File size: 8,591 Bytes
7f390c3 37ba2d7 286b189 37ba2d7 7f390c3 37ba2d7 7f390c3 26b3b8c 7f390c3 37ba2d7 7f390c3 4681b1e 7f390c3 4681b1e 7f390c3 3a0660a 7f390c3 286b189 7f390c3 37ba2d7 7f390c3 37ba2d7 7f390c3 37ba2d7 7f390c3 37ba2d7 5e06e87 e8b3f86 5e06e87 7f390c3 5e06e87 37ba2d7 1289019 5e06e87 37ba2d7 5e06e87 7f390c3 37ba2d7 5e06e87 37ba2d7 5e06e87 7f390c3 5e06e87 0e72098 3a0660a 37ba2d7 7f390c3 26b3b8c 0e72098 37ba2d7 26b3b8c 37ba2d7 26b3b8c 37ba2d7 26b3b8c 37ba2d7 26b3b8c 37ba2d7 286b189 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import tensorflow as tf
from tensorflow.keras import layers, Model
import numpy as np
import tensorflow.keras.backend as K
from tensorflow.keras import mixed_precision
import sentencepiece as spm
import os, json
import requests
import gradio as gr
print('1')
tf.get_logger().setLevel("ERROR")
SEED = 42
tf.random.set_seed(SEED)
np.random.seed(SEED)
max_len = 512 # 기존 코드에서 200으로 설정됨
batch_size = 128
# TPU 초기화 (기존 코드와 동일)
try:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local")
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.TPUStrategy(resolver)
print("✅ TPU 초기화 완료:", resolver.cluster_spec().as_dict())
on_tpu = True
except Exception as e:
print("⚠️ TPU 미사용, GPU/CPU로 진행:", e)
strategy = tf.distribute.get_strategy()
on_tpu = False
# Mixed precision (기존 코드와 동일)
policy = mixed_precision.Policy("mixed_bfloat16" if on_tpu else "float32")
mixed_precision.set_global_policy(policy)
print("✅ Mixed precision:", policy)
# =======================
# 1) 파일 다운로드 및 토크나이저 초기화 (기존 코드와 동일)
# =======================
def download_file(url, save_path):
r = requests.get(url, stream=True)
r.raise_for_status()
with open(save_path, "wb") as f:
for chunk in r.iter_content(8192*2):
f.write(chunk)
print(f"✅ {save_path} 저장됨")
MODEL_PATH = "model.weights.h5"
TOKENIZER_PATH = "ko_unigram.model"
if not os.path.exists(MODEL_PATH):
download_file(
"https://huggingface.co/Yuchan5386/Model_Prototype/resolve/main/model.weights.h5?download=true",
MODEL_PATH
)
if not os.path.exists(TOKENIZER_PATH):
download_file(
"https://huggingface.co/Yuchan5386/Respiso/resolve/main/bpe.model?download=true",
TOKENIZER_PATH
)
sp = spm.SentencePieceProcessor(TOKENIZER_PATH)
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
start_id = sp.piece_to_id("<start>")
sep_id = sp.piece_to_id("<sep>")
end_id = sp.piece_to_id("<end>")
unk_id = sp.piece_to_id("<unk>")
vocab_size = sp.get_piece_size()
print(f"✅ Vocabulary size: {vocab_size}")
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class SwiGLU(layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = layers.Dense(d_ff)
self.out = layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class LoU(layers.Layer):
def __init__(self, d_model, clip_value=5.0, eps=1e-6):
super().__init__()
self.d_model = d_model
self.clip_value = float(clip_value)
self.eps = float(eps)
self.Q = layers.Dense(d_model, dtype='float32')
self.K = layers.Dense(d_model, dtype='float32')
self.V = layers.Dense(d_model, dtype='float32')
self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
self.norm1 = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
self.glu = SwiGLU(d_model, 320)
def call(self, x):
x_f32 = tf.cast(x, tf.float32)
residual = x_f32
x_f32 = self.norm1(x)
q = self.Q(x_f32)
k = self.K(x_f32)
V = self.V(x_f32)
g_q = (tf.nn.tanh(q) + 1.0) / 2.0
g_k = (tf.nn.tanh(k) + 1.0) / 2.0
score = g_q * g_k
score = tf.cumsum(score, axis=1) # (B, L, D)
# 💡 수정된 부분: 현재 토큰까지의 누적합 평균으로 정규화
seq_len = tf.shape(score)[1]
# [1, 2, 3, ..., L]을 D_model 차원으로 확장
count_for_mean = tf.cast(tf.range(seq_len) + 1, score.dtype)
count_for_mean = tf.reshape(count_for_mean, (1, seq_len, 1))
# 누적합을 현재까지의 토큰 개수로 나누어 평균 누적합 계산 (B, L, D)
score_mean = score / count_for_mean
# 정규화 분모 설정
denom = tf.maximum(score_mean, self.eps)
score_norm = score / denom
# -----------------------------------------------
score_clipped = tf.clip_by_value(score_norm, -self.clip_value, self.clip_value)
x_comb = score_clipped * V
out = self.norm(x_comb + residual)
out = self.glu(out)
return tf.cast(out, x.dtype)
class Lo(layers.Layer):
def __init__(self, d_model):
super().__init__()
self.d = layers.Dense(64, activation='silu')
self.w = layers.Dense(d_model)
self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
def call(self, x):
p = self.d(x)
p = self.w(p)
return self.norm(p) + x
class Block(layers.Layer):
def __init__(self, d_model):
super().__init__()
self.lou = LoU(d_model)
self.lo = Lo(d_model)
def call(self, x):
x = self.lou(x)
x = self.lo(x)
return x
class ReLM(tf.keras.Model):
def __init__(self, vocab_size, max_seq_len, d_model, n_layers, dropout_rate=0.1):
super().__init__()
self.token_embedding = layers.Embedding(vocab_size, d_model)
self.pos_embedding = layers.Embedding(max_seq_len, d_model)
self.blocks = [Block(d_model) for _ in range(n_layers)]
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype="float32")
def call(self, x, training=False):
batch_size, seq_len = tf.shape(x)[0], tf.shape(x)[1]
positions = tf.range(seq_len)[tf.newaxis, :]
x = self.token_embedding(x) + self.pos_embedding(positions)
for block in self.blocks:
x = block(x)
x = self.ln_f(x)
embedding_matrix = tf.cast(self.token_embedding.embeddings, x.dtype)
logits = tf.matmul(x, embedding_matrix, transpose_b=True)
return tf.cast(logits, tf.float32)
model = ReLM(
vocab_size=vocab_size,
max_seq_len=max_len,
d_model=256,
n_layers=1
)
dummy_input = np.zeros((1, max_len), dtype=np.int32)
_ = model(dummy_input)
model.summary()
model.load_weights(MODEL_PATH)
print("모델 가중치 로드 완료!")
# =======================
# 6) 추론 함수 (기존 코드 유지)
# 더미 인풋으로 모델 초기화
def generate_text_topp(model, prompt, max_len=512, max_gen=512, p=0.9, temperature=0.8, min_len=20):
model_input = text_to_ids(f"<start> {prompt}")
model_input = model_input[:max_len]
generated = list(model_input)
for step in range(max_gen):
if len(generated) > max_len:
input_seq = generated[-max_len:]
else:
input_seq = generated
input_padded = np.pad(input_seq, (0, max_len - len(input_seq)), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_token_logits = logits[0, len(input_seq) - 1].numpy()
next_token_logits[end_id] -= 5.0
next_token_logits[pad_id] -= 10.0
probs = tf.nn.softmax(next_token_logits / temperature).numpy()
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_indices]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = np.searchsorted(cumulative_probs, p)
top_indices = sorted_indices[:cutoff + 1]
top_probs = sorted_probs[:cutoff + 1]
top_probs /= np.sum(top_probs)
next_token_id = np.random.choice(top_indices, p=top_probs)
if next_token_id == end_id and len(generated) >= min_len:
break
generated.append(int(next_token_id))
return ids_to_text(generated)
def gr_generate(prompt, max_len=512, max_gen=512, p=0.8, temperature=0.8):
return generate_text_topp(model, prompt, max_len=max_len, p=p, temperature=temperature)
# Gradio 인터페이스 정의
iface = gr.Interface(
fn=gr_generate,
inputs=[
gr.Textbox(label="Prompt 입력", placeholder="여기에 문장 입력...", lines=2),
gr.Slider(20, 512, value=150, step=1, label="Max length"),
gr.Slider(0.1, 1.0, value=0.8, step=0.05, label="Top-p"),
gr.Slider(0.1, 2.0, value=0.8, step=0.05, label="Temperature")
],
outputs=[
gr.Textbox(label="생성 결과", lines=10)
],
title="Cuma LM 텍스트 생성",
description="간단한 Gradio UI로 Cuma 모델 텍스트 생성 테스트"
)
iface.launch()
|