Nina-Dolphin
Nina-Dolphin is a merged multilingual causal language model capable of instruction following, reasoning, and chat. It merges multiple base models:
- google/gemma-2-27b-it
- mistralai/Mixtral-8x22B-Instruct-v0.1
- meta-llama/Llama-3.1-70B-Instruct
- Qwen/Qwen2-72B-Instruct
Supported languages: English, Spanish, French, Japanese, Chinese, Italian, Russian
Training datasets include: OpenHermes-2.5, UltraChat-200k, Open-Platypus, MetaMathQA, Wikipedia (multiple languages), and OSCAR-2201.
Usage Example
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("Abigail45/Nina-Dolphin")
model = AutoModelForCausalLM.from_pretrained(
"Abigail45/Nina-Dolphin",
device_map="auto",
load_in_4bit=True
)
prompt = "Summarize the causes of the French Revolution."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=200,
do_sample=True,
temperature=0.7,
top_p=0.9
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Model tree for Abigail45/Nina-Dolphin
Merge model
this model