Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Mdean77/modernbert-embed-quickb")
# Run inference
sentences = [
'What age groups will be enrolled in the study?',
'Subject Population to be Studied Participating sites will enroll infants, children and adoles-\ncent patients who are admitted to a Pediatric or Cardiac Intensive Care Unit with sepsis-induced\nmultiple organ dysfunction syndrome (MODS). The goal is to determine if personalized im-\nmunomodulation is an effective strategy to reduce mortality and morbidity from sepsis-induced',
'have mild to moderate inflammation (i.e. a serum ferritin level <2,000 ng/ml) from the TRIPS\ntrial. Those subjects will be instead entered into a completely distinct clinical trial of immune\nstimulation with GM-CSF (GRACE-2) that is covered by a separate IND (#112277).\nPRECISE Protocol Version 1.07\nProtocol Version Date: June 16, 2023',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
dim_768, dim_512, dim_256, dim_128 and dim_64InformationRetrievalEvaluator| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.5714 | 0.5486 | 0.5486 | 0.4914 | 0.3829 |
| cosine_accuracy@3 | 0.7829 | 0.7886 | 0.76 | 0.7029 | 0.5714 |
| cosine_accuracy@5 | 0.8114 | 0.8286 | 0.84 | 0.7886 | 0.6571 |
| cosine_accuracy@10 | 0.8743 | 0.8686 | 0.9086 | 0.8686 | 0.7886 |
| cosine_precision@1 | 0.5714 | 0.5486 | 0.5486 | 0.4914 | 0.3829 |
| cosine_precision@3 | 0.261 | 0.2629 | 0.2533 | 0.2343 | 0.1905 |
| cosine_precision@5 | 0.1623 | 0.1657 | 0.168 | 0.1577 | 0.1314 |
| cosine_precision@10 | 0.0874 | 0.0869 | 0.0909 | 0.0869 | 0.0789 |
| cosine_recall@1 | 0.5714 | 0.5486 | 0.5486 | 0.4914 | 0.3829 |
| cosine_recall@3 | 0.7829 | 0.7886 | 0.76 | 0.7029 | 0.5714 |
| cosine_recall@5 | 0.8114 | 0.8286 | 0.84 | 0.7886 | 0.6571 |
| cosine_recall@10 | 0.8743 | 0.8686 | 0.9086 | 0.8686 | 0.7886 |
| cosine_ndcg@10 | 0.7305 | 0.7172 | 0.7269 | 0.6778 | 0.5698 |
| cosine_mrr@10 | 0.6836 | 0.6676 | 0.6688 | 0.6169 | 0.5015 |
| cosine_map@100 | 0.6898 | 0.6742 | 0.672 | 0.622 | 0.5091 |
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
How many terabytes of data are referenced? |
over 125 terabytes of data. |
What regulation allows single parent permission for the study? |
for their child in the study. Single parent permission is permitted under 45 CFR §46.405. The |
What is included in the follow-up plan for non-compliant sites? |
planned site visits, criteria for focused visits, additional visits or remote monitoring, a plan for |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: epochper_device_train_batch_size: 16gradient_accumulation_steps: 16learning_rate: 2e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.1tf32: Falseload_best_model_at_end: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 16eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Falselocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|---|---|---|---|---|---|---|---|
| 1.0 | 7 | - | 0.6698 | 0.6606 | 0.6458 | 0.6146 | 0.5049 |
| 1.4898 | 10 | 55.7211 | - | - | - | - | - |
| 2.0 | 14 | - | 0.7210 | 0.7080 | 0.7183 | 0.6653 | 0.5621 |
| 2.9796 | 20 | 26.9161 | - | - | - | - | - |
| 3.0 | 21 | - | 0.7309 | 0.7172 | 0.7262 | 0.6762 | 0.5694 |
| 3.4898 | 24 | - | 0.7305 | 0.7172 | 0.7269 | 0.6778 | 0.5698 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
answerdotai/ModernBERT-base