File size: 9,970 Bytes
0e03407 03cd46e 0e03407 03cd46e 14fb942 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 03cd46e 0e03407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import argparse
from dataclasses import dataclass
from pathlib import Path
import sys
import numpy as np
import soundfile as sf
import librosa
from tflite_runtime.interpreter import Interpreter
from tqdm import tqdm
TFLITE_DIR = Path('./')
# -----------------------------------------------------------------------------
# Model registry
# -----------------------------------------------------------------------------
# 16 kHz models: WIN_LEN=320 (20 ms)
# 48 kHz models: WIN_LEN=960 (20 ms)
MODEL_CONFIG = {
# 16 kHz models
"baseline": {"sr": 16000, "win_len": 320},
"dpdfnet2": {"sr": 16000, "win_len": 320},
"dpdfnet4": {"sr": 16000, "win_len": 320},
"dpdfnet8": {"sr": 16000, "win_len": 320},
# 48 kHz models
"dpdfnet2_48khz_hr": {"sr": 48000, "win_len": 960},
}
def vorbis_window(window_len: int) -> np.ndarray:
window_size_h = window_len / 2
indices = np.arange(window_len)
sin = np.sin(0.5 * np.pi * (indices + 0.5) / window_size_h)
window = np.sin(0.5 * np.pi * sin * sin)
return window.astype(np.float32)
def get_wnorm(window_len: int, frame_size: int) -> float:
# window_len - #samples of the window; frame_size - hop size
return 1.0 / (window_len ** 2 / (2 * frame_size))
@dataclass(frozen=True)
class STFTConfig:
sr: int
win_len: int
hop_size: int
win: np.ndarray
wnorm: float
def make_stft_config(sr: int, win_len: int) -> STFTConfig:
hop_size = win_len // 2 # 50% hop
win = vorbis_window(win_len)
wnorm = get_wnorm(win_len, hop_size)
return STFTConfig(sr=sr, win_len=win_len, hop_size=hop_size, win=win, wnorm=wnorm)
# -----------------------------------------------------------------------------
# Pre/Post processing
# -----------------------------------------------------------------------------
def preprocessing(waveform: np.ndarray, cfg: STFTConfig) -> np.ndarray:
"""
waveform: 1D float32 numpy array at cfg.sr, mono, range ~[-1,1]
Returns complex STFT as real/imag split: [B=1, T, F, 2] float32
"""
# Librosa returns [F, T]; match original by using center=False here
spec = librosa.stft(
y=waveform.astype(np.float32, copy=False),
n_fft=cfg.win_len,
hop_length=cfg.hop_size,
win_length=cfg.win_len,
window=cfg.win,
center=True,
pad_mode="reflect",
) # [F, T] complex64
spec = (spec.T * cfg.wnorm).astype(np.complex64) # [T, F]
spec_ri = np.stack([spec.real, spec.imag], axis=-1).astype(np.float32) # [T, F, 2]
return spec_ri[None, ...] # [1, T, F, 2]
def postprocessing(spec_e: np.ndarray, cfg: STFTConfig) -> np.ndarray:
"""
spec_e: [1, T, F, 2] float32
Returns waveform (1D float32, cfg.sr)
"""
# Recreate complex STFT with shape [F, T]
spec_c = spec_e[0].astype(np.float32) # [T, F, 2]
spec = (spec_c[..., 0] + 1j * spec_c[..., 1]).T.astype(np.complex64) # [F, T]
waveform_e = librosa.istft(
spec,
hop_length=cfg.hop_size,
win_length=cfg.win_len,
window=cfg.win,
center=True,
length=None,
).astype(np.float32)
waveform_e = waveform_e / cfg.wnorm
# Keep the legacy alignment compensation behavior, scaled by win_len.
waveform_e = np.concatenate(
[waveform_e[cfg.win_len * 2 :], np.zeros(cfg.win_len * 2, dtype=np.float32)]
)
return waveform_e.astype(np.float32)
# -----------------------------------------------------------------------------
# Audio utilities
# -----------------------------------------------------------------------------
def to_mono(audio: np.ndarray) -> np.ndarray:
if audio.ndim == 1:
return audio
# Average channels to mono
return np.mean(audio, axis=1)
def ensure_sr(waveform: np.ndarray, sr: int, target_sr: int) -> np.ndarray:
if sr == target_sr:
return waveform.astype(np.float32, copy=False)
return librosa.resample(
waveform.astype(np.float32, copy=False), orig_sr=sr, target_sr=target_sr
)
def resample_back(waveform_model_sr: np.ndarray, model_sr: int, target_sr: int) -> np.ndarray:
if target_sr == model_sr:
return waveform_model_sr
return librosa.resample(
waveform_model_sr.astype(np.float32, copy=False),
orig_sr=model_sr,
target_sr=target_sr,
)
def pcm16_safe(x: np.ndarray) -> np.ndarray:
x = np.clip(x, -1.0, 1.0)
return (x * 32767.0).astype(np.int16)
# -----------------------------------------------------------------------------
# Core processing
# -----------------------------------------------------------------------------
def _load_model_and_cfg(model_name: str) -> tuple[Interpreter, STFTConfig]:
"""Create interpreter and return (interpreter, STFTConfig) for this model."""
if model_name not in MODEL_CONFIG:
raise ValueError(
f"Unknown model '{model_name}'. Add it to MODEL_CONFIG or pass a valid --model_name."
)
model_path = TFLITE_DIR / f"{model_name}.tflite"
if not model_path.exists():
raise FileNotFoundError(f"TFLite model not found: {model_path}")
interpreter = Interpreter(model_path=str(model_path))
interpreter.allocate_tensors()
cfg_dict = MODEL_CONFIG[model_name]
cfg = make_stft_config(sr=int(cfg_dict["sr"]), win_len=int(cfg_dict["win_len"]))
# Optional sanity-check: infer expected F from model input and compare
try:
input_details = interpreter.get_input_details()
shape = input_details[0].get("shape", None)
# Expect [1, 1, F, 2] (or [1, T, F, 2] for non-streaming)
if shape is not None and len(shape) >= 3:
F = int(shape[-2]) # ... F, 2
expected_F = cfg.win_len // 2 + 1
if F != expected_F:
raise ValueError(
f"Model '{model_name}' input F={F} does not match win_len={cfg.win_len} "
f"(expected F={expected_F}). Update MODEL_CONFIG for this model."
)
except Exception:
# Do not hard-fail on odd/unknown shapes; the runtime error will be informative.
pass
return interpreter, cfg
def enhance_file(in_path: Path, out_path: Path, model_name: str) -> None:
# Load audio
audio, sr_in = sf.read(str(in_path), always_2d=False)
audio = to_mono(audio)
audio = audio.astype(np.float32, copy=False)
# Load model and its expected SR/STFT config
interpreter, cfg = _load_model_and_cfg(model_name)
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Resample to model SR
audio_model_sr = ensure_sr(audio, sr_in, cfg.sr)
# Alignment compensation #1
audio_pad = np.pad(audio_model_sr, (0, cfg.win_len), mode='constant', constant_values=0)
# STFT to frames (streaming)
spec = preprocessing(audio_pad, cfg) # [1, T, F, 2]
num_frames = spec.shape[1]
# Frame-by-frame inference
outputs = []
for t in tqdm(range(num_frames), desc=f"{in_path.name}", unit="frm", leave=False):
frame = spec[:, t : t + 1] # [1, 1, F, 2]
frame = np.ascontiguousarray(frame, dtype=np.float32)
interpreter.set_tensor(input_details[0]["index"], frame)
interpreter.invoke()
y = interpreter.get_tensor(output_details[0]["index"]) # expected [1,1,F,2]
outputs.append(np.ascontiguousarray(y, dtype=np.float32))
# Concatenate along time dimension
spec_e = np.concatenate(outputs, axis=1).astype(np.float32) # [1, T, F, 2]
# iSTFT to waveform (model SR), then back to original SR for saving
enhanced_model_sr = postprocessing(spec_e, cfg)
enhanced = resample_back(enhanced_model_sr, cfg.sr, sr_in)
# Alignment compensation #2
enhanced = enhanced[: audio.size]
# Save as 16-bit PCM WAV, mono, original sample rate
out_path.parent.mkdir(parents=True, exist_ok=True)
sf.write(str(out_path), pcm16_safe(enhanced), sr_in, subtype="PCM_16")
def main():
parser = argparse.ArgumentParser(
description="Enhance WAV files with a DPDFNet TFLite model (streaming)."
)
parser.add_argument(
"--noisy_dir",
type=str,
required=True,
help="Folder with noisy *.wav files (non-recursive).",
)
parser.add_argument(
"--enhanced_dir",
type=str,
required=True,
help="Output folder for enhanced WAVs.",
)
parser.add_argument(
"--model_name",
type=str,
default="dpdfnet8",
choices=sorted(MODEL_CONFIG.keys()),
help=(
"Name of the model to use. The script will automatically use the correct "
"sample-rate/STFT settings based on MODEL_CONFIG."
),
)
args = parser.parse_args()
noisy_dir = Path(args.noisy_dir)
enhanced_dir = Path(args.enhanced_dir)
model_name = args.model_name
if not noisy_dir.is_dir():
print(
f"ERROR: --noisy_dir does not exist or is not a directory: {noisy_dir}",
file=sys.stderr,
)
sys.exit(1)
wavs = sorted(p for p in noisy_dir.glob("*.wav") if p.is_file())
if not wavs:
print(f"No .wav files found in {noisy_dir} (non-recursive).")
sys.exit(0)
cfg = MODEL_CONFIG.get(model_name, None)
print(f"Model: {model_name}")
if cfg is not None:
print(f"Model SR: {cfg['sr']} Hz | win_len: {cfg['win_len']} | hop: {cfg['win_len']//2}")
print(f"Input : {noisy_dir}")
print(f"Output: {enhanced_dir}")
print(f"Found {len(wavs)} file(s). Enhancing...\n")
for wav in wavs:
out_path = enhanced_dir / (wav.stem + f"_{model_name}.wav")
try:
enhance_file(wav, out_path, model_name)
except Exception as e:
print(f"[SKIP] {wav.name} due to error: {e}", file=sys.stderr)
print("\nProcessing complete. Outputs saved in:", enhanced_dir)
if __name__ == "__main__":
main()
|