FinML / code /NAM_models.py
StevenJingfeng's picture
Upload NAM_models.py
0662e7d verified
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Neural net models for tabular datasets."""
from typing import Union, List
import numpy as np
import tensorflow as tf
TfInput = Union[np.ndarray, tf.Tensor]
def exu(x, weight, bias):
"""ExU hidden unit modification."""
return tf.exp(weight) * (x - bias)
# Activation Functions
def relu(x, weight, bias):
"""ReLU activation."""
return tf.nn.relu(weight * (x - bias))
def relu_n(x, n = 1):
"""ReLU activation clipped at n."""
return tf.clip_by_value(x, 0, n)
class ActivationLayer(tf.keras.layers.Layer):
"""Custom activation Layer to support ExU hidden units."""
def __init__(self,
num_units,
name = None,
activation = 'exu',
trainable = True):
"""Initializes ActivationLayer hyperparameters.
Args:
num_units: Number of hidden units in the layer.
name: The name of the layer.
activation: Activation to use. The default value of `None` corresponds to
using the ReLU-1 activation with ExU units while `relu` would use
standard hidden units with ReLU activation.
trainable: Whether the layer parameters are trainable or not.
"""
super(ActivationLayer, self).__init__(trainable=trainable, name=name)
self.num_units = num_units
self._trainable = trainable
if activation == 'relu':
self._activation = relu
self._beta_initializer = 'glorot_uniform'
elif activation == 'exu':
self._activation = lambda x, weight, bias: relu_n(exu(x, weight, bias))
self._beta_initializer = tf.initializers.truncated_normal(
mean=4.0, stddev=0.5)
else:
raise ValueError('{} is not a valid activation'.format(activation))
def build(self, input_shape):
"""Builds the layer weight and bias parameters."""
self._beta = self.add_weight(
name='beta',
shape=[input_shape[-1], self.num_units],
initializer=self._beta_initializer,
trainable=self._trainable)
self._c = self.add_weight(
name='c',
shape=[1, self.num_units],
initializer=tf.initializers.truncated_normal(stddev=0.5),
trainable=self._trainable)
super(ActivationLayer, self).build(input_shape)
@tf.function
def call(self, x):
"""Computes the output activations."""
center = tf.tile(self._c, [tf.shape(x)[0], 1])
out = self._activation(x, self._beta, center)
return out
class FeatureNN(tf.keras.layers.Layer):
"""Neural Network model for each individual feature.
Attributes:
hidden_layers: A list containing hidden layers. The first layer is an
`ActivationLayer` containing `num_units` neurons with specified
`activation`. If `shallow` is False, then it additionally contains 2
tf.keras.layers.Dense ReLU layers with 64, 32 hidden units respectively.
linear: Fully connected layer.
"""
def __init__(self,
num_units,
dropout = 0.5,
trainable = True,
shallow = True,
feature_num = 0,
name_scope = 'model',
activation = 'exu'):
"""Initializes FeatureNN hyperparameters.
Args:
num_units: Number of hidden units in first hidden layer.
dropout: Coefficient for dropout regularization.
trainable: Whether the FeatureNN parameters are trainable or not.
shallow: If True, then a shallow network with a single hidden layer is
created, otherwise, a network with 3 hidden layers is created.
feature_num: Feature Index used for naming the hidden layers.
name_scope: TF name scope str for the model.
activation: Activation and type of hidden unit(ExUs/Standard) used in the
first hidden layer.
"""
super(FeatureNN, self).__init__()
self._num_units = num_units
self._dropout = dropout
self._trainable = trainable
self._tf_name_scope = name_scope
self._feature_num = feature_num
self._shallow = shallow
self._activation = activation
def build(self, input_shape):
"""Builds the feature net layers."""
self.hidden_layers = [
]
if not self._shallow:
self._h1 = tf.keras.layers.Dense(
8,
activation='sigmoid',
use_bias=True,
trainable=self._trainable,
name='h1_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
self._h2 = tf.keras.layers.Dense(
8,
activation='relu',
use_bias=True,
trainable=self._trainable,
name='h2_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
self._h3 = tf.keras.layers.Dense(
8,
activation='sigmoid',
use_bias=True,
trainable=self._trainable,
name='h3_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
self.hidden_layers += [self._h1,self._h2,self._h3]
self.linear = tf.keras.layers.Dense(
1,
use_bias=True,
trainable=self._trainable,
name='dense_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
super(FeatureNN, self).build(input_shape)
@tf.function
def call(self, x, training):
"""Computes FeatureNN output with either evaluation or training mode."""
with tf.name_scope(self._tf_name_scope):
for l in self.hidden_layers:
x = tf.nn.dropout(
l(x), rate=tf.cond(training, lambda: self._dropout, lambda: 0.0))
x = tf.squeeze(self.linear(x), axis=1)
return x
class NAM(tf.keras.Model):
"""Neural additive model.
Attributes:
feature_nns: List of FeatureNN, one per input feature.
"""
def __init__(self,
num_inputs,
num_units,
trainable = True,
shallow = True,
feature_dropout = 0.0,
dropout = 0.0,
**kwargs):
"""Initializes NAM hyperparameters.
Args:
num_inputs: Number of feature inputs in input data.
num_units: Number of hidden units in first layer of each feature net.
trainable: Whether the NAM parameters are trainable or not.
shallow: If True, then shallow feature nets with a single hidden layer are
created, otherwise, feature nets with 3 hidden layers are created.
feature_dropout: Coefficient for dropping out entire Feature NNs.
dropout: Coefficient for dropout within each Feature NNs.
**kwargs: Arbitrary keyword arguments. Used for passing the `activation`
function as well as the `name_scope`.
"""
super(NAM, self).__init__()
self._num_inputs = num_inputs
if isinstance(num_units, list):
self._num_units = num_units
elif isinstance(num_units, int):
self._num_units = [num_units for _ in range(self._num_inputs)]
self._trainable = trainable
self._shallow = shallow
self._feature_dropout = feature_dropout
self._dropout = dropout
self._kwargs = kwargs
def build(self, input_shape):
"""Builds the FeatureNNs on the first call."""
self.feature_nns = [None] * self._num_inputs
for i in range(self._num_inputs):
self.feature_nns[i] = FeatureNN(
num_units=self._num_units[i],
dropout=self._dropout,
trainable=self._trainable,
shallow=self._shallow,
feature_num=i)
self._bias = self.add_weight(
name='bias',
initializer=tf.keras.initializers.Zeros(),
shape=(1,),
trainable=self._trainable)
self._true = tf.constant(True, dtype=tf.bool)
self._false = tf.constant(False, dtype=tf.bool)
def call(self, x, training = True):
"""Computes NAM output by adding the outputs of individual feature nets."""
individual_outputs = self.calc_outputs(x, training=training)
stacked_out = tf.stack(individual_outputs, axis=-1)
training = self._true if training else self._false
dropout_out = tf.nn.dropout(
stacked_out,
rate=tf.cond(training, lambda: self._feature_dropout, lambda: 0.0))
out = tf.reduce_sum(dropout_out, axis=-1)
return out + self._bias
def get_loss(self, x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s, pair_s1,alpha_3,num_fea):
output=self.call(x,training=True)
output=tf.reshape(output, len(x))
true_value=tf.cast(true_value,tf.float32)
#Binary cross entropy
BCE=-tf.reduce_sum(tf.multiply(tf.math.log(output+0.00001),true_value)+tf.multiply((1-true_value),tf.math.log(1-output+0.00001)))/len(x)
MSE= tf.reduce_mean(tf.square(output - true_value))
print(MSE)
#Punishment
puni_2=0
for i in range(len(pair)):
temp=np.zeros(len(x[0]))
temp1=np.zeros(len(x[0]))
temp[0:num_fea]=pair[i]
temp1[0:num_fea]=pair1[i]
out=self.calc_outputs([temp], training=True)
out1=self.calc_outputs([temp1], training=True)
puni_2+=max(out1[0]-out[0],0)
punish_2=alpha_2*puni_2
print("loss of strong pairwise monotonicity",punish_2)
ans = tf.constant(MSE+punish_2)
print("overall loss",ans)
return ans
def get_grad(self, x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s,pair_s1,alpha_3,num_fea):
with tf.GradientTape() as tape:
tape.watch(self.variables)
L = self.get_loss(x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s,pair_s1,alpha_3,num_fea)
g = tape.gradient(L, self.variables)
return g
def network_learn(self, x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s, pair_s1,alpha_3,learning_r,num_fea):
g = self.get_grad(x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s, pair_s1,alpha_3,num_fea)
tf.keras.optimizers.Adam(learning_rate=learning_r).apply_gradients(zip(g, self.variables))
def calc_outputs(self, x, training = True):
"""Returns the output computed by each feature net."""
training = self._true if training else self._false
list_x = tf.split(x, list(self._kwargs['kwargs']), axis=-1)
return [
self.feature_nns[i](x_i, training=training)
for i, x_i in enumerate(list_x)
]
class DNN(tf.keras.Model):
"""Deep Neural Network with 10 hidden layers.
Attributes:
hidden_layers: A list of 10 tf.keras.layers.Dense layers with ReLU.
linear: Fully-connected layer.
"""
def __init__(self, trainable = True, dropout = 0.15):
"""Creates the DNN layers.
Args:
trainable: Whether the DNN parameters are trainable or not.
dropout: Coefficient for dropout regularization.
"""
super(DNN, self).__init__()
self._dropout = dropout
self.hidden_layers = [None for _ in range(10)]
for i in range(10):
self.hidden_layers[i] = tf.keras.layers.Dense(
100,
activation='relu',
use_bias=True,
trainable=trainable,
name='dense_{}'.format(i),
kernel_initializer='he_normal')
self.linear = tf.keras.layers.Dense(
1,
use_bias=True,
trainable=trainable,
name='linear',
kernel_initializer='he_normal')
self._true = tf.constant(True, dtype=tf.bool)
self._false = tf.constant(False, dtype=tf.bool)
def call(self, x, training = True):
"""Creates the output tensor given an input."""
training = self._true if training else self._false
for l in self.hidden_layers:
x = tf.nn.dropout(
l(x), rate=tf.cond(training, lambda: self._dropout, lambda: 0.0))
x = tf.squeeze(self.linear(x), axis=-1)
return x