ynuozhang
commited on
Commit
Β·
cdf1251
1
Parent(s):
0f7b5c6
update dataset
Browse files- README.md +3 -374
- requirements.txt +13 -0
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/dataset_dict.json +0 -1
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00001-of-00005.arrow +3 -0
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00002-of-00005.arrow +3 -0
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00003-of-00005.arrow +3 -0
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00004-of-00005.arrow +3 -0
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/dataset_info.json +65 -0
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/state.json +25 -0
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/val/data-00000-of-00001.arrow +3 -0
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/val/dataset_info.json +59 -0
- training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/val/state.json +13 -0
README.md
CHANGED
|
@@ -1,374 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-

|
| 7 |
-
|
| 8 |
-
This repo contains important large files for [PeptiVerse](https://huggingface.co/spaces/ChatterjeeLab/PeptiVerse), an interactive app for peptide property prediction.
|
| 9 |
-
|
| 10 |
-
- `embeddings` folder contains processed huggingface datasets with PeptideCLM embeddings. The `.csv` is the pre-processed data.
|
| 11 |
-
- `metrics` folder contains the model performance on the validation data
|
| 12 |
-
- `models` host all trained model weights
|
| 13 |
-
- `training_data` host all **raw data** to train the classifiers
|
| 14 |
-
- `functions` contains files to utilize the trained weights and classifiers
|
| 15 |
-
- `train` contains the script to train classifiers on the pre-processed embeddings, either through xgboost or MLPs.
|
| 16 |
-
- `scoring_function.py` contains a class that aggregates all trained classifiers for diverse downstream sampling applications
|
| 17 |
-
|
| 18 |
-
# PeptiVerse π§¬π
|
| 19 |
-
|
| 20 |
-
A collection of machine learning predictors for non-canonical and canonical peptide property prediction for SMILES representation. 𧬠PeptiVerse π enables evaluation of key biophysical and therapeutic properties of peptides for property-optimized generation.
|
| 21 |
-
|
| 22 |
-
## Predictors π§«
|
| 23 |
-
|
| 24 |
-
PeptiVerse includes the following property predictors:
|
| 25 |
-
|
| 26 |
-
| Predictor | Measurement | Interpretation | Training Data Source | Dataset Size | Model Type |
|
| 27 |
-
|-----------|-------------|-----------------| --------------------|--------------|------------|
|
| 28 |
-
| **Non-Hemolysis** | Probability of non-hemolytic behavior | 0-1 scale, higher = less hemolytic | PeptideBERT, PepLand | 6,077 peptides | XGBoost + PeptideCLM embeddings |
|
| 29 |
-
| **Solubility** | Probability of aqueous solubility | 0-1 scale, higher = more soluble | PeptideBERT, PepLand | 18,454 peptides | XGBoost + PeptideCLM embeddings |
|
| 30 |
-
| **Non-Fouling** | Probability of non-fouling properties | 0-1 scale, higher = lower probability of binding to off-targets | PeptideBERT, PepLand | 17,186 peptides | XGBoost + PeptideCLM embeddings |
|
| 31 |
-
| **Permeability** | Cell membrane permeability (PAMPA lipophilicity score log P scale, range -10 to 0) | β₯ β6.0 indicate strong permeability and values < 6.0 indicate weak permeability | ChEMBL (22,040), CycPeptMPDB (7451) | 34,853 peptides | XGBoost + PeptideCLM embeddings + molecular descriptors |
|
| 32 |
-
| **Binding Affinity** | Peptide-protein binding strength (-log Kd/Ki/IC50 scale) | Weak binding (< 6.0), medium binding (6.0 β 7.5), and high binding (β₯ 7.5) | PepLand | 1806 peptide-protein pairs | Cross-attention transformer (ESM2 + PeptideCLM) |
|
| 33 |
-
|
| 34 |
-
## Model Performance π
|
| 35 |
-
|
| 36 |
-
#### Binary Classification Predictors
|
| 37 |
-
|
| 38 |
-
| Predictor | Val AUC | Val F1 |
|
| 39 |
-
|-----------|----------------|----------|
|
| 40 |
-
| **Non-Hemolysis** | 0.7902 | 0.8260 |
|
| 41 |
-
| **Solubility** | 0.6016 | 0.5767 |
|
| 42 |
-
| **Nonfouling** | 0.9327 | 0.8774 |
|
| 43 |
-
|
| 44 |
-
#### Regression Predictors
|
| 45 |
-
|
| 46 |
-
| Predictor | Train Correlation (Spearman) | Val Correlation (Spearman) |
|
| 47 |
-
|-----------|------------------------------|----------------------------|
|
| 48 |
-
| **Permeability** | 0.958 | 0.710 |
|
| 49 |
-
| **Binding Affinity** | 0.805 | 0.611 |
|
| 50 |
-
|
| 51 |
-
## Setup π
|
| 52 |
-
|
| 53 |
-
1. Clone the repository:
|
| 54 |
-
```bash
|
| 55 |
-
git clone https://github.com/sophtang/PeptiVerse.git
|
| 56 |
-
cd PeptiVerse
|
| 57 |
-
```
|
| 58 |
-
|
| 59 |
-
2. Install environment:
|
| 60 |
-
```bash
|
| 61 |
-
conda env create -f environment.yml
|
| 62 |
-
|
| 63 |
-
conda activate peptiverse
|
| 64 |
-
```
|
| 65 |
-
|
| 66 |
-
3. Change the `base_path` in each file to ensure that all model weights and tokenizers are loaded correctly.
|
| 67 |
-
|
| 68 |
-
## UsageΒ π
|
| 69 |
-
|
| 70 |
-
#### 1. Hemolysis Prediction
|
| 71 |
-
|
| 72 |
-
Predicts the probability that a peptide is **not hemolytic**. Higher scores indicate safer peptides.
|
| 73 |
-
|
| 74 |
-
```python
|
| 75 |
-
import sys
|
| 76 |
-
sys.path.append('/path/to/PeptiVerse')
|
| 77 |
-
from functions.hemolysis.hemolysis import Hemolysis
|
| 78 |
-
|
| 79 |
-
# Initialize predictor
|
| 80 |
-
hemo = Hemolysis()
|
| 81 |
-
|
| 82 |
-
# Input peptide in SMILES format
|
| 83 |
-
peptides = [
|
| 84 |
-
"NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
|
| 85 |
-
]
|
| 86 |
-
|
| 87 |
-
# Get predictions
|
| 88 |
-
scores = hemo(peptides)
|
| 89 |
-
print(f"Non-hemolytic probability: {scores[0]:.3f}")
|
| 90 |
-
```
|
| 91 |
-
|
| 92 |
-
**Output interpretation:**
|
| 93 |
-
- Score close to 1.0 = likely non-hemolytic (safe)
|
| 94 |
-
- Score close to 0.0 = likely hemolytic (unsafe)
|
| 95 |
-
|
| 96 |
-
---
|
| 97 |
-
|
| 98 |
-
#### 2. Solubility Prediction
|
| 99 |
-
|
| 100 |
-
Predicts aqueous solubility. Higher scores indicate better solubility.
|
| 101 |
-
|
| 102 |
-
```python
|
| 103 |
-
from functions.solubility.solubility import Solubility
|
| 104 |
-
|
| 105 |
-
# Initialize predictor
|
| 106 |
-
sol = Solubility()
|
| 107 |
-
|
| 108 |
-
# Input peptide
|
| 109 |
-
peptides = [
|
| 110 |
-
"NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
|
| 111 |
-
]
|
| 112 |
-
|
| 113 |
-
# Get predictions
|
| 114 |
-
scores = sol(peptides)
|
| 115 |
-
print(f"Solubility probability: {scores[0]:.3f}")
|
| 116 |
-
```
|
| 117 |
-
|
| 118 |
-
**Output interpretation:**
|
| 119 |
-
- Score close to 1.0 = highly soluble
|
| 120 |
-
- Score close to 0.0 = poorly soluble
|
| 121 |
-
|
| 122 |
-
---
|
| 123 |
-
|
| 124 |
-
#### 3. Nonfouling Prediction
|
| 125 |
-
|
| 126 |
-
Predicts protein resistance/non-fouling properties.
|
| 127 |
-
|
| 128 |
-
```python
|
| 129 |
-
from functions.nonfouling.nonfouling import Nonfouling
|
| 130 |
-
|
| 131 |
-
# Initialize predictor
|
| 132 |
-
nf = Nonfouling()
|
| 133 |
-
|
| 134 |
-
# Input peptide
|
| 135 |
-
peptides = [
|
| 136 |
-
"NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
|
| 137 |
-
]
|
| 138 |
-
|
| 139 |
-
# Get predictions
|
| 140 |
-
scores = nf(peptides)
|
| 141 |
-
print(f"Nonfouling score: {scores[0]:.3f}")
|
| 142 |
-
```
|
| 143 |
-
|
| 144 |
-
**Output interpretation:**
|
| 145 |
-
- Higher scores = better non-fouling properties
|
| 146 |
-
|
| 147 |
-
---
|
| 148 |
-
|
| 149 |
-
#### 4. Permeability Prediction
|
| 150 |
-
|
| 151 |
-
Predicts membrane permeability on a log P scale.
|
| 152 |
-
|
| 153 |
-
```python
|
| 154 |
-
from functions.permeability.permeability import Permeability
|
| 155 |
-
|
| 156 |
-
# Initialize predictor
|
| 157 |
-
perm = Permeability()
|
| 158 |
-
|
| 159 |
-
# Input peptide
|
| 160 |
-
peptides = [
|
| 161 |
-
"N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](Cc1cNc2c1cc(O)cc2)C(=O)O"
|
| 162 |
-
]
|
| 163 |
-
|
| 164 |
-
# Get predictions
|
| 165 |
-
scores = perm(peptides)
|
| 166 |
-
print(f"Permeability (log P): {scores[0]:.3f}")
|
| 167 |
-
```
|
| 168 |
-
|
| 169 |
-
**Output interpretation:**
|
| 170 |
-
- Higher values = more permeable
|
| 171 |
-
- Typical range: -10 to 0 (log scale)
|
| 172 |
-
|
| 173 |
-
---
|
| 174 |
-
|
| 175 |
-
#### 5. Binding Affinity Prediction
|
| 176 |
-
|
| 177 |
-
Predicts peptide-protein binding affinity. Requires both peptide and target protein sequence.
|
| 178 |
-
|
| 179 |
-
```python
|
| 180 |
-
from functions.binding.binding import BindingAffinity
|
| 181 |
-
|
| 182 |
-
# Target protein sequence (amino acid format)
|
| 183 |
-
target_protein = "MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLL..."
|
| 184 |
-
|
| 185 |
-
# Initialize predictor with target protein
|
| 186 |
-
binding = BindingAffinity(prot_seq=target_protein)
|
| 187 |
-
|
| 188 |
-
# Input peptide in SMILES format
|
| 189 |
-
peptides = [
|
| 190 |
-
"CC[C@H](C)[C@H](NC(=O)[C@H](C)NC(=O)[C@@H](N)Cc1c[nH]cn1)C(=O)O"
|
| 191 |
-
]
|
| 192 |
-
|
| 193 |
-
# Get predictions
|
| 194 |
-
scores = binding(peptides)
|
| 195 |
-
print(f"Binding affinity (-log Kd): {scores[0]:.3f}")
|
| 196 |
-
```
|
| 197 |
-
|
| 198 |
-
**Output interpretation:**
|
| 199 |
-
- Higher values = stronger binding
|
| 200 |
-
- Scale: -log(Kd/Ki/IC50)
|
| 201 |
-
- 7.5+ = tight binding (β€ ~30nM)
|
| 202 |
-
- 6.0-7.5 = medium binding (~30nM - 1ΞΌM)
|
| 203 |
-
- <6.0 = weak binding (> 1ΞΌM)
|
| 204 |
-
|
| 205 |
-
---
|
| 206 |
-
|
| 207 |
-
## Batch ProcessingΒ π
|
| 208 |
-
|
| 209 |
-
All predictors support batch processing for multiple peptides:
|
| 210 |
-
|
| 211 |
-
```python
|
| 212 |
-
from functions.hemolysis.hemolysis import Hemolysis
|
| 213 |
-
|
| 214 |
-
hemo = Hemolysis()
|
| 215 |
-
|
| 216 |
-
# Multiple peptides
|
| 217 |
-
peptides = [
|
| 218 |
-
"NCC(=O)N[C@H](CS)C(=O)O",
|
| 219 |
-
"CC(C)C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)O)C(=O)O",
|
| 220 |
-
"N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)O"
|
| 221 |
-
]
|
| 222 |
-
|
| 223 |
-
# Get predictions for all
|
| 224 |
-
scores = hemo(peptides)
|
| 225 |
-
|
| 226 |
-
for i, score in enumerate(scores):
|
| 227 |
-
print(f"Peptide {i+1}: {score:.3f}")
|
| 228 |
-
```
|
| 229 |
-
|
| 230 |
-
---
|
| 231 |
-
|
| 232 |
-
## Unified Scoring with Multiple PredictorsΒ π
|
| 233 |
-
|
| 234 |
-
For convenience, you can use `scoring_functions.py` to evaluate multiple properties at once and get a score vector for each peptide.
|
| 235 |
-
|
| 236 |
-
### Basic Usage
|
| 237 |
-
|
| 238 |
-
```python
|
| 239 |
-
import sys
|
| 240 |
-
sys.path.append('/path/to/PeptiVerse')
|
| 241 |
-
from scoring_functions import ScoringFunctions
|
| 242 |
-
|
| 243 |
-
# Initialize with desired scoring functions
|
| 244 |
-
# Available: 'binding_affinity1', 'binding_affinity2', 'permeability',
|
| 245 |
-
# 'solubility', 'hemolysis', 'nonfouling'
|
| 246 |
-
scoring = ScoringFunctions(
|
| 247 |
-
score_func_names=['solubility', 'hemolysis', 'nonfouling', 'permeability'],
|
| 248 |
-
prot_seqs=[] # Empty if not using binding affinity
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
# Input peptides in SMILES format
|
| 252 |
-
peptides = [
|
| 253 |
-
'N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](Cc1ccccc1)C2(=O)',
|
| 254 |
-
'NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)O'
|
| 255 |
-
]
|
| 256 |
-
|
| 257 |
-
# Get scores (returns numpy array of shape: num_peptides x num_functions)
|
| 258 |
-
scores = scoring(input_seqs=peptides)
|
| 259 |
-
print(scores)
|
| 260 |
-
```
|
| 261 |
-
|
| 262 |
-
### Adding Binding Affinity
|
| 263 |
-
|
| 264 |
-
```python
|
| 265 |
-
from scoring_functions import ScoringFunctions
|
| 266 |
-
|
| 267 |
-
# Target protein sequence (amino acid format)
|
| 268 |
-
tfr_protein = "MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNT..."
|
| 269 |
-
|
| 270 |
-
# Initialize with binding affinity for one protein
|
| 271 |
-
scoring = ScoringFunctions(
|
| 272 |
-
score_func_names=['binding_affinity1', 'solubility', 'hemolysis', 'permeability'],
|
| 273 |
-
prot_seqs=[tfr_protein] # Provide target protein sequence
|
| 274 |
-
)
|
| 275 |
-
|
| 276 |
-
peptides = ['N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](Cc1ccccc1)C2(=O)']
|
| 277 |
-
scores = scoring(input_seqs=peptides)
|
| 278 |
-
|
| 279 |
-
# scores[0] will contain: [binding_affinity, solubility, hemolysis, permeability]
|
| 280 |
-
print(f"Scores for peptide 1:")
|
| 281 |
-
print(f" Binding Affinity: {scores[0][0]:.3f}")
|
| 282 |
-
print(f" Solubility: {scores[0][1]:.3f}")
|
| 283 |
-
print(f" Hemolysis: {scores[0][2]:.3f}")
|
| 284 |
-
print(f" Permeability: {scores[0][3]:.3f}")
|
| 285 |
-
```
|
| 286 |
-
|
| 287 |
-
### Multiple Binding Targets
|
| 288 |
-
|
| 289 |
-
```python
|
| 290 |
-
# For dual binding affinity prediction
|
| 291 |
-
protein1 = "MMDQARSAFSNLFGGEPLSYTR..." # First target
|
| 292 |
-
protein2 = "MTKSNGEEPKMGGRMERFQQGV..." # Second target
|
| 293 |
-
|
| 294 |
-
scoring = ScoringFunctions(
|
| 295 |
-
score_func_names=['binding_affinity1', 'binding_affinity2', 'solubility', 'hemolysis'],
|
| 296 |
-
prot_seqs=[protein1, protein2] # Provide both protein sequences
|
| 297 |
-
)
|
| 298 |
-
|
| 299 |
-
peptides = ['N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)...']
|
| 300 |
-
scores = scoring(input_seqs=peptides)
|
| 301 |
-
|
| 302 |
-
# scores[0] will contain: [binding_aff1, binding_aff2, solubility, hemolysis]
|
| 303 |
-
```
|
| 304 |
-
|
| 305 |
-
### Output Format
|
| 306 |
-
|
| 307 |
-
The `ScoringFunctions` class returns a numpy array where:
|
| 308 |
-
- **Rows**: Each row corresponds to one input peptide
|
| 309 |
-
- **Columns**: Each column corresponds to one scoring function (in the order specified)
|
| 310 |
-
|
| 311 |
-
```python
|
| 312 |
-
# Example with 3 peptides and 4 scoring functions
|
| 313 |
-
scores = scoring(input_seqs=peptides)
|
| 314 |
-
# Shape: (3, 4)
|
| 315 |
-
# scores[0] = [func1_score, func2_score, func3_score, func4_score] for peptide 1
|
| 316 |
-
# scores[1] = [func1_score, func2_score, func3_score, func4_score] for peptide 2
|
| 317 |
-
# scores[2] = [func1_score, func2_score, func3_score, func4_score] for peptide 3
|
| 318 |
-
```
|
| 319 |
-
|
| 320 |
-
---
|
| 321 |
-
|
| 322 |
-
## Complete ExampleΒ π
|
| 323 |
-
|
| 324 |
-
```python
|
| 325 |
-
import sys
|
| 326 |
-
sys.path.append('/path/to/PeptiVerse')
|
| 327 |
-
from functions.hemolysis.hemolysis import Hemolysis
|
| 328 |
-
from functions.solubility.solubility import Solubility
|
| 329 |
-
from functions.permeability.permeability import Permeability
|
| 330 |
-
|
| 331 |
-
# Initialize predictors
|
| 332 |
-
hemo = Hemolysis()
|
| 333 |
-
sol = Solubility()
|
| 334 |
-
perm = Permeability()
|
| 335 |
-
|
| 336 |
-
# Test peptide
|
| 337 |
-
peptide = ["NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)O"]
|
| 338 |
-
|
| 339 |
-
# Get all predictions
|
| 340 |
-
hemo_score = hemo(peptide)[0]
|
| 341 |
-
sol_score = sol(peptide)[0]
|
| 342 |
-
perm_score = perm(peptide)[0]
|
| 343 |
-
|
| 344 |
-
print("Peptide Property Predictions:")
|
| 345 |
-
print(f" Hemolysis (non-hemolytic prob): {hemo_score:.3f}")
|
| 346 |
-
print(f" Solubility: {sol_score:.3f}")
|
| 347 |
-
print(f" Permeability: {perm_score:.3f}")
|
| 348 |
-
```
|
| 349 |
-
|
| 350 |
-
---
|
| 351 |
-
|
| 352 |
-
## Model Architecture π
|
| 353 |
-
|
| 354 |
-
All predictors use:
|
| 355 |
-
- **Embeddings**: PeptideCLM-23M (RoFormer-based peptide language model)
|
| 356 |
-
- **Classifier**: XGBoost gradient boosting
|
| 357 |
-
- **Input**: SMILES representation of peptides
|
| 358 |
-
- **Training**: Models trained on curated datasets with cross-validation
|
| 359 |
-
|
| 360 |
-
---
|
| 361 |
-
## Citation
|
| 362 |
-
|
| 363 |
-
If you find this repository helpful for your publications, please consider citing our paper:
|
| 364 |
-
|
| 365 |
-
```
|
| 366 |
-
@article{zhang2025peptiverse,
|
| 367 |
-
title={PeptiVerse: A Unified Platform for Therapeutic Peptide Property Prediction},
|
| 368 |
-
author={Zhang, Yinuo and Tang, Sophia and Chen, Tong and Mahood, Elizabeth and Vincoff, Sophia and Chatterjee, Pranam},
|
| 369 |
-
journal={bioRxiv},
|
| 370 |
-
doi={10.64898/2025.12.31.697180}
|
| 371 |
-
year={2026}
|
| 372 |
-
}
|
| 373 |
-
```
|
| 374 |
-
To use this repository, you agree to abide by theΒ MIT License.
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0dd39f30b6311602a8b9533d532405c3f5427d7b61179f993d29b10f95627017
|
| 3 |
+
size 18784
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
pandas>=2.0.0
|
| 3 |
+
numpy>=1.24.0
|
| 4 |
+
plotly>=5.14.0
|
| 5 |
+
torch>=2.0.0
|
| 6 |
+
transformers==4.46.0
|
| 7 |
+
scikit-learn>=1.3.0
|
| 8 |
+
biopython>=1.81
|
| 9 |
+
rdkit>=2023.3.1
|
| 10 |
+
seaborn
|
| 11 |
+
SmilesPE
|
| 12 |
+
xgboost
|
| 13 |
+
ipython
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/dataset_dict.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{"splits": ["train", "val"]}
|
|
|
|
|
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00001-of-00005.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6281286045c604cd2d8c21bb2fc04112969044de787a84fac80e653a1d14b58
|
| 3 |
+
size 506101952
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00002-of-00005.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dba30b3c634beee1d4076a4913fc9579e05ace58fd14f029254028339f7d6dc1
|
| 3 |
+
size 346101152
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00003-of-00005.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb80d65357bf3aef44c7d38e5d5c263be7a1baec9b79d79b022bbd983cb1b3da
|
| 3 |
+
size 480935432
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00004-of-00005.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49ae3e0d1e202e56e1982e7c1de2f5728b6ba256534a68d0f59694026f53a640
|
| 3 |
+
size 425662736
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/dataset_info.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"builder_name": "generator",
|
| 3 |
+
"citation": "",
|
| 4 |
+
"config_name": "default",
|
| 5 |
+
"dataset_name": "generator",
|
| 6 |
+
"dataset_size": 2114611931,
|
| 7 |
+
"description": "",
|
| 8 |
+
"download_checksums": {},
|
| 9 |
+
"download_size": 0,
|
| 10 |
+
"features": {
|
| 11 |
+
"sequence": {
|
| 12 |
+
"dtype": "string",
|
| 13 |
+
"_type": "Value"
|
| 14 |
+
},
|
| 15 |
+
"label": {
|
| 16 |
+
"dtype": "int64",
|
| 17 |
+
"_type": "Value"
|
| 18 |
+
},
|
| 19 |
+
"embedding": {
|
| 20 |
+
"feature": {
|
| 21 |
+
"feature": {
|
| 22 |
+
"dtype": "float16",
|
| 23 |
+
"_type": "Value"
|
| 24 |
+
},
|
| 25 |
+
"length": 768,
|
| 26 |
+
"_type": "List"
|
| 27 |
+
},
|
| 28 |
+
"_type": "List"
|
| 29 |
+
},
|
| 30 |
+
"attention_mask": {
|
| 31 |
+
"feature": {
|
| 32 |
+
"dtype": "int8",
|
| 33 |
+
"_type": "Value"
|
| 34 |
+
},
|
| 35 |
+
"_type": "List"
|
| 36 |
+
},
|
| 37 |
+
"length": {
|
| 38 |
+
"dtype": "int64",
|
| 39 |
+
"_type": "Value"
|
| 40 |
+
}
|
| 41 |
+
},
|
| 42 |
+
"homepage": "",
|
| 43 |
+
"license": "",
|
| 44 |
+
"size_in_bytes": 2114611931,
|
| 45 |
+
"splits": {
|
| 46 |
+
"train": {
|
| 47 |
+
"name": "train",
|
| 48 |
+
"num_bytes": 2114611931,
|
| 49 |
+
"num_examples": 8838,
|
| 50 |
+
"shard_lengths": [
|
| 51 |
+
3000,
|
| 52 |
+
3000,
|
| 53 |
+
2000,
|
| 54 |
+
838
|
| 55 |
+
],
|
| 56 |
+
"dataset_name": "generator"
|
| 57 |
+
}
|
| 58 |
+
},
|
| 59 |
+
"version": {
|
| 60 |
+
"version_str": "0.0.0",
|
| 61 |
+
"major": 0,
|
| 62 |
+
"minor": 0,
|
| 63 |
+
"patch": 0
|
| 64 |
+
}
|
| 65 |
+
}
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/state.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_data_files": [
|
| 3 |
+
{
|
| 4 |
+
"filename": "data-00000-of-00005.arrow"
|
| 5 |
+
},
|
| 6 |
+
{
|
| 7 |
+
"filename": "data-00001-of-00005.arrow"
|
| 8 |
+
},
|
| 9 |
+
{
|
| 10 |
+
"filename": "data-00002-of-00005.arrow"
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"filename": "data-00003-of-00005.arrow"
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"filename": "data-00004-of-00005.arrow"
|
| 17 |
+
}
|
| 18 |
+
],
|
| 19 |
+
"_fingerprint": "b072567eebe4f415",
|
| 20 |
+
"_format_columns": null,
|
| 21 |
+
"_format_kwargs": {},
|
| 22 |
+
"_format_type": null,
|
| 23 |
+
"_output_all_columns": false,
|
| 24 |
+
"_split": "train"
|
| 25 |
+
}
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/val/data-00000-of-00001.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fad51e18ba1b7cd70dca29a2954e708aa11054e2a7719c05af651ad8da49775e
|
| 3 |
+
size 411839544
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/val/dataset_info.json
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"builder_name": "generator",
|
| 3 |
+
"citation": "",
|
| 4 |
+
"config_name": "default",
|
| 5 |
+
"dataset_name": "generator",
|
| 6 |
+
"dataset_size": 411837070,
|
| 7 |
+
"description": "",
|
| 8 |
+
"download_checksums": {},
|
| 9 |
+
"download_size": 0,
|
| 10 |
+
"features": {
|
| 11 |
+
"sequence": {
|
| 12 |
+
"dtype": "string",
|
| 13 |
+
"_type": "Value"
|
| 14 |
+
},
|
| 15 |
+
"label": {
|
| 16 |
+
"dtype": "int64",
|
| 17 |
+
"_type": "Value"
|
| 18 |
+
},
|
| 19 |
+
"embedding": {
|
| 20 |
+
"feature": {
|
| 21 |
+
"feature": {
|
| 22 |
+
"dtype": "float16",
|
| 23 |
+
"_type": "Value"
|
| 24 |
+
},
|
| 25 |
+
"length": 768,
|
| 26 |
+
"_type": "List"
|
| 27 |
+
},
|
| 28 |
+
"_type": "List"
|
| 29 |
+
},
|
| 30 |
+
"attention_mask": {
|
| 31 |
+
"feature": {
|
| 32 |
+
"dtype": "int8",
|
| 33 |
+
"_type": "Value"
|
| 34 |
+
},
|
| 35 |
+
"_type": "List"
|
| 36 |
+
},
|
| 37 |
+
"length": {
|
| 38 |
+
"dtype": "int64",
|
| 39 |
+
"_type": "Value"
|
| 40 |
+
}
|
| 41 |
+
},
|
| 42 |
+
"homepage": "",
|
| 43 |
+
"license": "",
|
| 44 |
+
"size_in_bytes": 411837070,
|
| 45 |
+
"splits": {
|
| 46 |
+
"train": {
|
| 47 |
+
"name": "train",
|
| 48 |
+
"num_bytes": 411837070,
|
| 49 |
+
"num_examples": 2198,
|
| 50 |
+
"dataset_name": "generator"
|
| 51 |
+
}
|
| 52 |
+
},
|
| 53 |
+
"version": {
|
| 54 |
+
"version_str": "0.0.0",
|
| 55 |
+
"major": 0,
|
| 56 |
+
"minor": 0,
|
| 57 |
+
"patch": 0
|
| 58 |
+
}
|
| 59 |
+
}
|
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/val/state.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_data_files": [
|
| 3 |
+
{
|
| 4 |
+
"filename": "data-00000-of-00001.arrow"
|
| 5 |
+
}
|
| 6 |
+
],
|
| 7 |
+
"_fingerprint": "4bac7336e23d3fed",
|
| 8 |
+
"_format_columns": null,
|
| 9 |
+
"_format_kwargs": {},
|
| 10 |
+
"_format_type": null,
|
| 11 |
+
"_output_all_columns": false,
|
| 12 |
+
"_split": "train"
|
| 13 |
+
}
|