features': 8, 'min_samples_split': 7}\n+ 2 0 125 0.983667 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 10}\n+ 3 0 125 0.983667 {'criterion': 'entropy', 'max_depth': None, 'max_features': 6, 'min_samples_split': 6}\n+ ... ... ... ... ...\n+ 15 2 500 0.951958 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}\n+ 16 2 500 0.947958 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 10}\n+ 17 2 500 0.951958 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 4}\n+ 18 3 1000 0.961009 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}\n+ 19 3 1000 0.955989 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 4}\n+==== ====== =============== ================= =======================================================================================\n+\n+Each row corresponds to a given parameter combination (a candidate) and a given\n+iteration. The iteration is given by the ``iter`` column. The ``n_resources``\n+column tells you how many resources were used.\n+\n+In the example above, the best parameter combination is ``{'criterion':\n+'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}``\n+since it has reached the last iteration (3) with the highest score:\n+0.96.\n+\n+.. topic:: References:\n+\n+ .. [1] K. Jamieson, A. Talwalkar,\n+ `Non-stochastic Best Arm Identification and Hyperparameter\n+ Optimization <http://proceedings.mlr.press/v51/jamieson16.html>`_, in\n+ proc. of Machine Learning Research, 2016.\n+ .. [2] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar,\n+ `Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization\n+ <https://arxiv.org/abs/1603.06560>`_, in Machine Learning Research\n+ 18, 2018.\n+\n .. _grid_search_tips:\n \n Tips for parameter search\n@@ -183,18 +554,16 @@ to evaluate a parameter setting. These are the\n :func:`sklearn.metrics.r2_score` for regression. For some applications,\n other scoring functions are better suited (for example in unbalanced\n classification, the accuracy score is often uninformative). An alternative\n-scoring function can be specified via the ``scoring`` parameter to\n-:class:`GridSearchCV`, :class:`RandomizedSearchCV` and many of the\n-specialized cross-validation tools described below.\n-See :ref:`scoring_parameter` for more details.\n+scoring function can be specified via the ``scoring`` parameter of most\n+parameter search tools. See :ref:`scoring_parameter` for more details.\n \n .. _multimetric_grid_search:\n \n Specifying multiple metrics for evaluation\n ------------------------------------------\n \n-``GridSearchCV`` and ``RandomizedSearchCV`` allow specifying multiple metrics\n-for the ``scoring`` parameter.\n+:class:`GridSearchCV` and :class:`RandomizedSearchCV` allow specifying\n+multiple metrics for the ``scoring`` parameter.\n \n Multimetric scoring can either be specified as a list of strings of predefined\n scores names or a dict mapping the scorer name to the scorer function and/or\n@@ -209,6 +578,9 @@ result in an error when using multiple metrics.\n See :ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py`\n for an example usage.\n \n+:class:`HalvingRandomSearchCV` and :class:`HalvingGridSearchCV` do not support\n+multimetric scoring.\n+\n .. _composite_grid_search:\n \n Composite estimators and parameter spaces\n@@ -253,6 +625,8 @@ levels of nesting::\n ... 'model__base_estimator__max_depth': [2, 4, 6, 8]}\n >>> search = GridSearchCV(pipe, param_grid, cv=5).fit(X, y)\n \n+Please refer to :ref:`pipeline` for performing parameter searches over\n+pipelines.\n \n Model selection: development and evaluation\n -------------------------------------------\n@@ -263,7 +637,7 @@ to use the labeled data to \"train\" the parameters of the grid.\n When evaluating the resulting model it is important to do it on\n held-out samples that were not seen during the grid search process:\n it is recommended to split the data into a **development set** (to\n-be fed to the ``GridSearchCV`` instance) and an **evaluation set**\n+be fed to the :class:`GridSearchCV` instance) and an **evaluation set**\n to compute performance metrics.\n \n This can be done by using the :func:`train_test_split`\n@@ -272,10 +646,10 @@ utility function.\n Parallelism\n -----------\n \n-:class:`GridSearchCV` and :class:`RandomizedSearchCV` evaluate each parameter\n-setting independently. Computations can be run in parallel if your OS\n-supports it, by using the keyword ``n_jobs=-1``. See function signature for\n-more details.\n+The parameter search tools evaluate each parameter combination on each data\n+fold independently. Computations can be run in parallel by using the keyword\n+``n_jobs=-1``. See function signature for more details, and also the Glossary\n+entry for :term:`n_jobs`.\n \n Robustness to failure\n ---------------------\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex c57f097ec3218..e757fee299af7 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -412,6 +412,14 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>` and\n :user:`<NAME>`.\n \n+- |Feature| Added (experimental) parameter search estimators\n+ :class:`model_selection.HalvingRandomSearchCV` and\n+ :class:`model_selection.HalvingGridSearchCV` which implement Successive\n+ Halving, and can be used as a drop-in replacements for\n+ :class:`model_selection.RandomizedSearchCV` and\n+ :class:`model_selection.GridSearchCV`. :pr:`<PRID>` by `<NAME>`_, `Joel\n+ Nothman`_ and `Andreas Müller`_.\n+\n - |Fix| Fixed the `len` of :class:`model_selection.ParameterSampler` when\n all distributions are lists and `n_iter` is more than the number of unique\n parameter combinations. :pr:`<PRID>` by `<NAME>`_.\n"
}
] |
diff --git a/doc/conf.py b/doc/conf.py
index ccf5dcd068131..b09c5a15b133d 100644
--- a/doc/conf.py
+++ b/doc/conf.py
@@ -356,6 +356,7 @@ def __call__(self, directory):
# discovered properly by sphinx
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.experimental import enable_iterative_imputer # noqa
+from sklearn.experimental import enable_successive_halving # noqa
def make_carousel_thumbs(app, exception):
diff --git a/doc/conftest.py b/doc/conftest.py
index eacd469f2e52f..96d42fd96066d 100644
--- a/doc/conftest.py
+++ b/doc/conftest.py
@@ -57,6 +57,13 @@ def setup_impute():
raise SkipTest("Skipping impute.rst, pandas not installed")
+def setup_grid_search():
+ try:
+ import pandas # noqa
+ except ImportError:
+ raise SkipTest("Skipping grid_search.rst, pandas not installed")
+
+
def setup_unsupervised_learning():
try:
import skimage # noqa
@@ -86,5 +93,7 @@ def pytest_runtest_setup(item):
raise SkipTest('FeatureHasher is not compatible with PyPy')
elif fname.endswith('modules/impute.rst'):
setup_impute()
+ elif fname.endswith('modules/grid_search.rst'):
+ setup_grid_search()
elif fname.endswith('statistical_inference/unsupervised_learning.rst'):
setup_unsupervised_learning()
diff --git a/doc/modules/classes.rst b/doc/modules/classes.rst
index a0ee97aed260a..07fbaf384efd9 100644
--- a/doc/modules/classes.rst
+++ b/doc/modules/classes.rst
@@ -1194,9 +1194,11 @@ Hyper-parameter optimizers
:template: class.rst
model_selection.GridSearchCV
+ model_selection.HalvingGridSearchCV
model_selection.ParameterGrid
model_selection.ParameterSampler
model_selection.RandomizedSearchCV
+ model_selection.HalvingRandomSearchCV
Model validation
diff --git a/doc/modules/grid_search.rst b/doc/modules/grid_search.rst
index 9d6c1c7e58170..c88a6eb986b5a 100644
--- a/doc/modules/grid_search.rst
+++ b/doc/modules/grid_search.rst
@@ -30,14 +30,18 @@ A search consists of:
- a cross-validation scheme; and
- a :ref:`score function <gridsearch_scoring>`.
-Some models allow for specialized, efficient parameter search strategies,
-:ref:`outlined below <alternative_cv>`.
-Two generic approaches to sampling search candidates are provided in
+Two generic approaches to parameter search are provided in
scikit-learn: for given values, :class:`GridSearchCV` exhaustively considers
all parameter combinations, while :class:`RandomizedSearchCV` can sample a
given number of candidates from a parameter space with a specified
-distribution. After describing these tools we detail
-:ref:`best practice <grid_search_tips>` applicable to both approaches.
+distribution. Both these tools have successive halving counterparts
+:class:`HalvingGridSearchCV` and :class:`HalvingRandomSearchCV`, which can be
+much faster at finding a good parameter combination.
+
+After describing these tools we detail :ref:`best practices
+<grid_search_tips>` applicable to these approaches. Some models allow for
+specialized, efficient parameter search strategies, outlined in
+:ref:`alternative_cv`.
Note that it is common that a small subset of those parameters can have a large
impact on the predictive or computation performance of the model while others
@@ -167,6 +171,373 @@ variable that is log-uniformly distributed between ``1e0`` and ``1e3``::
Random search for hyper-parameter optimization,
The Journal of Machine Learning Research (2012)
+.. _successive_halving_user_guide:
+
+Searching for optimal parameters with successive halving
+========================================================
+
+Scikit-learn also provides the :class:`HalvingGridSearchCV` and
+:class:`HalvingRandomSearchCV` estimators that can be used to
+search a parameter space using successive halving [1]_ [2]_. Successive
+halving (SH) is like a tournament among candidate parameter combinations.
+SH is an iterative selection process where all candidates (the
+parameter combinations) are evaluated with a small amount of resources at
+the first iteration. Only some of these candidates are selected for the next
+iteration, which will be allocated more resources. For parameter tuning, the
+resource is typically the number of training samples, but it can also be an
+arbitrary numeric parameter such as `n_estimators` in a random forest.
+
+As illustrated in the figure below, only a subset of candidates
+'survive' until the last iteration. These are the candidates that have
+consistently ranked among the top-scoring candidates across all iterations.
+Each iteration is allocated an increasing amount of resources per candidate,
+here the number of samples.
+
+.. figure:: ../auto_examples/model_selection/images/sphx_glr_plot_successive_halving_iterations_001.png
+ :target: ../auto_examples/model_selection/plot_successive_halving_iterations.html
+ :align: center
+
+We here briefly describe the main parameters, but each parameter and their
+interactions are described in more details in the sections below. The
+``factor`` (> 1) parameter controls the rate at which the resources grow, and
+the rate at which the number of candidates decreases. In each iteration, the
+number of resources per candidate is multiplied by ``factor`` and the number
+of candidates is divided by the same factor. Along with ``resource`` and
+``min_resources``, ``factor`` is the most important parameter to control the
+search in our implementation, though a value of 3 usually works well.
+``factor`` effectively controls the number of iterations in
+:class:`HalvingGridSearchCV` and the number of candidates (by default) and
+iterations in :class:`HalvingRandomSearchCV`. ``aggressive_elimination=True``
+can also be used if the number of available resources is small. More control
+is available through tuning the ``min_resources`` parameter.
+
+These estimators are still **experimental**: their predictions
+and their API might change without any deprecation cycle. To use them, you
+need to explicitly import ``enable_successive_halving``::
+
+ >>> # explicitly require this experimental feature
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> # now you can import normally from model_selection
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+ >>> from sklearn.model_selection import HalvingRandomSearchCV
+
+.. topic:: Examples:
+
+ * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_heatmap.py`
+ * :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_iterations.py`
+
+Choosing ``min_resources`` and the number of candidates
+-------------------------------------------------------
+
+Beside ``factor``, the two main parameters that influence the behaviour of a
+successive halving search are the ``min_resources`` parameter, and the
+number of candidates (or parameter combinations) that are evaluated.
+``min_resources`` is the amount of resources allocated at the first
+iteration for each candidate. The number of candidates is specified directly
+in :class:`HalvingRandomSearchCV`, and is determined from the ``param_grid``
+parameter of :class:`HalvingGridSearchCV`.
+
+Consider a case where the resource is the number of samples, and where we
+have 1000 samples. In theory, with ``min_resources=10`` and ``factor=2``, we
+are able to run **at most** 7 iterations with the following number of
+samples: ``[10, 20, 40, 80, 160, 320, 640]``.
+
+But depending on the number of candidates, we might run less than 7
+iterations: if we start with a **small** number of candidates, the last
+iteration might use less than 640 samples, which means not using all the
+available resources (samples). For example if we start with 5 candidates, we
+only need 2 iterations: 5 candidates for the first iteration, then
+`5 // 2 = 2` candidates at the second iteration, after which we know which
+candidate performs the best (so we don't need a third one). We would only be
+using at most 20 samples which is a waste since we have 1000 samples at our
+disposal. On the other hand, if we start with a **high** number of
+candidates, we might end up with a lot of candidates at the last iteration,
+which may not always be ideal: it means that many candidates will run with
+the full resources, basically reducing the procedure to standard search.
+
+In the case of :class:`HalvingRandomSearchCV`, the number of candidates is set
+by default such that the last iteration uses as much of the available
+resources as possible. For :class:`HalvingGridSearchCV`, the number of
+candidates is determined by the `param_grid` parameter. Changing the value of
+``min_resources`` will impact the number of possible iterations, and as a
+result will also have an effect on the ideal number of candidates.
+
+Another consideration when choosing ``min_resources`` is whether or not it
+is easy to discriminate between good and bad candidates with a small amount
+of resources. For example, if you need a lot of samples to distinguish
+between good and bad parameters, a high ``min_resources`` is recommended. On
+the other hand if the distinction is clear even with a small amount of
+samples, then a small ``min_resources`` may be preferable since it would
+speed up the computation.
+
+Notice in the example above that the last iteration does not use the maximum
+amount of resources available: 1000 samples are available, yet only 640 are
+used, at most. By default, both :class:`HalvingRandomSearchCV` and
+:class:`HalvingGridSearchCV` try to use as many resources as possible in the
+last iteration, with the constraint that this amount of resources must be a
+multiple of both `min_resources` and `factor` (this constraint will be clear
+in the next section). :class:`HalvingRandomSearchCV` achieves this by
+sampling the right amount of candidates, while :class:`HalvingGridSearchCV`
+achieves this by properly setting `min_resources`. Please see
+:ref:`exhausting_the_resources` for details.
+
+.. _amount_of_resource_and_number_of_candidates:
+
+Amount of resource and number of candidates at each iteration
+-------------------------------------------------------------
+
+At any iteration `i`, each candidate is allocated a given amount of resources
+which we denote `n_resources_i`. This quantity is controlled by the
+parameters ``factor`` and ``min_resources`` as follows (`factor` is strictly
+greater than 1)::
+
+ n_resources_i = factor**i * min_resources,
+
+or equivalently::
+
+ n_resources_{i+1} = n_resources_i * factor
+
+where ``min_resources == n_resources_0`` is the amount of resources used at
+the first iteration. ``factor`` also defines the proportions of candidates
+that will be selected for the next iteration::
+
+ n_candidates_i = n_candidates // (factor ** i)
+
+or equivalently::
+
+ n_candidates_0 = n_candidates
+ n_candidates_{i+1} = n_candidates_i // factor
+
+So in the first iteration, we use ``min_resources`` resources
+``n_candidates`` times. In the second iteration, we use ``min_resources *
+factor`` resources ``n_candidates // factor`` times. The third again
+multiplies the resources per candidate and divides the number of candidates.
+This process stops when the maximum amount of resource per candidate is
+reached, or when we have identified the best candidate. The best candidate
+is identified at the iteration that is evaluating `factor` or less candidates
+(see just below for an explanation).
+
+Here is an example with ``min_resources=3`` and ``factor=2``, starting with
+70 candidates:
+
++-----------------------+-----------------------+
+| ``n_resources_i`` | ``n_candidates_i`` |
++=======================+=======================+
+| 3 (=min_resources) | 70 (=n_candidates) |
++-----------------------+-----------------------+
+| 3 * 2 = 6 | 70 // 2 = 35 |
++-----------------------+-----------------------+
+| 6 * 2 = 12 | 35 // 2 = 17 |
++-----------------------+-----------------------+
+| 12 * 2 = 24 | 17 // 2 = 8 |
++-----------------------+-----------------------+
+| 24 * 2 = 48 | 8 // 2 = 4 |
++-----------------------+-----------------------+
+| 48 * 2 = 96 | 4 // 2 = 2 |
++-----------------------+-----------------------+
+
+We can note that:
+
+- the process stops at the first iteration which evaluates `factor=2`
+ candidates: the best candidate is the best out of these 2 candidates. It
+ is not necessary to run an additional iteration, since it would only
+ evaluate one candidate (namely the best one, which we have already
+ identified). For this reason, in general, we want the last iteration to
+ run at most ``factor`` candidates. If the last iteration evaluates more
+ than `factor` candidates, then this last iteration reduces to a regular
+ search (as in :class:`RandomizedSearchCV` or :class:`GridSearchCV`).
+- each ``n_resources_i`` is a multiple of both ``factor`` and
+ ``min_resources`` (which is confirmed by its definition above).
+
+The amount of resources that is used at each iteration can be found in the
+`n_resources_` attribute.
+
+Choosing a resource
+-------------------
+
+By default, the resource is defined in terms of number of samples. That is,
+each iteration will use an increasing amount of samples to train on. You can
+however manually specify a parameter to use as the resource with the
+``resource`` parameter. Here is an example where the resource is defined in
+terms of the number of estimators of a random forest::
+
+ >>> from sklearn.datasets import make_classification
+ >>> from sklearn.ensemble import RandomForestClassifier
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+ >>> import pandas as pd
+ >>>
+ >>> param_grid = {'max_depth': [3, 5, 10],
+ ... 'min_samples_split': [2, 5, 10]}
+ >>> base_estimator = RandomForestClassifier(random_state=0)
+ >>> X, y = make_classification(n_samples=1000, random_state=0)
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2, resource='n_estimators',
+ ... max_resources=30).fit(X, y)
+ >>> sh.best_estimator_
+ RandomForestClassifier(max_depth=5, n_estimators=24, random_state=0)
+
+Note that it is not possible to budget on a parameter that is part of the
+parameter grid.
+
+.. _exhausting_the_resources:
+
+Exhausting the available resources
+----------------------------------
+
+As mentioned above, the number of resources that is used at each iteration
+depends on the `min_resources` parameter.
+If you have a lot of resources available but start with a low number of
+resources, some of them might be wasted (i.e. not used)::
+
+ >>> from sklearn.datasets import make_classification
+ >>> from sklearn.svm import SVC
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+ >>> import pandas as pd
+ >>> param_grid= {'kernel': ('linear', 'rbf'),
+ ... 'C': [1, 10, 100]}
+ >>> base_estimator = SVC(gamma='scale')
+ >>> X, y = make_classification(n_samples=1000)
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2, min_resources=20).fit(X, y)
+ >>> sh.n_resources_
+ [20, 40, 80]
+
+The search process will only use 80 resources at most, while our maximum
+amount of available resources is ``n_samples=1000``. Here, we have
+``min_resources = r_0 = 20``.
+
+For :class:`HalvingGridSearchCV`, by default, the `min_resources` parameter
+is set to 'exhaust'. This means that `min_resources` is automatically set
+such that the last iteration can use as many resources as possible, within
+the `max_resources` limit::
+
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2, min_resources='exhaust').fit(X, y)
+ >>> sh.n_resources_
+ [250, 500, 1000]
+
+`min_resources` was here automatically set to 250, which results in the last
+iteration using all the resources. The exact value that is used depends on
+the number of candidate parameter, on `max_resources` and on `factor`.
+
+For :class:`HalvingRandomSearchCV`, exhausting the resources can be done in 2
+ways:
+
+- by setting `min_resources='exhaust'`, just like for
+ :class:`HalvingGridSearchCV`;
+- by setting `n_candidates='exhaust'`.
+
+Both options are mutally exclusive: using `min_resources='exhaust'` requires
+knowing the number of candidates, and symmetrically `n_candidates='exhaust'`
+requires knowing `min_resources`.
+
+In general, exhausting the total number of resources leads to a better final
+candidate parameter, and is slightly more time-intensive.
+
+.. _aggressive_elimination:
+
+Aggressive elimination of candidates
+------------------------------------
+
+Ideally, we want the last iteration to evaluate ``factor`` candidates (see
+:ref:`amount_of_resource_and_number_of_candidates`). We then just have to
+pick the best one. When the number of available resources is small with
+respect to the number of candidates, the last iteration may have to evaluate
+more than ``factor`` candidates::
+
+ >>> from sklearn.datasets import make_classification
+ >>> from sklearn.svm import SVC
+ >>> from sklearn.experimental import enable_successive_halving # noqa
+ >>> from sklearn.model_selection import HalvingGridSearchCV
+ >>> import pandas as pd
+ >>>
+ >>>
+ >>> param_grid = {'kernel': ('linear', 'rbf'),
+ ... 'C': [1, 10, 100]}
+ >>> base_estimator = SVC(gamma='scale')
+ >>> X, y = make_classification(n_samples=1000)
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2, max_resources=40,
+ ... aggressive_elimination=False).fit(X, y)
+ >>> sh.n_resources_
+ [20, 40]
+ >>> sh.n_candidates_
+ [6, 3]
+
+Since we cannot use more than ``max_resources=40`` resources, the process
+has to stop at the second iteration which evaluates more than ``factor=2``
+candidates.
+
+Using the ``aggressive_elimination`` parameter, you can force the search
+process to end up with less than ``factor`` candidates at the last
+iteration. To do this, the process will eliminate as many candidates as
+necessary using ``min_resources`` resources::
+
+ >>> sh = HalvingGridSearchCV(base_estimator, param_grid, cv=5,
+ ... factor=2,
+ ... max_resources=40,
+ ... aggressive_elimination=True,
+ ... ).fit(X, y)
+ >>> sh.n_resources_
+ [20, 20, 40]
+ >>> sh.n_candidates_
+ [6, 3, 2]
+
+Notice that we end with 2 candidates at the last iteration since we have
+eliminated enough candidates during the first iterations, using ``n_resources =
+min_resources = 20``.
+
+.. _successive_halving_cv_results:
+
+Analysing results with the `cv_results_` attribute
+--------------------------------------------------
+
+The ``cv_results_`` attribute contains useful information for analysing the
+results of a search. It can be converted to a pandas dataframe with ``df =
+pd.DataFrame(est.cv_results_)``. The ``cv_results_`` attribute of
+:class:`HalvingGridSearchCV` and :class:`HalvingRandomSearchCV` is similar
+to that of :class:`GridSearchCV` and :class:`RandomizedSearchCV`, with
+additional information related to the successive halving process.
+
+Here is an example with some of the columns of a (truncated) dataframe:
+
+==== ====== =============== ================= =======================================================================================
+ .. iter n_resources mean_test_score params
+==== ====== =============== ================= =======================================================================================
+ 0 0 125 0.983667 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 5}
+ 1 0 125 0.983667 {'criterion': 'gini', 'max_depth': None, 'max_features': 8, 'min_samples_split': 7}
+ 2 0 125 0.983667 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 10}
+ 3 0 125 0.983667 {'criterion': 'entropy', 'max_depth': None, 'max_features': 6, 'min_samples_split': 6}
+ ... ... ... ... ...
+ 15 2 500 0.951958 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}
+ 16 2 500 0.947958 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 10}
+ 17 2 500 0.951958 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 4}
+ 18 3 1000 0.961009 {'criterion': 'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}
+ 19 3 1000 0.955989 {'criterion': 'gini', 'max_depth': None, 'max_features': 10, 'min_samples_split': 4}
+==== ====== =============== ================= =======================================================================================
+
+Each row corresponds to a given parameter combination (a candidate) and a given
+iteration. The iteration is given by the ``iter`` column. The ``n_resources``
+column tells you how many resources were used.
+
+In the example above, the best parameter combination is ``{'criterion':
+'entropy', 'max_depth': None, 'max_features': 9, 'min_samples_split': 10}``
+since it has reached the last iteration (3) with the highest score:
+0.96.
+
+.. topic:: References:
+
+ .. [1] K. Jamieson, A. Talwalkar,
+ `Non-stochastic Best Arm Identification and Hyperparameter
+ Optimization <http://proceedings.mlr.press/v51/jamieson16.html>`_, in
+ proc. of Machine Learning Research, 2016.
+ .. [2] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar,
+ `Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
+ <https://arxiv.org/abs/1603.06560>`_, in Machine Learning Research
+ 18, 2018.
+
.. _grid_search_tips:
Tips for parameter search
@@ -183,18 +554,16 @@ to evaluate a parameter setting. These are the
:func:`sklearn.metrics.r2_score` for regression. For some applications,
other scoring functions are better suited (for example in unbalanced
classification, the accuracy score is often uninformative). An alternative
-scoring function can be specified via the ``scoring`` parameter to
-:class:`GridSearchCV`, :class:`RandomizedSearchCV` and many of the
-specialized cross-validation tools described below.
-See :ref:`scoring_parameter` for more details.
+scoring function can be specified via the ``scoring`` parameter of most
+parameter search tools. See :ref:`scoring_parameter` for more details.
.. _multimetric_grid_search:
Specifying multiple metrics for evaluation
------------------------------------------
-``GridSearchCV`` and ``RandomizedSearchCV`` allow specifying multiple metrics
-for the ``scoring`` parameter.
+:class:`GridSearchCV` and :class:`RandomizedSearchCV` allow specifying
+multiple metrics for the ``scoring`` parameter.
Multimetric scoring can either be specified as a list of strings of predefined
scores names or a dict mapping the scorer name to the scorer function and/or
@@ -209,6 +578,9 @@ result in an error when using multiple metrics.
See :ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py`
for an example usage.
+:class:`HalvingRandomSearchCV` and :class:`HalvingGridSearchCV` do not support
+multimetric scoring.
+
.. _composite_grid_search:
Composite estimators and parameter spaces
@@ -253,6 +625,8 @@ levels of nesting::
... 'model__base_estimator__max_depth': [2, 4, 6, 8]}
>>> search = GridSearchCV(pipe, param_grid, cv=5).fit(X, y)
+Please refer to :ref:`pipeline` for performing parameter searches over
+pipelines.
Model selection: development and evaluation
-------------------------------------------
@@ -263,7 +637,7 @@ to use the labeled data to "train" the parameters of the grid.
When evaluating the resulting model it is important to do it on
held-out samples that were not seen during the grid search process:
it is recommended to split the data into a **development set** (to
-be fed to the ``GridSearchCV`` instance) and an **evaluation set**
+be fed to the :class:`GridSearchCV` instance) and an **evaluation set**
to compute performance metrics.
This can be done by using the :func:`train_test_split`
@@ -272,10 +646,10 @@ utility function.
Parallelism
-----------
-:class:`GridSearchCV` and :class:`RandomizedSearchCV` evaluate each parameter
-setting independently. Computations can be run in parallel if your OS
-supports it, by using the keyword ``n_jobs=-1``. See function signature for
-more details.
+The parameter search tools evaluate each parameter combination on each data
+fold independently. Computations can be run in parallel by using the keyword
+``n_jobs=-1``. See function signature for more details, and also the Glossary
+entry for :term:`n_jobs`.
Robustness to failure
---------------------
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index c57f097ec3218..e757fee299af7 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -412,6 +412,14 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>` and
:user:`<NAME>`.
+- |Feature| Added (experimental) parameter search estimators
+ :class:`model_selection.HalvingRandomSearchCV` and
+ :class:`model_selection.HalvingGridSearchCV` which implement Successive
+ Halving, and can be used as a drop-in replacements for
+ :class:`model_selection.RandomizedSearchCV` and
+ :class:`model_selection.GridSearchCV`. :pr:`<PRID>` by `<NAME>`_, `Joel
+ Nothman`_ and `Andreas Müller`_.
+
- |Fix| Fixed the `len` of :class:`model_selection.ParameterSampler` when
all distributions are lists and `n_iter` is more than the number of unique
parameter combinations. :pr:`<PRID>` by `<NAME>`_.
If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:
[{'type': 'file', 'name': 'examples/model_selection/plot_successive_halving_iterations.py'}, {'type': 'file', 'name': 'sklearn/experimental/enable_successive_halving.py'}, {'type': 'file', 'name': 'examples/model_selection/plot_successive_halving_heatmap.py'}, {'type': 'file', 'name': 'sklearn/model_selection/_search_successive_halving.py'}]
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-13204
|
https://github.com/scikit-learn/scikit-learn/pull/13204
|
diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst
index ed014cea6f2ff..61ea8c7ef4248 100644
--- a/doc/modules/cross_validation.rst
+++ b/doc/modules/cross_validation.rst
@@ -782,7 +782,7 @@ Example of 3-split time series cross-validation on a dataset with 6 samples::
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> tscv = TimeSeriesSplit(n_splits=3)
>>> print(tscv)
- TimeSeriesSplit(max_train_size=None, n_splits=3)
+ TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None)
>>> for train, test in tscv.split(X):
... print("%s %s" % (train, test))
[0 1 2] [3]
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index dd4ab30a7f2ff..2554d136c13ea 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -47,6 +47,15 @@ Changelog
:mod:`sklearn.module`
.....................
+:mod:`sklearn.model_selection`
+..............................
+
+- |Enhancement| :class:`model_selection.TimeSeriesSplit` has two new keyword
+ arguments `test_size` and `gap`. `test_size` allows the out-of-sample
+ time series length to be fixed for all folds. `gap` removes a fixed number of
+ samples between the train and test set on each fold.
+ :pr:`13204` by :user:`Kyle Kosic <kykosic>`.
+
Code and Documentation Contributors
-----------------------------------
diff --git a/sklearn/model_selection/_split.py b/sklearn/model_selection/_split.py
index 9b2087e039f40..75a4b865fda62 100644
--- a/sklearn/model_selection/_split.py
+++ b/sklearn/model_selection/_split.py
@@ -766,6 +766,15 @@ class TimeSeriesSplit(_BaseKFold):
max_train_size : int, default=None
Maximum size for a single training set.
+ test_size : int, default=None
+ Used to limit the size of the test set. Defaults to
+ ``n_samples // (n_splits + 1)``, which is the maximum allowed value
+ with ``gap=0``.
+
+ gap : int, default=0
+ Number of samples to exclude from the end of each train set before
+ the test set.
+
Examples
--------
>>> import numpy as np
@@ -774,7 +783,7 @@ class TimeSeriesSplit(_BaseKFold):
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> tscv = TimeSeriesSplit()
>>> print(tscv)
- TimeSeriesSplit(max_train_size=None, n_splits=5)
+ TimeSeriesSplit(gap=0, max_train_size=None, n_splits=5, test_size=None)
>>> for train_index, test_index in tscv.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
@@ -784,18 +793,45 @@ class TimeSeriesSplit(_BaseKFold):
TRAIN: [0 1 2] TEST: [3]
TRAIN: [0 1 2 3] TEST: [4]
TRAIN: [0 1 2 3 4] TEST: [5]
+ >>> # Fix test_size to 2 with 12 samples
+ >>> X = np.random.randn(12, 2)
+ >>> y = np.random.randint(0, 2, 12)
+ >>> tscv = TimeSeriesSplit(n_splits=3, test_size=2)
+ >>> for train_index, test_index in tscv.split(X):
+ ... print("TRAIN:", train_index, "TEST:", test_index)
+ ... X_train, X_test = X[train_index], X[test_index]
+ ... y_train, y_test = y[train_index], y[test_index]
+ TRAIN: [0 1 2 3 4 5] TEST: [6 7]
+ TRAIN: [0 1 2 3 4 5 6 7] TEST: [8 9]
+ TRAIN: [0 1 2 3 4 5 6 7 8 9] TEST: [10 11]
+ >>> # Add in a 2 period gap
+ >>> tscv = TimeSeriesSplit(n_splits=3, test_size=2, gap=2)
+ >>> for train_index, test_index in tscv.split(X):
+ ... print("TRAIN:", train_index, "TEST:", test_index)
+ ... X_train, X_test = X[train_index], X[test_index]
+ ... y_train, y_test = y[train_index], y[test_index]
+ TRAIN: [0 1 2 3] TEST: [6 7]
+ TRAIN: [0 1 2 3 4 5] TEST: [8 9]
+ TRAIN: [0 1 2 3 4 5 6 7] TEST: [10 11]
Notes
-----
The training set has size ``i * n_samples // (n_splits + 1)
+ n_samples % (n_splits + 1)`` in the ``i``th split,
- with a test set of size ``n_samples//(n_splits + 1)``,
+ with a test set of size ``n_samples//(n_splits + 1)`` by default,
where ``n_samples`` is the number of samples.
"""
@_deprecate_positional_args
- def __init__(self, n_splits=5, *, max_train_size=None):
+ def __init__(self,
+ n_splits=5,
+ *,
+ max_train_size=None,
+ test_size=None,
+ gap=0):
super().__init__(n_splits, shuffle=False, random_state=None)
self.max_train_size = max_train_size
+ self.test_size = test_size
+ self.gap = gap
def split(self, X, y=None, groups=None):
"""Generate indices to split data into training and test set.
@@ -824,21 +860,31 @@ def split(self, X, y=None, groups=None):
n_samples = _num_samples(X)
n_splits = self.n_splits
n_folds = n_splits + 1
+ gap = self.gap
+ test_size = self.test_size if self.test_size is not None \
+ else n_samples // n_folds
+
+ # Make sure we have enough samples for the given split parameters
if n_folds > n_samples:
raise ValueError(
- ("Cannot have number of folds ={0} greater"
- " than the number of samples: {1}.").format(n_folds,
- n_samples))
+ (f"Cannot have number of folds={n_folds} greater"
+ f" than the number of samples={n_samples}."))
+ if n_samples - gap - (test_size * n_splits) <= 0:
+ raise ValueError(
+ (f"Too many splits={n_splits} for number of samples"
+ f"={n_samples} with test_size={test_size} and gap={gap}."))
+
indices = np.arange(n_samples)
- test_size = (n_samples // n_folds)
- test_starts = range(test_size + n_samples % n_folds,
+ test_starts = range(n_samples - n_splits * test_size,
n_samples, test_size)
+
for test_start in test_starts:
- if self.max_train_size and self.max_train_size < test_start:
- yield (indices[test_start - self.max_train_size:test_start],
+ train_end = test_start - gap
+ if self.max_train_size and self.max_train_size < train_end:
+ yield (indices[train_end - self.max_train_size:train_end],
indices[test_start:test_start + test_size])
else:
- yield (indices[:test_start],
+ yield (indices[:train_end],
indices[test_start:test_start + test_size])
|
diff --git a/sklearn/model_selection/tests/test_split.py b/sklearn/model_selection/tests/test_split.py
index 3b984745420f1..b89571ba085dd 100644
--- a/sklearn/model_selection/tests/test_split.py
+++ b/sklearn/model_selection/tests/test_split.py
@@ -1440,6 +1440,100 @@ def test_time_series_max_train_size():
_check_time_series_max_train_size(splits, check_splits, max_train_size=2)
+def test_time_series_test_size():
+ X = np.zeros((10, 1))
+
+ # Test alone
+ splits = TimeSeriesSplit(n_splits=3, test_size=3).split(X)
+
+ train, test = next(splits)
+ assert_array_equal(train, [0])
+ assert_array_equal(test, [1, 2, 3])
+
+ train, test = next(splits)
+ assert_array_equal(train, [0, 1, 2, 3])
+ assert_array_equal(test, [4, 5, 6])
+
+ train, test = next(splits)
+ assert_array_equal(train, [0, 1, 2, 3, 4, 5, 6])
+ assert_array_equal(test, [7, 8, 9])
+
+ # Test with max_train_size
+ splits = TimeSeriesSplit(n_splits=2, test_size=2,
+ max_train_size=4).split(X)
+
+ train, test = next(splits)
+ assert_array_equal(train, [2, 3, 4, 5])
+ assert_array_equal(test, [6, 7])
+
+ train, test = next(splits)
+ assert_array_equal(train, [4, 5, 6, 7])
+ assert_array_equal(test, [8, 9])
+
+ # Should fail with not enough data points for configuration
+ with pytest.raises(ValueError, match="Too many splits.*with test_size"):
+ splits = TimeSeriesSplit(n_splits=5, test_size=2).split(X)
+ next(splits)
+
+
+def test_time_series_gap():
+ X = np.zeros((10, 1))
+
+ # Test alone
+ splits = TimeSeriesSplit(n_splits=2, gap=2).split(X)
+
+ train, test = next(splits)
+ assert_array_equal(train, [0, 1])
+ assert_array_equal(test, [4, 5, 6])
+
+ train, test = next(splits)
+ assert_array_equal(train, [0, 1, 2, 3, 4])
+ assert_array_equal(test, [7, 8, 9])
+
+ # Test with max_train_size
+ splits = TimeSeriesSplit(n_splits=3, gap=2, max_train_size=2).split(X)
+
+ train, test = next(splits)
+ assert_array_equal(train, [0, 1])
+ assert_array_equal(test, [4, 5])
+
+ train, test = next(splits)
+ assert_array_equal(train, [2, 3])
+ assert_array_equal(test, [6, 7])
+
+ train, test = next(splits)
+ assert_array_equal(train, [4, 5])
+ assert_array_equal(test, [8, 9])
+
+ # Test with test_size
+ splits = TimeSeriesSplit(n_splits=2, gap=2,
+ max_train_size=4, test_size=2).split(X)
+
+ train, test = next(splits)
+ assert_array_equal(train, [0, 1, 2, 3])
+ assert_array_equal(test, [6, 7])
+
+ train, test = next(splits)
+ assert_array_equal(train, [2, 3, 4, 5])
+ assert_array_equal(test, [8, 9])
+
+ # Test with additional test_size
+ splits = TimeSeriesSplit(n_splits=2, gap=2, test_size=3).split(X)
+
+ train, test = next(splits)
+ assert_array_equal(train, [0, 1])
+ assert_array_equal(test, [4, 5, 6])
+
+ train, test = next(splits)
+ assert_array_equal(train, [0, 1, 2, 3, 4])
+ assert_array_equal(test, [7, 8, 9])
+
+ # Verify proper error is thrown
+ with pytest.raises(ValueError, match="Too many splits.*and gap"):
+ splits = TimeSeriesSplit(n_splits=4, gap=2).split(X)
+ next(splits)
+
+
def test_nested_cv():
# Test if nested cross validation works with different combinations of cv
rng = np.random.RandomState(0)
|
[
{
"path": "doc/modules/cross_validation.rst",
"old_path": "a/doc/modules/cross_validation.rst",
"new_path": "b/doc/modules/cross_validation.rst",
"metadata": "diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst\nindex ed014cea6f2ff..61ea8c7ef4248 100644\n--- a/doc/modules/cross_validation.rst\n+++ b/doc/modules/cross_validation.rst\n@@ -782,7 +782,7 @@ Example of 3-split time series cross-validation on a dataset with 6 samples::\n >>> y = np.array([1, 2, 3, 4, 5, 6])\n >>> tscv = TimeSeriesSplit(n_splits=3)\n >>> print(tscv)\n- TimeSeriesSplit(max_train_size=None, n_splits=3)\n+ TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None)\n >>> for train, test in tscv.split(X):\n ... print(\"%s %s\" % (train, test))\n [0 1 2] [3]\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex dd4ab30a7f2ff..2554d136c13ea 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -47,6 +47,15 @@ Changelog\n :mod:`sklearn.module`\n .....................\n \n+:mod:`sklearn.model_selection`\n+..............................\n+\n+- |Enhancement| :class:`model_selection.TimeSeriesSplit` has two new keyword\n+ arguments `test_size` and `gap`. `test_size` allows the out-of-sample\n+ time series length to be fixed for all folds. `gap` removes a fixed number of\n+ samples between the train and test set on each fold.\n+ :pr:`13204` by :user:`Kyle Kosic <kykosic>`.\n+\n \n Code and Documentation Contributors\n -----------------------------------\n"
}
] |
0.24
|
192109af3d65559d1e26887d35a21aa396af920f
|
[
"sklearn/model_selection/tests/test_split.py::test_train_test_split_mock_pandas",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel_many_labels",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[7-False]",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_value_errors",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[0.8-8-2-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_kfold_indices",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[9-True]",
"sklearn/model_selection/tests/test_split.py::test_predefinedsplit_with_kfold_split",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[8-8-2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[5-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[None-7-3]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[GroupShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_leave_one_p_group_out",
"sklearn/model_selection/tests/test_split.py::test_2d_y",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.0-0.8]",
"sklearn/model_selection/tests/test_split.py::test_group_kfold",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[None-9-1-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[9-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_pandas",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[8-3]",
"sklearn/model_selection/tests/test_split.py::test_leave_group_out_changing_groups",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_list_input",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[1.0-0.8]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_no_shuffle",
"sklearn/model_selection/tests/test_split.py::test_cross_validator_with_default_params",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[4-True]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[5-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-1.0]",
"sklearn/model_selection/tests/test_split.py::test_kfold_no_shuffle",
"sklearn/model_selection/tests/test_split.py::test_stratifiedshufflesplit_list_input",
"sklearn/model_selection/tests/test_split.py::test_repeated_stratified_kfold_determinstic_split",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8--10]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_multilabel",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_respects_test_size",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[6-False]",
"sklearn/model_selection/tests/test_split.py::test_build_repr",
"sklearn/model_selection/tests/test_split.py::test_shuffle_stratifiedkfold",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[1.2-0.8]",
"sklearn/model_selection/tests/test_split.py::test_leave_one_out_empty_trainset",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[4-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_allow_nans",
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[StratifiedKFold]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8-11]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[6-True]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[2.0-None]",
"sklearn/model_selection/tests/test_split.py::test_stratifiedkfold_balance",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[4-False]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[1.0-None]",
"sklearn/model_selection/tests/test_split.py::test_random_state_shuffle_false[KFold]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[4-True]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split",
"sklearn/model_selection/tests/test_split.py::test_time_series_cv",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8--0.2]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[-10-0.8]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_cv_iterable_wrapper",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_sparse",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_reproducible",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[None-8-2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[10-True]",
"sklearn/model_selection/tests/test_split.py::test_time_series_max_train_size",
"sklearn/model_selection/tests/test_split.py::test_nested_cv",
"sklearn/model_selection/tests/test_split.py::test_check_cv",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_default_test_size[0.8-8-2]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_even",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[6-False]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[0.7-7-3]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[10-False]",
"sklearn/model_selection/tests/test_split.py::test_leave_one_p_group_out_error_on_fewer_number_of_groups",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_overlap_train_test_bug",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[8-True]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[None-9-1-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0.8-0]",
"sklearn/model_selection/tests/test_split.py::test_kfold_balance",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_label_invariance[7-True]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[8-8-2-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[8-8-2-StratifiedShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_init",
"sklearn/model_selection/tests/test_split.py::test_shuffle_kfold_stratifiedkfold_reproducibility",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_empty_trainset",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_errors",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-0.0]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_default_test_size[0.8-8-2-ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[10-None]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[-0.2-0.8]",
"sklearn/model_selection/tests/test_split.py::test_get_n_splits_for_repeated_kfold",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[None-1j]",
"sklearn/model_selection/tests/test_split.py::test_get_n_splits_for_repeated_stratified_kfold",
"sklearn/model_selection/tests/test_split.py::test_stratified_shuffle_split_iter",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_repr[RepeatedStratifiedKFold]",
"sklearn/model_selection/tests/test_split.py::test_repeated_kfold_determinstic_split",
"sklearn/model_selection/tests/test_split.py::test_kfold_can_detect_dependent_samples_on_digits",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[11-0.8]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[8-False]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes2[0-0.8]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[0.1-0.95]",
"sklearn/model_selection/tests/test_split.py::test_leave_p_out_empty_trainset",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[6-True]",
"sklearn/model_selection/tests/test_split.py::test_shufflesplit_errors[11-None]",
"sklearn/model_selection/tests/test_split.py::test_repeated_cv_repr[RepeatedKFold]",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[7-True]",
"sklearn/model_selection/tests/test_split.py::test_train_test_split_invalid_sizes1[0.8-1.2]",
"sklearn/model_selection/tests/test_split.py::test_kfold_valueerrors",
"sklearn/model_selection/tests/test_split.py::test_stratified_kfold_ratios[7-False]",
"sklearn/model_selection/tests/test_split.py::test_shuffle_split_empty_trainset[ShuffleSplit]",
"sklearn/model_selection/tests/test_split.py::test_group_shuffle_split_default_test_size[7-7-3]"
] |
[
"sklearn/model_selection/tests/test_split.py::test_time_series_test_size",
"sklearn/model_selection/tests/test_split.py::test_time_series_gap"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/modules/cross_validation.rst",
"old_path": "a/doc/modules/cross_validation.rst",
"new_path": "b/doc/modules/cross_validation.rst",
"metadata": "diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst\nindex ed014cea6f2ff..61ea8c7ef4248 100644\n--- a/doc/modules/cross_validation.rst\n+++ b/doc/modules/cross_validation.rst\n@@ -782,7 +782,7 @@ Example of 3-split time series cross-validation on a dataset with 6 samples::\n >>> y = np.array([1, 2, 3, 4, 5, 6])\n >>> tscv = TimeSeriesSplit(n_splits=3)\n >>> print(tscv)\n- TimeSeriesSplit(max_train_size=None, n_splits=3)\n+ TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None)\n >>> for train, test in tscv.split(X):\n ... print(\"%s %s\" % (train, test))\n [0 1 2] [3]\n"
},
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex dd4ab30a7f2ff..2554d136c13ea 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -47,6 +47,15 @@ Changelog\n :mod:`sklearn.module`\n .....................\n \n+:mod:`sklearn.model_selection`\n+..............................\n+\n+- |Enhancement| :class:`model_selection.TimeSeriesSplit` has two new keyword\n+ arguments `test_size` and `gap`. `test_size` allows the out-of-sample\n+ time series length to be fixed for all folds. `gap` removes a fixed number of\n+ samples between the train and test set on each fold.\n+ :pr:`<PRID>` by :user:`<NAME>`.\n+\n \n Code and Documentation Contributors\n -----------------------------------\n"
}
] |
diff --git a/doc/modules/cross_validation.rst b/doc/modules/cross_validation.rst
index ed014cea6f2ff..61ea8c7ef4248 100644
--- a/doc/modules/cross_validation.rst
+++ b/doc/modules/cross_validation.rst
@@ -782,7 +782,7 @@ Example of 3-split time series cross-validation on a dataset with 6 samples::
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> tscv = TimeSeriesSplit(n_splits=3)
>>> print(tscv)
- TimeSeriesSplit(max_train_size=None, n_splits=3)
+ TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None)
>>> for train, test in tscv.split(X):
... print("%s %s" % (train, test))
[0 1 2] [3]
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index dd4ab30a7f2ff..2554d136c13ea 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -47,6 +47,15 @@ Changelog
:mod:`sklearn.module`
.....................
+:mod:`sklearn.model_selection`
+..............................
+
+- |Enhancement| :class:`model_selection.TimeSeriesSplit` has two new keyword
+ arguments `test_size` and `gap`. `test_size` allows the out-of-sample
+ time series length to be fixed for all folds. `gap` removes a fixed number of
+ samples between the train and test set on each fold.
+ :pr:`<PRID>` by :user:`<NAME>`.
+
Code and Documentation Contributors
-----------------------------------
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-18527
|
https://github.com/scikit-learn/scikit-learn/pull/18527
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 424178e77c4b2..1b8b94ef5c87f 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -450,6 +450,12 @@ Changelog
:pr:`18266` by :user:`Subrat Sahu <subrat93>`,
:user:`Nirvan <Nirvan101>` and :user:`Arthur Book <ArthurBook>`.
+- |Enhancement| :func:`model_selection.permutation_test_score` and
+ :func:`model_selection.validation_curve` now accept fit_params
+ to pass additional estimator parameters.
+ :pr:`18527` by :user:`Gaurav Dhingra <gxyd>`,
+ :user:`Julien Jerphanion <jjerphan>` and :user:`Amanda Dsouza <amy12xx>`.
+
- |Enhancement| :func:`model_selection.cross_val_score`,
:func:`model_selection.cross_validate`,
:class:`model_selection.GridSearchCV`, and
diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py
index 7236f02fdc8f2..df9d873fe1fd4 100644
--- a/sklearn/model_selection/_validation.py
+++ b/sklearn/model_selection/_validation.py
@@ -1048,8 +1048,8 @@ def _check_is_permutation(indices, n_samples):
@_deprecate_positional_args
def permutation_test_score(estimator, X, y, *, groups=None, cv=None,
n_permutations=100, n_jobs=None, random_state=0,
- verbose=0, scoring=None):
- """Evaluates the significance of a cross-validated score using permutations
+ verbose=0, scoring=None, fit_params=None):
+ """Evaluate the significance of a cross-validated score with permutations
Permutes targets to generate 'randomized data' and compute the empirical
p-value against the null hypothesis that features and targets are
@@ -1129,6 +1129,11 @@ def permutation_test_score(estimator, X, y, *, groups=None, cv=None,
verbose : int, default=0
The verbosity level.
+ fit_params : dict, default=None
+ Parameters to pass to the fit method of the estimator.
+
+ .. versionadded:: 0.24
+
Returns
-------
score : float
@@ -1165,24 +1170,29 @@ def permutation_test_score(estimator, X, y, *, groups=None, cv=None,
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
- score = _permutation_test_score(clone(estimator), X, y, groups, cv, scorer)
+ score = _permutation_test_score(clone(estimator), X, y, groups, cv, scorer,
+ fit_params=fit_params)
permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_permutation_test_score)(
clone(estimator), X, _shuffle(y, groups, random_state),
- groups, cv, scorer)
+ groups, cv, scorer, fit_params=fit_params)
for _ in range(n_permutations))
permutation_scores = np.array(permutation_scores)
pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1)
return score, permutation_scores, pvalue
-def _permutation_test_score(estimator, X, y, groups, cv, scorer):
+def _permutation_test_score(estimator, X, y, groups, cv, scorer,
+ fit_params):
"""Auxiliary function for permutation_test_score"""
+ # Adjust length of sample weights
+ fit_params = fit_params if fit_params is not None else {}
avg_score = []
for train, test in cv.split(X, y, groups):
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, y_test = _safe_split(estimator, X, y, test, train)
- estimator.fit(X_train, y_train)
+ fit_params = _check_fit_params(X, fit_params, train)
+ estimator.fit(X_train, y_train, **fit_params)
avg_score.append(scorer(estimator, X_test, y_test))
return np.mean(avg_score)
@@ -1204,7 +1214,8 @@ def learning_curve(estimator, X, y, *, groups=None,
train_sizes=np.linspace(0.1, 1.0, 5), cv=None,
scoring=None, exploit_incremental_learning=False,
n_jobs=None, pre_dispatch="all", verbose=0, shuffle=False,
- random_state=None, error_score=np.nan, return_times=False):
+ random_state=None, error_score=np.nan,
+ return_times=False):
"""Learning curve.
Determines cross-validated training and test scores for different training
@@ -1501,7 +1512,7 @@ def _incremental_fit_estimator(estimator, X, y, classes, train, test,
@_deprecate_positional_args
def validation_curve(estimator, X, y, *, param_name, param_range, groups=None,
cv=None, scoring=None, n_jobs=None, pre_dispatch="all",
- verbose=0, error_score=np.nan):
+ verbose=0, error_score=np.nan, fit_params=None):
"""Validation curve.
Determine training and test scores for varying parameter values.
@@ -1577,6 +1588,11 @@ def validation_curve(estimator, X, y, *, param_name, param_range, groups=None,
verbose : int, default=0
Controls the verbosity: the higher, the more messages.
+ fit_params : dict, default=None
+ Parameters to pass to the fit method of the estimator.
+
+ .. versionadded:: 0.24
+
error_score : 'raise' or numeric, default=np.nan
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised.
@@ -1606,8 +1622,9 @@ def validation_curve(estimator, X, y, *, param_name, param_range, groups=None,
verbose=verbose)
results = parallel(delayed(_fit_and_score)(
clone(estimator), X, y, scorer, train, test, verbose,
- parameters={param_name: v}, fit_params=None, return_train_score=True,
- error_score=error_score)
+ parameters={param_name: v}, fit_params=fit_params,
+ return_train_score=True, error_score=error_score)
+
# NOTE do not change order of iteration to allow one time cv splitters
for train, test in cv.split(X, y, groups) for v in param_range)
n_params = len(param_range)
|
diff --git a/sklearn/model_selection/tests/test_validation.py b/sklearn/model_selection/tests/test_validation.py
index 9283aeee0f012..510811dfc4474 100644
--- a/sklearn/model_selection/tests/test_validation.py
+++ b/sklearn/model_selection/tests/test_validation.py
@@ -754,6 +754,23 @@ def test_permutation_test_score_allow_nans():
permutation_test_score(p, X, y)
+def test_permutation_test_score_fit_params():
+ X = np.arange(100).reshape(10, 10)
+ y = np.array([0] * 5 + [1] * 5)
+ clf = CheckingClassifier(expected_fit_params=['sample_weight'])
+
+ err_msg = r"Expected fit parameter\(s\) \['sample_weight'\] not seen."
+ with pytest.raises(AssertionError, match=err_msg):
+ permutation_test_score(clf, X, y)
+
+ err_msg = "Fit parameter sample_weight has length 1; expected"
+ with pytest.raises(AssertionError, match=err_msg):
+ permutation_test_score(clf, X, y,
+ fit_params={'sample_weight': np.ones(1)})
+ permutation_test_score(clf, X, y,
+ fit_params={'sample_weight': np.ones(10)})
+
+
def test_cross_val_score_allow_nans():
# Check that cross_val_score allows input data with NaNs
X = np.arange(200, dtype=np.float64).reshape(10, -1)
@@ -1298,6 +1315,26 @@ def test_validation_curve_cv_splits_consistency():
assert_array_almost_equal(np.array(scores3), np.array(scores1))
+def test_validation_curve_fit_params():
+ X = np.arange(100).reshape(10, 10)
+ y = np.array([0] * 5 + [1] * 5)
+ clf = CheckingClassifier(expected_fit_params=['sample_weight'])
+
+ err_msg = r"Expected fit parameter\(s\) \['sample_weight'\] not seen."
+ with pytest.raises(AssertionError, match=err_msg):
+ validation_curve(clf, X, y, param_name='foo_param',
+ param_range=[1, 2, 3], error_score='raise')
+
+ err_msg = "Fit parameter sample_weight has length 1; expected"
+ with pytest.raises(AssertionError, match=err_msg):
+ validation_curve(clf, X, y, param_name='foo_param',
+ param_range=[1, 2, 3], error_score='raise',
+ fit_params={'sample_weight': np.ones(1)})
+ validation_curve(clf, X, y, param_name='foo_param',
+ param_range=[1, 2, 3], error_score='raise',
+ fit_params={'sample_weight': np.ones(10)})
+
+
def test_check_is_permutation():
rng = np.random.RandomState(0)
p = np.arange(100)
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 424178e77c4b2..1b8b94ef5c87f 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -450,6 +450,12 @@ Changelog\n :pr:`18266` by :user:`Subrat Sahu <subrat93>`,\n :user:`Nirvan <Nirvan101>` and :user:`Arthur Book <ArthurBook>`.\n \n+- |Enhancement| :func:`model_selection.permutation_test_score` and\n+ :func:`model_selection.validation_curve` now accept fit_params\n+ to pass additional estimator parameters.\n+ :pr:`18527` by :user:`Gaurav Dhingra <gxyd>`,\n+ :user:`Julien Jerphanion <jjerphan>` and :user:`Amanda Dsouza <amy12xx>`.\n+\n - |Enhancement| :func:`model_selection.cross_val_score`,\n :func:`model_selection.cross_validate`,\n :class:`model_selection.GridSearchCV`, and\n"
}
] |
0.24
|
06c710ade0a800aeae6ad5f37418edbdeb618ade
|
[
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_proba_shape",
"sklearn/model_selection/tests/test_validation.py::test_score_memmap",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_clone_estimator",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-nan]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_pandas",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-scorer2-10-split_prg2-cdt_prg2-\\\\[CV 2/3; 1/1\\\\] END ....... sc1: \\\\(test=3.421\\\\) sc2: \\\\(test=3.421\\\\) total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_sparse_fit_params",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_cv_splits_consistency",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_verbose",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-raise]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_invalid_scoring_param",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_class_subset",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_batch_and_incremental_learning_are_equal",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_score_func",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_y_none",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[raise]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_predict_groups",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_pandas",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-nan]",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_working",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_allow_nans",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_failing",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_many_jobs",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[True-scorer1-3-split_prg1-cdt_prg1-\\\\[CV 2/3\\\\] END sc1: \\\\(train=3.421, test=3.421\\\\) sc2: \\\\(train=3.421, test=3.421\\\\) total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_fit_params",
"sklearn/model_selection/tests/test_validation.py::test_permutation_score",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_allow_nans",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_regression",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_nested_estimator",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr",
"sklearn/model_selection/tests/test_validation.py::test_gridsearchcv_cross_val_predict_with_method",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_n_sample_range_out_of_bounds",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_rare_class",
"sklearn/model_selection/tests/test_validation.py::test_score",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning",
"sklearn/model_selection/tests/test_validation.py::test_callable_multimetric_confusion_matrix_cross_validate",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-raise]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_shuffle",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_unsupervised",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_precomputed",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-0]",
"sklearn/model_selection/tests/test_validation.py::test_check_is_permutation",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_classification",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_pandas",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-three_params_scorer-2-split_prg0-cdt_prg0-\\\\[CV\\\\] END .................................................... total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_multilabel",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_unsupervised",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_log_proba_shape",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf_rare_class",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_mask",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_boolean_indices",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_errors",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_not_possible",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-nan]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_method_checking",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-raise]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_remove_duplicate_sample_sizes",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[nan]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_unbalanced",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-raise]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-nan]"
] |
[
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_fit_params",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_fit_params"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex 424178e77c4b2..1b8b94ef5c87f 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -450,6 +450,12 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`,\n :user:`<NAME>` and :user:`<NAME>`.\n \n+- |Enhancement| :func:`model_selection.permutation_test_score` and\n+ :func:`model_selection.validation_curve` now accept fit_params\n+ to pass additional estimator parameters.\n+ :pr:`<PRID>` by :user:`<NAME>`,\n+ :user:`<NAME>` and :user:`<NAME>`.\n+\n - |Enhancement| :func:`model_selection.cross_val_score`,\n :func:`model_selection.cross_validate`,\n :class:`model_selection.GridSearchCV`, and\n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index 424178e77c4b2..1b8b94ef5c87f 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -450,6 +450,12 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`,
:user:`<NAME>` and :user:`<NAME>`.
+- |Enhancement| :func:`model_selection.permutation_test_score` and
+ :func:`model_selection.validation_curve` now accept fit_params
+ to pass additional estimator parameters.
+ :pr:`<PRID>` by :user:`<NAME>`,
+ :user:`<NAME>` and :user:`<NAME>`.
+
- |Enhancement| :func:`model_selection.cross_val_score`,
:func:`model_selection.cross_validate`,
:class:`model_selection.GridSearchCV`, and
|
scikit-learn/scikit-learn
|
scikit-learn__scikit-learn-18343
|
https://github.com/scikit-learn/scikit-learn/pull/18343
|
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index c57f097ec3218..c44ba08f2f57b 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -422,6 +422,14 @@ Changelog
:pr:`18266` by :user:`Subrat Sahu <subrat93>`,
:user:`Nirvan <Nirvan101>` and :user:`Arthur Book <ArthurBook>`.
+- |Enhancement| :func:`model_selection.cross_val_score`,
+ :func:`model_selection.cross_validate`,
+ :class:`model_selection.GridSearchCV`, and
+ :class:`model_selection.RandomizedSearchCV` allows estimator to fail scoring
+ and replace the score with `error_score`. If `error_score="raise"`, the error
+ will be raised.
+ :pr:`18343` by `Guillaume Lemaitre`_ and :user:`Devi Sandeep <dsandeep0138>`.
+
:mod:`sklearn.multiclass`
.........................
diff --git a/sklearn/feature_selection/_rfe.py b/sklearn/feature_selection/_rfe.py
index f1b5e4793c551..f85309ca2659c 100644
--- a/sklearn/feature_selection/_rfe.py
+++ b/sklearn/feature_selection/_rfe.py
@@ -32,8 +32,10 @@ def _rfe_single_fit(rfe, estimator, X, y, train, test, scorer):
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, y_test = _safe_split(estimator, X, y, test, train)
return rfe._fit(
- X_train, y_train, lambda estimator, features:
- _score(estimator, X_test[:, features], y_test, scorer)).scores_
+ X_train, y_train,
+ lambda estimator, features: _score(
+ estimator, X_test[:, features], y_test, scorer
+ )).scores_
class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):
diff --git a/sklearn/model_selection/_validation.py b/sklearn/model_selection/_validation.py
index 1152e5661aa43..1b4f9f5e96fbb 100644
--- a/sklearn/model_selection/_validation.py
+++ b/sklearn/model_selection/_validation.py
@@ -542,6 +542,13 @@ def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
fit_failed : bool
The estimator failed to fit.
"""
+ if not isinstance(error_score, numbers.Number) and error_score != 'raise':
+ raise ValueError(
+ "error_score must be the string 'raise' or a numeric value. "
+ "(Hint: if using 'raise', please make sure that it has been "
+ "spelled correctly.)"
+ )
+
progress_msg = ""
if verbose > 2:
if split_progress is not None:
@@ -607,19 +614,17 @@ def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
"Details: \n%s" %
(error_score, format_exc()),
FitFailedWarning)
- else:
- raise ValueError("error_score must be the string 'raise' or a"
- " numeric value. (Hint: if using 'raise', please"
- " make sure that it has been spelled correctly.)")
result["fit_failed"] = True
else:
result["fit_failed"] = False
fit_time = time.time() - start_time
- test_scores = _score(estimator, X_test, y_test, scorer)
+ test_scores = _score(estimator, X_test, y_test, scorer, error_score)
score_time = time.time() - start_time - fit_time
if return_train_score:
- train_scores = _score(estimator, X_train, y_train, scorer)
+ train_scores = _score(
+ estimator, X_train, y_train, scorer, error_score
+ )
if verbose > 1:
total_time = score_time + fit_time
@@ -654,7 +659,7 @@ def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
return result
-def _score(estimator, X_test, y_test, scorer):
+def _score(estimator, X_test, y_test, scorer, error_score="raise"):
"""Compute the score(s) of an estimator on a given test set.
Will return a dict of floats if `scorer` is a dict, otherwise a single
@@ -663,13 +668,30 @@ def _score(estimator, X_test, y_test, scorer):
if isinstance(scorer, dict):
# will cache method calls if needed. scorer() returns a dict
scorer = _MultimetricScorer(**scorer)
- if y_test is None:
- scores = scorer(estimator, X_test)
- else:
- scores = scorer(estimator, X_test, y_test)
- error_msg = ("scoring must return a number, got %s (%s) "
- "instead. (scorer=%s)")
+ try:
+ if y_test is None:
+ scores = scorer(estimator, X_test)
+ else:
+ scores = scorer(estimator, X_test, y_test)
+ except Exception:
+ if error_score == 'raise':
+ raise
+ else:
+ if isinstance(scorer, _MultimetricScorer):
+ scores = {name: error_score for name in scorer._scorers}
+ else:
+ scores = error_score
+ warnings.warn(
+ f"Scoring failed. The score on this train-test partition for "
+ f"these parameters will be set to {error_score}. Details: \n"
+ f"{format_exc()}",
+ UserWarning,
+ )
+
+ error_msg = (
+ "scoring must return a number, got %s (%s) instead. (scorer=%s)"
+ )
if isinstance(scores, dict):
for name, score in scores.items():
if hasattr(score, 'item'):
@@ -1353,7 +1375,9 @@ def learning_curve(estimator, X, y, *, groups=None,
classes = np.unique(y) if is_classifier(estimator) else None
out = parallel(delayed(_incremental_fit_estimator)(
clone(estimator), X, y, classes, train, test, train_sizes_abs,
- scorer, verbose, return_times) for train, test in cv_iter)
+ scorer, verbose, return_times, error_score=error_score)
+ for train, test in cv_iter
+ )
out = np.asarray(out).transpose((2, 1, 0))
else:
train_test_proportions = []
@@ -1365,7 +1389,8 @@ def learning_curve(estimator, X, y, *, groups=None,
clone(estimator), X, y, scorer, train, test, verbose,
parameters=None, fit_params=None, return_train_score=True,
error_score=error_score, return_times=return_times)
- for train, test in train_test_proportions)
+ for train, test in train_test_proportions
+ )
results = _aggregate_score_dicts(results)
train_scores = results["train_scores"].reshape(-1, n_unique_ticks).T
test_scores = results["test_scores"].reshape(-1, n_unique_ticks).T
@@ -1444,7 +1469,8 @@ def _translate_train_sizes(train_sizes, n_max_training_samples):
def _incremental_fit_estimator(estimator, X, y, classes, train, test,
- train_sizes, scorer, verbose, return_times):
+ train_sizes, scorer, verbose,
+ return_times, error_score):
"""Train estimator on training subsets incrementally and compute scores."""
train_scores, test_scores, fit_times, score_times = [], [], [], []
partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
@@ -1465,8 +1491,12 @@ def _incremental_fit_estimator(estimator, X, y, classes, train, test,
start_score = time.time()
- test_scores.append(_score(estimator, X_test, y_test, scorer))
- train_scores.append(_score(estimator, X_train, y_train, scorer))
+ test_scores.append(
+ _score(estimator, X_test, y_test, scorer, error_score)
+ )
+ train_scores.append(
+ _score(estimator, X_train, y_train, scorer, error_score)
+ )
score_time = time.time() - start_score
score_times.append(score_time)
|
diff --git a/sklearn/model_selection/tests/test_validation.py b/sklearn/model_selection/tests/test_validation.py
index 82cd0159d305a..46fcec2941aba 100644
--- a/sklearn/model_selection/tests/test_validation.py
+++ b/sklearn/model_selection/tests/test_validation.py
@@ -1,10 +1,10 @@
"""Test the validation module"""
-
-import sys
-import warnings
-import tempfile
import os
import re
+import sys
+import tempfile
+import warnings
+from functools import partial
from time import sleep
import pytest
@@ -333,16 +333,16 @@ def test_cross_validate_invalid_scoring_param():
multiclass_scorer = make_scorer(precision_recall_fscore_support)
# Multiclass Scorers that return multiple values are not supported yet
- assert_raises_regex(ValueError,
- "Classification metrics can't handle a mix of "
- "binary and continuous targets",
- cross_validate, estimator, X, y,
- scoring=multiclass_scorer)
- assert_raises_regex(ValueError,
- "Classification metrics can't handle a mix of "
- "binary and continuous targets",
- cross_validate, estimator, X, y,
- scoring={"foo": multiclass_scorer})
+ # the warning message we're expecting to see
+ warning_message = ("Scoring failed. The score on this train-test "
+ "partition for these parameters will be set to %f. "
+ "Details: \n" % np.nan)
+
+ with pytest.warns(UserWarning, match=warning_message):
+ cross_validate(estimator, X, y, scoring=multiclass_scorer)
+
+ with pytest.warns(UserWarning, match=warning_message):
+ cross_validate(estimator, X, y, scoring={"foo": multiclass_scorer})
assert_raises_regex(ValueError, "'mse' is not a valid scoring value.",
cross_validate, SVC(), X, y, scoring="mse")
@@ -1612,7 +1612,6 @@ def test_score_memmap():
score = np.memmap(tf.name, shape=(), mode='r', dtype=np.float64)
try:
cross_val_score(clf, X, y, scoring=lambda est, X, y: score)
- # non-scalar should still fail
assert_raises(ValueError, cross_val_score, clf, X, y,
scoring=lambda est, X, y: scores)
finally:
@@ -1719,6 +1718,89 @@ def test_fit_and_score_working():
assert result['parameters'] == fit_and_score_kwargs['parameters']
+def _failing_scorer(estimator, X, y, error_msg):
+ raise ValueError(error_msg)
+
+
[email protected]("ignore:lbfgs failed to converge")
[email protected]("error_score", [np.nan, 0, "raise"])
+def test_cross_val_score_failing_scorer(error_score):
+ # check that an estimator can fail during scoring in `cross_val_score` and
+ # that we can optionally replaced it with `error_score`
+ X, y = load_iris(return_X_y=True)
+ clf = LogisticRegression(max_iter=5).fit(X, y)
+
+ error_msg = "This scorer is supposed to fail!!!"
+ failing_scorer = partial(_failing_scorer, error_msg=error_msg)
+
+ if error_score == "raise":
+ with pytest.raises(ValueError, match=error_msg):
+ cross_val_score(
+ clf, X, y, cv=3, scoring=failing_scorer,
+ error_score=error_score
+ )
+ else:
+ warning_msg = (
+ f"Scoring failed. The score on this train-test partition for "
+ f"these parameters will be set to {error_score}"
+ )
+ with pytest.warns(UserWarning, match=warning_msg):
+ scores = cross_val_score(
+ clf, X, y, cv=3, scoring=failing_scorer,
+ error_score=error_score
+ )
+ assert_allclose(scores, error_score)
+
+
[email protected]("ignore:lbfgs failed to converge")
[email protected]("error_score", [np.nan, 0, "raise"])
[email protected]("return_train_score", [True, False])
[email protected]("with_multimetric", [False, True])
+def test_cross_validate_failing_scorer(
+ error_score, return_train_score, with_multimetric
+):
+ # check that an estimator can fail during scoring in `cross_validate` and
+ # that we can optionally replaced it with `error_score`
+ X, y = load_iris(return_X_y=True)
+ clf = LogisticRegression(max_iter=5).fit(X, y)
+
+ error_msg = "This scorer is supposed to fail!!!"
+ failing_scorer = partial(_failing_scorer, error_msg=error_msg)
+ if with_multimetric:
+ scoring = {"score_1": failing_scorer, "score_2": failing_scorer}
+ else:
+ scoring = failing_scorer
+
+ if error_score == "raise":
+ with pytest.raises(ValueError, match=error_msg):
+ cross_validate(
+ clf, X, y,
+ cv=3,
+ scoring=scoring,
+ return_train_score=return_train_score,
+ error_score=error_score
+ )
+ else:
+ warning_msg = (
+ f"Scoring failed. The score on this train-test partition for "
+ f"these parameters will be set to {error_score}"
+ )
+ with pytest.warns(UserWarning, match=warning_msg):
+ results = cross_validate(
+ clf, X, y,
+ cv=3,
+ scoring=scoring,
+ return_train_score=return_train_score,
+ error_score=error_score
+ )
+ for key in results:
+ if "_score" in key:
+ # check the test (and optionally train score) for all
+ # scorers that should be assigned to `error_score`.
+ assert_allclose(results[key], error_score)
+
+
+
def three_params_scorer(i, j, k):
return 3.4213
@@ -1764,7 +1846,7 @@ def two_params_scorer(estimator, X_test):
return None
fit_and_score_args = [None, None, None, two_params_scorer]
assert_raise_message(ValueError, error_message,
- _score, *fit_and_score_args)
+ _score, *fit_and_score_args, error_score=np.nan)
def test_callable_multimetric_confusion_matrix_cross_validate():
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex c57f097ec3218..c44ba08f2f57b 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -422,6 +422,14 @@ Changelog\n :pr:`18266` by :user:`Subrat Sahu <subrat93>`,\n :user:`Nirvan <Nirvan101>` and :user:`Arthur Book <ArthurBook>`.\n \n+- |Enhancement| :func:`model_selection.cross_val_score`,\n+ :func:`model_selection.cross_validate`,\n+ :class:`model_selection.GridSearchCV`, and\n+ :class:`model_selection.RandomizedSearchCV` allows estimator to fail scoring\n+ and replace the score with `error_score`. If `error_score=\"raise\"`, the error\n+ will be raised.\n+ :pr:`18343` by `Guillaume Lemaitre`_ and :user:`Devi Sandeep <dsandeep0138>`.\n+\n :mod:`sklearn.multiclass`\n .........................\n \n"
}
] |
0.24
|
5a73abc3e93627b3ec0b55a9393faa9751cefd2b
|
[
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-raise]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_proba_shape",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_class_subset",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_batch_and_incremental_learning_are_equal",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_score_func",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_y_none",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_unsupervised",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_log_proba_shape",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[raise]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_input_types",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf_rare_class",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_mask",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_predict_groups",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_boolean_indices",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_pandas",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-raise]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_errors",
"sklearn/model_selection/tests/test_validation.py::test_callable_multimetric_confusion_matrix_cross_validate",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction",
"sklearn/model_selection/tests/test_validation.py::test_score_memmap",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_working",
"sklearn/model_selection/tests/test_validation.py::test_permutation_test_score_allow_nans",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_with_shuffle",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_failing",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_not_possible",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_clone_estimator",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_incremental_learning_unsupervised",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_precomputed",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_many_jobs",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[True-scorer1-3-split_prg1-cdt_prg1-\\\\[CV 2/3\\\\] END sc1: \\\\(train=3.421, test=3.421\\\\) sc2: \\\\(train=3.421, test=3.421\\\\) total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_fit_params",
"sklearn/model_selection/tests/test_validation.py::test_check_is_permutation",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-three_params_scorer-2-split_prg0-cdt_prg0-\\\\[CV\\\\] END .................................................... total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_validation.py::test_permutation_score",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_method_checking",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_allow_nans",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_pandas",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-raise]",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_remove_duplicate_sample_sizes",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_regression",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_unbalanced",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_with_score_func_classification",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_nested_estimator",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_pandas",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf",
"sklearn/model_selection/tests/test_validation.py::test_fit_and_score_verbosity[False-scorer2-10-split_prg2-cdt_prg2-\\\\[CV 2/3; 1/1\\\\] END ....... sc1: \\\\(test=3.421\\\\) sc2: \\\\(test=3.421\\\\) total time= 0.\\\\ds]",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve",
"sklearn/model_selection/tests/test_validation.py::test_gridsearchcv_cross_val_predict_with_method",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-raise]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_n_sample_range_out_of_bounds",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_sparse_fit_params",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_rare_class",
"sklearn/model_selection/tests/test_validation.py::test_validation_curve_cv_splits_consistency",
"sklearn/model_selection/tests/test_validation.py::test_learning_curve_verbose",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_multilabel"
] |
[
"sklearn/model_selection/tests/test_validation.py::test_score",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_invalid_scoring_param",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-nan]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-False-nan]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-True-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-0]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[False-False-nan]",
"sklearn/model_selection/tests/test_validation.py::test_cross_val_score_failing_scorer[nan]",
"sklearn/model_selection/tests/test_validation.py::test_cross_validate_failing_scorer[True-True-nan]"
] |
{
"header": "If completing this task requires creating new files, classes, fields, or error messages, you may consider using the following suggested entity names:",
"data": []
}
|
[
{
"path": "doc/whats_new/v0.24.rst",
"old_path": "a/doc/whats_new/v0.24.rst",
"new_path": "b/doc/whats_new/v0.24.rst",
"metadata": "diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst\nindex c57f097ec3218..c44ba08f2f57b 100644\n--- a/doc/whats_new/v0.24.rst\n+++ b/doc/whats_new/v0.24.rst\n@@ -422,6 +422,14 @@ Changelog\n :pr:`<PRID>` by :user:`<NAME>`,\n :user:`<NAME>` and :user:`<NAME>`.\n \n+- |Enhancement| :func:`model_selection.cross_val_score`,\n+ :func:`model_selection.cross_validate`,\n+ :class:`model_selection.GridSearchCV`, and\n+ :class:`model_selection.RandomizedSearchCV` allows estimator to fail scoring\n+ and replace the score with `error_score`. If `error_score=\"raise\"`, the error\n+ will be raised.\n+ :pr:`<PRID>` by `<NAME>`_ and :user:`<NAME>`.\n+\n :mod:`sklearn.multiclass`\n .........................\n \n"
}
] |
diff --git a/doc/whats_new/v0.24.rst b/doc/whats_new/v0.24.rst
index c57f097ec3218..c44ba08f2f57b 100644
--- a/doc/whats_new/v0.24.rst
+++ b/doc/whats_new/v0.24.rst
@@ -422,6 +422,14 @@ Changelog
:pr:`<PRID>` by :user:`<NAME>`,
:user:`<NAME>` and :user:`<NAME>`.
+- |Enhancement| :func:`model_selection.cross_val_score`,
+ :func:`model_selection.cross_validate`,
+ :class:`model_selection.GridSearchCV`, and
+ :class:`model_selection.RandomizedSearchCV` allows estimator to fail scoring
+ and replace the score with `error_score`. If `error_score="raise"`, the error
+ will be raised.
+ :pr:`<PRID>` by `<NAME>`_ and :user:`<NAME>`.
+
:mod:`sklearn.multiclass`
.........................
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.