|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Neural net models for tabular datasets.""" |
|
|
|
|
|
from typing import Union, List |
|
|
import numpy as np |
|
|
import tensorflow as tf |
|
|
|
|
|
TfInput = Union[np.ndarray, tf.Tensor] |
|
|
|
|
|
|
|
|
def exu(x, weight, bias): |
|
|
"""ExU hidden unit modification.""" |
|
|
return tf.exp(weight) * (x - bias) |
|
|
|
|
|
|
|
|
|
|
|
def relu(x, weight, bias): |
|
|
"""ReLU activation.""" |
|
|
return tf.nn.relu(weight * (x - bias)) |
|
|
|
|
|
|
|
|
def relu_n(x, n = 1): |
|
|
"""ReLU activation clipped at n.""" |
|
|
return tf.clip_by_value(x, 0, n) |
|
|
|
|
|
|
|
|
class ActivationLayer(tf.keras.layers.Layer): |
|
|
"""Custom activation Layer to support ExU hidden units.""" |
|
|
|
|
|
def __init__(self, |
|
|
num_units, |
|
|
name = None, |
|
|
activation = 'exu', |
|
|
trainable = True): |
|
|
"""Initializes ActivationLayer hyperparameters. |
|
|
|
|
|
Args: |
|
|
num_units: Number of hidden units in the layer. |
|
|
name: The name of the layer. |
|
|
activation: Activation to use. The default value of `None` corresponds to |
|
|
using the ReLU-1 activation with ExU units while `relu` would use |
|
|
standard hidden units with ReLU activation. |
|
|
trainable: Whether the layer parameters are trainable or not. |
|
|
""" |
|
|
super(ActivationLayer, self).__init__(trainable=trainable, name=name) |
|
|
self.num_units = num_units |
|
|
self._trainable = trainable |
|
|
if activation == 'relu': |
|
|
self._activation = relu |
|
|
self._beta_initializer = 'glorot_uniform' |
|
|
elif activation == 'exu': |
|
|
self._activation = lambda x, weight, bias: relu_n(exu(x, weight, bias)) |
|
|
self._beta_initializer = tf.initializers.truncated_normal( |
|
|
mean=4.0, stddev=0.5) |
|
|
else: |
|
|
raise ValueError('{} is not a valid activation'.format(activation)) |
|
|
|
|
|
def build(self, input_shape): |
|
|
"""Builds the layer weight and bias parameters.""" |
|
|
self._beta = self.add_weight( |
|
|
name='beta', |
|
|
shape=[input_shape[-1], self.num_units], |
|
|
initializer=self._beta_initializer, |
|
|
trainable=self._trainable) |
|
|
self._c = self.add_weight( |
|
|
name='c', |
|
|
shape=[1, self.num_units], |
|
|
initializer=tf.initializers.truncated_normal(stddev=0.5), |
|
|
trainable=self._trainable) |
|
|
super(ActivationLayer, self).build(input_shape) |
|
|
|
|
|
@tf.function |
|
|
def call(self, x): |
|
|
"""Computes the output activations.""" |
|
|
center = tf.tile(self._c, [tf.shape(x)[0], 1]) |
|
|
out = self._activation(x, self._beta, center) |
|
|
return out |
|
|
|
|
|
|
|
|
class FeatureNN(tf.keras.layers.Layer): |
|
|
"""Neural Network model for each individual feature. |
|
|
|
|
|
Attributes: |
|
|
hidden_layers: A list containing hidden layers. The first layer is an |
|
|
`ActivationLayer` containing `num_units` neurons with specified |
|
|
`activation`. If `shallow` is False, then it additionally contains 2 |
|
|
tf.keras.layers.Dense ReLU layers with 64, 32 hidden units respectively. |
|
|
linear: Fully connected layer. |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
num_units, |
|
|
dropout = 0.5, |
|
|
trainable = True, |
|
|
shallow = True, |
|
|
feature_num = 0, |
|
|
name_scope = 'model', |
|
|
activation = 'exu'): |
|
|
"""Initializes FeatureNN hyperparameters. |
|
|
|
|
|
Args: |
|
|
num_units: Number of hidden units in first hidden layer. |
|
|
dropout: Coefficient for dropout regularization. |
|
|
trainable: Whether the FeatureNN parameters are trainable or not. |
|
|
shallow: If True, then a shallow network with a single hidden layer is |
|
|
created, otherwise, a network with 3 hidden layers is created. |
|
|
feature_num: Feature Index used for naming the hidden layers. |
|
|
name_scope: TF name scope str for the model. |
|
|
activation: Activation and type of hidden unit(ExUs/Standard) used in the |
|
|
first hidden layer. |
|
|
""" |
|
|
super(FeatureNN, self).__init__() |
|
|
self._num_units = num_units |
|
|
self._dropout = dropout |
|
|
self._trainable = trainable |
|
|
self._tf_name_scope = name_scope |
|
|
self._feature_num = feature_num |
|
|
self._shallow = shallow |
|
|
self._activation = activation |
|
|
|
|
|
def build(self, input_shape): |
|
|
"""Builds the feature net layers.""" |
|
|
self.hidden_layers = [ |
|
|
] |
|
|
if not self._shallow: |
|
|
self._h1 = tf.keras.layers.Dense( |
|
|
8, |
|
|
activation='sigmoid', |
|
|
use_bias=True, |
|
|
trainable=self._trainable, |
|
|
name='h1_{}'.format(self._feature_num), |
|
|
kernel_initializer='glorot_uniform') |
|
|
|
|
|
self._h2 = tf.keras.layers.Dense( |
|
|
8, |
|
|
activation='relu', |
|
|
use_bias=True, |
|
|
trainable=self._trainable, |
|
|
name='h2_{}'.format(self._feature_num), |
|
|
kernel_initializer='glorot_uniform') |
|
|
|
|
|
self._h3 = tf.keras.layers.Dense( |
|
|
8, |
|
|
activation='sigmoid', |
|
|
use_bias=True, |
|
|
trainable=self._trainable, |
|
|
name='h3_{}'.format(self._feature_num), |
|
|
kernel_initializer='glorot_uniform') |
|
|
|
|
|
self.hidden_layers += [self._h1,self._h2,self._h3] |
|
|
|
|
|
self.linear = tf.keras.layers.Dense( |
|
|
1, |
|
|
use_bias=True, |
|
|
trainable=self._trainable, |
|
|
name='dense_{}'.format(self._feature_num), |
|
|
kernel_initializer='glorot_uniform') |
|
|
super(FeatureNN, self).build(input_shape) |
|
|
|
|
|
@tf.function |
|
|
def call(self, x, training): |
|
|
"""Computes FeatureNN output with either evaluation or training mode.""" |
|
|
with tf.name_scope(self._tf_name_scope): |
|
|
for l in self.hidden_layers: |
|
|
x = tf.nn.dropout( |
|
|
l(x), rate=tf.cond(training, lambda: self._dropout, lambda: 0.0)) |
|
|
x = tf.squeeze(self.linear(x), axis=1) |
|
|
return x |
|
|
|
|
|
|
|
|
class NAM(tf.keras.Model): |
|
|
"""Neural additive model. |
|
|
|
|
|
Attributes: |
|
|
feature_nns: List of FeatureNN, one per input feature. |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
num_inputs, |
|
|
num_units, |
|
|
trainable = True, |
|
|
shallow = True, |
|
|
feature_dropout = 0.0, |
|
|
dropout = 0.0, |
|
|
**kwargs): |
|
|
"""Initializes NAM hyperparameters. |
|
|
|
|
|
Args: |
|
|
num_inputs: Number of feature inputs in input data. |
|
|
num_units: Number of hidden units in first layer of each feature net. |
|
|
trainable: Whether the NAM parameters are trainable or not. |
|
|
shallow: If True, then shallow feature nets with a single hidden layer are |
|
|
created, otherwise, feature nets with 3 hidden layers are created. |
|
|
feature_dropout: Coefficient for dropping out entire Feature NNs. |
|
|
dropout: Coefficient for dropout within each Feature NNs. |
|
|
**kwargs: Arbitrary keyword arguments. Used for passing the `activation` |
|
|
function as well as the `name_scope`. |
|
|
""" |
|
|
super(NAM, self).__init__() |
|
|
self._num_inputs = num_inputs |
|
|
if isinstance(num_units, list): |
|
|
self._num_units = num_units |
|
|
elif isinstance(num_units, int): |
|
|
self._num_units = [num_units for _ in range(self._num_inputs)] |
|
|
self._trainable = trainable |
|
|
self._shallow = shallow |
|
|
self._feature_dropout = feature_dropout |
|
|
self._dropout = dropout |
|
|
self._kwargs = kwargs |
|
|
|
|
|
def build(self, input_shape): |
|
|
"""Builds the FeatureNNs on the first call.""" |
|
|
self.feature_nns = [None] * self._num_inputs |
|
|
for i in range(self._num_inputs): |
|
|
self.feature_nns[i] = FeatureNN( |
|
|
num_units=self._num_units[i], |
|
|
dropout=self._dropout, |
|
|
trainable=self._trainable, |
|
|
shallow=self._shallow, |
|
|
feature_num=i) |
|
|
self._bias = self.add_weight( |
|
|
name='bias', |
|
|
initializer=tf.keras.initializers.Zeros(), |
|
|
shape=(1,), |
|
|
trainable=self._trainable) |
|
|
self._true = tf.constant(True, dtype=tf.bool) |
|
|
self._false = tf.constant(False, dtype=tf.bool) |
|
|
|
|
|
def call(self, x, training = True): |
|
|
"""Computes NAM output by adding the outputs of individual feature nets.""" |
|
|
individual_outputs = self.calc_outputs(x, training=training) |
|
|
stacked_out = tf.stack(individual_outputs, axis=-1) |
|
|
training = self._true if training else self._false |
|
|
dropout_out = tf.nn.dropout( |
|
|
stacked_out, |
|
|
rate=tf.cond(training, lambda: self._feature_dropout, lambda: 0.0)) |
|
|
out = tf.reduce_sum(dropout_out, axis=-1) |
|
|
return out + self._bias |
|
|
|
|
|
def get_loss(self, x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s, pair_s1,alpha_3,num_fea): |
|
|
output=self.call(x,training=True) |
|
|
output=tf.reshape(output, len(x)) |
|
|
true_value=tf.cast(true_value,tf.float32) |
|
|
|
|
|
|
|
|
BCE=-tf.reduce_sum(tf.multiply(tf.math.log(output+0.00001),true_value)+tf.multiply((1-true_value),tf.math.log(1-output+0.00001)))/len(x) |
|
|
MSE= tf.reduce_mean(tf.square(output - true_value)) |
|
|
print(MSE) |
|
|
|
|
|
|
|
|
|
|
|
puni_2=0 |
|
|
for i in range(len(pair)): |
|
|
temp=np.zeros(len(x[0])) |
|
|
temp1=np.zeros(len(x[0])) |
|
|
|
|
|
temp[0:num_fea]=pair[i] |
|
|
temp1[0:num_fea]=pair1[i] |
|
|
|
|
|
|
|
|
out=self.calc_outputs([temp], training=True) |
|
|
out1=self.calc_outputs([temp1], training=True) |
|
|
|
|
|
|
|
|
puni_2+=max(out1[0]-out[0],0) |
|
|
|
|
|
punish_2=alpha_2*puni_2 |
|
|
print("loss of strong pairwise monotonicity",punish_2) |
|
|
|
|
|
ans = tf.constant(MSE+punish_2) |
|
|
print("overall loss",ans) |
|
|
return ans |
|
|
|
|
|
def get_grad(self, x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s,pair_s1,alpha_3,num_fea): |
|
|
with tf.GradientTape() as tape: |
|
|
tape.watch(self.variables) |
|
|
L = self.get_loss(x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s,pair_s1,alpha_3,num_fea) |
|
|
g = tape.gradient(L, self.variables) |
|
|
return g |
|
|
|
|
|
|
|
|
def network_learn(self, x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s, pair_s1,alpha_3,learning_r,num_fea): |
|
|
g = self.get_grad(x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s, pair_s1,alpha_3,num_fea) |
|
|
tf.keras.optimizers.Adam(learning_rate=learning_r).apply_gradients(zip(g, self.variables)) |
|
|
|
|
|
|
|
|
def calc_outputs(self, x, training = True): |
|
|
"""Returns the output computed by each feature net.""" |
|
|
training = self._true if training else self._false |
|
|
list_x = tf.split(x, list(self._kwargs['kwargs']), axis=-1) |
|
|
return [ |
|
|
self.feature_nns[i](x_i, training=training) |
|
|
for i, x_i in enumerate(list_x) |
|
|
] |
|
|
|
|
|
|
|
|
class DNN(tf.keras.Model): |
|
|
"""Deep Neural Network with 10 hidden layers. |
|
|
|
|
|
Attributes: |
|
|
hidden_layers: A list of 10 tf.keras.layers.Dense layers with ReLU. |
|
|
linear: Fully-connected layer. |
|
|
""" |
|
|
|
|
|
def __init__(self, trainable = True, dropout = 0.15): |
|
|
"""Creates the DNN layers. |
|
|
|
|
|
Args: |
|
|
trainable: Whether the DNN parameters are trainable or not. |
|
|
dropout: Coefficient for dropout regularization. |
|
|
""" |
|
|
super(DNN, self).__init__() |
|
|
self._dropout = dropout |
|
|
self.hidden_layers = [None for _ in range(10)] |
|
|
for i in range(10): |
|
|
self.hidden_layers[i] = tf.keras.layers.Dense( |
|
|
100, |
|
|
activation='relu', |
|
|
use_bias=True, |
|
|
trainable=trainable, |
|
|
name='dense_{}'.format(i), |
|
|
kernel_initializer='he_normal') |
|
|
self.linear = tf.keras.layers.Dense( |
|
|
1, |
|
|
use_bias=True, |
|
|
trainable=trainable, |
|
|
name='linear', |
|
|
kernel_initializer='he_normal') |
|
|
self._true = tf.constant(True, dtype=tf.bool) |
|
|
self._false = tf.constant(False, dtype=tf.bool) |
|
|
|
|
|
def call(self, x, training = True): |
|
|
"""Creates the output tensor given an input.""" |
|
|
training = self._true if training else self._false |
|
|
for l in self.hidden_layers: |
|
|
x = tf.nn.dropout( |
|
|
l(x), rate=tf.cond(training, lambda: self._dropout, lambda: 0.0)) |
|
|
x = tf.squeeze(self.linear(x), axis=-1) |
|
|
return x |
|
|
|