Joblib
ynuozhang commited on
Commit
cdf1251
Β·
1 Parent(s): 0f7b5c6

update dataset

Browse files
README.md CHANGED
@@ -1,374 +1,3 @@
1
- ---
2
- license: cc-by-nc-nd-4.0
3
- ---
4
-
5
-
6
- ![Untitled design (3)](https://cdn-uploads.huggingface.co/production/uploads/64cd5b3f0494187a9e8b7c69/bpOe1xggl9lw90JMi3VsC.png)
7
-
8
- This repo contains important large files for [PeptiVerse](https://huggingface.co/spaces/ChatterjeeLab/PeptiVerse), an interactive app for peptide property prediction.
9
-
10
- - `embeddings` folder contains processed huggingface datasets with PeptideCLM embeddings. The `.csv` is the pre-processed data.
11
- - `metrics` folder contains the model performance on the validation data
12
- - `models` host all trained model weights
13
- - `training_data` host all **raw data** to train the classifiers
14
- - `functions` contains files to utilize the trained weights and classifiers
15
- - `train` contains the script to train classifiers on the pre-processed embeddings, either through xgboost or MLPs.
16
- - `scoring_function.py` contains a class that aggregates all trained classifiers for diverse downstream sampling applications
17
-
18
- # PeptiVerse 🧬🌌
19
-
20
- A collection of machine learning predictors for non-canonical and canonical peptide property prediction for SMILES representation. 🧬 PeptiVerse 🌌 enables evaluation of key biophysical and therapeutic properties of peptides for property-optimized generation.
21
-
22
- ## Predictors 🧫
23
-
24
- PeptiVerse includes the following property predictors:
25
-
26
- | Predictor | Measurement | Interpretation | Training Data Source | Dataset Size | Model Type |
27
- |-----------|-------------|-----------------| --------------------|--------------|------------|
28
- | **Non-Hemolysis** | Probability of non-hemolytic behavior | 0-1 scale, higher = less hemolytic | PeptideBERT, PepLand | 6,077 peptides | XGBoost + PeptideCLM embeddings |
29
- | **Solubility** | Probability of aqueous solubility | 0-1 scale, higher = more soluble | PeptideBERT, PepLand | 18,454 peptides | XGBoost + PeptideCLM embeddings |
30
- | **Non-Fouling** | Probability of non-fouling properties | 0-1 scale, higher = lower probability of binding to off-targets | PeptideBERT, PepLand | 17,186 peptides | XGBoost + PeptideCLM embeddings |
31
- | **Permeability** | Cell membrane permeability (PAMPA lipophilicity score log P scale, range -10 to 0) | β‰₯ βˆ’6.0 indicate strong permeability and values < 6.0 indicate weak permeability | ChEMBL (22,040), CycPeptMPDB (7451) | 34,853 peptides | XGBoost + PeptideCLM embeddings + molecular descriptors |
32
- | **Binding Affinity** | Peptide-protein binding strength (-log Kd/Ki/IC50 scale) | Weak binding (< 6.0), medium binding (6.0 βˆ’ 7.5), and high binding (β‰₯ 7.5) | PepLand | 1806 peptide-protein pairs | Cross-attention transformer (ESM2 + PeptideCLM) |
33
-
34
- ## Model Performance 🌟
35
-
36
- #### Binary Classification Predictors
37
-
38
- | Predictor | Val AUC | Val F1 |
39
- |-----------|----------------|----------|
40
- | **Non-Hemolysis** | 0.7902 | 0.8260 |
41
- | **Solubility** | 0.6016 | 0.5767 |
42
- | **Nonfouling** | 0.9327 | 0.8774 |
43
-
44
- #### Regression Predictors
45
-
46
- | Predictor | Train Correlation (Spearman) | Val Correlation (Spearman) |
47
- |-----------|------------------------------|----------------------------|
48
- | **Permeability** | 0.958 | 0.710 |
49
- | **Binding Affinity** | 0.805 | 0.611 |
50
-
51
- ## Setup 🌟
52
-
53
- 1. Clone the repository:
54
- ```bash
55
- git clone https://github.com/sophtang/PeptiVerse.git
56
- cd PeptiVerse
57
- ```
58
-
59
- 2. Install environment:
60
- ```bash
61
- conda env create -f environment.yml
62
-
63
- conda activate peptiverse
64
- ```
65
-
66
- 3. Change the `base_path` in each file to ensure that all model weights and tokenizers are loaded correctly.
67
-
68
- ## Usage 🌟
69
-
70
- #### 1. Hemolysis Prediction
71
-
72
- Predicts the probability that a peptide is **not hemolytic**. Higher scores indicate safer peptides.
73
-
74
- ```python
75
- import sys
76
- sys.path.append('/path/to/PeptiVerse')
77
- from functions.hemolysis.hemolysis import Hemolysis
78
-
79
- # Initialize predictor
80
- hemo = Hemolysis()
81
-
82
- # Input peptide in SMILES format
83
- peptides = [
84
- "NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
85
- ]
86
-
87
- # Get predictions
88
- scores = hemo(peptides)
89
- print(f"Non-hemolytic probability: {scores[0]:.3f}")
90
- ```
91
-
92
- **Output interpretation:**
93
- - Score close to 1.0 = likely non-hemolytic (safe)
94
- - Score close to 0.0 = likely hemolytic (unsafe)
95
-
96
- ---
97
-
98
- #### 2. Solubility Prediction
99
-
100
- Predicts aqueous solubility. Higher scores indicate better solubility.
101
-
102
- ```python
103
- from functions.solubility.solubility import Solubility
104
-
105
- # Initialize predictor
106
- sol = Solubility()
107
-
108
- # Input peptide
109
- peptides = [
110
- "NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
111
- ]
112
-
113
- # Get predictions
114
- scores = sol(peptides)
115
- print(f"Solubility probability: {scores[0]:.3f}")
116
- ```
117
-
118
- **Output interpretation:**
119
- - Score close to 1.0 = highly soluble
120
- - Score close to 0.0 = poorly soluble
121
-
122
- ---
123
-
124
- #### 3. Nonfouling Prediction
125
-
126
- Predicts protein resistance/non-fouling properties.
127
-
128
- ```python
129
- from functions.nonfouling.nonfouling import Nonfouling
130
-
131
- # Initialize predictor
132
- nf = Nonfouling()
133
-
134
- # Input peptide
135
- peptides = [
136
- "NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
137
- ]
138
-
139
- # Get predictions
140
- scores = nf(peptides)
141
- print(f"Nonfouling score: {scores[0]:.3f}")
142
- ```
143
-
144
- **Output interpretation:**
145
- - Higher scores = better non-fouling properties
146
-
147
- ---
148
-
149
- #### 4. Permeability Prediction
150
-
151
- Predicts membrane permeability on a log P scale.
152
-
153
- ```python
154
- from functions.permeability.permeability import Permeability
155
-
156
- # Initialize predictor
157
- perm = Permeability()
158
-
159
- # Input peptide
160
- peptides = [
161
- "N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](Cc1cNc2c1cc(O)cc2)C(=O)O"
162
- ]
163
-
164
- # Get predictions
165
- scores = perm(peptides)
166
- print(f"Permeability (log P): {scores[0]:.3f}")
167
- ```
168
-
169
- **Output interpretation:**
170
- - Higher values = more permeable
171
- - Typical range: -10 to 0 (log scale)
172
-
173
- ---
174
-
175
- #### 5. Binding Affinity Prediction
176
-
177
- Predicts peptide-protein binding affinity. Requires both peptide and target protein sequence.
178
-
179
- ```python
180
- from functions.binding.binding import BindingAffinity
181
-
182
- # Target protein sequence (amino acid format)
183
- target_protein = "MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLL..."
184
-
185
- # Initialize predictor with target protein
186
- binding = BindingAffinity(prot_seq=target_protein)
187
-
188
- # Input peptide in SMILES format
189
- peptides = [
190
- "CC[C@H](C)[C@H](NC(=O)[C@H](C)NC(=O)[C@@H](N)Cc1c[nH]cn1)C(=O)O"
191
- ]
192
-
193
- # Get predictions
194
- scores = binding(peptides)
195
- print(f"Binding affinity (-log Kd): {scores[0]:.3f}")
196
- ```
197
-
198
- **Output interpretation:**
199
- - Higher values = stronger binding
200
- - Scale: -log(Kd/Ki/IC50)
201
- - 7.5+ = tight binding (≀ ~30nM)
202
- - 6.0-7.5 = medium binding (~30nM - 1ΞΌM)
203
- - <6.0 = weak binding (> 1ΞΌM)
204
-
205
- ---
206
-
207
- ## Batch Processing 🌟
208
-
209
- All predictors support batch processing for multiple peptides:
210
-
211
- ```python
212
- from functions.hemolysis.hemolysis import Hemolysis
213
-
214
- hemo = Hemolysis()
215
-
216
- # Multiple peptides
217
- peptides = [
218
- "NCC(=O)N[C@H](CS)C(=O)O",
219
- "CC(C)C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)O)C(=O)O",
220
- "N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)O"
221
- ]
222
-
223
- # Get predictions for all
224
- scores = hemo(peptides)
225
-
226
- for i, score in enumerate(scores):
227
- print(f"Peptide {i+1}: {score:.3f}")
228
- ```
229
-
230
- ---
231
-
232
- ## Unified Scoring with Multiple Predictors 🌟
233
-
234
- For convenience, you can use `scoring_functions.py` to evaluate multiple properties at once and get a score vector for each peptide.
235
-
236
- ### Basic Usage
237
-
238
- ```python
239
- import sys
240
- sys.path.append('/path/to/PeptiVerse')
241
- from scoring_functions import ScoringFunctions
242
-
243
- # Initialize with desired scoring functions
244
- # Available: 'binding_affinity1', 'binding_affinity2', 'permeability',
245
- # 'solubility', 'hemolysis', 'nonfouling'
246
- scoring = ScoringFunctions(
247
- score_func_names=['solubility', 'hemolysis', 'nonfouling', 'permeability'],
248
- prot_seqs=[] # Empty if not using binding affinity
249
- )
250
-
251
- # Input peptides in SMILES format
252
- peptides = [
253
- 'N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](Cc1ccccc1)C2(=O)',
254
- 'NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)O'
255
- ]
256
-
257
- # Get scores (returns numpy array of shape: num_peptides x num_functions)
258
- scores = scoring(input_seqs=peptides)
259
- print(scores)
260
- ```
261
-
262
- ### Adding Binding Affinity
263
-
264
- ```python
265
- from scoring_functions import ScoringFunctions
266
-
267
- # Target protein sequence (amino acid format)
268
- tfr_protein = "MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNT..."
269
-
270
- # Initialize with binding affinity for one protein
271
- scoring = ScoringFunctions(
272
- score_func_names=['binding_affinity1', 'solubility', 'hemolysis', 'permeability'],
273
- prot_seqs=[tfr_protein] # Provide target protein sequence
274
- )
275
-
276
- peptides = ['N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](Cc1ccccc1)C2(=O)']
277
- scores = scoring(input_seqs=peptides)
278
-
279
- # scores[0] will contain: [binding_affinity, solubility, hemolysis, permeability]
280
- print(f"Scores for peptide 1:")
281
- print(f" Binding Affinity: {scores[0][0]:.3f}")
282
- print(f" Solubility: {scores[0][1]:.3f}")
283
- print(f" Hemolysis: {scores[0][2]:.3f}")
284
- print(f" Permeability: {scores[0][3]:.3f}")
285
- ```
286
-
287
- ### Multiple Binding Targets
288
-
289
- ```python
290
- # For dual binding affinity prediction
291
- protein1 = "MMDQARSAFSNLFGGEPLSYTR..." # First target
292
- protein2 = "MTKSNGEEPKMGGRMERFQQGV..." # Second target
293
-
294
- scoring = ScoringFunctions(
295
- score_func_names=['binding_affinity1', 'binding_affinity2', 'solubility', 'hemolysis'],
296
- prot_seqs=[protein1, protein2] # Provide both protein sequences
297
- )
298
-
299
- peptides = ['N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)...']
300
- scores = scoring(input_seqs=peptides)
301
-
302
- # scores[0] will contain: [binding_aff1, binding_aff2, solubility, hemolysis]
303
- ```
304
-
305
- ### Output Format
306
-
307
- The `ScoringFunctions` class returns a numpy array where:
308
- - **Rows**: Each row corresponds to one input peptide
309
- - **Columns**: Each column corresponds to one scoring function (in the order specified)
310
-
311
- ```python
312
- # Example with 3 peptides and 4 scoring functions
313
- scores = scoring(input_seqs=peptides)
314
- # Shape: (3, 4)
315
- # scores[0] = [func1_score, func2_score, func3_score, func4_score] for peptide 1
316
- # scores[1] = [func1_score, func2_score, func3_score, func4_score] for peptide 2
317
- # scores[2] = [func1_score, func2_score, func3_score, func4_score] for peptide 3
318
- ```
319
-
320
- ---
321
-
322
- ## Complete Example 🌟
323
-
324
- ```python
325
- import sys
326
- sys.path.append('/path/to/PeptiVerse')
327
- from functions.hemolysis.hemolysis import Hemolysis
328
- from functions.solubility.solubility import Solubility
329
- from functions.permeability.permeability import Permeability
330
-
331
- # Initialize predictors
332
- hemo = Hemolysis()
333
- sol = Solubility()
334
- perm = Permeability()
335
-
336
- # Test peptide
337
- peptide = ["NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)O"]
338
-
339
- # Get all predictions
340
- hemo_score = hemo(peptide)[0]
341
- sol_score = sol(peptide)[0]
342
- perm_score = perm(peptide)[0]
343
-
344
- print("Peptide Property Predictions:")
345
- print(f" Hemolysis (non-hemolytic prob): {hemo_score:.3f}")
346
- print(f" Solubility: {sol_score:.3f}")
347
- print(f" Permeability: {perm_score:.3f}")
348
- ```
349
-
350
- ---
351
-
352
- ## Model Architecture 🌟
353
-
354
- All predictors use:
355
- - **Embeddings**: PeptideCLM-23M (RoFormer-based peptide language model)
356
- - **Classifier**: XGBoost gradient boosting
357
- - **Input**: SMILES representation of peptides
358
- - **Training**: Models trained on curated datasets with cross-validation
359
-
360
- ---
361
- ## Citation
362
-
363
- If you find this repository helpful for your publications, please consider citing our paper:
364
-
365
- ```
366
- @article{zhang2025peptiverse,
367
- title={PeptiVerse: A Unified Platform for Therapeutic Peptide Property Prediction},
368
- author={Zhang, Yinuo and Tang, Sophia and Chen, Tong and Mahood, Elizabeth and Vincoff, Sophia and Chatterjee, Pranam},
369
- journal={bioRxiv},
370
- doi={10.64898/2025.12.31.697180}
371
- year={2026}
372
- }
373
- ```
374
- To use this repository, you agree to abide by theΒ MIT License.
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dd39f30b6311602a8b9533d532405c3f5427d7b61179f993d29b10f95627017
3
+ size 18784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio>=4.0.0
2
+ pandas>=2.0.0
3
+ numpy>=1.24.0
4
+ plotly>=5.14.0
5
+ torch>=2.0.0
6
+ transformers==4.46.0
7
+ scikit-learn>=1.3.0
8
+ biopython>=1.81
9
+ rdkit>=2023.3.1
10
+ seaborn
11
+ SmilesPE
12
+ xgboost
13
+ ipython
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/dataset_dict.json DELETED
@@ -1 +0,0 @@
1
- {"splits": ["train", "val"]}
 
 
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00001-of-00005.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6281286045c604cd2d8c21bb2fc04112969044de787a84fac80e653a1d14b58
3
+ size 506101952
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00002-of-00005.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dba30b3c634beee1d4076a4913fc9579e05ace58fd14f029254028339f7d6dc1
3
+ size 346101152
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00003-of-00005.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb80d65357bf3aef44c7d38e5d5c263be7a1baec9b79d79b022bbd983cb1b3da
3
+ size 480935432
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/data-00004-of-00005.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49ae3e0d1e202e56e1982e7c1de2f5728b6ba256534a68d0f59694026f53a640
3
+ size 425662736
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/dataset_info.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "generator",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "generator",
6
+ "dataset_size": 2114611931,
7
+ "description": "",
8
+ "download_checksums": {},
9
+ "download_size": 0,
10
+ "features": {
11
+ "sequence": {
12
+ "dtype": "string",
13
+ "_type": "Value"
14
+ },
15
+ "label": {
16
+ "dtype": "int64",
17
+ "_type": "Value"
18
+ },
19
+ "embedding": {
20
+ "feature": {
21
+ "feature": {
22
+ "dtype": "float16",
23
+ "_type": "Value"
24
+ },
25
+ "length": 768,
26
+ "_type": "List"
27
+ },
28
+ "_type": "List"
29
+ },
30
+ "attention_mask": {
31
+ "feature": {
32
+ "dtype": "int8",
33
+ "_type": "Value"
34
+ },
35
+ "_type": "List"
36
+ },
37
+ "length": {
38
+ "dtype": "int64",
39
+ "_type": "Value"
40
+ }
41
+ },
42
+ "homepage": "",
43
+ "license": "",
44
+ "size_in_bytes": 2114611931,
45
+ "splits": {
46
+ "train": {
47
+ "name": "train",
48
+ "num_bytes": 2114611931,
49
+ "num_examples": 8838,
50
+ "shard_lengths": [
51
+ 3000,
52
+ 3000,
53
+ 2000,
54
+ 838
55
+ ],
56
+ "dataset_name": "generator"
57
+ }
58
+ },
59
+ "version": {
60
+ "version_str": "0.0.0",
61
+ "major": 0,
62
+ "minor": 0,
63
+ "patch": 0
64
+ }
65
+ }
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/train/state.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00005.arrow"
5
+ },
6
+ {
7
+ "filename": "data-00001-of-00005.arrow"
8
+ },
9
+ {
10
+ "filename": "data-00002-of-00005.arrow"
11
+ },
12
+ {
13
+ "filename": "data-00003-of-00005.arrow"
14
+ },
15
+ {
16
+ "filename": "data-00004-of-00005.arrow"
17
+ }
18
+ ],
19
+ "_fingerprint": "b072567eebe4f415",
20
+ "_format_columns": null,
21
+ "_format_kwargs": {},
22
+ "_format_type": null,
23
+ "_output_all_columns": false,
24
+ "_split": "train"
25
+ }
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/val/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad51e18ba1b7cd70dca29a2954e708aa11054e2a7719c05af651ad8da49775e
3
+ size 411839544
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/val/dataset_info.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "generator",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "generator",
6
+ "dataset_size": 411837070,
7
+ "description": "",
8
+ "download_checksums": {},
9
+ "download_size": 0,
10
+ "features": {
11
+ "sequence": {
12
+ "dtype": "string",
13
+ "_type": "Value"
14
+ },
15
+ "label": {
16
+ "dtype": "int64",
17
+ "_type": "Value"
18
+ },
19
+ "embedding": {
20
+ "feature": {
21
+ "feature": {
22
+ "dtype": "float16",
23
+ "_type": "Value"
24
+ },
25
+ "length": 768,
26
+ "_type": "List"
27
+ },
28
+ "_type": "List"
29
+ },
30
+ "attention_mask": {
31
+ "feature": {
32
+ "dtype": "int8",
33
+ "_type": "Value"
34
+ },
35
+ "_type": "List"
36
+ },
37
+ "length": {
38
+ "dtype": "int64",
39
+ "_type": "Value"
40
+ }
41
+ },
42
+ "homepage": "",
43
+ "license": "",
44
+ "size_in_bytes": 411837070,
45
+ "splits": {
46
+ "train": {
47
+ "name": "train",
48
+ "num_bytes": 411837070,
49
+ "num_examples": 2198,
50
+ "dataset_name": "generator"
51
+ }
52
+ },
53
+ "version": {
54
+ "version_str": "0.0.0",
55
+ "major": 0,
56
+ "minor": 0,
57
+ "patch": 0
58
+ }
59
+ }
training_data_cleaned/toxicity/tox_smiles_with_embeddings_unpooled/val/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "4bac7336e23d3fed",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "train"
13
+ }