GreenNode/GreenNode-Embedding-Large-VN-Mixed-V1
Sentence Similarity
•
0.6B
•
Updated
•
136
•
6
Error code: StreamingRowsError
Exception: ArrowInvalid
Message: Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
return get_rows(
^^^^^^^^^
File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2431, in __iter__
for key, example in ex_iterable:
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1975, in _iter_arrow
for key, pa_table in self.ex_iterable._iter_arrow():
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
for key, pa_table in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
for key, pa_table in self.generate_tables_fn(**gen_kwags):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/parquet/parquet.py", line 90, in _generate_tables
if parquet_fragment.row_groups:
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/_dataset_parquet.pyx", line 389, in pyarrow._dataset_parquet.ParquetFileFragment.row_groups.__get__
File "pyarrow/_dataset_parquet.pyx", line 396, in pyarrow._dataset_parquet.ParquetFileFragment.metadata.__get__
File "pyarrow/_dataset_parquet.pyx", line 385, in pyarrow._dataset_parquet.ParquetFileFragment.ensure_complete_metadata
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
GreenNodeTable documents
| Task category | t2t |
| Domains | Financial, Encyclopaedic, Non-fiction |
| Reference | https://huggingface.co/GreenNode |
Source datasets:
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_task("GreenNodeTableMarkdownRetrieval")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb task check out the GitHub repository.
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{10.1007/978-981-95-1746-6_17,
abstract = {Information retrieval often comes in plain text, lacking semi-structured text such as HTML and markdown, retrieving data that contains rich format such as table became non-trivial. In this paper, we tackle this challenge by introducing a new dataset, GreenNode Table Retrieval VN (GN-TRVN), which is collected from a massive corpus, a wide range of topics, and a longer context compared to ViQuAD2.0. To evaluate the effectiveness of our proposed dataset, we introduce two versions, M3-GN-VN and M3-GN-VN-Mixed, by fine-tuning the M3-Embedding model on this dataset. Experimental results show that our models consistently outperform the baselines, including the base model, across most evaluation criteria on various datasets such as VieQuADRetrieval, ZacLegalTextRetrieval, and GN-TRVN. In general, we release a more comprehensive dataset and two model versions that improve response performance for Vietnamese Markdown Table Retrieval.},
address = {Singapore},
author = {Pham, Bao Loc
and Hoang, Quoc Viet
and Luu, Quy Tung
and Vo, Trong Thu},
booktitle = {Proceedings of the Fifth International Conference on Intelligent Systems and Networks},
isbn = {978-981-95-1746-6},
pages = {153--163},
publisher = {Springer Nature Singapore},
title = {GN-TRVN: A Benchmark for Vietnamese Table Markdown Retrieval Task},
year = {2026},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("GreenNodeTableMarkdownRetrieval")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 80469,
"number_of_characters": 59810147,
"documents_text_statistics": {
"total_text_length": 56678343,
"min_text_length": 74,
"average_text_length": 1268.596244236537,
"max_text_length": 4074,
"unique_texts": 44678
},
"documents_image_statistics": null,
"queries_text_statistics": {
"total_text_length": 3131804,
"min_text_length": 3,
"average_text_length": 87.50255650861949,
"max_text_length": 337,
"unique_texts": 35554
},
"queries_image_statistics": null,
"relevant_docs_statistics": {
"num_relevant_docs": 35791,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 1.0,
"max_relevant_docs_per_query": 1,
"unique_relevant_docs": 8936
},
"top_ranked_statistics": null
}
}
This dataset card was automatically generated using MTEB