import os import json from argparse import ArgumentParser from glob import glob from tqdm import tqdm import torch from safetensors.torch import load_file, save_file def weight_dequant_fp8(weight_fp8, scale_inv): """ Dequantize FP8 weights to BF16 using scale_inv. Args: weight_fp8: FP8 tensor scale_inv: Inverse scale tensor (F32) Returns: BF16 tensor """ # Convert FP8 to float32 first weight_f32 = weight_fp8.to(torch.float32) # Apply inverse scaling # scale_inv shape is typically [out_features_blocks, in_features_blocks] # We need to broadcast it properly to match weight dimensions if scale_inv.dim() == 2: # Expand scale_inv to match weight dimensions out_blocks, in_blocks = scale_inv.shape weight_blocks_out = weight_fp8.shape[0] // out_blocks weight_blocks_in = weight_fp8.shape[1] // in_blocks # Repeat scale_inv to match weight shape scale_inv_expanded = scale_inv.repeat_interleave(weight_blocks_out, dim=0) scale_inv_expanded = scale_inv_expanded.repeat_interleave(weight_blocks_in, dim=1) weight_f32 = weight_f32 * scale_inv_expanded else: weight_f32 = weight_f32 * scale_inv # Convert to BF16 return weight_f32.to(torch.bfloat16) def main(fp8_path, bf16_path): torch.set_default_dtype(torch.bfloat16) os.makedirs(bf16_path, exist_ok=True) model_index_file = os.path.join(fp8_path, "model.safetensors.index.json") with open(model_index_file, "r") as f: model_index = json.load(f) weight_map = model_index["weight_map"] # Cache for loaded safetensor files loaded_files = {} fp8_weight_names = [] # Helper function to get tensor from the correct file def get_tensor(tensor_name): if tensor_name not in weight_map: return None file_name = weight_map[tensor_name] if file_name not in loaded_files: file_path = os.path.join(fp8_path, file_name) loaded_files[file_name] = load_file(file_path, device="cuda") return loaded_files[file_name][tensor_name] safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors"))) safetensor_files = [f for f in safetensor_files if not f.endswith(".index.json")] safetensor_files.sort() print(f"Found {len(safetensor_files)} safetensor files to convert") for safetensor_file in tqdm(safetensor_files, desc="Converting files"): file_name = os.path.basename(safetensor_file) current_state_dict = load_file(safetensor_file, device="cuda") loaded_files[file_name] = current_state_dict new_state_dict = {} for weight_name, weight in current_state_dict.items(): # Skip scale_inv tensors if weight_name.endswith("_scale_inv"): continue # Check if this is an FP8 weight (F8_E4M3 has element_size of 1) if weight.dtype == torch.float8_e4m3fn or weight.element_size() == 1: scale_inv_name = f"{weight_name}_scale_inv" scale_inv = get_tensor(scale_inv_name) if scale_inv is not None: fp8_weight_names.append(weight_name) new_state_dict[weight_name] = weight_dequant_fp8(weight, scale_inv) else: print(f"Warning: Missing scale_inv tensor for {weight_name}, keeping as-is") new_state_dict[weight_name] = weight else: # Already BF16 or F32, keep as-is new_state_dict[weight_name] = weight # Save converted weights new_safetensor_file = os.path.join(bf16_path, file_name) save_file(new_state_dict, new_safetensor_file) # Memory management: keep only the 2 most recently used files if len(loaded_files) > 2: oldest_file = next(iter(loaded_files)) del loaded_files[oldest_file] torch.cuda.empty_cache() # Update model index - remove all _scale_inv entries print("Updating model index...") new_weight_map = {} for weight_name, file_name in weight_map.items(): if not weight_name.endswith("_scale_inv"): new_weight_map[weight_name] = file_name new_model_index = { "metadata": model_index.get("metadata", {}), "weight_map": new_weight_map } new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json") with open(new_model_index_file, "w") as f: json.dump(new_model_index, f, indent=2) print(f"Conversion complete! Converted {len(fp8_weight_names)} FP8 weights to BF16") print(f"Output saved to: {bf16_path}") if __name__ == "__main__": parser = ArgumentParser(description="Convert MiniMax-M2 from FP8 to BF16") parser.add_argument("--input-fp8-hf-path", type=str, required=True, help="Path to the FP8 model directory") parser.add_argument("--output-bf16-hf-path", type=str, required=True, help="Path to save the BF16 model") args = parser.parse_args() main(args.input_fp8_hf_path, args.output_bf16_hf_path)